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Abstract

Many real-world applications in the social, biological, and physical sci-

ences involve large systems of entities that interact together in some way.

The number of components in these systems can be extremely large, so

some simplification is typically needed for tractable analysis. A common

representation of interacting entities is a network. In its simplest form, a

network consists of a set of nodes that represent entities and a set of edges

between pairs of nodes that represent interactions between those entities.

In this thesis, we investigate clustering techniques for time-dependent net-

works.

An important mesoscale feature in networks is communities. Most com-

munity detection methods are designed for time-independent networks.

A recent framework for representing temporal networks is multilayer net-

works. In this thesis, we focus primarily on community-detection in tem-

poral networks represented as multilayer networks. We investigate three

main topics: a community detection method known as multilayer mod-

ularity maximization, the development of a benchmark for community

detection in temporal networks, and the application of multilayer modu-

larity maximization to temporal financial asset-correlation networks. We

first investigate theoretical and computational issues in multilayer modu-

larity maximization. We introduce a diagnostic to measure persistence of

community structure in a multilayer network partition and we show how

communities one obtains with multilayer modularity maximization reflect

a trade-o↵ between time-independent community structure within layers

and temporal persistence between layers. We discuss computational issues

that can arise when solving this method in practice and we suggest ways to

mitigate them. We then propose a benchmark for community detection in

temporal networks and carry out various numerical experiments to com-

pare the performance of di↵erent methods and computational heuristics

on our benchmark. We end with an application of multilayer modularity

maximization to temporal financial correlation networks.
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Chapter 1

Introduction

1.1 Networks and financial systems

Many real-world applications involve large systems of entities that interact together

in some way. Many of these systems are known as complex systems. Although there is

no precise definition of a complex system, these are often described as systems made

up of many parts, and in which the behaviours of individual parts are highly variable

and strongly dependent on the behaviours of other parts [11,180]. The idea that “the

whole is more than the sum of its parts” is a key feature of complex systems: the

subparts can behave di↵erently in isolation than they do when part of a larger system,

and it is thus necessary to study them together to gain insight into the behaviour of

the system as a whole [183]. An intuitive example is a social system, where even if we

knew everything possible about the behaviour of each individual in a group, we would

not be able to infer the behaviour of the individuals as a group (e.g., development and

evolution of societal rules). Other examples of complex systems include the spread

of disease or information, the human brain, bird flocks, intracellular systems, and

traders in a stock market [11]. This list is far from exhaustive and the diversity of

examples suggests that the notion of a complex system has more to do with how

something is taking place rather than what is taking place [153].

The number of components in a complex system can be extremely large, so some

simplification is typically needed for tractable analysis. For example, one can coarse-

grain the system by choosing a subset of components and interactions that capture

the phenomenon of interest. Given a question, one tries to keep the components and

interactions that are most relevant to it. As with any simplification process, reducing

the number of interactions in a complex system may throw away information, but

may make more evident patterns of interaction and useful information.
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A common way of representing a simplified description of a complex system of

interacting entities is a network. Networks provide useful representations of complex

systems across many disciplines [147]. In its simplest form, a network is simply a

graph: it consists of a set of nodes that represent entities and a set of edges be-

tween pairs of nodes that represent interactions between those entities. One can con-

sider weighted graphs (in which each edge has an associated value that quantifies the

strength of the interaction of interest) or unweighted graphs (weighted graphs with

binary edge weights). Common types of networks include social networks (which

arise via o✏ine and/or online interactions), information networks (e.g., hyperlinks

between webpages in the World Wide Web), infrastructure networks (e.g., trans-

portation routes between cities), and biological networks (e.g., metabolic interactions

between cells or proteins, food webs, etc.).

In this thesis, we focus on networks generated from correlations between finan-

cial asset price time series as real-world examples [23, 38]. In this approach, nodes

in the network are financial products, and edge weights are statistical estimates of

correlations between two time series during a time interval [23, 63, 65, 134, 154]. We

use correlations as a simple quantification of dependency structures within markets.

Such structures are important because financial systems are composed of various in-

terdependent components — such as banks, consumers, firms, and investors — that

react to a market by adjusting their buying and selling decisions, prices, and forecasts,

which in turn causes the market to change. Time plays an important role in the feed-

back loop between financial components and the aggregate they form, the market.

The price of an asset is one manifestation of these interactions and the fluctuations

of prices in time should to some extent reflect the interactions, feedback, and adap-

tation of market participants. The study of correlations between price time series is

therefore important to market practitioners. It can help to better understand sys-

temic risk and the ways in which di↵erent markets interact [138]. It is also important

for credit derivatives [201], where modeling correlation structure plays a crucial role,

although this is not a focus of the thesis. The practical motivation for this study was

provided by HSBC bank. Members from the HSBC bank FX Quantitative Strategy

Group and Asset Allocation Strategy Group have investigated the issue of identify-

ing higher-order structure in correlation matrices that is not captured by standard

stock market classification (e.g., using principal component analysis [65, 101, 200]).

We propose to approach this problem using techniques from network science, and to

investigate whether such techniques can provide additional insight.
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1.2 Community structure

1.2.1 Time-independent networks

Given a network representation of a system, it can be useful to apply a coarse-graining

technique in order to investigate features that lie between features at the “microscale”

(e.g., nodes and pairwise interactions) and the “macroscale” (e.g., total edge weight

and degree distribution) [148,163]. One thereby studies “mesoscale” features such as

core–periphery structure and community structure. Loosely speaking, a community

(or cluster) in a network is a set of nodes that are “more densely” connected to

each other than they are to nodes in the rest of the network [68, 163]. Giving a

precise definition of “densely connected” is, of course, necessary to have a method for

community detection. It is important to recognize at the outset that although the

intuition is clear in a general sense, it seems impossible to provide a single definition

of community. The definition is subjective and may depend, in particular, on the

application in question [68, 163]. What one calls a “community” ultimately depends

on the method and algorithm that one uses to detect them. We elaborate on this

point further in Chapter 2. We restrict ourselves to hard partitions, in which each

node is assigned to exactly one community, and we use the term “partition” to mean

“hard partition”. It is also important, but beyond the scope of this thesis, to consider

“soft partitions”, in which communities can overlap [68,100,156,163].

Analysis of community structure has been useful in a wide range of applications;

many of which are described in [68,73,148,163]. In social networks, communities can

reveal groups of people with common interests, places of residence, or other similar-

ities [150, 191]. In biological systems, communities can reveal functional groups that

are responsible for synthesizing or regulating an important chemical product [81,127].

In financial systems, despite the diversity of markets, financial products, and geo-

graphical locations, financial assets can exhibit strong time-dependent correlations,

both within and between asset classes. It is a key concern for market practitioners

(e.g., for portfolio diversification) to estimate the strengths of these correlations and

to identify sets of assets that are highly correlated [134,200].

1.2.2 Temporal networks

Most methods for detecting communities are designed for time-independent (or static)

networks. However, in many applications, entities and/or interactions between en-

tities evolve in time. In such applications, one can use the formalism of temporal

5



Chapter 1. Introduction

networks, where nodes and/or their edge weights vary in time [89,90]. This is impor-

tant for numerous applications — including person-to-person communication [202],

one-to-many information dissemination (e.g., Twitter networks [76] and Facebook

networks [210]), cell biology [90], neuroscience [22], ecology [90], finance [63–65,154],

and more.

Two main approaches have been adopted to detect communities in time-dependent

networks. The first entails constructing a static network by aggregating snapshots of

the evolving network at di↵erent points in time into a single network (e.g., by taking

the mean or total edge weight for each edge across all time points, which can be

problematic if the set of nodes varies in time). One can then use standard network

techniques. The second approach entails using static community-detection techniques

on each element of a time-ordered sequence of networks at di↵erent times or on each

element of a time-ordered sequence of network aggregations (computed as above) over

di↵erent time intervals (which can be either overlapping or nonoverlapping) and then

tracking the communities across the sequence [15, 63, 64,91,132,156].

A third approach consists of embedding a time-ordered sequence of networks in a

larger network [140, 161] (related ideas are also available in other contexts [56, 186]).

Each element of the sequence is a network layer, and nodes at di↵erent time points are

joined by inter-layer edges. This approach was introduced in [140] and the resulting

network is a type of multilayer network [31, 109]. The main di↵erence between this

approach and the previous approach is that the presence of nonzero inter-layer edges

introduces a dependence between communities identified in one layer and connectivity

patterns in other layers. Thus far, most computations that have used a multilayer

representation of temporal networks have assumed that inter-layer connections are

“diagonal” (i.e., they exist only between copies of the same node) and “ordinal” (i.e.,

they exist only between consecutive layers) [109]. Diagonal coupling is a natural

model of the persistence of node identity in time, while ordinal coupling preserves the

temporal ordering.

The authors of [140] proposed a generalization of modularity maximization, a

popular clustering method for time-independent networks, to multilayer networks.

Modularity is a function that measures the “quality” of a network partition into

disjoint sets of nodes by computing the di↵erence between the total edge weight in

sets in the observed network and the total expected edge weight in the same sets in a

“null network” generated from some “null model” [68,163]. Modularity maximization

consists of maximizing the modularity quality function over the space of network

partitions. (In practice, given the combinatorial complexity of this maximization
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problem, one uses some computational heuristic and finds a local maximum [77].)

Intuitively, the null model controls for connectivity patterns that one anticipates

finding in a network, and one uses modularity maximization to identify connectivity

patterns in an observed network that are stronger than what is anticipated. We give

a precise definition of the modularity function for single-layer networks in Section

2.1, where we distinguish between a “null network” and a “null model” in modularity

maximization. In Section 4.1, we discuss the role of null networks in modularity

maximization and use correlation networks as illustrative examples.

To date, almost no theory has explained how a multilayer partition obtained with

zero inter-layer coupling (which reduces to single-layer modularity maximization on

each layer independently) di↵ers from a multilayer partition obtained with nonzero

inter-layer coupling. In Section 4.2.2, we prove several properties of an optimal so-

lution for the multilayer maximization problem to better understand how such par-

titions di↵er and how one can try to exploit this di↵erence in practice. We stress

that our results only depend on the form of the maximization problem and are not

restricted to the modularity quality function. (We give examples of other measures

one could use in Chapter 2.)

For many community-detection methods, one cannot detect optimal communities

in polynomial time [37, 68] and one therefore often needs to resort to computational

heuristics [29,40,118]. We describe computational issues that can arise when using the

popular (locally greedy) Louvain heuristic [29] to solve the multilayer maximization

problem in Section 4.2.3, and we suggest ways to try and mitigate them. Further-

more, many scalable heuristics currently have few or no theoretical guarantees on how

closely an identified partition resembles an optimal partition [37,68,77]. Although it is

clear that e↵orts towards establishing theoretical grounding for community-detection

heuristics need further development [72,80,95,135,167], it can be useful to benchmark

the output of a heuristic against something “known” [45,72,120]. As community de-

tection in multilayer networks is a recent area of research [31,109], there is currently

no “standard” (synthetic or real) multilayer benchmark that one can use to com-

pare multilayer community-detection methods or heuristics. We propose a simple

community-detection benchmark for temporal networks in Chapter 5, and we per-

form several numerical experiments to compare the behaviour of the methods and

computational heuristics that we discuss throughout the thesis. Such tests can help

to assess di↵erent methods in practice, in order to begin to understand when some

methods work relatively well and when they work less well.
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1.3 Organization of the thesis

This thesis is organized into six additional chapters. A continuous thread runs through

it as we move from an overview of community-detection methods for time-independent

and temporal networks to a discussion of a particular community-detection method

for temporal networks and then to developing benchmarks for community-detection in

temporal networks. In all chapters, we use toy examples and numerical experiments

with financial data to illustrate our points. We end with an application of multilayer

modularity maximization to temporal correlation networks.

In Chapter 2, we give an overview of community-detection methods for time-

independent and temporal networks, and we introduce most of the notation, assump-

tions, and conventions that we adopt throughout the thesis. In Chapter 3, we describe

the multilayer network representation that we use in our experiments with financial

data. In Chapter 4, we investigate multilayer modularity maximization, a community-

detection methods that can be applied to temporal networks. In particular, we ad-

dress two main issues: (1) the choice of null network and (2) the role of inter-layer

edges in multilayer modularity maximization. In Section 4.1, we investigate the e↵ect

that a null network can have on communities identified in correlation networks when

the distribution of edge weights in the null network is sample-dependent. In Section

4.2, we prove several properties to better understand how a partition obtained with

zero inter-layer coupling can di↵er from a partition obtained with nonzero inter-layer

coupling. We also investigate computational issues that can arise when one uses the

Louvain heuristic [29] or a spectral bipartitioning heuristic [146] to solve the multilayer

maximization problem. We suggest ways to try and mitigate some of these issues.

In Chapter 5, we propose a family of community-detection benchmarks for temporal

networks. We perform various numerical experiments to compare the performance of

several methods and computational heuristics that we discuss in Chapters 2 and 4.

In Chapter 6, we perform further numerical experiments on financial data based on

the results and observations of Chapters 4 and 5. Finally, in Chapter 7, we o↵er some

conclusions and suggest some possible directions for future work.
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Chapter 2

Preliminaries and Literature
Review

We begin with some ideas about “clusters” (or “communities”) before starting our

description of the methods that we discuss in this thesis. Broadly speaking, cluster

analysis consists of grouping entities (e.g., a set of d-dimensional data points [133] or

nodes in a network [68]) into clusters. Usually, entities within the same cluster should

“resemble” one another and/or entities in di↵erent clusters should “di↵er” from one

another [84]. Cluster analysis is an old problem [12, 60] and has been addressed in

many contexts (e.g., natural sciences, psychology, medicine, engineering, economics,

marketing) and by researchers in many disciplines (e.g., statistics, mathematics, com-

puter science) [84, 177, 204]. As a result, the cluster analysis literature is vast and

heterogeneous [9, 68, 84, 129]. Furthermore, cluster analysis is inherently subjective.

As pointed out by Backer and Jain in 1981 [16], “in cluster analysis, a group of ob-

jects is split up into a number of more or less homogeneous subgroups on the basis of

an often subjectively chosen measure of similarity (i.e., chosen subjectively based on

its ability to create “interesting” clusters), such that the similarity between objects

within a subgroup is larger than the similarity between objects belonging to di↵erent

subgroups”. In particular, the definition of cluster may be strongly influenced by the

application that one studies or even by the algorithm that one uses to detect them.

In the present thesis, we restrict our focus to the clustering problem in networks with

time-varying edge weights [68, 90].

While a network in its simplest form is a graph, some methods in community

detection were inherited from graph partitioning [9, 177] and many new methods

were developed specifically for community detection [68, 148, 163]. Possible reasons

for this are that networks can have properties that are not typically studied in the

graph-theoretic literature for which one may wish to account for (e.g., signed edge
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weights [75,189], temporality [90,140]), one often has no a priori information on the

number or sizes of clusters in the final partition (and several graph partitioning meth-

ods require such information) [9, 146], and one’s interpretation of what constitutes a

“good” partition in a network (e.g., objective functions such as “modularity” [73] and

“stability” [54, 116]) can di↵er from graph-theoretic measures of a “good” partition

(e.g., “normalized cut” [182] and “conductance” [34]). In the remainder of this sec-

tion, we give a brief overview of community-detection methods for time-independent

and temporal networks, and we give a more detailed description of the methods on

which we focus in this thesis.

2.1 Community detection in time-independent net-

works

2.1.1 Overview

There are myriad community-detection methods, and the overview that we will give

is by no means comprehensive [50, 68, 148, 163]. We briefly describe two common

approaches to community detection and subsequently describe in detail the approach

that we focus on in the present thesis. In this chapter, we also introduce most of the

notation that we use in the thesis. We give a summary of the notation in Section 2.5

and include a notation table in Table 1.

Consider an N -node network G and let the edge weights between pairs of nodes be

{Aij|i, j 2 {1, . . . , N}}, so that A = (Aij) 2 RN⇥N is the adjacency matrix of G. In

this thesis, we only consider symmetric adjacency matrices (and hence undirected net-

works), soAij = Aji for all i and j. We call G an observed network and give an example

of an unweighted and undirected observed network with its corresponding adjacency

matrix A 2 {0, 1}N⇥N in Fig. 2.1. An old and still widely used technique for detect-

ing communities in certain types of networks is hierarchical clustering (e.g., social

networks [68, 163], financial Pearson correlation networks [23, 134,154]) [68, 148]. Hi-

erarchical methods can be divisive (one starts with a single cluster and then iteratively

splits clusters until one obtains N singleton clusters or satisfies some other stopping

criterion) or agglomerative (one starts with N singleton clusters and then iteratively

combines clusters until one obtains a single cluster). Hierarchical methods produce

exactly nested partitions which one can represent as a dendrogram [68,134,154]. Many

hierarchical methods require an adjacency matrix with pairwise edge weights given
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Figure 2.1: Example of an unweighted and undirected network (left) and its corresponding
adjacency matrix (right).

by some measure of similarity (e.g., “cosine similarity” [17, 148] or a distance func-

tion derived from Pearson correlation [134,154]). Given a choice of adjacency matrix,

hierarchical methods di↵er by the definition of cluster similarity used to iteratively

combine or split clusters (e.g., “single, complete, or average linkage” for agglomerative

hierarchical clustering [68, 148] and “edge betweeness” for divisive hierarchical clus-

tering [68,73]). One reason hierarchical methods are appealing is that they have been

thoroughly studied [84, 98, 177]. Limitations of hierarchical methods include their

sensitivity to the cluster-similarity measure adopted, the mis-classification of nodes

these methods often produce, and the fact that hierarchical structure is a restrictive

and potentially unrealistic assumption in many applications [62,68,73,131,148,150].

A second approach to community detection is block-modelling, a form of ‘sta-

tistical inference’ for networks [88, 97, 148, 152, 185]. A stochastic block model is a

probabilistic model that assigns a probability pij := P[Aij = 1] to each edge in the

network such that the probability of an edge between two nodes depends only on the

“blocks” to which these nodes belong [198, 205]. In the context of community detec-

tion, “blocks” are communities and we call a (hard) division of nodes into blocks a

planted partition. A block model can be used to generate a network with a planted

partition (e.g., [74,88,197]) or to infer a partition from an observed network by fitting

it to a block model (e.g., via a “maximum likelihood” formulation of the community-

detection problem [7,105,185]). The simplest block model for generating an N -node

network with a planted partition is to generate edges between nodes in the same com-

munity with probability p
in

and edges between nodes in di↵erent communities with

probability p
out

, where p
in

> p
out

. We use this stochastic block model in the numeri-

cal experiments of Chapter 5. Traditionally, block models were developed for simple

(i.e., no multi-edges and no self-edges) unweighted networks with a hard planted par-

tition [13, 67, 88]. There exist generalizations that account for directed edges [197],

“heterogeneous degree distributions” within blocks (e.g., “degree-corrected” block
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model [105, 151, 205]), weighted edges (e.g., weights drawn from an exponential fam-

ily distribution [6]), overlapping community structure [7,124,168], etc. A block model

approach to community detection has several attractive features, such as its roots in

statistical inference (which can provide some theoretical guarantees on the optimal

partition [28,39,87]) and its adaptability to various types of community structure (e.g.,

hierarchical community structure [43], overlapping community structure [7,124,168]).

Some practical limitations include the need for a model of the observed network

(weighted networks are often thresholded because of this [6]), the trade-o↵ between

the number of model parameters and analytic tractability [148], and the need for an

a priori estimate of the number of communities in the final partition [87, 185,205].

A third approach to community detection is to define an objective “function” (or

“quality function”) that maps every partition to a real number. One then identifies

communities by optimizing this function over the set of all possible network partitions

[68, 73, 148, 163]. Some of these methods mainly exploit links between community

structure and network topology [73, 150] and others mainly exploit links between

community structure and dynamical processes taking place on the network [54, 116,

171]. We describe three commonly used single-layer optimization methods and their

multilayer counterpart in the next few sections. We try to point out connections

between the methods. We stress that many more community detection methods

exist [68]. (For example, one can use local methods, in contrast to the global methods

described in this section [100,157].)

2.1.2 Single-layer modularity maximization

2.1.2.1 The modularity function

Consider an undirected N -node network G with edge weights {Aij|i, j 2 {1, . . . , N}}
between pairs of nodes, so that A = (Aij) 2 RN⇥N is the adjacency matrix of G. The
strength of a node i is

ki =
NX

j=1

Aij =
NX

j=1

Aji , (2.1)

and it is given by the ith row (or column) sum of A.

When studying the structure of a network, it is useful to compare what is observed

with what is anticipated. We define a null model to be a probability distribution on

the set of adjacency matrices and the adjacency matrix of a null network to be the

expected adjacency matrix under a specified null model. In a loose sense, null models

play the role of prior models, as they control for features that one anticipates to find
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in the system under investigation. One can thereby take into account known (or

suspected) connectivity patterns that might obscure unknown connectivity patterns

that one hopes to discover via processes like community detection. For example,

in social networks, one often takes the strength of a node in a null network to be

its observed strength ki [146, 148, 163]. We discuss the use of this null network for

financial-asset correlation networks in Section 4.1. In spatial networks that represent

the spread of a disease or information between di↵erent locations, some authors have

used null networks in which edge weights between two locations scale inversely with

the distance between them [61,175].

As we discussed in Chapter 1, one can use modularity maximization to partition a

network into sets of nodes called “communities” that have a larger total internal edge

weight than the expected total internal edge weight in the same sets in a null network,

generated from some null model [68,148,150,163]. Modularity maximization consists

of finding a partition that maximizes this di↵erence [68, 163]. As we mentioned in

Chapter 1, in practice, one uses some computational heuristic and finds a local max-

imum [77]. In the present thesis, we use the term modularity for an arbitrary choice

of null network (i.e., we do not restrict ourselves to the standard “Newman–Girvan”

choice, which we define in Section 2.1.2.3) and we ignore any normalization constant

that depends on the choice of null network but does not a↵ect the solution of the

modularity-maximization problem for a given null network. Modularity thus acts as

a “quality function” Q : C ! R, where the set C is the set of all possible N -node

network partitions.

Suppose that we have a partition C of a network into K disjoint sets of nodes

{C
1

, . . . , CK}, where K  N . We can then define a map c(·) from the set of nodes

{1, . . . , N} to the set of integers {1, . . . , K} such that c(i) = c(j) = k if and only if

nodes i and j lie in Ck. We use the term global maximum to refer to a solution of the

modularity maximization problem and the term local maximum to refer to a solution

that one obtains with a computational heuristic and from which one cannot escape.

That is, a local maximum is a partition C 2 C such that P[St+1

= C|St = C] = 1,

where St is a modularity-increasing sampling process on the space of partitions. We

call c(i) the set assignment (or community assignment when C is a global or local

maximum) of node i in partition C. The value of modularity for a given partition C

is then

Q(C|A;P ) :=
NX

i,j=1

(Aij � Pij)�(ci, cj) , (2.2)
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where P = (Pij) 2 RN⇥N is the adjacency matrix of the null network, ci is short-

hand notation for c(i), and �(ci, cj) is the Kronecker delta function. We state the

modularity-maximization problem as follows:

max
C2C

NX

i,j=1

(Aij � Pij)�(ci, cj) , (2.3)

which we can also write as maxC2C Q(C|B) or maxC2C
PN

i,j Bij�(ci, cj), where B =

A � P is the so-called modularity matrix [146]. It is clear from (2.3) that pairwise

contributions to modularity are only counted when two nodes are assigned to the same

set. These contributions are positive (respectively, negative) when the observed edge

weight Aij between nodes i and j is larger (respectively, smaller) than the expected

edge weight Pij between them. If Aij < Pij for all i and j, then the optimal solution

is N singleton communities. Conversely, if Aij > Pij for all i and j, then the optimal

solution is a single N -node community. To obtain a partition of a network with a high

value of modularity, one hopes to have many edges within sets that satisfy Aij > Pij

and few edges within sets that satisfy Aij < Pij. As is evident from equation (2.3),

what one regards as “densely connected” in this setting depends fundamentally on

the choice of null network.

It can be useful to write the modularity-maximization problem using the trace of

matrices [146]. As before, we consider a partition C of a network into K sets of nodes

{C
1

, . . . , CK}. We define the assignment matrix S 2 {0, 1}N⇥K as

Sij = �(ci, j) , (2.4)

where j 2 {1, . . . , K} and ci = j means that node i lies in Cj [9] . The columns of S

are orthogonal and the jth column sum of S gives the number of nodes in Cj. This

yields
NX

i,j=1

Bij�(ci, cj) =
NX

i,j=1

KX

k=1

SikBijSjk = Tr(ST
BS) ,

where S

T
BS 2 RK⇥K , the (i, i)th term of ST

BS is twice the sum of modularity-

matrix entries between pairs of nodes in Ci. (The (i, j)th o↵-diagonal term is the sum

of modularity-matrix entries between a node in Ci and a node in Cj.) One can then

restate the modularity-maximization problem in (2.3) as

max
S2S

Tr(ST
BS) , (2.5)

where S is the set of all assignment matrices in {0, 1}N⇥K (where K  N).
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Modularity maximization is one of myriad community-detection methods [68],

and it has many limitations (e.g., a resolution limit on the size of communities [69], a

huge number of nearly degenerate local maxima [77], and statistical significance issues

associated with an optimal partition [107, 121, 135]). Nevertheless, it is a popular

method (which has been used successfully in numerous applications [68, 163]), and

the ability to specify explicitly what one anticipates is a useful (and under-exploited)

feature for users working on di↵erent applications [20,21,61,131,175]. In Section 4.1,

we make some observations on one’s choice of null network when using the modularity

quality function.

2.1.2.2 Multiscale modularity

Many networks include community structure at multiple scales [68, 163], and some

systems even have a hierarchical community structure of “parts-within-parts” [183].

In the latter situation, although there are dense interactions within communities of

some size (e.g., friendship ties between students in the same school), there are even

denser interactions in subsets of nodes that lie inside of these communities (e.g.,

friendship ties between students in the same school and in the same class year).

Some variants of the modularity function have been proposed to detect communities

at di↵erent scales. A popular choice is to scale the null network using a resolution

parameter � � 0 to yield a multiscale modularity-maximization problem [167]:

max
C2C

NX

i,j=1

(Aij � �Pij)�(ci, cj) . (2.6)

In some sense, the value of the parameter � determines the importance that one

assigns to the null network relative to the observed network. The corresponding

modularity matrix and modularity function evaluated at a partition C are B =

A� �P and Q(C|A;P ; �) =
PN

i,j=1

(Aij � �Pij)�(ci, cj). The special case � = 1

yields the modularity matrix and modularity function in the modularity-maximization

problem (2.3). Although the multiscale modularity-maximization problem in (2.6)

was initially introduced in [167] using an ad hoc approach, it has a dynamical inter-

pretation [114,116] that we will discuss in Section 2.1.3.

In most applications of community detection, the adjacency matrix of the observed

and null networks have nonnegative entries. In these cases, the solution to (2.6) when

0  �  �� = mini 6=j,Pij 6=0

(Aij/Pij) is a single community regardless of any structure,

however clear, in the observed network, because then

Bij = Aij � �Pij � 0 for all i, j 2 {1, . . . , N} .
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(We exclude diagonal terms because a node is always in its own community.) However,

the solution to (2.6) when � > �+ = maxi 6=j,Pij 6=0

(Aij/Pij) is N singleton communities

because

Bij = Aij � �Pij < 0 for all i, j 2 {1, . . . , N} .

Partitions at these boundary values of � correspond to the coarsest and finest possible

partitions of a network, and varying the resolution parameter between these bounds

makes it possible to examine a network’s community structure at intermediate scales.

For an observed and/or null network with signed edge weights, the intuition behind

the e↵ect of varying � in (2.6) on a globally optimal solution is not straightforward. A

single community and N singleton communities do not need to be optimal partitions

for any value of � � 0. In particular, Bij has the same sign as Aij for su�ciently

small values of �, and Bij has the opposite sign to Pij for su�ciently large values of

�. We discuss this issue further in Section 4.1, where we explore the e↵ect of varying

the resolution parameter on an optimal partition for an observed and null network

with signed edge weights.

It is important to di↵erentiate between a “resolution limit” on the smallest com-

munity size that is imposed by a community-detection method [69] and inherently

multiscale community structure in a network [68, 163, 183]. The former is a limi-

tation of a method and the latter is a feature of the application at hand.1 While

it is desirable that a community-detection method identifies partitions at multiple

scales (if present), some community-detection methods possess a lower bound on the

smallest detectable community size for a given observed network (i.e., a “resolution

limit”) [69,77]. For example, consider a network composed of K̃ cliques and K̃ edges

between cliques, such that cliques are arranged into a ring and adjacent cliques are

connected by an edge. In such a network, a “natural” division into communities

would be one in which each clique constitutes a community. One can show that there

is a number K̃ of cliques (that depends on the number of nodes and edges in the

network) above which the modularity function with a Newman–Girvan null network

(which we describe in Section 2.1.2.3) yields a higher value of modularity to a par-

tition in which pairs of adjacent cliques are merged [69, 77].2 For a large enough

number of cliques, the size of an optimal community is thus larger than that of a

clique. One can easily generalize this observation to l adjacent cliques, 2 < l  K̃,

1We note that none of the computational heuristics considered in this thesis impose an a priori
constraint on the size or number of communities in the output partition.

2The observations in [69, 77] on modularity’s resolution limit depend on one’s choice of null
network. A discussion on the e↵ect of a uniform null network on the resolution limit can be found
in [190].
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and the manifestation of modularity’s resolution limit is thus that intuitively modular

structures (e.g., cliques) can be hidden within very large sets in an optimal partition.

For the formulation of multiscale modularity in (2.6), the resolution limit described

in [69, 77] applies to any fixed value of �. By varying � in (2.6), one can identify

communities that are smaller than the limit for any particular � value. In this sense,

multiscale formulations of modularity help “mitigate” the resolution limit, though

there remain issues [14,77,114]. In this thesis, we do not address the issue of how to

identify communities at di↵erent scales, though we note in passing that the literature

includes variants of multiscale modularity. For example, see [14, 79] for an approach

where one varies the self-edge (and thus the strength) of each node in the observed

network. We make observations on null networks in Section 4.1, and we illustrate

how our observations can manifest in practice using the formulation of multiscale

modularity in (2.6). Our observations hold independently of the formulation of mul-

tiscale modularity that one adopts, but the precise manifestation can be di↵erent for

di↵erent variants of multiscale modularity.

2.1.2.3 Null models and null networks

In this section, we describe three null networks. In the computational experiments of

Section 4.1, we will make several observations on the interpretation of communities

that we obtain from Pearson correlation matrices using each of these null networks.

Newman-Girvan (NG) null network A popular choice of null network for net-

works with positive edge weights is the Newman-Girvan (NG) null network, whose

adjacency-matrix entries are Pij = kikj/(2m), where ki are the observed node strengths

[144,150]. This yields the equivalent maximization problems

max
C2C

NX

i,j=1

 
Aij �

kikj
2m

!
�(ci, cj) , max

S2S
Tr

"
S

T

 
A� kk

T

2m

!
S

#
, (2.7)

where k = A1 is the N ⇥ 1 vector of node strengths (see (2.1)) and 2m = 1T
A1

is the total edge weight of the observed network. This null network can be derived

from a variety of null models. One way to generate an unweighted network with

expected adjacency matrix kk

T/(2m) is to generate each of its edges and self-edges

with probability kikj/(2m) (provided kikj  2m for all i, j). That is, the presence

and absence of edges and self-edges is a Bernoulli random variable with probability

kikj/(2m) [35, 36]. More generally, any probability distribution on the set of adja-

cency matrices that satisfies E
⇥PN

j=1

Wij

⇤
= ki (i.e., the expected strength equals
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the observed strength, see for e.g., [41]) and E[Wij] = f(ki)f(kj) for some real-valued

function f has an expected adjacency matrix of E[W ] = kk

T/(2m).3 The adjacency

matrix of the NG null network is symmetric and positive semidefinite.

We briefly mention a way of deriving a variant of the NG null network from a model

on time-series data (in contrast to a model on a network). The partial correlation

corr(a, b | c) between two sets of observations a and b while controlling for a third set

of observations c is the Pearson correlation between the residuals that result from

the linear regression of a with c and b with c, and it is given by

corr(a, b | c) = corr(a, b)� corr(a, c)corr(b, c)p
1� corr2(a, c)

p
1� corr2(b, c)

, (2.8)

where corr(a, b) is the Pearson correlation between a and b [111]. Suppose that the

data used to construct the observed network is a set of time series {zi|i 2 {1, . . . , N}},
where zi = {zi(t)|t 2 T} and T is a discrete set of time points. The authors of [131]

pointed out that when Aij = corr(zi, zj), it follows that ki = cov(ẑi, ẑtot) and thus

that
kikj
2m

= corr(ẑi, ẑtot)corr(ẑj, ẑtot) , (2.9)

where ẑi(t) = (zi(t)�hzii)/�(zi) is a standardized time series and ẑ
tot

(t) =
PN

i=1

ẑi(t)

is the sum of the standardized time series.4 Taking a = ẑi, b = ẑj, and c = ẑ
tot

,

equation (2.8) implies that if corr(ẑi, ẑj | ẑtot) = 0 then corr(ẑi, ẑj) = kikj/(2m).

That is, Pearson correlation coe�cients between pairs of time series that satisfy

corr(ẑi, ẑj | ẑtot) = 0 are precisely the adjacency-matrix entries of the NG null net-

work. An example set of time series in which pairs of distinct time series satisfy this

condition is one in which each standardized time series depends linearly on the mean

time series and residuals are mutually uncorrelated (i.e., ẑi = ↵iẑtot/N + �i + ✏i for

some ↵i, �i 2 R and corr(✏i, ✏j) = 0 for i 6= j).

Generalization of Newman-Girvan null network to signed networks (NGS)

In [75], Gómez et al. proposed a generalization of the NG null network to signed

networks. They separated A into its positive and negative edge weights:

A = A

+ �A

� ,

3The linearity of the expectation and the assumptions E
⇥P

N

j=1

W
ij

⇤
= k

i

and E[W
ij

] =

f(k
i

)f(k
j

) imply that f(k
i

) = k
i

/
P

N

j=1

f(k
j

) and
P

N

j=1

f(k
j

) =
p
2m. Combining these equa-

tions gives the desired result.
4The equality (2.9) holds for Pearson correlation networks, which are signed networks with edge

weights in [�1, 1]. The strength of a node i is given by the ith (signed) column or row sum of the
correlation matrix.
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where A

+ denotes the positive part of A and �A� denotes its negative part. That

is,

A+

ij =

⇢
Aij if Aij > 0 ,
0 otherwise,

and A�
ij =

⇢
|Aij| if Aij < 0 ,
0 otherwise.

Their generalization of the NG null network to signed networks (NGS) is Pij =

k+

i k
+

j /(2m
+)� k�

i k
�
j /(2m

�). This yields the maximization problem

max
C2C

NX

i,j=1

" 
A+

ij �
k+

i k
+

j

2m+

!
�
 
A�

ij �
k�
i k

�
j

2m�

!#
�(ci, cj) , (2.10)

where k+

i and 2m+ (respectively, k�
i and 2m�) are the strengths and total edge

weight in A

+ (respectively, A�). The intuition behind this generalization is to use

an NG null network on both unsigned matrices A

+ and A

� but to count contribu-

tions to modularity from negative edge weights (i.e., the second group of terms in

(2.10)) in an opposite way to those from positive edge weights (i.e., the first group

of terms in (2.10)). Negative edge weights that exceed their expected edge weight

are penalized (i.e., they decrease modularity) and those that do not are rewarded

(i.e., they increase modularity). One can generate a network with edge weights 0,

1, or �1 and expected edge weights k+

i k
+

j /(2m
+) � k�

i k
�
j /(2m

�) by generating one

network with expected edge weights W+

ij = k+

i k
+

j /(2m
+) and a second network with

expected edge weights W�
ij = k�

i k
�
j /(2m

�) using the procedure described for the

NG null network in the previous section. One then defines a network whose edge

weights are given by the di↵erence between the edge weights of these two networks.

More generally, any probability distribution on the set of signed adjacency matrices

{W 2 RN⇥N} with the same properties as those for the NG null network for W

+

and W

� (where W = W

+�W

� defined as above) will have expected edge weights

of Wij = k+

i k
+

j /(2m
+) � k�

i k
�
j /(2m

�) for all i, j 2 {1, . . . , N} (by linearity of the

expectation).

Uniform (U) null network A third null network that we consider is a uniform

(U) null network, with adjacency-matrix entries Pij = hki2/(2m), where hki :=
�PN

i=1

ki
�
/N denotes the mean strength in a network. We thereby obtain the equiv-

alent maximization problems

max
C2C

NX

i,j=1

 
Aij �

hki2

2m

!
�(ci, cj), max

S2S
Tr


S

T

✓
A� hki

2

2m
1N

◆
S

�
, (2.11)
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Figure 2.2: Example of modularity maximization with a uniform null network. We show
(first panel) the observed network, (second panel) the adjacency matrix A of the observed
network, (third panel) the modularity matrix B = A�hAi1N with a uniform null network
rounded to the nearest decimal, and (fourth panel) the partition that optimizes modularity
for this modularity matrix. Colors in the last panel represent community assignments.

where A is an unsigned adjacency matrix and 1N is an N ⇥N matrix in which every

entry is 1.5 The expected edge weight in (2.11) is constant and satisfies

hki2

2m
=

⇣PN
i=1

ki
�
N
⌘
2

PN
i=1

ki
=

2m

N2

= hAi ,

where hAi denotes the mean value of the adjacency matrix.6 One way to generate

an unweighted network with adjacency matrix hAi1N is to generate each edge with

probability hAi (provided hAi  1). That is, the presence and absence of an edge

(including self-edges) are independent and identically distributed (i.i.d.) Bernoulli

random variables with probability hAi. More generally, any probability distribution

on the set of adjacency matrices that satisfies E
⇥PN

i,j=1

Wij

⇤
= 2m and E[Wij] =

E[Wi0j0 ] for all i, j, i0, j0 has an expected adjacency matrix of E[W ] = hAi1N . The

adjacency matrix of the U null network is symmetric and positive semidefinite.

2.1.3 Single-layer stability maximization

We now define a pair of quality functions that are based on the intuition that com-

munities can be associated with “bottlenecks” of dynamical processes taking place on

the observed network [52,116].

5For a network in which all nodes have the same strength, the uniform and Newman-Girvan null
networks are equivalent because k

i

= k
j

for all i, j , k
i

= 2m/N = hki for all i. This was pointed
out for an application to foreign exchange markets in [63].

6Although we use the uniform null network on unsigned adjacency matrices in this thesis, the
expected edge weight in the uniform null network is always nonnegative for correlation matrices, as
positive semidefiniteness guarantees that hAi = (1T

A1)/(N2) � 0.
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2.1.3.1 Discrete-time stability

Consider a discrete-time Markov process (Xt), t 2 N, on an observed network with

adjacency matrix A 2 RN⇥N , Aij � 0. The probability density of a discrete-time

Markov process satisfies [8, 130]

p

t+1 = p

t
M , (2.12)

where the vector pt 2 [0, 1]1⇥N is the probability density of a random walker at each

node (i.e., pti := P[Xt = i] for each i) and M 2 [0, 1]N⇥N is the transition matrix

of a random walker (i.e., Mij := P[Xt+1

= j|Xt = i] = Aij/ki). The stationary

distribution of (2.12) is unique (provided the network is connected) and given by

⇡ = k

T/(2m) [130]. Discrete-time stability is a quality function defined by [53, 54]

r(S, t) = Tr
⇥
S

T
�
⇧M t � ⇡

T
⇡

�
S

⇤
,

where ⇧ij = �(i, j)⇡i. Equivalently, the discrete-time stability is

r(C, t) =
NX

i,j=1

⇥
⇡i(M

t)ij � ⇡i⇡j

⇤
�(ci, cj) . (2.13)

Taking p

0 = ⇡, the first term in the square brackets on the right-hand side of

(2.13) is P
⇥
(X

0

= i) \ (Xt = j)
⇤
and the second term in the square brackets is

limt!1 P
⇥
(X

0

= i) \ (Xt = j)
⇤
(provided the system is ergodic). The intuition

behind the discrete-time stability quality function is that a good partition at a

given time before reaching stationarity corresponds to one in which the time that

a random walker spends within communities is large compared with the time that

it spends transiting between communities. The resulting maximization problem is

max
S2S r(S, t), or equivalently maxC2C r(C, t). By taking t = 1, one obtains the

modularity-maximization problem in (2.7) with the NG null network Pij = kikj/(2m).

2.1.3.2 Continuous-time stability

We now consider the continuous counterpart of discrete-time stability. Let (X(t)),

t 2 R+, be a continuous-time Markov process on an observed network with adjacency

matrix A 2 RN⇥N , Aij � 0. The probability density of a continuous-time Markov

process with exponentially distributed waiting times at each node parametrized by

�(i) satisfies

ṗ = p⇤M � p⇤ , (2.14)
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where the vector p(t) 2 [0, 1]1⇥N is the probability density of a random walker at each

node [i.e., pi(t) := P[X(t) = i] for each i], ⇤ is a diagonal matrix with the rate �(i) on

its ith diagonal entry, and M 2 [0, 1]N⇥N is the transition matrix of a random walker

(i.e., Mij = Aij/ki) [8,116]. The discrete-time random walker jumps from one node to

the next at unit time intervals, whereas the continuous-time random walker waiting

time is an exponentially-distributed random variable. However, whenever a jump

occurs, the transition probabilities between nodes are identical for the two processes

[53]. The solution to equation (2.14) is p(t) = p

0

e⇤(M�I)t and (provided the network

is connected) its stationary distribution is unique and given by ⇡ = ckT⇤�1/(2m),

where c is a normalization constant to ensure
PN

i=1

⇡i = 1. The continuous-time

stability of a partition is a quality function defined by [53, 114–116]

r(S, t) = Tr
⇥
S

T
�
⇧e⇤(M�I)t � ⇡

T
⇡

�
S

⇤
,

where ⇧ij = �(i, j)⇡i. Equivalently, continuous-time stability is

r(C, t) =
NX

i,j=1

h
⇡i

�
e⇤(M�I)t

�
ij
� ⇡i⇡j

i
�(ci, cj) . (2.15)

Taking p

0

= ⇡, the first term in the square brackets on the right-hand side of

(2.15) is P
⇥
(X(0) = i) \ (X(t) = j)

⇤
, and the second term in the square brackets

is limt!1 P[(X(0) = i) \ (X(t) = j)] (provided the system is ergodic). As with the

discrete-time case, the intuition behind the continuous-time stability quality function

is that a good partition at a given time before reaching stationarity corresponds to

one in which the time that a random walker spends within communities is large com-

pared with the time that it spends transiting between communities. The resulting

maximization problem is max
S2S r(S, t), or equivalently maxC2C r(C, t).

The multiscale modularity-maximization problem,

max
C2C

NX

i,j=1

(Aij � �Pij)�(ci, cj) ,

in (2.6) was initially introduced in [167] using an ad hoc approach. Interestingly,

one can derive this formulation of the maximization problem for su�ciently large

values of � from the continuous-time stability quality function in (2.15). By lineariz-

ing e⇤(M�I)t at t = 0 and taking ⇤ = I, one obtains the multiscale modularity-

maximization problem in (2.6) at short timescales with � = 1/t and Pij = kikj/(2m).

This approach provides a dynamical interpretation of the resolution parameter � as

the inverse (after linearization) of the time used to explore a network by a random
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walker. One can derive the multiscale formulation of modularity for the U null net-

work (i.e., Pij = hAi) from continuous-time stability in precisely the same way as it

is derived for the NG null network, except that one needs to consider exponentially-

distributed waiting times at each node with rates proportional to node strength (i.e.,

⇤ij = �(i, j)ki/hki) [116].
The authors of [140] derived a variant of the multiscale formulation of modularity

for the NGS null network (i.e., Pij = k+

i k
+

j /(2m
+)�k�

i k
�
j /(2m

�)) at short time scales

by building on the approach described in the previous paragraph for deriving the NG

and U null networks from continuous-time stability.7 They considered the function

r̂(C, t) =
NX

i,j=1

✓
⇡i

⇥
�ij + t⇤ii(Mij � �ij)

⇤
� ⇡i⇢i|j

◆
�(ci, cj) , (2.16)

where the term in square brackets on the right-hand side of (2.16) is a linearization

of the exponential term in (2.15), M and ⇡i are the transition matrix and stationary

distribution defined in (2.15) on a network with adjacency matrix |A| := A

+ +A

�,

and ⇢i|j is the probability of jumping from node i to node j at stationarity in one step

conditional on the network structure [140]. If the network is non-bipartite, unsigned,

and undirected, then ⇢i|j reduces to the stationary probability ⇡j.

2.1.4 Single-layer map minimization

The final single-layer optimization approach that we describe is the map equation.

The map equation was introduced by Rosvall et al. in [171]. It uses a discrete-time

random walk and ideas from coding theory to coarse-grain a network into communities

[47, 170,171]. A key concept in the map equation is Shannon entropy [126,181].

Consider a random variable X with discrete finite support x 2 X and probability

distribution p 2 [0, 1]|X |⇥1. The Shannon entropy of X is [126, 181]

H(p) = �
|X |X

i=1

pi log
2

(pi) . (2.17)

Entropy quantifies the “unevenness” of a probability distribution [126]. It represents

the “average information” required to specify an outcome of a random variable given

7In particular, they derived the multiscale formulation of modularity obtained using a Potts-
model approach from [189]. This multiscale formulation results in one resolution parameter �

1

for
the term (k+

i

k+
j

)/(2m+) and a second resolution parameter �
2

for the term (k�
i

k�
j

)/(2m�) in (2.10)
(see [132] for an application of this multiscale formulation to United Nations General Assembly
voting networks). Without an application-driven justification for how to choose these parameters,
this increases the parameter space substantially, so we only consider the case �

1

= �
2

in this thesis.
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its probability distribution. It achieves its minimal value 0 for a constant random

variable (i.e., P[X = x̃] = 1 and P[X 6= x̃] = 0) and its maximal value log
2

(|X |) for a
uniform distribution.

Now, consider a discrete-time Markov process (Xt), t 2 N, on an observed network

with probability density

p

t+1 = p

t
M ,

where p

t 2 [0, 1]1⇥N is the probability density of a random walker at each node and

M 2 [0, 1]N⇥N (with Mij = Aij/ki) is the transition matrix of a random walker.

Denote the stationary distribution of the Markov process by ⇡ and assume that

p

0 = ⇡. Consider a binary encoding of the dynamic (Xt) that maps each node to

a binary codeword, which is a sequence of 1s and 0s. For example, one could assign

binary codewords of equal length to each node, or one could compress the description

length of the encoding by assigning shorter binary codewords to frequently-visited

nodes and longer binary codewords to rarely-visited nodes (this approach is known as

the “Hu↵man code” [94, 171]). Shannon showed that the expected per step average

length of an optimal binary code for the random walker dynamic is bounded below

by the entropy rate

lim
t!1

1

t
H(X

1

, . . . , Xt) =
NX

i=1

⇡iH(mi) , (2.18)

where H(X
1

, . . . , Xt) is the entropy of the joint distribution of X
1

, . . . , Xt and mi is

the ith row of the transition matrix M (we adopt the convention that 0 log
2

0 = 0)

[33,126,181].

The idea behind the map equation is to incorporate the structure of a network

into the coding scheme. That is, instead of using a unique codeword for each node,

one uses a unique codeword for each community, a unique codeword for each node

within a community (these are repeated across di↵erent communities, much like street

names are repeated across di↵erent US cities in a map [171]), and a unique codeword

to indicate that a random walker has exited a community (one “exit codeword” per

community) [171,172].8 Note that this coding scheme allows for a community to have

the same binary codeword as a node and the authors use an exit codeword to signal

when the next codeword refers to a community and not to a node.

Consider an N -node partition C 2 C, with |C| = K and Ck an arbitrary set in

C. The authors of [172] use the term module codebook to describe a random walker’s

8Assigning a unique codeword to every node in a network is a special case of this coding scheme
that corresponds to a partition into a single community.
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movement within a set (the exit probability is contained in the module codebook)

and the term index codebook to describe a random walker’s movement between sets.

Denote by pk
out

the probability that a random walker in stationary distribution leaves

a set Ck

pk
out

:= P[(Xt 2 Ck) \ (Xt+1

/2 Ck)] =
X

i2Ck

X

j /2Ck

⇡iMij ,

and by pk
in

the probability that a random walker in stationarity distribution leaves a

set Ck or is in set Ck

pk
in

:= pk
out

+ P[Xt 2 Ck] = pk
out

+
X

i2Ck

⇡i .

The term pk
out

is used in the index codebook and the term pk
in

is used in the module

codebook. One can think of the first term in pk
in

as the probability that a random

walker is at an “exit node”, and the second term in pk
in

is the probability that a random

walker is at a node in a community Ck (both terms are computed at stationarity).

The map equation is a lower bound on the expected per step average length of an

optimal binary code for the random walker dynamic using this coding scheme and it

is given by [33,171,172]

L(C) = H(P
out

)
KX

k=1

pk
out

+
KX

k=1

pk
in

H(Pk
in

) , (2.19)

a weighted combination of the Shannon entropies

H(P
out

) = �
KX

k=1

 
pk
outPK

k=1
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out

!
log
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!
,

H(Pk
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) = �pk
out
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2

✓
pk
out

pk
in

◆
�
X

i2Ck

⇡i

pk
in

log
2

✓
⇡i

pk
in

◆
,

where P
out

2 [0, 1]K⇥1 is the probability distribution with kth entry pk
out

/(
PK

k=1

pk
out

)

and Pk
in

2 [0, 1](1+|Ck|)⇥1 is the probability distribution given by
⇥
pk
out

/pk
in

, ⇡i
1

/pk
in

, . . . ,

⇡i|Ck|/p
k
in

⇤
, where i

1

, . . . , i|Ck| are the nodes in Ck.

The intuition behind the map equation is that a random walker tends to get

trapped within communities and one can thereby shorten a binary encoding of a

random walker’s dynamic by capitalizing on a network’s community structure and

assigning short codewords to nodes inside of each community. This motivates the

minimization problem minC2C L(C). There exist various extensions of the map equa-

tion (e.g., hierarchical structure [173], overlapping community structure [59], multi-

scale reformulation [179]), discussions of its “resolution-limit” [106], and discussions of
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some of its limitations in [179]. In the present thesis, we only use the map equation in

Section 5.3.2 where we perform preliminary experiments to compare the performance

of multilayer map minimization (which we describe in Section 2.2.3) to multilayer

modularity maximization (which we describe in Section 2.2.2) on our temporal mul-

tilayer benchmark.

2.2 Community detection in temporal networks

2.2.1 Overview

Most community-detection methods are designed for time-independent networks.

However, in many applications, entities and/or interactions between entities evolve

in time. In such applications, one can use the formalism of temporal networks , where

nodes and/or their edge weights vary in time [89,90].

Two main approaches have been adopted to detect communities in time-dependent

networks. The first entails constructing a time-independent network by aggregating

snapshots of the evolving network at di↵erent points in time into a single network (e.g.,

by taking the mean or total edge weight for each edge across all time points, which

can be problematic if the set of nodes varies in time and which also makes restrictive

assumptions on the interaction dynamics between entities [86]). One can then use

standard network techniques. The second approach entails using time-independent

community-detection techniques on each element of a time-ordered sequence of net-

works at di↵erent times or on each element of a time-ordered sequence of network

aggregations9 (computed as above) over di↵erent time intervals (which can be ei-

ther overlapping or nonoverlapping) and then tracking the communities across the

sequence [63, 64, 91,132,156].

A third approach consists of embedding a time-ordered sequence of networks in a

larger network [26,56,140]. Each element of the sequence is a network layer , and nodes

at di↵erent time points are joined by inter-layer edges. This approach was introduced

in [140] and the resulting network is a type of multilayer network [31,109]. The main

di↵erence between this approach and the previous approach is that the presence of

nonzero inter-layer edges introduces a dependence between communities identified in

one layer and connectivity patterns in other layers.

9One needs to distinguish between this kind of aggregation and the averaging of a set of time
series over a moving window to construct a correlation matrix, which one can then interpret as
a fixed-time snapshot of a time-evolving network. Although both involve averaging over a time
window, the former situation entails averaging a network, and the latter situation entails averaging
over a collection of time series (one for each node) with no directly observable edge weights.
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There are also community detection techniques for identifying clusters in a sin-

gle snapshot while accounting for connectivity patterns in other snapshots in some

way (e.g., by defining the transition matrix of a random walker in a snapshot as the

right-multiplication [to respect the arrow of time] of transition matrices up to and

including the snapshot [161] or by using a partition into communities of a previous

snapshot as an initial partition when detecting communities for the current snapshot

algorithmically [15,187]). Various examples of such techniques can be found in [5,85].

There has also been a recent growth in the literature of stochastic block model gener-

alizations from single-layer networks to a time-ordered sequence (or more generally,

a correlated sequence) of single-layer networks [83,158,160,193,203]. As with single-

layer networks, these methods can be used to generate a sequence of networks with

some planted structure or to infer structure from an observed sequence of networks

by fitting it to a stochastic block model. We discuss an instance of the former in

Chapter 5 but do not discuss the latter in this thesis.

Throughout the thesis, we focus primarily on a generalization of the modular-

ity quality function to multilayer networks [140] and we also carry out preliminary

numerical experiments with a generalization of the map equation to multilayer net-

works [56] in Section 5.3.2. Both generalizations yield a partition of a multilayer

network (as opposed to a partition of a single-layer network), and they are the focus

of the next two sections.

2.2.2 Multilayer modularity maximization

2.2.2.1 Multilayer representation of temporal networks

We restrict our attention to temporal networks in which only edges vary in time.

(Thus, each node is present in all layers.) We use the notation As for the adjacency

matrix of a network layer in a sequence of adjacency matrices T = {A1, . . . ,A|T |},
and we denote node i in layer s by is. We use the term multilayer network for a

network defined on the set of nodes {1
1

, . . . , N
1

; 1
2

, . . . , N
2

; . . . ; 1|T |, . . . , N|T |} [109].

Thus far, computations that have used a multilayer framework for temporal net-

works have almost always assumed (1) that inter-layer connections exist only between

nodes that correspond to the same entity (i.e., between nodes is and ir for some i and

s 6= r) and (2) that the network layers are “ordinal” (i.e., inter-layer edges exist only

between consecutive layers) [22,109,140,141,166]. It is also typically assumed that (3)

inter-layer connections are uniform (i.e., inter-layer edges have the same weight). In a

recent review article on multilayer networks [109], condition (1) was called “diagonal”
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Figure 2.3: Example of (left) a multilayer network with unweighted intra-layer connections
(solid lines) and uniformly weighted inter-layer connections (dashed curves) and (right) its
corresponding adjacency matrix. (The adjacency matrix that corresponds to a multilayer
network is sometimes called a “supra-adjacency matrix” in the network-science literature
[109].)

coupling, and condition (2) implies that a network is “layer-coupled”. We refer to the

type of coupling defined by (1), (2), and (3) as ordinal diagonal and uniform inter-

layer coupling and we denote the value of the inter-layer edge weight by ! 2 R. We

show a simple illustration of a multilayer network with ordinal diagonal and uniform

inter-layer coupling in Fig. 2.3. One can consider more general inter-layer connections

(e.g., nonuniform ones). Although we restrict our attention to uniform coupling in

our theoretical and computational discussions, we give an example of a nonuniform

choice of inter-layer coupling in Section 4.2. Results similar to those of Section 4.2.2

also apply in this more general case.

2.2.2.2 The multilayer modularity function

The authors of [140] generalized the single-layer multiscale modularity-maximization

problem

max
C2C

NX

i,j=1

(Aij � �Pij)�(ci, cj) ,

in (2.6) to a multilayer network using a similar approach as the one used to derive the

NGS null network from a continuous-time stochastic Markov process on the observed

network in (2.16). That is, the authors of [140] linearize the exponential term in the

continuous-time stability quality function

r(C, t) =
X

i,j

h
⇡i

�
e⇤(M�I)t

�
ij
� ⇡i⇡j

i
�(ci, cj) , (2.20)

and modify the normalization constant (i.e., the right-hand side term in square

brackets in equation (2.20)) for the network of interest. For simplicity, we ex-
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press intra-layer and inter-layer connections in an N |T |-node multilayer network us-

ing a single N |T | ⇥ N |T | matrix. Each node is in layer s has the unique index

i0 := i + (s � 1)N , and we use A to denote the multilayer adjacency matrix, which

has entries Ai0j0 = Aijs�(s, r) +!�(|s� r|, 1) when the inter-layer coupling is ordinal,

diagonal, and uniform. The generalization in [140] consists of applying the following

function to the N |T |-node multilayer network:

r̂(C, t) =
N |T |X

i,j=1

✓
⇡i

⇥
�ij + t⇤ii(Mij � �ij)

⇤
� ⇡i⇢i|j

◆
�(ci, cj) , (2.21)

where C is now a multilayer partition (i.e., a partition of an N |T |-node multilayer

network), ⇤ is the N |T |⇥N |T | diagonal matrix with the rates of the exponentially

distributed waiting times at each node of each layer on its diagonal, M (with entries

Mij := Aij/
PN |T |

k=1

Aik) is the N |T | ⇥ N |T | transition matrix for the N |T |-node
multilayer network with adjacency matrix A, ⇡i is the corresponding stationary dis-

tribution (with the strength of a node and the total edge weight now computed from

the multilayer adjacency matrix A), and ⇢i|j is the probability of jumping from node

i to node j at stationarity in one step conditional on the structure of the network

within and between layers. Movement within layers is conditional on nodes’ intra-

layer strength (i.e., sum of edge weights incident to a node with endpoints in the

same layer) and inter-layer strength (i.e., sum of edge weights incident to a node

with endpoints in a di↵erent layer). Movement between layers is conditional on

nodes’ intra-layer strength, inter-layer strength, and the specific “sparsity pattern”10

of inter-layer edges. The authors’ choice of ⇢i|j motivates the following multilayer

modularity-maximization problem:

max
C2C

N |T |X

i,j=1

Bij�(ci, cj) , (2.22)

which we can also write as maxC2C Q(C|B) or maxC2C Q(C|B
1

, . . . ,B|T |;!), where

C is the set of all N |T |-node partitions, B is the multilayer modularity matrix

B =

2

6666664

B

1

!I 0 . . . 0

!I
. . . . . . . . .

...

0
. . . . . . . . . 0

...
. . . . . . . . . !I

0 . . . 0 !I B|T |

3

7777775
, (2.23)

10The sparsity pattern of a matrix X is a matrix Y with entries Y
ij

= 1 when X
ij

= 0 and Y
ij

= 0
when X

ij

= 0.
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and Bs is a single-layer modularity matrix computed on layer s. (For example,

Bs = As � hAsi1N if one uses the U null network and sets � = 1.) We rewrite the

multilayer modularity-maximization problem in [140] as

max
C2C

2

4
|T |X

s=1

NX

i,j=1

Bijs�(cis , cjs) + 2!
|T |�1X

s=1

NX

i=1

�(cis , cis+1

)

3

5 , (2.24)

where cis is the integer community assignment of node i in layer s and Bijs denotes the

(i, j)th entry of Bs. Equation (2.24) clearly separates intra-layer contributions (left

term) from inter-layer contributions (right term) to the multilayer quality function.

To date, almost no theory has explained how a multilayer partition obtained with

zero inter-layer coupling (which reduces to single-layer modularity maximization on

each layer independently) di↵ers from a multilayer partition obtained with nonzero

inter-layer coupling. In Section 4.2, we try to gain some insight into how to interpret

a globally optimal multilayer partition by proving several properties that it satisfies.

The results that we show hold for any choice of matrices B
1

, . . . ,B|T |, so (for exam-

ple) they also apply when one uses the stability quality function in (2.15) or (2.13)

on each layer instead of the modularity quality function. For ease of writing (and

because modularity is the quality function that we use in most of our computational

experiments of Chapters 4, 5, and 6), we will continue to refer to the maximization

problem (2.24) as a multilayer modularity maximization problem.

It is clear from (2.24) that placing nodes from di↵erent layers into the same set,

which we refer to as an inter-layer merge, always decreases the value of the multilayer

quality function when ! < 0, so we only consider ! � 0 in the present thesis.

Furthermore, although merging pairs of nodes with Bij = 0 does not change the value

of multilayer modularity, we assume in our theoretical discussion of Section 4.2 that

the set C of N |T |-node partitions does not contain partitions into sets with multiple

connected components in the N |T |-node weighted graph with adjacency matrix B.
We end this section with some notation that will be useful for comparing single-

layer partitions to a multilayer partition. We denote by Ns := {1s, . . . , Ns} the set of

nodes in layer s. The restriction of a set of nodes

Ck ✓ {1
1

, . . . , N
1

; 1
2

, . . . , N
2

; . . . ; 1|T |, . . . , N|T |}

to a layer s is Ck|s := Ck \ Ns, and we define the partition induced by a multilayer

partition C 2 C on layer s by

C|s := {Ck|s, Ck 2 C} .

We will use this notation repeatedly in Section 4.2.
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2.2.3 Multilayer map minimization

DeDomenico et al. proposed a generalization of the map equation to multilayer

networks in [56]. Their generalization consists of making two changes to the single-

layer map equation: (1) they modified the transition probabilities in the discrete-time

random walk and (2) they modified the coding scheme in the module codebook in a

way that accounts for multilayer structure. We describe these changes below.

Consider a discrete-time Markov process (Xt), t 2 N, on the N |T |-node multilayer

network. The transition probabilities of (Xt) are defined in [56] by

P[X t+1 = jl|X t = is] := (1� r)�sl
AijlPN
k=1

Aikl

+ r
AijlP|T |

m=1

PN
k=1

Aikm

, (2.25)

where s, l 2 {1, . . . , |T |}, r 2 [0, 1] is termed the relax-rate, and As is the adjacency

matrix of the sth layer with (i, j)th entry Aijs. Equation (2.25) gives the probability

that a random walker at node is jumps to a node in layer s (first term on the right-

hand side of (2.25)) or to a node in layer l (second term on the right-hand side of

(2.25)). The random walker can move along a weighted intra-layer edge connected to

is in layer s (first term on the right-hand side of (2.25)) or along a weighted intra-layer

edge connected to il in layer l (second term on the right-hand side of (2.25)). One

consequence of equation (2.25) is that a random walker cannot transition from is to

il, s 6= l, in a single jump (unless the single-layer networks contain self-loops).

One can also write the transition probabilities in (2.25) as

M = (1� r)

2

6664

M

1

0 . . . 0

0
. . . . . .

...
...

. . . . . . 0
0 . . . 0 M |T |

3

7775
+ r

2

6664

M̂

1

M̂

2

. . . M̂ |T |
M̂

1

M̂

2

. . . M̂ |T |
...

...
...

M̂

1

M̂

2

. . . M̂ |T |

3

7775
, (2.26)

whereM 2 [0, 1]N |T |⇥N |T | is the transition matrix of (Xt), M s 2 [0, 1]N⇥N has entries

Mijs = Aijs/
⇣PN

k=1

Aiks

⌘
, and M̂ s 2 [0, 1]N⇥N has entries M̂ijs = Aijs/

⇣P|T |
l=1

PN
k=1

Aikl

⌘
.

When r = 0, the transition matrix M reduces to a block-diagonal matrix with single-

layer transition matrices on its diagonal blocks. As one increases r, the random walker

can “move more freely on the fully aggregated network” [56]. To our knowledge, theo-

retical properties of the multilayer map equation as one varies the relax-rate r remain

unexplored.

To incorporate multilayer structure into the coding scheme, the authors of [56]

make the following change to the module codebook. In addition to having a unique

codeword for each node in a set of a partition, the authors assign the same codeword to
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copies of the same node in a set. That is, a set of nodes {is
1

, . . . , isk} that belong to the
same set in a partition receive the same codeword, where {s

1

, . . . , sk} ✓ {1, . . . , T }.
The authors then define the multilayer map equation in a similar way to how they de-

fine the single-layer map equation. We denote by N(Ck) the set of nodes in {1, . . . , N}
with at least one copy in Ck (i.e., {i 2 {1, . . . , N} : is 2 Ck for some s}). The multi-

layer map equation is given by

L(C) = H(P
out

)
KX

k=1

pk
out

+
KX

k=1

pk
in

H(Pk
in

) , (2.27)

a weighted combination of the Shannon entropies

H(P
out
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KX
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pk
out

pk
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X

i2N(Ck)

⇥P
is2Ck

⇡is

⇤

pk
in

log
2

 ⇥P
is2Ck

⇡is

⇤

pk
in

!
,

where C is now an N |T |-node partition, ⇡i is the stationary distribution of node

i 2 {1, . . . , N |T |}, ⇡is = ⇡i0 for i0 = i+ (s� 1)N , pk
out

is given by

pk
out

:=
X

i2Ck

X

j /2Ck

⇡iMij ,

and pk
in

is given by

pk
in

:= pk
out

+
X

i2Ck

⇡i .

We only use multilayer map minimization in the numerical experiments of Section

5.3.2. We note that this generalization was developed for a multilayer network where

di↵erent layers represent di↵erent types of connections between a set of nodes (e.g.,

interactions on Facebook and interactions on Twitter) rather than a specific type of

connection at di↵erent points in time. To try and account for this, we consider two

cases in our numerical experiments: (1) the case where a random walker can “relax”

to all layers (i.e., the transition matrix is given by (2.26)) and (2) the case where a

random walker can only “relax” to an adjacent layer (i.e., the transition matrix is

given by the diagonal blocks and the first o↵-diagonal blocks in (2.26) — all other

blocks are set to zero and the normalization constant is adjusted accordingly). We

use publicly available code from [1] for our experiments and in particular, we do not

discuss heuristics for solving the multilayer map minimization problem in this thesis.
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2.3 Computational heuristics

2.3.1 Overview

We describe a few heuristics that one can use for solving the single-layer modularity

maximization problem first stated in (2.3), namely

max
C2C

NX

i,j=1

Bij�(ci, cj) ,

where C is the the set of N -node partitions and B 2 RN⇥N is the single-layer modu-

larity matrix,11 and we focus on two heuristics that trivially extend to the multilayer

modularity maximization problem stated in (2.22), namely

max
C2C

N |T |X

i,j=1

Bij�(ci, cj) ,

where C is the set of N |T |-node partitions and B 2 RN |T |⇥N |T | is the multilayer

modularity matrix given in (2.23) by

B =

2

6666664

B

1

!I 0 . . . 0

!I
. . . . . . . . .

...

0
. . . . . . . . . 0

...
. . . . . . . . . !I

0 . . . 0 !I B|T |

3

7777775
.

For a given modularity matrix B, a solution to the modularity-maximization

problem is guaranteed to exist in any network with a finite number of nodes. However,

the number of possible partitions in anN -node network, given by the Bell number [24],

grows at least exponentially with N so an exhaustive search of the space of partitions

is infeasible. Modularity maximization was shown in [37] to be an NP-hard problem

(at least for the null networks which we consider in this paper), so solving it requires

the use of computational heuristics, which we refer to as “heuristics” in the rest

of the thesis. Various heuristics have been suggested for solving the modularity-

maximization problem. We briefly describe four common approaches in this section.

A first approach is greedy heuristics, which perform locally optimal moves at each

update until a (usually) local optimum is reached. One of the first greedy heuristics

was suggested by Newman in [145]. It is an agglomerative hierarchical procedure that

11Most of the heuristics that we mention in this section were developed for the NG null network
in (2.7) and not for an arbitrary null network.
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iteratively merges sets of nodes based on the merge’s contribution to the modularity

function. The complexity of Newman’s implementation is O((m
0

+N)N), wherem
0

is

the number of edges with nonzero edge weights in the network [68]. Clauset et al. [44]

suggested a faster implementation of Newman’s algorithm by making use of more

e�cient data structures. The complexity of Clauset’s implementation is O(m
0

d logN)

for an arbitrary network, where d is the “depth” of the dendrogram [44,68]. Clauset’s

heuristic has performed poorly on some benchmark tests [118] and the authors of [195]

observed that it often runs at its worst time complexity. A third locally greedy

heuristic is the Louvain heuristic [29], a local modularity-increasing sampling process

on the space of partitions. The Louvain heuristic is a popular choice in practice [118].

It is claimed that most of its computational time is usually spent in the first iteration

of its first phase and so its complexity tends to be O(m
0

) [40, 68]. We describe this

heuristic in detail in Section 2.3.2

A second type of heuristic first introduced in [108] and later extended to the mod-

ularity quality function by Guimerà et al. [81] is simulated annealing. An important

di↵erence between this heuristic and greedy heuristics is that simulated annealing

allows modularity-decreasing moves. This can help prevent a heuristic from getting

trapped in local optima (a common problem with greedy heuristics [9, 30]). Simu-

lated annealing is an iterative procedure that depends on a temperature parameter T̂ .

Every move at each iteration of simulated annealing is accepted with probability 1 if

it increases the quality function and with probability exp(�Q/T̂ ) if it decreases the

quality function, where �Q is the di↵erence between the current modularity value

of the network and the modularity value of the network if one performs the update.

Simulated annealing can come very close to an optimal solution, but it is slow (its

precise complexity depends on the parameters chosen for the optimization) [68].

A third type of heuristic first introduced in [32] and later applied to modularity

maximization in [57] is extremal optimization. The aim of the authors in [32] was to

achieve an accuracy comparable to that of simulated annealing, but with a substantial

reduction in computational time [68]. The heuristic starts at a random bipartition of

the network (i.e., a partition into two sets) and iteratively bipartitions the network

by performing locally optimal moves (using a “fitness” measure to quantify a node’s

contribution to modularity) [40, 68]. Its complexity is O(N2 logN).

A fourth approach is spectral heuristics. Broadly speaking, spectral heuristics

reformulate the discrete optimization problem as a continuous optimization problem

by embedding the modularity-maximization problem in RN⇥K . One can then use the

spectrum of the modularity matrix (or the spectrum of a related matrix [199]) to
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solve the optimization problem in RN⇥K and approximate an assignment matrix in

{0, 1}N⇥K from the obtained solution [146,169,196,209]. More heuristics based on a

relaxation of the modularity-maximization problem to a subset of RN⇥K can be found

in [4,55,92]. In this thesis we discuss some features of a spectral bipartitioning heuristic

suggested by Newman in [146]. This heuristic uses the sign of the leading eigenvector

ofB to bipartition a network and iterates this procedure on each set of the bipartition

until no further improvement is possible. Its complexity is O((N +m
0

)N) [40, 146].

The next two sections give a description of the Louvain heuristic and the spectral

bipartitioning heuristic. The main reasons we investigate these heuristics is because

they scale well with the size of a network (which is an important consideration in a

multilayer network, in which the number of nodes isN |T |), they trivially extend to the

multilayer modularity-maximization problem, and they can be used for an arbitrary

choice of null network. Given a modularity matrix, we note that a heuristic yields a

partition of a network whether or not the underlying network “truly” contains com-

munity structure. How to assess the statistical significance of an identified partition

is an actively studied (and unresolved) research question [21,80,95,104,122,135,167].

We do not address this issue in this thesis, and the computational issues that we

discuss in Section 4.2.3 hold whether or not a network “truly” contains community

structure.

2.3.2 The Louvain computational heuristic

The Louvain heuristic consists of two phases, which are repeated iteratively. Initially,

each node in the network constitutes a set, which gives an initial partition that consists

of N singletons. During phase 1, one considers the nodes one by one (in some order),

and one places each node in a set (including its own) that results in the largest

increase of modularity. This phase is repeated until one reaches a local maximum

(i.e., until one obtains a partition in which the move of a single node cannot increase

modularity). Phase 2 consists of constructing a reduced network G 0 from the sets of

nodes in G that one obtains after the convergence of phase 1. We denote the sets in

G at the end of phase 1 by {Ĉ
1

, . . . , Ĉ
ˆN} (where N̂  N) and the set assignment of

node i in this partition by ĉi. Each set Ĉk in G constitutes a node k in G 0, and the

reduced modularity matrix of G 0 is

B

0 = Ŝ

T

BŜ ,

where Ŝ is the assignment matrix of {Ĉ
1

, . . . , Ĉ
ˆN}. This ensures that the all-singleton

partition in G 0 has the same value of modularity as the partition of G that we iden-
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tified at the end of phase 1. One then repeats phase 1 on the reduced network and

continues iterating until the heuristic converges (i.e., until phase 2 induces no further

changes). We refer to a partition obtained after convergence of the heuristic as an

output partition. In practice, one can solve the multilayer modularity-maximization

problem with the Louvain heuristic by using the multilayer modularity matrix B in-

stead of the single-layer modularity matrix B as an input (the number of nodes in

the first iteration of phase 1 becomes N |T | instead of N).

Because we use a nondeterministic implementation of the Louvain heuristic—in

particular, the node order is randomized at the start of each iteration of phase 1—

the network partitions that we obtain for a fixed modularity matrix can di↵er across

runs.12 To account for this, one can compute the frequency of co-classification of nodes

into communities for a given modularity matrixB across multiple runs of the heuristic

instead of using the output partition of a single run. (See [119] for an application

of such an approach to “consensus clustering” and [174] for an application of such

an approach to hierarchical clustering.) We use the term association matrix for a

matrix that stores the mean number of times that two nodes are placed in the same

community across multiple runs of a heuristic, and we use the term co-classification

index of nodes i and j to designate the (i, j)th entry of an association matrix. We

call multiscale community structure a set C
local

(�) of local optima that we obtain for

a set of (not necessarily all distinct) resolution-parameter values � = {�
1

, . . . , �l},
where �� = �

1

 . . .  �l = �+ (with �+ and �� defined in Section 2.1.2.2) and

B = A � �iP , i = 1, . . . , l. We use the term multiscale association matrix for an

association matrix Â 2 [0, 1]N⇥N that stores the co-classification index of all pairs of

nodes for partitions in this set:

Âij =

P
C2C

local

(�)

�(ci, cj)

|C
local

(�)| . (2.28)

The summation is over the set C
local

(�) of output partitions obtained with a given

computational heuristic using di↵erent values of �. For each partition C 2 C
local

(�),

nodes i and j either are (i.e., �(ci, cj) = 1) or are not (i.e., �(ci, cj) = 0) in the

same community. It follows that Âij is the mean number of partitions in C
local

(�)

12The implementation [2,102] of the heuristic that we use in this thesis is a generalized version of
the implementation in [29]. It is independent of the null network—so it takes the modularity matrix
as an input to allow an arbitrary choice of null network—and it randomizes the node order at the
start of each iteration of the heuristic’s first phase to increase the search space of the heuristic.
When one chooses the same null network that was assumed in [29] and uses a node order fixed
to {1, . . . , N} at each iteration of phase 1 (the value of N can change after each iteration of the
heuristic’s second phase), then the implementation in [29] and the implementation in [102] return
the same output.
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for which nodes i and j are in the same community. The value of |C
local

(�)| is the

number of distinct values of � that we consider multiplied by the number of run of the

Louvain algorithm performed for each value of �. We use the matrix Â repeatedly in

our computational experiments of Section 4.1. We vary the resolution parameter in

the interval [0, �+] instead of [��, �+] in numerical experiments with signed observed

networks because globally optimal partitions can be di↵erent in the interval [0, ��].13

In Section 4.2, we point out two issues that the Louvain heuristic (independently of

how it is implemented) faces with temporal multilayer networks.

2.3.3 Spectral bipartitioning heuristic

The heuristic we refer to as spectral bipartioning was introduced in the context of

modularity maximization by Newman in 2006 [146]. Its main idea is simple: one

computes the leading eigenvector of B and one uses the sign of its entries to divide

the nodes into two sets. One then iterates this procedure (in some way) on each set

until no further improvement is possible. The roots of this heuristic lie in traditional

spectral bipartioning [82].

Consider a network G with an unsigned adjacency matrix A 2 RN⇥N , Aij � 0.

Let C 2 C be a bipartition of G and S its associated assignment matrix with ith

column si, i 2 {1, 2}. Since s
1

= 1�s

2

in the case of a bipartition, only one vector is

needed and we represent the bipartition by s = s

1

�s

2

2 {�1, 1}N⇥1. A cut of G is a

bipartition of its nodes and the cut-size of a bipartition is the sum of (nonnegative)

edge weights with endpoints in di↵erent clusters. That is,

cut-size(C) :=
1

4

NX

i,j=1

Aij(1� sisj) =
1

4
s

T (D �A)s , (2.29)

where the term 1 � sisj equals 2 when i and j are in di↵erent sets and 0 otherwise,

D is a diagonal matrix with node-strengths on its diagonal (i.e., Dij = �(i, j)ki),

and L := D � A 2 RN⇥N is termed the graph Laplacian of A [42]. The matrix

L is symmetric and thus has N orthonormal eigenvectors {v
1

, . . . ,vN} that form a

basis for RN . A common approach to bipartitioning a graph is to solve the min-cut

bipartioning problem minC2C cut-size(C) [9, 45, 177].

Suppose that one relaxes the min-cut problem from s 2 {�1, 1}N⇥1 to s 2
[�1, 1]N⇥1 (so that s may take values between �1 and 1), subject to the constraint

||s||
2

= 1. It is clear from the definition of cut-size that a single cluster is a trivial

13For � � �+, one can show that all modularity contributions no longer change signs: these are
negative (respectively, positive) between pairs of nodes with P

ij

� 0 (respectively, P
ij

 0).
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solution to the min-cut bipartitioning problem when A has positive entries.14 By

writing s as a linear combination of v
1

, . . . ,vN , Hall showed in [82] that s = v

2

gives

the optimal nontrivial solution to the minimization problem

min
s2[�1,1]N⇥1

NX

i,j=1

Aij(1� sisj)

subject to ||s||
2

= 1 .

Hall’s result provides the optimal non-discrete solution for the min-cut bipartioning

problem. An important consequence of his observation is that it suggests a heuristic

for finding a discrete solution that is “closest” to v

2

. Given cluster size constraints

(so that the solution to the minimization problem is not the trivial partition), one can

sort the entries of v
2

to obtain a discrete solution s that is closest to v

2

as measured

by the L2 norm [9]. This approach for finding the bipartion that best approximates

the second smallest eigenvector (called the Fiedler vector [66]) was first used by

Barnes [18] and subsequently extended to approaches that use multiple eigenvectors

and/or produce more than two clusters at each iteration in [9, 10, 27, 71].

Now, let B 2 RN⇥N be the modularity matrix of A and note that

max
s2{�1,1}N⇥1

s

T
Bs , max

C2C

NX

i,j=1

Bij�(ci, cj), min
s2{�1,1}N⇥1

NX

i,j=1

Bij(1� sisj) , (2.30)

when C is a bipartition. To extend the spectral bipartitioning heuristic to modularity

maximization, Newman applies the same steps as above to the modularity matrix B

instead of the Laplacian matrix L. Provided B is symmetric, it has a set of N

orthonormal eigenvectors {µ
1

, . . . ,µN}. The optimal nontrivial (because the entries

of B are in general signed) non-discrete solution is given by the leading eigenvector

µN , and one can sort the entries of µN according to their sign in order to obtain

a discrete solution s that is closest to µN as measured by the L2 norm. To obtain

a partition into more than two sets, one iterates this procedure on each set of the

bipartition until no further improvement is possible. Newman uses a “generalized

modularity matrix” for each set at each iteration to ensure that changes in modularity

are computed with respect to the original network (and not with respect to the

network induced on the set) [146,169]. There are extensions of this heuristic that use

more than two eigenvectors [169, 209] as well as some investigation of its properties

in cases where one uses the NG null network [143, 149]. In the present thesis, we

14The trivial solution corresponds to the choice s = v

1

, with v

1

= 1p
N

1.
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restrict our discussions to recursive bipartitioning using the leading eigevector of

the modularity matrix. One can in theory use this heuristic to solve the multilayer

modularity-maximimization problem by applying the same steps to the multilayer

modularity matrix B instead of the single-layer modularity matrix B, provided B is

symmetric. We discuss some issues that can arise with this heuristic when one uses

ordinal, diagonal, and uniform inter-layer coupling in Section 4.2.3.2.

2.4 Measures of partition similarity

We use two measures of similarity to compare partitions in Chapter 5 of the thesis.

2.4.1 Normalized variation of information

Let C,C 0 2 C be two N -node partitions, with |C| = K and |C 0| = K 0. Consider the

probability distribution p(C) 2 [0, 1]K⇥1 associated with a partition C defined by

pk(C) :=
|Ck|
N

,

where Ck 2 C, and the joint probability distribution p(C,C 0) 2 [0, 1]KK0⇥1 associated

with partitions C and C 0 defined by

pk,l(C,C
0) :=

|Ck \ Cl|
N

.

where Cl 2 C 0. The variation of information between C and C 0 is an information

theoretic similarity measure defined by [137]

V I(p(C),p(C 0)) := H(p(C)) +H(p(C 0))� 2I(p(C),p(C 0)) , (2.31)

where

H(p(C)) = �
|C|X

k=1

pk(C) log(pk(C)) ,

is the entropy of p(C), and

I(p(C),p(C 0)) :=
|C|X

k=1

|C0|X

l=1

pk,l(C,C
0) log

✓
pk,l(C,C 0)

pk(C)pl(C 0)

◆
,

is the mutual information between p(C) and p(C 0). For ease of writing, we write

V I(C,C 0) and I(C,C 0) instead of V I(p(C),p(C 0)) and I(p(C),p(C 0)), respectively.

The mutual information between two partitions is always nonnegative, symmetric,

and satisfies I(C,C 0) = H(C) = H(C 0) if and only if C = C 0 [137]. The variation of
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information between two partitions is a metric: it is nonnegative, symmetric, takes

the value 0 if and only if C = C 0, and satisfies the triangular inequality [137]. The

variation of information is bounded above by logN (for example, this bound is reached

when C is a single cluster and C 0 is N singleton clusters) and we use the following

normalization in our numerical experiments [137]

SnV I(C,C 0) :=
V I(C,C 0)

logN
2 [0, 1] , (2.32)

where C and C 0 are single-layer partitions. (The value of N is fixed in a given exper-

iment). For comparing two multilayer N |T |-node partitions C,C 0 2 C in Chapter 5

(unless otherwise specified) we use the average SnVI over all layers in our numerical

experiments. That is,

nV I(C,C 0) :=
1

|T |

|T |X

s=1

SnV I(C|s, C 0|s) , (2.33)

where C|s is the partition induced by the multilayer partition C on layer s.

2.4.2 Jaccard coe�cient

There are also much older measures of similarity that are based on counting the

number of node pairs on which two partitions agree or disagree [93,137]. For any two

partitions C and C 0, a pair of nodes belongs to one of the four following categories:

N
11

: number of node pairs that are in the same cluster in C and in C 0

N
00

: number of node pairs that are in di↵erent clusters in C and in C 0

N
10

: number of node pairs that are in the same cluster in C but not in C 0

N
01

: number of node pairs that are in the same cluster in C 0 but not in C

with N
11

+N
00

+N
10

+N
01

=
�
N
2

�
.

One of the oldest pair counting similarity measures is the Rand Index, defined by

RI(C,C 0) = (N
11

+ N
00

)/
�
N
2

�
. One drawback of the Rand Index is that it does not

range over the whole interval [0, 1] (i.e., min(RI(C,C 0)) > 0 for all C,C 0) and it has

been shown to concentrate in a small interval near 1 in practice [70,137]. Alternative

formulations that try to adjust for this have been suggested [93, 139]. Another pair

counting similarity measure is the Jaccard coe�cient, defined by [25,96]

J(C,C 0) =
N

11

N
11

+N
10

+N
01

.
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The Jaccard coe�cient has been used to compare the output of community-detection

methods [78] and we use it once in Section 5.3.1 to check whether the qualitative be-

haviour observed in an experiment with nVI is robust to a di↵erent choice of similarity

measure.

2.5 Summary of notation

We summarize the assumptions, conventions, and notation that we need from this

Chapter for the rest of the thesis. A notation list with a page number indicating

where the notation is first introduced is included in Table 1.

We use bold uppercase letters for matrices, bold lowercase letters for vectors, and

h . i to denote the mean value of entries in a vector, entries in a matrix, or scalars in a

set. We use superscript ‘T’ to denote the transpose of a real-valued matrix or vector

and use 1N (respectively, 0N) to denote an N ⇥ N matrix in which every entry is

1 (respectively, 0). We use | . | to denote the absolute value of a scalar or to denote

the number of elements in a set. We denote the number of layers by |T |, the number

of nodes in each layer by N , and the ith node of the sth layer by is. The matrix

As 2 RN⇥N , s 2 {1, . . . , |T |}, is the adjacency matrix of an observed network in

layer s, and kis is the strength of node i in layer s. We assume all adjacency matrices

are symmetric and suppress the subscript s from any quantity when dealing with a

single-layer network for ease of writing.

We denote the adjacency matrix of a null network for layer s by P s, the resolution

parameter by � � 0, and the inter-layer coupling parameter by ! � 0. The matrix

Bs 2 RN⇥N is the single-layer modularity matrix of layer s (e.g., Bs = As� 1NhAsi
if one uses a uniform null network) and B 2 RN |T |⇥N |T | is a multilayer modularity

matrix (that depends on the single-layer modularity matrices B

1

, . . . ,B|T | and the

coupling parameter !).

We denote the set of all multilayer partitions by C, an arbitrary partition in C by

C, and an arbitrary set in C by Ck. (For a single-layer network, |T | = 1 and C is the

set of all N -node partitions.) The integer set assignment (or community assignment

when C optimizes a quality function) of node is in C is cis , with cis  N |T |. We

assume throughout the thesis that a multilayer partition C does not contain partitions

into sets with multiple connected components in the graph with adjacency matrix B.

We denote by Ns = {1s, . . . , Ns} the set of nodes in layer s, by Ck|s = Ck \Ns the

restriction of a set Ck 2 C to layer s, and by C|s = {Ck|s, Ck 2 C} the partition

induced by a multilayer partition C 2 C on layer s.

41



Chapter 2. Preliminaries and Literature Review

The single-layer modularity quality function is Q(C|B) =
PN

i,j=1

Bij�(ci, cj) and

the multilayer quality function is Q(C|B1, . . . ,B|T |;!) =
P|T |

s=1

PN
i,j=1

Bijs�(cis , cjs)+

2!
P|T |�1

s=1

PN
i=1

�(cis , cis+1

) (which we sometimes also denote Q(C|B)). We use the

normalized variation of information averaged over all layers nV I(C,C 0)) as our main

measure of similarity between two multilayer partitions.

We use the term “global maximum” to refer to a solution of the (single-layer

or multilayer) modularity maximization problem and the term “local maximum” to

refer to a solution that one obtains with a computational heuristic. We use the term

“association matrix” for a matrix that stores the mean number of times two nodes

are placed in the same community across multiple runs of a heuristic and the term

“multiscale association matrix” for an association matrix in which the value of �

varies across runs. We use the words “cluster” and “community” interchangeably

throughout the thesis and we use the acronyms “NG”, “U”, and “NGS” to refer to

the Newman–Girvan null network, the uniform null network, and the generalization

of the Newman–Girvan null network to signed adjacency matrices, respectively.
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Chapter 3

From Financial Data to Multilayer
Networks

In this chapter we describe the multilayer network representation that we adopt in

all experiments with financial data.

3.1 Intra-layer network representation

3.1.1 Logarithmic returns

We denote by pi(t) the price of a financial asset i at a discrete time t. We use two

data sets of financial price time series {pi(tj)}i=1,...,N,j=1,...,t
tot

throughout the thesis

(one of weekly prices and one of daily prices), and we describe them in Section 3.3.

In practice, rather than being concerned with the absolute price of an asset, market

practitioners are usually interested in relative price change. These are called returns

and give the potential loss or gain as a proportion of a previous price [48]. The most

commonly used measure of price change is the logarithmic return [46, 48]

zi(tj) := log(pi(tj+1

))�log(pi(tj)) = log

✓
pi(tj+1

)

pi(tj)

◆
, i 2 {1, . . . , N}, j 2 {1, . . . , t

tot

},

where tj+1

denotes one week (respectively, day) after time tj if prices are weekly

(respectively, daily). Returns are dimensionless, i.e., they are independent of the

original unit in which a price is measured. We show an example time series plot of

weekly prices and logarithmic returns for a US government bond index (“USGATR”

in Appendix A) in Fig. 3.1. By taking the ratio rather than the di↵erence between

consecutive prices, we measure price change as a proportion of the previous price. It

is easy see why this can be desirable via a simple example. Suppose that a 20p asset

and a £100 asset both increase in price by 10p. The absolute change is the same in
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Figure 3.1: Time series plots for a U.S. government bond index (USGATR).

both cases, but the relative change is not. Measuring price change as a proportion

of the previous price reflects this di↵erence. Furthermore, taking the logarithm of

the ratio has the convenient property of being time additive. Given a time interval

[t
1

, tn], logarithmic returns satisfy

log

✓
p(tn)

p(t
1

)

◆
= log

✓
p(tn)

p(tn�1

)
. . .

p(t
2

)

p(t
1

)

◆
=

n�1X

k=1

log

✓
p(tk+1

)

p(tk)

◆
,

where t
1

< t
2

. . . < tn�1

< tn is a discretization of the time interval [t
1

, tn].1 We show

a frequency plot of logarithmic returns of assets from di↵erent asset classes in Fig. 3.2.

We only consider logarithmic returns in the remainder of the thesis, and use the term

“return” to mean “logarithmic return”. All time intervals considered in this chapter

are uniformly discretized time intervals T = {t
1

, . . . t|T |}, where t
1

< . . . < t|T | and

|T | is the number of time points in T .

3.1.2 Pearson correlation networks

We use (shifted or unshifted) sample Pearson correlation matrices as adjacency ma-

trices for each layer and use a rolling time window to construct a time-dependent

sequence of adjacency matrices. We describe both choices in the next two sections.

We first define a sample Pearson correlation matrix for a set of return time series

and prove three of its basic properties: symmetry, boundedness, and positive semi-

definiteness. Let T be a discrete time interval and denote by t an arbitrary time point

in T . Unless otherwise specified, all quantities that we use are sample quantities (e.g.,

1Another type of return is the arithmetic return defined by za
i

(t) := pi(t)�pi(t�1)

pi(t�1)

. Arithmetic

returns do not have the time-additive property. However, za
i

(t) = pi(t)

pi(t�1)

� 1 by definition, which

implies that z
i

(t) = log(1 + za
i

(t)) ⇡ za
i

(t) for small za
i

(t).
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Figure 3.2: Frequency plot of logarithmic returns for financial assets from di↵erent asset
classes. Asset abbreviations correspond to the following assets (or indices): US government
bond (USGATR), Moody’s AA rated corporate bond (MOODCAA), Standard and Poor’s
500 (SPX), Gold (XAU), Copper (HG1), Crude oil (CO1), and Co↵ee (KC1). (Asset
abbreviations are explained in Appendix A).

Pearson correlation, variance, covariance). That is, they are computed from a set of

empirical observations (e.g., a set of price time series). The Pearson correlation

between the return time series of assets i and j during a time interval T is defined

as [111]

corrT (zi, zj) :=
covT (zi, zj)

�T (zi)�T (zj)
, (3.1)

where zi = {zi(t), t 2 T} and

hziiT :=

P
t2T zi(t)

|T | ,

�T (zi) :=
p
h (zi(t)� hziiT )2 iT ,

are the mean and standard deviation, respectively, of zi during the time interval T ,

and where

covT (zj, zi) := h (zi(t)� hziiT )(zj(t)� hzjiT ) iT ,

is the covariance between the returns of assets i and j during T . Using the above

definitions and the linearity of the mean, we obtain the following identities:

covT (zj, zi) = hzizjiT � hziiT hzjiT ,

�T (zi) =
p
covT (zi, zi) =

q
hz2i iT � hzii2T ,

where hzizjiT = 1

|T |
P

t2T zi(t)zj(t) and hz2i iT = 1

|T |
P

t2T z2i (t). For ease of writing, we

drop the subscript T from the above quantities in the remainder of the thesis, but we
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emphasize that the mean operator h . i (and consequently any quantity that depends

on it) is always defined with respect to a specific time interval.

It follows immediately from the definition of corr(zi, zj) in (3.1) that

corr(zi, zj) = corr(zj, zi), for all i, j 2 {1, . . . , N} . (3.2)

That is, the correlation matrix R = {corr(zj, zi)} 2 RN⇥N is symmetric. It is also

straightforward to see that

corr(zi, zi) = 1, for all i 2 {1, . . . , N} . (3.3)

Furthermore, the Cauchy-Schwarz inequality implies that

 
X

t2T

(zi(t)� hzii)| {z }
ut

(zj(t)� hzji)| {z }
vt

!
2


 
X

t2T

(zi(t)� hzii)2| {z }
u2

t

! 
X

t2T

(zj(t)� hzji)2| {z }
v2t

!
,

and so

cov(zi, zj)
2  �(zi)

2�(zj)
2 ,

or equivalently,

� 1  corr(zi, zj)  1 , (3.4)

for all i and j in {1, . . . , N}.
One can express the correlation matrix R in terms of the matrix of standardized

returns Ẑ = (ẑij) 2 RN⇥|T |, which we obtain by subtracting from each return its mean

value over T and by normalizing each return by its standard deviation [65]:

ẑi(t) =
zi(t)� hzii

�(zi)
, t 2 T . (3.5)

In particular,

R =
1

T
ẐẐ

T
, (3.6)

because

1

T
(ẐẐ

T
)ij =

1

T

X

t2T

ẑi(t)ẑj(t) (3.7)

=
1

T

X

t2T

 
zi(t)� hzii

�(zi)

! 
zj(t)� hzji

�(zj)

!

=
h (zi(t)� hzii)(zj(t)� hzji) i

�(zi)�(zj)

=
cov(zi, zj)

�(zi)�(zj)
= corr(zi, zj) .
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Using hẑii = 0 and �(ẑi) = 1, it follows from (3.7) that corr(zi, zj) = 1

T (ẐẐ

T
)ij =

cov(ẑi, ẑj) = corr(ẑi, ẑj). That is, the correlation matrix of returns is equal to the

covariance matrix and correlation matrix of standardized returns. The fact that R is

positive semidefinite follows directly from (3.6), because for any vector x 2 RN ,

x

T
Rx = x

T (ẐẐ

T
)x = (xT

Ẑ)(Ẑ
T
x) = (xT

Ẑ)(xT
Ẑ)T =

X

t2T

 
NX

i=1

xiẑi(t)

| {z }
Ẑ

T
x

!
2

� 0 ,

where equality holds if and only if Ẑ
T
x = 0.

3.1.3 Rolling time window

We use the term time window for a set of discrete time points and divide each time

series into |T | overlapping time windows {T
1

, . . . , T|T |}. The length |T | of each time

window and the amount of overlap between consecutive time windows |T |��t (or the

step size �t between consecutive time windows) are each uniform [62, 65, 153, 154].2

Both integers |T | and �t refer to a number of weeks (respectively, number of days) if

the data set consists of weekly returns (respectively, daily returns). For a given data

set, we study the sequence of matrices

T =
�
As 2 [�1, 1]N⇥N |s 2 {1, . . . , |T |}

 
,

where As = RTs for a given choice of |T | and �t. The number of time windows |T |
is entirely determined by |T |, �t, and the total number of time points t

tot

in a data

set. The number of layers increases if one decreases the length of a time window (for

a given amount of overlap) or if one increases the overlap between time windows (for

a given window length).

We stress that the precise way that one chooses to compute a measure of similarity

between pairs of time series and the subsequent choices that one makes (e.g., uniform

or nonuniform window length, and overlap or no overlap if one uses a rolling time

window) clearly a↵ect the values of the similarity measure. There are myriad ways to

define and to compute similarity measures—the appropriateness of a choice depends

on factors such as application domain, time-series resolution, stationarity or non-

stationarity of time series, and so on—and this is an active and contentious area of

2The amount of overlap determines the number of data points that one adds and removes from
each time window. It thus determines the number of data points that can alter the connectivity
patterns in each subsequent correlation matrix (i.e., in each subsequent layer).
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research [51, 123,164,165,178,184,194,208]. Constructing a similarity matrix from a

set of time series and investigating community structure in a given similarity matrix

are separate problems, and we are concerned with the latter in the present thesis.

Accordingly, in all of our experiments, we use Pearson correlation coe�cients for our

measure of similarity. We compute them using a rolling time window with a uniform

window length and a uniform amount of overlap. We note that the results of Section

4.2 and Chapter 5 are independent of one’s choice of adjacency matrix for each layer.

3.2 Inter-layer network representation

3.2.1 Ordinal, diagonal, and uniform inter-layer coupling

We use the multilayer representation of temporal networks described in Section 2.2.2.1

to define inter-layer connections. In particular, we assume (1) that inter-layer edges

only exist between nodes that correspond to the same entity (i.e., between nodes

is and ir for some i and s 6= r), (2) that inter-layer edges are ordinal (i.e., inter-

layer edges only exist between consecutive layers) and (3) inter-layer edge weights are

uniform (i.e., inter-layer edges have the same weight). We denote the value of inter-

layer coupling by ! � 0. The multilayer adjacency matrix that we use in experiments

with financial data is then given by

A =

2

6666664

A

1

!I 0 . . . 0

!I
. . . . . . . . .

...

0
. . . . . . . . . 0

...
. . . . . . . . . !I

0 . . . 0 !I A|T |

3

7777775
, (3.8)

where As is the Pearson correlation matrix computed during the sth time window.

We give examples of nonuniform inter-layer coupling in Section 4.2.2 and explain how

results similar to those of 4.2.2 also apply in this more general case.

3.3 Data sets

We use two data sets of financial time series in our computational experiments. We

describe them in Sections 3.3.1 and 3.3.2.
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(a) AssetClasses data set: Surface plot
of correlations over all 238 time windows

(b) SingleAssetClass data set: Surface
plot of correlations over all 68 time

windows

0 0.1 0.2

Figure 3.3: Surface plots of the correlations over all time windows for (a)AssetClasses

data set and (b) SingleAssetClass data set. The colors in each panel scale with the
value of the observed frequency.

3.3.1 AssetClasses data set

The first is a multi-asset class data set and consists of weekly price time series for

N = 98 financial assets during the time period 01 Jan 99–01 Jan 10 (resulting in 574

prices for each asset). The assets are divided into seven asset classes: 20 government

bond indices (Gov.), 4 corporate bond indices (Corp.), 28 equity indices (Equ.), 15

currencies (Cur.), 9 metals (Met.), 4 fuel commodities (Fue.), and 18 commodities

(Com.). This data set covers a range of markets and geographical regions and it

was studied using principal component analysis [101] in [62, 65]. The authors of [65]

use weekly prices to mitigate e↵ects resulting from the non-synchronicity of prices

reported by markets from di↵erent time zones. They take the weekly price of an

asset to be the last price posted each week [62]. We include a detailed description

of the financial assets in this data set in Appendix A. We fix (|T |, �t) = (100, 2) for

this data set, which amounts to roughly two years of data in each time window and

a di↵erence of two data points between consecutive time windows. This produces

a multilayer network with |T | = 238 layers and N = 98 nodes in each layer (i.e.,

an N |T |-node multilayer network with N |T | = 23324). We include some tests of

correlation robustness to time window length and time window overlap in Appendix

B. We call this data set AssetClasses data set and show a surface plot of the

observed frequency of correlations in each layer in Fig. 3.3(a). We show example

correlation matrices and example networks of AssetClasses in Fig. 3.4 and Fig. 3.5.
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Gov.
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Equ.

Cur.
Met.
Fue.
Com.

(a) 08 Jan 99–01 Dec 00

Gov.
Corp.

Equ.

Cur.
Met.
Fue.
Com.

(b) 24 Nov 00–18 Oct 02

Gov.
Corp.

Equ.

Cur.
Met.
Fue.
Com.

(c) 25 Oct 02–17 Sept 04

Gov.
Corp.

Equ.

Cur.
Met.
Fue.
Com.

(d) 24 Sept 04–18 Aug 06

Gov.
Corp.

Equ.

Cur.
Met.
Fue.
Com.

(e) 25 Aug 06–18 Jul 08

Gov.
Corp.

Equ.

Cur.
Met.
Fue.
Com.

(f) 08 Feb 08–01 Jan 10

−1 −0.5 0 0.5 1

Figure 3.4: Correlation matrices for AssetClasses data set computed during di↵erent
time windows. Colors scale with the value of the correlations from deep blue (high negative
correlation) to deep red (high positive correlation).

(a) 08 Jan 99–01 Dec 00 (b) 08 Feb 08–01 Jan 10

Gov. Corp. Equ. Cur.
Met. Fue. Com.

Figure 3.5: Thresholded network visualizations (corr(zi, zj) � 0.35) for AssetClasses

data set plotted using an implementation [3] of the Kamada-Kawai layout algorithm [103].
Darker edges correspond to higher edge weights.
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3.3.2 SingleAssetClass data set

The second data set is a single-asset class data set and consists of daily price time

series (excluding weekends) for N = 910 financial assets from the Standard & Poor’s

(S&P) 1500 during the time period 01 Jan 99–17 Jul 2014 (resulting in 3909 prices

for each asset).3 The assets in this data set are all equity assets and they are divided

into ten sectors: 134 consumer discretionary (Cons. D.), 46 consumer staples (Cons.

S.), 57 energy (En.), 177 financials (Fin.), 84 health care (H.C.), 147 industrials

(Ind.), 140 information technology (Inf. T.), 65 materials (Mat.), 6 telecommunica-

tion services (Tel. S.), and 54 utilities (Ut.). We fix (|T |, �t) = (260, 55) for this

data set. This choice amounts to roughly one year of data in each time window and

a di↵erence of 55 data points (i.e., roughly two and a half months excluding week-

ends) between consecutive time windows. This produces a multilayer network with

|T | = 68 layers and N = 910 nodes in each layer (i.e., an N |T |-node multilayer

network with N |T | = 61880). We include some tests of correlation robustness to

time window length and time window overlap in Appendix B. We call this data set

SingleAssetClass data set and show a surface plot of the observed frequency of

correlations in each layer in Fig. 3.3(b). We show example correlation matrices and

example networks of SingleAssetClass in Fig. 3.6 and Fig. 3.7, respectively.

We use the data sets AssetClasses and SingleAssetClass as illustrative

examples in Chapter 4, where we investigate the community-detection method mul-

tilayer modularity maximization, and we perform further numerical experiments on

these data sets in Chapter 6.

3We consider fewer than 1500 nodes because we only include nodes for which data is available at
all time points to avoid issues associated with choices of data-cleaning techniques. We also exclude
dates at which the price is missing for all assets (this amounts to 146 data points from an initial
4055 data points, giving 3909 final data points.)
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(c) 13 Sept 04–21 Sept 05

Cons.D.

Cons.S.
En.

Fin.

H. C.

Ind.

Inf.T.

Mat.
Tel.S.

Ut.

(d) 17 Jul 07–25 Jul 08

Cons.D.

Cons.S.
En.

Fin.

H. C.

Ind.

Inf.T.

Mat.
Tel.S.

Ut.

(e) 18 May 10–26 May 11

Cons.D.

Cons.S.
En.

Fin.

H. C.

Ind.

Inf.T.

Mat.
Tel.S.

Ut.

(f) 21 Mar 13–01 Apr 14
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Figure 3.6: Correlation matrices for SingleAssetClass data set computed during dif-
ferent time windows. Colors scale with the value of the correlations from deep blue (high
negative correlation) to deep red (high positive correlation).

(a) 04 Jan 99–12 Jan 00 (b) 21 Mar 13–01 Apr 14

En.
H. C. 

Tel. S. 

Cons. D. Cons. S.
Inf. TFin. Ind. 

Ut. Mat. 

Figure 3.7: Thresholded network visualizations (corr(zi, zj) � 0.7) for SingleAsset-

Class data set plotted using an implementation [3] of the Kamada-Kawai layout algo-
rithm [103]. Darker edges correspond to higher edge weights.
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Chapter 4

Multilayer Modularity
Maximization

We address two main issues in this chapter: the choice of null network and the role

of inter-layer coupling in multilayer modularity maximization.

4.1 Interpretation of community structure in cor-

relation networks with di↵erent null networks

It is clear from the structure of the multilayer modularity matrix B in equation (2.23),

namely

B =

2

6666664

B

1

!I 0 . . . 0

!I
. . . . . . . . .

...

0
. . . . . . . . . 0

...
. . . . . . . . . !I

0 . . . 0 !I B|T |

3

7777775
,

that the choice of quality function within layers (i.e., diagonal blocks in the multilayer

modularity matrix) and the choice of coupling between layers (i.e., o↵-diagonal blocks)

for a given quality function a↵ect the solution of the multilayer maximization problem

in (2.24), namely

max
C2C

N |T |X

i,j=1

Bij�(ci, cj) ,

or equivalently,

max
C2C

2

4
|T |X

s=1

NX

i,j=1

Bijs�(cis , cjs) + 2!
|T |�1X

s=1

NX

i=1

�(cis , cis+1

)

3

5 .
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In this section, we make some observations on the choice of null network for corre-

lation networks when using the modularity quality function. To do this, we consider

the multilayer modularity-maximization problem with zero inter-layer coupling (i.e.,

! = 0), which is equivalent to performing single-layer modularity maximization on

each layer independently.

4.1.1 Toy examples

We describe two simple toy networks to illustrate some features of the NG null net-

work (2.7) (i.e., Pij = (kikj)/(2m)), and the NGS null network (2.10) (i.e., Pij =

(k+

i k
+

j )/(2m
+) � (k�

i k
�
j )/(2m

�)) that can be misleading for asset correlation net-

works.

4.1.1.1 Newman–Girvan and uniform null networks

Assume that the nodes in a network are divided into K nonoverlapping categories

(e.g., asset classes) such that all intra-category edge weights have a constant value

a > 0 and all inter-category edge weights have a constant value b, with 0  b < a.

Let i denote the category of node i, and rewrite the strength of node i as1

ki = |i|a+ (N � |i|)b = |i|(a� b) +Nb .

The strength of a node in this network scales linearly with the number of nodes in its

category. Suppose that we have two categories 
1

, 
2

that do not contain the same

number of nodes. Taking |
1

| > |
2

| without loss of generality, it follows that

Pi,j2
1

=
1

2m

"
|

1

|(a� b) +Nb

#
2

>
1

2m

"
|

2

|(a� b) +Nb

#
2

= Pi,j2
2

, (4.1)

where Pi,j2i is the expected edge weight between pairs of nodes in i in the NG

null network. That is, pairs of nodes in an NG null network that belong to larger

categories have a larger expected edge weight than pairs of nodes that belong to

smaller categories.

To see how equation (4.1) can lead to misleading results, we perform a simple

experiment. Consider the toy network in Fig. 4.1(a) that contains 100 nodes divided

into four categories of sizes 40, 30, 20, and 10. We set intra-category edge weights to

1Although we assume in this discussion that nodes have self-loops of weight a, the inequalities
between expected edge weights in the next two sections (and thus their implications) hold indepen-
dently of this assumption. For example, if one sets self-loops to zero in Section 4.1.1.1, one would
subtract a from the strength of each node and P

i,j21 > P
i,j22 in Equ. (4.1) still holds.
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Figure 4.1: (a) Toy unsigned block matrix with constant diagonal and o↵-diagonal blocks
that take the value indicated in the block. (b) Multiscale association matrix of (a) that
gives the frequency of co-classification of nodes across resolution-parameter values using
an NG null network. (c) Multiscale association matrix of (a) that uses a U null network.
(d) Toy signed block matrix with constant diagonal and o↵-diagonal blocks that take the
value indicated in the block. (e) Multiscale association matrix of (d) that uses an NGS null
network. (f) Multiscale association matrix of (d) that uses a U null network. For the NG
and U (respectively, NGS) null networks, our sample of resolution-parameter values is the
set {��, . . . , �+} (respectively, {0, . . . , �+}) with a discretization step of 10�3 between each
pair of consecutive values.

1 and inter-category edge weights to 0.3 (i.e., a = 1 and b = 0.3 in equation (4.1)).

In Fig. 4.1(b) (respectively, Fig. 4.1(c)), we show the multiscale association matrix

defined in (2.28) using an NG null network (respectively, a U null network). Each

multiscale association matrix indicates the number of times two nodes are placed in

the same community across resolution-parameter values ranging from �� (a single

community) to �+ (N singleton communities). Colors scale with the frequency of co-

classification of pairs of nodes into the same community across resolution-parameter

values. Because the nodes are ordered by category, diagonal blocks in Fig. 4.1(b,c)

indicate the co-classification index of nodes in the same category, and o↵-diagonal

blocks indicate the co-classification index of nodes in di↵erent categories. We observe

in Fig. 4.1(b) that larger categories are identified as a community across a smaller
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range of resolution-parameter values than smaller categories when using an NG null

network. In particular, category  is identified as a single community when � <

a/Pi,j2 (with a/Pi,j2
1

< a/Pi,j2
2

when |
1

| > |
2

| by equation (4.1)). When

� � a/Pi,j2, category  is identified as || singleton communities. However, we

observe in Fig. 4.1(c) that all four categories are identified as a single community

across the same range of resolution-parameter values when using the U null network.

In particular, category  is identified as a single community when � < a/hAi and as

|| singleton communities when � � a/hAi.
A common interpretation of multiscale modularity maximization is that the com-

munities that one obtains for larger values of � reveal “smaller” sets of “more densely”

connected nodes in the observed network (e.g., hierarchical structure) [54, 114, 168].

Although all diagonal blocks in Fig. 4.1(a) have the same internal connectivity, dif-

ferent ones are identified as communities for di↵erent values of � when using the NG

null network—as � increases, nodes in the largest category split into singletons first,

followed by those in the second largest category, etc. One would need to be cau-

tious in using multiscale community structure to gain information about connectivity

patterns in the observed network in this example.

4.1.1.2 Newman–Girvan signed and uniform null networks

A key di↵erence between an NG null network (2.7) and an NGS null network (2.10)

is that the expected edge weight between two nodes must be positive in the former

but can be negative in the latter. Consider a signed variant of the example in Section

4.1.1.1 in which intra-category edge weights equal a constant a > 0 and inter-category

edge weights equal a constant b < 0. The strengths of node i in the th category are

k+

i = ||a and k�
i = (N � ||)b .

We consider two categories 
1

, 
2

with di↵erent numbers of nodes. Taking |
1

| > |
2

|
without loss of generality, it follows that

Pi,j2
1

=
1

2m+

✓
|

1

|a
◆

2

� 1

2m�


(N � |

1

|)b
�
2

>
1

2m+

✓
|

2

|a
◆

2

� 1

2m�


(N � |

2

|)b
�
2

= Pi,j2
2

,

where Pi,j2i is the expected edge weight between pairs of nodes in i in the NGS

null network. As was the case for an NG null network, pairs of nodes in an NGS

null network that belong to larger categories have a larger expected edge weight than

pairs of nodes that belong to smaller categories.
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However, the fact that the expected edge weight can be negative can further

complicate interpretations of multiscale community structure. A category  for which

Pi,j2 < 0 and Pi2,j /2 � 0 is identified as a community when �Aij < ��Pij for

all i, j 2  (this inequality must hold for su�ciently large � because Pi,j2 < 0)

and does not split further for larger values of �. This poses a particular problem

in the interpretation of multiscale community structure obtained with the NGS null

network because nodes with negative expected edge weights do not need to be “densely

connected” in the observed network to contribute positively to modularity. In fact,

if one relaxes the assumption of uniform edge weights across categories, one can

ensure that nodes in the category with lowest intra-category edge weight will never

split. This is counterintuitive to standard interpretations of multiscale community

structure [114].

In Fig. 4.1(d,e), we illustrate the above feature of the NGS null network using a

simple example. The toy network in Fig. 4.1(d) contains 100 nodes divided into three

categories: one of size 50 and two of size 25. The category of size 50 and one category

of size 25 have an intra-category edge weight of 1 between each pair of nodes. The

other category of size 25 has an intra-category edge weight of 0.4 between each pair

of nodes. All inter-category edges have weights of �0.05. (We choose these values

so that the intra-category expected edge weight is negative for the third category

but positive for the first two and so that inter-category expected edge weights are

positive.) We observe in Fig. 4.1(e) that the first and second categories split into

singletons for su�ciently large �, that the smaller of the two categories splits into

singletons for a larger value of the resolution parameter, and that the third category

never splits. Repeating the same experiment with the U null network in Fig. 4.1(f)

(after a linear shift of the adjacency matrix to the interval [0, 1], i.e., Aij 7! 1

2

(Aij+1)

for all i, j), we observe that the co-classification index of nodes reflects the value of

the edge weight between them. It is highest for pairs of nodes in the first and second

category, and it is lowest for pairs of nodes in the third category.

4.1.2 Multiscale community structure in asset correlation
networks

We perform the same experiments as in Fig. 4.1 on the correlation matrices of the

data sets AssetClasses and SingleAssetClass of Section 3.3. Our resolution-

parameter sample is the set {��, . . . , �+} (respectively, {0, . . . , �+}) for the U and

NG (respectively, NGS) null networks with a discretization step of the order of 10�3.
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We store the co-classification index of pairs of nodes averaged over all resolution-

parameter values in the sample. We use the U and NG null networks for a correlation

matrix that is linearly shifted to the interval [0, 1]. For each null network, we thereby

produce |T | multiscale association matrices with entries between 0 and 1 that indicate

how often pairs of nodes are in the same community across resolution-parameter

values. The multiscale association matrix can shed light on which sets of assets are

more highly correlated to each other than expected under the null model, and the

extent to which they are (indicated by values closer to 1). In the case where the

distribution of entries in the modularity matrix is the same as that of the correlation

matrix (e.g., if one uses a uniform null network), larger values in the multiscale

association matrix should correspond to larger values of observed correlation. In the

case where the distribution of entries in the modularity matrix is di↵erent than that

of the correlation matrix, the relationship between the multiscale association matrix

and correlation matrix will depend on one’s choice of null network (i.e., on how these

distributions di↵er). We elaborate further on this point in the discussion below.

We show the multiscale association matrices for a specific layer of the Asset-

Classes data set in Fig. 4.2. The matrix in Fig. 4.2(a) corresponds to the correlation

matrix during the interval 08 Feb 08–01 Dec 10. In accord with the results in [65],

this matrix reflects the increase in correlation between financial assets that took place

after the Lehman bankruptcy in 2008 compared to correlation matrices that we com-

pute from earlier time periods (see, e.g., Fig. 3.4 and the surface plot of Fig. 3.3(a).)

The matrices in Fig. 4.2(b,c,d) correspond, respectively, to the multiscale association

matrix for the U, NG, and NGS null networks. We reorder all matrices (identically)

using a node ordering based on the partitions that we obtain with the U null network

that emphasizes block-diagonal structure in the correlation matrix. We observe that

the co-classification indices in the multiscale association matrix of Fig. 4.2(b) are a

better reflection of the strength of correlation between assets in Fig. 4.2(a) than the

multiscale association matrices in Fig. 4.2(c,d).

As indicated by the darker shades of red in the upper left corner in Fig. 4.2(c,d),

we also observe that the government and corporate bond assets (which we represent

with black squares on the diagonal) are in the same community for a larger range of

resolution-parameter values than the range for which equity assets are in the same

community. In fact, when we use an NGS null network, the expected weight between

two government or corporate bonds is negative (it is roughly �0.1), and these assets

are in the same community for arbitrarily large values of the resolution parameter.

(In other words, they do not split into smaller communities for large �). On the other
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Figure 4.2: Multiscale association matrix for the U, NG, and NGS null networks for the
entire correlation matrix and a subset of the correlation in the last layer of AssetClasses

data set. In panel (a), we show the entire matrix; in panels (b,c,d), we show the multiscale
association matrix that we obtain from this matrix using each of the three null networks.
In panel (e), we show the first 35⇥ 35 block of the correlation matrix from panel (a); and
in panels (f,g,h), we show the multiscale association matrix that we obtain from this subset
of the correlation matrix using each of the three null networks. The colors scale with the
entries of the multiscale association and the entries of the correlation matrix. Black squares
on the diagonals correspond to government and corporate bond assets, and white squares
correspond to equity assets.

hand, the expected weight between two equities is positive, and although equities

are comparably strongly correlated to each other in the observed network as bonds

(see black and white squares in Fig. 4.2(a)), they split for large enough values of

the resolution parameter. One would need to be cautious in using the multiscale

association matrices in Fig. 4.2(c,d) to gain insight about the connectivity between

assets in Fig. 4.2(a).

When studying correlation matrices of a data set with multiple asset classes, one

may wish to vary the size of the asset classes included in the data (e.g., by varying

the ratio of equity and bond assets). We show how doing this can lead to further

misleading conclusions. By repeating the same experiment using only a subset of
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Figure 4.3: Correlation between the adjacency matrix and the multiscale association ma-
trix for the U (solid curve), NG (dashed curve), and NGS (dotted curve) null networks over
all time layers for (a) AssetClasses data set and (b) SingleAssetClass data set. We
compute the “total Pearson correlation” coe�cients between entries in the upper diagonal
blocks in each matrix (to avoid double counting, as the matrices are symmetric), and we
exclude diagonal entries (which, by construction, are equal to 1 in both matrices). To com-
pute the total Pearson correlation, we vectorize the upper diagonal block of each matrix
and compute the Pearson correlation between vectors in the standard way.

the correlation matrix (the first 35 nodes), we consider an example where we have

inverted the relative sizes of the bond asset class and the equity asset class. As

indicated by the darker shades of red in the lower right corner in Fig. 4.2(g,h), equity

assets now have a higher co-classification index than government and corporate bond

assets when using the NG or NGS null networks. If one uses the co-classification index

in the multiscale association matrices of Fig. 4.2(c,d) (respectively, Fig. 4.2(g,h)) to

gain information about the observed correlation between equity and bond assets in

Fig. 4.2(a) (respectively, Fig. 4.2(e)), one may draw di↵erent conclusions despite the

fact that these have not changed. However, the multiscale association matrix with

a U null network in Fig. 4.2(f) reflects the observed correlation between equity and

bond assets in Fig. 4.2(e).2

To quantify the sense in which a multiscale association matrix of one null network

2The authors of [190] showed that a globally optimal partition for a null network called the
“constant Potts model” (CPM), in which the edge weights are given by a constant that is independent
of the network, is “sample-independent”. Their result can be generalized as follows for the U null
network (in which expected edge weights are constant but are not independent of the observed
network). Suppose that C

max

is a partition that maximizes Q(C|A;P ; �
1

) and consider the subgraph
induced by the network on a set of communities C

1

, . . . , C
l

2 C
max

. Then {C
1

[C
2

. . .[C
l

}maximizes
Q(C| ˆA;P ; �

2

), where ˆ

A is the adjacency matrix of the induced subgraph and �
2

= �
1

hAi/h ˆAi. For
the CPM null network, the same result holds with �

1

= �
2

.
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“reflects” the values in a correlation matrix, we compute the Pearson correlation

between the upper triangular part of each multiscale association matrix and its corre-

sponding adjacency matrix across all time layers of both data sets for the U, NG, and

NGS null networks. We show these correlation plots in Fig. 4.3. Observe that the

correlation between the adjacency and multiscale association matrix in Fig. 4.3(a,b)

is highest in each layer for the U null network and lowest in (almost) each layer for

the NGS null network.

The above observation can be explained as follows. Recall from (2.5) that we

can write the modularity-maximization problem as maxS2S Tr(ST

BS), where S is

the set of assignment matrices. When one uses a U null network, the entries of the

modularity matrix are the entries of the adjacency matrix shifted by a constant �hAi,
and the modularity quality function reduces to

max
S2S

⇥
Tr(ST

AS)� �hAi||c(S)||
2

⇤
, (4.2)

where ||c(S)||
2

= ||Tr(ST1NS)||2 is the 2-norm of the vector of set sizes in S (i.e., c(S)

is the vector whose kth entry is
PN

i=1

Sik). It follows that modularity maximization

with a U null network is equivalent to a block-diagonalization of the adjacency ma-

trix A (the first term in (4.2)) with a penalty on the size of communities (the second

term). In this case, one anticipates large values in the multiscale association matrix

to indicate large correlation values in the observed network. As one increases the

resolution parameter, one favors smaller sets of nodes with stronger internal connec-

tivity. Note that one could also apply equation (4.2) on adjusted adjacency matrices

A

0 = A � Ã. For example, one can let Ã be a matrix that controls for random

fluctuations in a correlation matrix A (e.g., the “random component” C

r in [131]).

For a general null network, equation (4.2) takes the form

max
S2S

⇥
Tr(ST

AS)� Tr(ST (�P )S)
⇤
,

where P is the adjacency matrix of the null network. That is, modularity maximiza-

tion finds block-diagonal structure in A (first term) that is not in �P (second term).

It is common to avoid using the U null network in applications because “it is not

a good representation of most real-world networks” [146]. The extent to which one

wants a null network to be a good representation of an observed network depends

on the features which one wants to take as given. We argue that whether an NG

null network is more appropriate than a U null network for a given situation depends

at least in part on one’s interpretation of node strength for that situation. As we

discussed in Section 2.1.2.3, the strength of a node in correlation matrices is given by
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the covariance between its standardized time series and the mean time series. When

using the NG null network, it thus follows that pairwise di↵erences Bij � Bi0j0 in

the modularity quality function depend on corr(ẑi, ẑj), corr(ẑi0 , ẑj0 ), and corr(ẑk, ẑtot),

where k 2 {i, j, i0 , j 0}, the quantity ẑi is the standardized time series of asset i defined

in subsection 2.1.2.3, and ẑ
tot

=
PN

i=1

ẑi. When using the U null network, pair-

wise di↵erences in the modularity quality function depend only on the observed edge

weights corr(ẑi, ẑj) and corr(ẑi0 , ẑj0 ). The term corr(ẑk, ẑtot) introduces a dependence

between the communities that one finds with the NG null network and the extent to

which nodes in those communities are representative of the mean time series for the

sample [as measured by corr(ẑk, ẑtot)]. In situations in which one may wish to vary

one’s node sample (e.g., by changing the size of asset classes), one needs to bear such

dependencies in mind when interpreting the communities that one obtains.

4.2 E↵ect of inter-layer coupling on a multilayer

partition

In Section 4.1, we set the inter-layer connection weights to zero in the multilayer

network. The solution to the multilayer modularity-maximization problem (2.24)

then depends solely on the values in the modularity matrix of each time layer, and

the multilayer modularity-maximization problem reduces to performing single-layer

modularity maximization on each layer independently.

Recall the multilayer modularity-maximization problem

max
C2C

2

4
|T |X

s=1

NX

i,j=1

Bijs�(cis , cjs) + 2!
|T |�1X

s=1

NX

i=1

�(cis , cis+1

)

3

5 .

A solution to this problem is a partition of an N |T |-node multilayer network. Its

communities can contain nodes from the same layer and nodes from di↵erent layers.

Nodes from di↵erent layers can be the same node at di↵erent times ((is, ir) with s 6= r)

or di↵erent nodes at di↵erent times ((is, jr) with i 6= j and s 6= r). We say that a

node is remains in the same community (respectively, changes communities) between

consecutive layers s and s+ 1 if �(cis , cis+1

) = 1 (respectively, �(cis , cis+1

) = 0).

Positive ordinal, diagonal, and uniform inter-layer connections favor nodes remain-

ing in the same community between consecutive layers. Every time a node does not

change communities between two consecutive layers (i.e., �(cis , cis+1

) = 1), a positive

contribution of 2! is added to the multilayer quality function. One thereby favors
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communities that do not to change in time because community assignments are tran-

sitive: if �(cis , cjs) = 1 and �(cis , cis+1

) = �(cjs , cjs+1

) = 1, then �(cis+1

, cjs+1

) = 1. We

define the persistence of a multilayer partition to be the total number of nodes that

do not change communities between layers:

Pers(C) :=
|T |�1X

s=1

NX

i=1

�(cis , cis+1

) 2 {0, . . . , N(|T |� 1)} , (4.3)

and we call the intra-layer modularity of a multilayer partition the contributions to

the quality function from single-layer modularity matrices:

Q(C|B
1

, . . . ,B|T |; 0) =
|T |X

s=1

NX

i,j=1

Bijs�(cis , cjs). (4.4)

As indicated in equation (4.3), Pers(C) is an integer between 0, which occurs

when no node ever remains in the same community across layers, and N(|T | � 1),

which occurs when every node always remains in the same community. (See [22] for a

closely related measure called “flexibility” that has been applied to functional brain

networks and see [136] for a related measure called “classification error metric”.) Let

Pers(C)|s,r denote the number of nodes that are in the same community in layer s

and layer r:

Pers(C)|s,r :=
NX

i=1

�(cis , cir) 2 {0, . . . , N} , (4.5)

so that Pers(C) =
P|T |�1

s=1

Pers(C)|s,s+1

. We use Pers(C)|s as shorthand notation

for Pers(C)|s,s+1

. Persistence provides an insightful way of rewriting the multilayer

modularity-maximization problem:

max
C2C

2

4
|T |X

s=1

NX

i,j=1

Bijs�(cis , cjs) + 2!Pers(C)

3

5 . (4.6)

The multilayer maximization problem thus measures a trade-o↵ between intra-layer

modularity (the first term in (4.6)) and temporal persistence across layers (the second

term in (4.6)).3

In the next two subsections, we illustrate how the set of intra-layer partitions

induced by a multilayer partition with ! > 0 on individual layers can di↵er from

intra-layer partitions obtained with ! = 0. We refer to a “globally optimal partition”

as an “optimal partition” in Sections 4.2.1 and 4.2.2 for ease of writing.

3With this reformulation of the multilayer maximization problem, one can think of ! � 0 as a
parameter that favors persistence rather than as an edge weight in the multilayer network.
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4.2.1 Toy examples

4.2.1.1 Changes in connectivity patterns

This toy examples illustrates how inter-layer coupling can enable us to detect and

di↵erentiate between changes in connectivity patterns across layers. In Fig. 4.4, we

show an unweighted multilayer network with |T | = 10 layers and N = 8 nodes in

each layer. Every layer except for layers 3 and 6 contains two 4-node cliques. In layer

3, node 5
3

is connected to nodes {1
3

, 2
3

} instead of nodes {6
3

, 7
3

, 8
3

}. In layer 6,

node 5
6

is connected to nodes {1
6

, 2
6

, 3
6

, 4
6

} instead of nodes {6
6

, 7
6

, 8
6

}. We show

the layers of the multilayer network in panels (a)–(c) of Fig. 4.4. We examine its

communities using a U null network with a resolution-parameter � = 1. Layer s then

has the following single-layer modularity matrix:

Bijs =

⇢
1� hAsi , if i is connected to j
�hAsi , otherwise .

The optimal partition in each layer is unique and is Cs = {{1s, 2s, 3s, 4s}, {5s, 6s, 7s, 8s}}
in layer s for s /2 {3, 6} and is Cs = {{1s, 2s, 3s, 4s, 5s}, {6s, 7s, 8s}} in layers 3 and

6. When the value of inter-layer coupling is 0, the optimal multilayer partition is the

union of |T | disconnected optimal single-layer partitions. The resulting multilayer

partition C
0

=
S

10

i=1

Cs, which we show in panel (d) of Fig. 4.4, has a persistence of

Pers(C
0

) = 0. For any ! > 0, any partition with the same intra-layer partitions as C
0

and a nonzero value of persistence yields a higher value of multilayer modularity than

C
0

. This follows immediately from the expression of the multilayer quality function:

Q(C|B) =
|T |X

s=1

NX

i,j=1

Bijs�(cis , cjs) + 2!Pers(C) .

Increasing persistence without changing intra-layer partitions increases the last term

of Q(C|B) without changing the other terms. (In Section 4.2.2, we prove that ! > 0

is both necessary and su�cient for an optimal partition to have a positive value of

persistence.) To obtain the multilayer partition in panel (e), we combine all of the

sets in panel (d) that contain 1s into one set and all of the sets that contain Ns into

another set. This partition has a persistence equal to N(|T |� 1)� 4, and any other

way of combining the sets in C
0

yields a lower value of persistence.

We now examine Fig. 4.4 further. We consider the multilayer partitions in panels

(e)–(g). The example in panel (e) illustrates the structural changes from both layer

3 [see panel (b)] and layer 6 [see panel (c)], the example in panel (f) illustrates only

the change from layer 6, and panel (g) does not illustrate either change. As we soon
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Figure 4.4: Toy example illustrating the use of ordinal diagonal and uniform inter-layer
coupling for detecting changes in community structure across layers. We consider ten layers
(|T | = 10) with eight nodes (N = 8) in each layer. We show the network structures in
(a) layers s 62 {3, 6}, (b) layer 3, and (c) layer 6. Panels (d)–(g) illustrate four di↵erent
multilayer partitions. In each panel, the sth column of circles represents the nodes in the
sth layer, which we order from 1 to 8. We show sets of nodes in the same community
using solid curves in panel (d) (to avoid having to use 20 distinct colors) and using colors
in panels (e)–(g). In panel (h), we show the di↵erence between the multilayer modularity
value between the partition in panels (f) (thin line) and (g) (thick line) and the partition
in panel (e) for di↵erent values of !. We include the horizontal dotted line to show the
point at which the thin line intercepts the horizontal axis. The panel labels in the regions
defined by the area between two consecutive vertical lines in panel (h) indicate which of the
multilayer partitions in panels (e), (f), and (g) has a higher value of modularity.

quantify in terms of modularity cost, the change in layer 6 is the “stronger” of the two

changes. We let C
1

denote the multilayer partition in panel (e), C
2

denote the multi-

layer partition in panel (f), and C
3

denote the multilayer partition in panel (g). Note

that Pers(C
1

) < Pers(C
2

) < Pers(C
3

). The value ! of inter-layer coupling determines

which partition of these three has the highest value of multilayer modularity. To see
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this, we compute the modularity cost of changing static community structure within

layers in partition C
1

in favor of persistence. (Such a computation is a multilayer

version of the calculations for static networks in [77].) The intra-layer modularity

cost in C
1

of moving node 5s from the community {1s, 2s, 3s, 4s, 5s} to the community

{6s, 7s, 8s} in layers s 2 {3, 6} is

�Q(s) = 2

 
X

j2{6,7,8}

B
5js �

X

j2{1,2,3,4}

B
5js

!

=

⇢
�4 + 2hAi

3

⇡ �3.3 , if s = 3
�8 + 2hAi

6

⇡ �7.2 , if s = 6 .

The inter-layer modularity cost from this move is +4! in both cases; the first +2!

contribution of the +4! follows by symmetry of B, and the second +2! contribution

of the +4! follows from the fact that either move increases persistence by +2. Con-

sequently, for 0 < 4! < |�Q(3)|, the partition in panel (e) yields a higher multilayer

modularity value than the partitions in (f) and (g). When |�Q(3)| < 4! < |�Q(6)|,
the multilayer modularity value of the partition in (f) is higher than those of (e)

or (g). Finally, when 4! > |Q(6)|, the partition in panel (g) has the highest mul-

tilayer modularity value. When 4! = |�Q(3)| (respectively, 4! = |�Q(6)|), the

multilayer partition in panels (e) and (f) (respectively, (f) and (g)) have the same

value of multilayer modularity. We illustrate these results in Fig. 4.4(h) by plotting

Q(C
2

|B) � Q(C
1

|B) and Q(C
3

|B) � Q(C
1

|B) against !. This example is a simple

illustration of how inter-layer connections can help distinguish between changes in

connectivity patterns: stronger changes (in terms of modularity cost) persist across

larger values of inter-layer coupling (see [19, 159] for other approaches to “change

point detection” in temporal networks).

4.2.1.2 Shared connectivity patterns

In the previous toy example, the intra-layer partitions induced on each layer by the

multilayer partitions in Fig. 4.4(e,f,g) are optimal for at least one layer when ! = 0

(see Fig. 4.4(d)). This second example illustrates how inter-layer coupling can identify

intra-layer partitions that are not optimal for any individual layer when ! = 0 but

which reflect connectivity patterns that are shared across layers.

In Fig. 4.5, we consider an unweighted multilayer network with |T | = 3 layers

and N = 13 nodes in each layer. Every sth layer contains four 3-node cliques and

a node that is connected to each of the three nodes in the sth clique, and to nodes

10s and 12s in the 4th clique. We show the layers of the multilayer network in panels
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Figure 4.5: Toy example illustrating the use of ordinal diagonal and uniform inter-layer
coupling for detecting shared connectivity patterns across layers. We consider three layers
(|T | = 3) with thirteen nodes (N = 13) in each layer. We show the network structures
in (a) layer 1, (b) layer 2, and (c) layer 3. Solid lines represent edges present in all three
layers and dashed lines represent edges that are only present in one of the layers. Panels
(d) and (e) illustrate two di↵erent multilayer partitions. In each panel, the sth column
of circles represents the nodes in the sth layer, which we order 1 to 13. We show sets of
nodes in the same community using colors in panels (d) and (e). In panel (f), we show
the di↵erence between the multilayer modularity value between the partition in panel (e)
and the partition in panel (d) for di↵erent values of !. We include the horizontal dotted
line to show the point at which the line intercepts the horizontal axis. The panel labels in
the regions defined by the area between two consecutive vertical lines in panel (f) indicate
which of the multilayer partitions in panels (d) and (e) has a higher value of multilayer
modularity.

(a)–(c). We examine its communities using a U null network with a resolution-

parameter value of � = 1. The optimal partition in each layer is unique and is

{{1
1

, 2
1

, 3
1

, 13
1

}, {4
1

, 5
1

, 6
1

}, {7
1

, 8
1

, 9
1

}, {10
1

, 11
1

, 12
1

}} for layer 1, {{1
2

, 2
2

, 3
2

},
{4

2

, 5
2

, 6
2

, 13
2

}, {7
2

, 8
2

, 9
2

}, {10
2

, 11
2

, 12
2

}} for layer 2, and {{1
3

, 2
3

, 3
3

}, {4
3

, 5
3

, 6
3

},
{7

3

, 8
3

, 9
3

, 13
3

}, {10
3

, 11
3

, 12
3

}} for layer 3. We obtain the multilayer partition C
1

in

panel (d) by combining these sets such that induced intra-layer partitions are opti-

mal for each layer when ! = 0 and persistence is maximized between layers. The

multilayer partition C
2

in panel (e) reflects connectivity patterns that are shared by
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all layers (i.e., node 13s is with the fourth 3-node clique instead of the sth 3-node

clique); but its intra-layer partitions are not optimal for any layer when ! = 0. By

carrying out similar calculations to those in the previous toy example, one can show

that when ! > 3/2,4 the multilayer partition in panel (e) yields a higher modularity

value than the multilayer partition in panel (d). We illustrate this result in Fig. 4.5(f)

by plotting Q(C
2

|B) � Q(C
1

|B) against !. This example is a simple illustration of

how inter-layer connections can help identify connectivity patterns that are shared

across layers.

4.2.2 Some properties of multilayer partitions

We now ask how introducing positive ordinal diagonal and uniform coupling (i.e.,

! > 0) alters the set of maximum-modularity partitions of static networks (i.e., the

case ! = 0). We assume throughout this section that |T | � 2. To clearly di↵erentiate

between intra-layer and inter-layer modularity contributions, we denote the quality

function by

Q(C|B1, . . . ,B|T |;!) =
|T |X

s=1

NX

i,j=1

Bijs�(cis , cjs) + 2!Pers(C) ,

instead ofQ(C|B) throughout the section. In the discussion to follow, it will be helpful

to recall our assumption from Section 2.2 that each of the partitions in the set C of

N |T |-node partitions contains sets that do not have multiple connected components

in the graph with adjacency matrix B.

Let C
max

(!) denote the set of optimal partitions for the multilayer modularity-

maximization problem (4.6), and let C!
max

be an arbitrary partition in C
max

(!). We

prove several propositions that hold for an arbitrary choice of the matrices Bs (for

example, if one uses the modularity quality function with a U null network and a

resolution parameter value of 1, then Bs = As � hAsi1N). Recall that we denote

the set of nodes in layer s by Ns = {1s, . . . , Ns}. The restriction of a set of nodes

Ck ✓ {1
1

, . . . , N
1

; 1
2

, . . . , N
2

; . . . ; 1|T |, . . . , N|T |} to a layer s is Ck|s = Ck \ Ns, and

the partition induced by a multilayer partition C 2 C on layer s is

C|s = {Ck|s, Ck 2 C} .

We use this notation repeatedly throughout this section.

4i.e., when 4!+6[2(1�hAi
s

)�hAi
s

�3(1�hAi
s

)] > 0, with hAi
1

= hAi
2

= hAi
3

by construction
in this example.
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Proposition 4.2.1. Pers(C!
max

) > 0, ! > 0 .

Proposition 4.2.1 ensures that as soon as (and only when) the value of ! is strictly

positive, the value of persistence of an optimal solution is also positive. To prove

this, it su�ces to observe that if one rearranges sets in a multilayer partition by

combining some of the sets into the same set without changing the partitions induced

on individual layers, then one only changes the value of persistence in the expression

of multilayer modularity. For example, this phenomenon occurs in Fig. 4.4 when

going from the partition in panel (d) to the partition in panel (e).

Proof. ): We prove the contrapositive. Assume that ! = 0 and consider a multilayer

partition C such that Pers(C) > 0. The partition C contains at least one set with

multiple connected components (because Pers(C) > 0 and nodes in di↵erent layers

are not connected), and C is not optimal by our assumption that global optima do

not contain sets with multiple connected components.

(: Assume that ! > 0 and consider a multilayer partition C such that Pers(C) = 0.

We will show that C is not optimal. Let ir be an arbitrary node in {1
1

, . . . , N
1

; . . . ;

1|T |, . . . , N|T |} and let Cir denote the set in C that contains ir. Let C
0
be the partition

obtained from C by combining all sets that contain is, for some s, into one set:

C
0
=

✓
C \

|T |[

s=1

{Cis}
◆
[
⇢ |T |[

s=1

Cis

�
,

where Cis denotes the set in C that contains is. Consequently,

Q(C
0 |B

1

, . . . ,B|T |;!) � Q(C|B
1

, . . . ,B|T |;!) + 2!(|T |� 1) ,

so C is not optimal. (Note that 2!(|T | � 1) is strictly positive for ! > 0 since we

have assumed that |T | � 2.)

Proposition 4.2.2. Let C!
max

2 C
max

(!) and Ck 2 C!
max

. The set of layers

{s 2 {1, . . . , |T |} : Ck|s 6= ?}

is either the empty set or a set of contiguous layers.
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Proposition 4.2.2 ensures that if a community becomes empty in a given layer,

then it remains empty in all subsequent layers. This result follows directly from

the sparsity pattern of B and our assumption that optimal solutions do not contain

communities with multiple connected components. (More generally, this proposition

applies to all partitions in C under our assumption.)

Proposition 4.2.3. C!
max

|s = C!
max

|s+1

, Pers(C!
max

)|s = N .

Proposition 4.2.3 connects the notion of persistence between a pair of layers to

the notion of change in community structure within layers. Various numerical ex-

periments that have been performed with ordinal diagonal and uniform inter-layer

coupling consist of varying the value of ! and using information about when nodes

change communities between layers as an indication of change in community struc-

ture within these layers [21, 22, 140]. The equivalence relation in Proposition 4.2.3

motivates the use of Pers(C)|s (or a variant thereof) as an indication of intra-layer

change in community structure.

Proof. (: This follows straightforwardly by transitivity of community assignments: if

�(cjs , cjs+1

) = �(cis , cis+1

) = 1 for all i, j, then �(cis , cjs) = 1 if and only if �(cis+1

, cjs+1

) =

1 for all i, j. (This direction holds for any multilayer partition; it need not be optimal.)

): Let C 2 C by a multilayer partition such that C|s = C|s+1

and Pers(C)|s < N

for some s 2 {1, . . . , |T |}. We show that C is not optimal.5 Consider a set Ck 2 C

such that Ck|s 6= ?. If �(cis , cis+1

) = 1 (respectively, �(cis , cis+1

) = 0) for some

is 2 Ck|s, then �(cjs , cjs+1

) = 1 (respectively, �(cjs , cjs+1

) = 0) for all js 2 Ck|s by

transitivity of community assignments and because C|s = C|s+1

by hypothesis. Be-

cause Pers(C)|s < N by hypothesis, there exists at least one set Cl|s (where Cl 2 C)

of nodes such that �(cis , cis+1

) = 0 for all is 2 Cl|s. Let Cm|s+1

, with Cm 2 C, denote

the set of nodes in layer s + 1 that contains is+1

for all is 2 Cl|s. Consider the set

[rsCl|r of nodes in Cl that are in layers {1, . . . , s} and the set [r>sCm|r of nodes

in Cm that are in layers {s + 1, . . . , |T |}. Because �(cis , cis+1

) = 0 for all is 2 Cl|s,
it follows by Proposition 4.2.2 that Cl = [rsCl|r and Cm = [r>sCm|r. Define the

partition C
0
by

C 0 =

✓
C \

�
{Cl} [ {Cm}

�◆[✓
{Cl [ Cm}

◆
.

5Imposing Pers(C)|
s

= N by setting c
is+1 = c

is is not su�cient because changing Pers(C)|
s

locally can change Pers(C)|
s+1

or Pers(C)|
s�1

.
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This partition satisfies C 0|r = C|r for all r 2 {1, . . . , |T |}, Pers(C 0)|r = Pers(C)|r
for all r 6= s, and Pers(C 0)|s > Pers(C)|s. It follows that Q(C

0 |B
1

, . . . ,B|T |;!) >

Q(C|B
1

, . . . ,B|T |;!) and C is not optimal.

Propositions 4.2.1, 4.2.2, and 4.2.3 apply to an optimal partition obtained with any

positive value of !. The next two propositions concern the existence of “boundary”

values for !.

Proposition 4.2.4. There exists !
0

> 0 such that

if ! < !
0

, then
|T |[

s=1

C!
max

|s 2 C
max

(0) .

Proposition 4.2.4 reinforces the idea of thinking of ! as the cost of breaking static

community structure within layers in favor of larger values of persistence across layers.

It demonstrates that there is a positive value of inter-layer coupling such that for

any smaller value of coupling, multilayer modularity maximization only gives more

information than single-layer modularity maximization in that it identifies the set of

partitions in C
max

(0) with highest persistence. The proof of this property relies on

the fact that the set of possible modularity values for a given modularity matrix is

finite.

Proof. Let C be an arbitrary partition such that [|T |
s=1

C|s /2 C
max

(0). We will show

that there exists a value !
0

of the inter-layer coupling parameter ! such that C is

never optimal for any inter-layer coupling less than !
0

. Given a sequence of single-

layer modularity matrices {B
1

, . . . ,B|T |}, the set of possible multilayer modularity

values for a fixed value of ! > 0 is finite and is given by

Q! =
�
Q(C|B

1

, . . . ,B|T |;!), C 2 C
 
,

where C is a multilayer partition. Let Q1

0

= maxQ
0

, Q2

0

= maxQ
0

\ {Q1

0

}, and

�Q = Q1

0

�Q2

0

> 0. By hypothesis,

Q(C|B
1

, . . . ,B|T |; 0) < Q(C0

max

|B
1

, . . . ,B
1

; 0) ,

where C0

max

2 C
max

(0). Furthermore, by definition of persistence, it follows that

Q(C|B
1

, . . . ,B|T |;!)  Q2

0

+ 2!N(|T |� 1) (4.7)
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for all values of !. By choosing ! < !
0

, with !
0

= �Q/
⇥
2N(|T |� 1)

⇤
, we obtain

Q(C|B
1

, . . . ,B|T |;!)  Q2

0

+ 2!N(|T |� 1) < Q2

0

+�Q = Q0

1

,

so C is not optimal for any inter-layer coupling less than !
0

.

Clearly, !
0

= �Q/
⇥
2N(|T | � 1)

⇤
is not an upper bound for the set

�
! 2 R+ :

S|T |
s=1

C!
max

|s 2 C
max

(0)
 
,6 but our main concern is that the smallest upper bound of

this set is not 0 (in fact, we have shown that it must be no less than�Q/ [2N(|T |� 1)] >

0.)

Proposition 4.2.5. There exists !1 > 0 such that

if ! > !1 , then Pers(C!
max

)|s = N for all s 2 {1, . . . , |T |} .

Proposition 4.2.5 implies that a su�ciently large value of inter-layer coupling !

guarantees that C!
max

|s remains the same across layers (by Proposition 4.2.3). The

proof of this proposition is similar to the proof of Proposition 4.2.4.

Proof. Let C be an arbitrary multilayer partition such that Pers(C)|s < N for some

s 2 {1, . . . , |T |}. We show that there exists a value !1 > 0 of the inter-layer coupling

parameter ! such that C is never optimal for ! > !1. We first rewrite the quality

function as

Q(C|B
1

, . . . ,B|T |;!) = �
1

+ 2!(N(|T |� 1)� A) ,

where �
1

=
P|T |

s=1

PN
i,j=1

Bijs�(cis , cjs) and A � 1 because Pers(C) < N(|T | � 1) by

assumption. Now consider the set of values on the diagonal blocks of the multilayer

modularity matrix B:

B
diag

=
�
Bijs|i, j 2 {1, . . . , N}, s 2 {1, . . . , |T |}

 
, (4.8)

and let max(B
diag

) and min(B
diag

), respectively, denote the maximum and minimum

values of the set B
diag

. Without loss of generality,7 we assume that min(B
diag

) < 0

6For example, one could replace N(|T | � 1) in (4.7) by N(|T | � 1) � Pers(C
max

(0)), where
Pers(C

max

(0)) denotes the maximum value of persistence that one can obtain by combining
sets in each partition of C

max

(0) without changing the partitions induced on individual lay-
ers. Proposition 4.2.4 still holds if one takes !

0

= �Q/
⇥
2
�
N(|T | � 1) � Pers(C

max

(0))
�⇤
, where

�Q/
⇥
2
�
N(|T |� 1)�Pers(C

max

(0))
�⇤

> �Q/
⇥
2N(|T |� 1)

⇤
, because Pers(C

max

(0)) � |T |� 1 in any
multilayer network.

7If min(B
diag

) and max(B
diag

) have the same sign or if either is equal to zero, then every diagonal
block of B either has all nonnegative entries or all nonpositive entries. In both cases, an optimal
partition C!

max

has maximal persistence for any value of ! > 0, because C!

max

|
s

is given either by
a single community or by N singleton communities for all s. Consequently, by Proposition 4.2.3,
Pers(C!

max

)|
s

= N for all s.
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and max(B
diag

) > 0. Let C 0 be any multilayer partition with a maximal value of

persistence. It then follows that

Q(C 0|B
1

, . . . ,B|T |;!) = �
2

+ 2!N(|T |� 1)

for some �
2

2 R. Because A � 1, choosing

2! > |T |N2

⇥
max(B

diag

)�min(B
diag

)
⇤
� �

1

� �
2

ensures that C 0 yields a higher value of multilayer modularity than C for any �
1

and

for all A 2 {1, . . . , N(|T |� 1)}.

The following proposition follows directly from Proposition 4.2.5.

Proposition 4.2.6. There exists !1 > 0 such that

For all r 2 {1, . . . , |T |}, C!
max

|r is a solution of max
C2C

Q

0

@C|
|T |X

s=1

Bs

1

A

for all ! > !1.

Propositions 4.2.5 and 4.2.6 imply the existence of a “boundary value” for !

above which single-layer partitions induced by optimal multilayer partitions (1) are

the same on all layers and (2) are optimal solutions for the single-layer modularity-

maximization problem defined on the mean modularity matrix.

Proof. Suppose that ! > !1, where !1 is as defined in Proposition 4.2.5, and let

C!
max

2 C
max

(!). By Proposition 4.2.5, it then follows that Pers(C!
max

) = N(|T |� 1)

and community assignments in C!
max

are the same across layers. Consequently, for

! > !1

C⇤ = argmax
C2C

|T |X

s=1

NX

i,j

Bijs�(cis , cjs) + 2!Pers(C)

, C⇤ = argmax
C2C

|T |X

s=1

NX

i,j=1

Bijs�(ci, cj) + 2!N(|T |� 1)

, C⇤ = argmax
C2C

NX

i,j

 |T |X

s=1

Bijs

!
�(ci, cj) ,

where ci denotes the community assignment of node i in all layers.
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The next two propositions formalize the intuition that an optimal multilayer par-

tition measures a trade-o↵ between time-independent community structure within

layers (i.e., intra-layer modularity) and persistence of community structure across

layers.

Proposition 4.2.7. Let !
1

> !
2

> 0. For all C!
2

max

2 C
max

(!
2

), one of the following

two conditions must hold:

(1) C!
2

max

2 C
max

(!
1

) ,

or (2) Pers(C!
2

max

) < Pers(C!
1

max

) for all C!
1

max

2 C
max

(!
1

) .

Proof. Let C!
2

max

2 C
max

(!
2

). If C!
2

max

2 C
max

(!
1

), then condition (1) is satisfied.

Suppose that C!
2

max

/2 C
max

(!
1

), and assume that Pers(C!
2

max

) � Pers(C!
1

max

) for some

C!
1

max

2 C
max

(!
1

). By definition of optimality, C!
2

max

/2 C
max

(!
1

) implies that

Q(C!
2

max

|B
1

, . . . ,B|T |;!1

) < Q(C!
1

max

|B
1

, . . . ,B|T |;!1

) , (4.9)

where !
1

> !
2

by hypothesis. By writing

Q(C!k
max

|B
1

, . . . ,B|T |;!k0) =
|T |X

s=1

NX

i,j=1

Bijs�(c
!k
is , c

!k
js ) + 2!k0Pers(C

!k
max

) ,

where c!k
is is the community assignment of node is in C!k

max

and k, k0 2 {1, 2}; and by

substituting !
1

by !
2

+ � for some � > 0, one can show that the inequality (4.9)

implies

Q(C!
2

max

|B
1

, . . . ,B|T |;!2

) < Q(C!
1

max

|B
1

, . . . ,B|T |;!2

) ,

which contradicts the optimality of C!
2

max

.

One can similarly prove the following proposition.

Proposition 4.2.8. Let !
1

> !
2

> 0. For all C!
2

max

2 C
max

(!
2

), one of the following

two conditions must hold:

(1) C!
2

max

2 C
max

(!
1

) ,

or (2) Q(C!
2

max

|B
1

, . . . ,B|T |; 0) > Q(C!
1

max

|B
1

, . . . ,B|T |; 0) for all C!
1

max

2 C
max

(!
1

) .
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Proof. Let C!
2

max

2 C
max

(!
2

). If C!
2

max

2 C
max

(!
1

), then condition (1) is satisfied.

Suppose that C!
2

max

/2 C
max

(!
1

), and assume that

Q(C!
2

max

|B
1

, . . . ,B|T |; 0)  Q(C!
1

max

|B
1

, . . . ,B|T |; 0) (4.10)

for some C!
1

max

2 C
max

(!
1

). By definition of optimality, C!
2

max

/2 C
max

(!
1

) implies that

Q(C!
2

max

|B
1

, . . . ,B|T |;!1

) < Q(C!
1

max

|B
1

, . . . ,B|T |;!1

) , (4.11)

where !
1

> !
2

by hypothesis. By writing

Q(C!k
max

|B
1

, . . . ,B|T |;!1

) = Q(C!k
max

|B
1

, . . . ,B|T |; 0) + 2!
1

Pers(C!k
max

),

where k 2 {1, 2} and by using (4.10), one can show that (4.11) implies that

Q(C!
2

max

|B
1

, . . . ,B|T |;!2

) < Q(C!
1

max

|B
1

, . . . ,B|T |;!2

).

for all !
2

< !
1

. This contradicts the optimality of C!
2

max

.

(To develop intuition for Propositions 4.2.7 and 4.2.8, it is helpful to think of a

multilayer quality function Q(C|B
1

, . . . ,B|T |;!) for a given partition C as a linear

function of ! that crosses the vertical axis at Q(C|B
1

, . . . ,B|T |; 0) with slope Pers(C)

(see, for e.g., the last panel of Fig. 4.4 and Fig. 4.5).)

The next three corollaries follow straightforwardly from Propositions 4.2.7 and

4.2.8. The first states that the highest achievable value of persistence for an opti-

mal partition obtained with a given value of inter-layer coupling is a non-decreasing

function in !. The second states that the highest achievable value of intra-layer mod-

ularity for an optimal partition obtained with a given value of inter-layer coupling is

a non-increasing function in !. The third corollary states that if two distinct values

of ! have the same set of optimal partitions, then this set is also optimal for all

intermediate values.

Corollary 4.2.9. Let !
1

> !
2

> 0. Then

Pers(C
max

(!
1

)) � Pers(C
max

(!
2

)) ,

where Pers(C
max

(!)) := max
�
Pers(C!

max

), C!
max

2 C
max

(!)
 
.
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Corollary 4.2.10. Let !
1

> !
2

> 0. Then

Q
�
C
max

(!
1

)|B1, . . . ,B|T |; 0
�
 Q

�
C
max

(!
2

)|B1, . . . ,B|T |; 0
�
,

where Q(C
max

(!)|B1, . . . ,B|T |; 0) := max
�
Q(C!

max

|B1, . . . ,B|T |; 0), C!
max

2 C
max

(!)
 
.

Corollary 4.2.11. Assume that C
max

(!
1

) = C
max

(!
2

) for !
1

> !
2

> 0. Then

C
max

(!
1

) = C
max

(!) = C
max

(!
2

) for all ! 2 (!
2

,!
1

) .

One can extend the proofs of Propositions 4.2.1–4.2.8 so that they apply for inter-

layer coupling that is uniform between each pair of contiguous layers but may di↵er

from pair to pair. In other words, one can obtain similar results for the maximization

problem

max
C2C

2

4
|T |X

s=1

NX

i,j=1

Bijs�(cis , cjs) + 2
|T |�1X

s=1

!sPers(C)|s

3

5 .

Propositions 4.2.1–4.2.6 trivially extend to this case, and one can extend Propositions

4.2.7–4.2.8 if (for example) one assumes that !1

s > !2

s > 0 for all s 2 {1, . . . , |T |� 1},
where !

(1) and !

(2) are (|T | � 1)-dimensional vectors. (For example, one could set

!

(2) = !!(1) and vary ! > 0.)

4.2.3 Computational issues

4.2.3.1 Louvain

We now examine issues that can arise when using the Louvain heuristic (see Section

2.3.2) to maximize multilayer modularity (2.24).

Underemphasis of persistence Consider the example network in Fig. 4.6, which

is a 3-layer network that has 5 nodes in each layer. Suppose that all nodes are

strongly connected to each other in layers 1 and 3, and that the edge weight be-

tween node 1
2

and nodes {2
2

, 3
2

, 4
2

, 5
2

} is smaller in layer 2 than the edge weight

between node 1s and nodes {2s, 3s, 4s, 5s} when s = 1, 3. We use the uniform null

network with � = 0.5 and set ! = 0.1. This produces a multilayer modularity

matrix in which all the single-layer modularity entries Bijs except those of node 1
2

are positive and exceed the value of inter-layer coupling. Suppose that one loops

over the nodes ordered from 1 to N |T | in the first phase of the Louvain heuristic.

The initial partition consists of N |T | singletons, and each node is then moved to
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post-processing

Figure 4.6: Toy example illustrating the e↵ect of post-processing on a multilayer partition
by increasing multilayer modularity via community-assignment swaps that increase the
value of persistence but do not change intra-layer partitions. The colors in panels (a)–(c)
scale with the entries of the adjacency matrix. Panel (d) (respectively, panel (e)) represents
the output multilayer partition obtained with Louvain before (respectively, after) post-
processing. The horizontal axis represents the layers, and the vertical axis represents the
nodes. The shading in panels (d,e) represents the community assignments of nodes in each
layer.

the set that maximally increases modularity. The partition at the end of phase 1 is

{{1
1

, 2
1

, 3
1

, 4
1

, 5
1

, 1
2

}, {2
2

, 3
2

, 4
2

, 5
2

}, {1
3

, 2
3

, 3
3

, 4
3

, 5
3

}}. In phase 2, the second and

third sets merge to form a single set,8 and the Louvain heuristic gets trapped in a

local optimum in which the smaller set of nodes (i.e., {1
1

}) remains in the same com-

munity across layers 1 and 2 and the larger set of nodes (i.e., {2
1

, 3
1

, 4
1

, 5
1

}) changes
community. We show this multilayer partition in Fig. 4.6(d). Repeating this experi-

ment 1000 times using a randomized node order at the start of each iteration of phase

1 of the Louvain heuristic yields the same multilayer partition. One can modify this

multilayer partition to obtain a new partition with a larger value of multilayer modu-

larity by increasing the value of persistence across layers without changing intra-layer

partitions (we use this idea in the proof of Proposition 4.2.1). We show an example

of this situation in Fig. 4.6(e).

In Fig. 4.6(d), we illustrate the above issue visually via abrupt changes in col-

8Note that combining the first and second set into a single set decreases modularity because the
value of inter-layer coupling is too small to compensate for the decrease in intra-layer contributions
to modularity.
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ors between layers (these are more noticeable in larger networks). Such changes are

misleading because they imply a strong decrease in persistence that might not be

accompanied by a strong change in intra-layer partitions. In Fig. 4.6(d), for example,

the intra-layer partitions di↵er in the community assignment of only a single node.

To mitigate this problem, we apply a post-processing function to all output partitions

that maximally increases persistence between layers without changing the partitions

that are induced on each layer (thereby producing a partition with a larger value of

multilayer modularity). We do this by relabeling the community assignments of nodes

in each layer such that (1) the number of nodes that remain in the same community

between consecutive layers is maximally increased and (2) the partition induced on

each layer by the original multilayer partition is unchanged. One can implement this

post-processing procedure using the Hungarian algorithm [113]. Consider a partition

C 0 2 C that one wants to post-process. The partition C 0 induces |T | intra-layer par-
titions {C 0|s, s = 1, . . . , |T |} on the multilayer network. One can maximize Pers(C 0)

without changing the intra-layer partitions induced by C 0 by maximizing Pers(C 0)|s
independently between all pairs of consecutive layers (because inter-layer coupling is

ordinal). For every pair of consecutive layers, this yields the following maximization

problem

max
C2C

Pers(C)

such that C|s = C 0|s and C|s+1

= C 0|s+1

,

where C is the set of 2N -node partitions. One can reformulate this maximization

problem as a weighted bipartite matching problem. Nodes in the bipartite network

are the communities of C 0 restricted to layers s and s + 1 (i.e., the sets in C 0|s and

C 0|s+1

) and the edge weight between Ck|s and Ck|s+1

, Ck 2 C 0, is

|{i 2 {1, . . . , N} : is 2 Ck|s and is+1

2 Ck|s+1

}| 2 {0, . . . , N}.

Finding a maximum weight matching in a weighted bipartite graph is called the

assignment problem in combinatorial optimization and one can solve it using the

Hungarian algorithm [58,142].

Abrupt drop in the number of intra-layer merges The Louvain heuristic faces

a second problem in multilayer networks. When the value of inter-layer coupling

satisfies

! > max(B
diag

) , (4.12)
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where B
diag

is the set of values on the diagonal blocks of B defined in equation (4.8),

the inter-layer contributions to multilayer modularity are larger than the intra-layer

contributions for all pairs of nodes. Consequently, only inter-layer merges occur during

the first completion of phase 1 in the Louvain algorithm. In Fig.4.7(a), we illustrate

this phenomenon using AssetClasses. The mean number of intra-layer merges

drops from roughly N = 98 (almost every node contains at least one other node from

the same layer in its set) to 0 once ! > max(B
diag

), with max(B
diag

) ⇡ 0.455 in

this case. For ! values larger than max(B
diag

), every set after the first completion

of phase 1 only contains copies of each node in di↵erent layers and, in particular,

does not contain nodes from the same layer. This can yield abrupt changes in the

partitions induced on individual layers of the output multilayer partition

In Fig. 4.7(c), we show an example using AssetClasses of how the above issue

can lead to an abrupt change in a quantitative measure computed from a multilayer

output partition obtained with the Louvain heuristic. We note that the mean size

of sets (averaged over 100 runs) after the first completion of phase 1 of the Louvain

algorithm for ! > max(B
diag

) is relatively small for AssetClasses. (The mean

is 3 nodes per set, and the maximum possible number of nodes per set is |T | =

238, because each of these sets only contains copies of the same node when ! >

max(B
diag

).) Nevertheless, as ! increases past max(B
diag

), there is a sudden drop in

the value of (1�Pers(C)|s/N) between consecutive layers in the output partition [see

Fig. 4.7(c)]. Nonzero values of (1�Pers(C)|s/N) indicate that community assignments

have changed between layers s and s + 1 (by Proposition 4.2.3). Roughly speaking,

Fig. 4.7(c) suggests that when ! > max(B
diag

), one abruptly moves away from the

situation ! ⇡ !
0

to a scenario that is closer to ! ⇡ !1. We show plots of intra-layer

modularity, persistence before post-processing, and persistence after post-processing,

for an output partition obtained with Louvain in Fig. 4.8(a,b,c).

The above phenomenon manifests when the values of inter-layer coupling are large

relative to the entries of B
diag

. In the correlation multilayer networks that we consider

(or in multilayer networks with single-layer adjacency matrices in {0, 1}N⇥N), entries

of the adjacency matrix satisfy |Aijs|  1. Assuming that one uses the modularity

quality function on each layer and that Pijs � 0 (e.g., Pijs = hAsi), this implies that

max(B
diag

)  1 for all � 2 [��, �+] .

For networks in which the modularity cost of changing intra-layer partitions in favor

of persistence is large in comparison to the values of max(B
diag

), it might be desirable
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(b) Mean number of intra-layer
merges after the first completion

of phase 1 of LouvainRand

(c) Mean number of nodes that change
community assignment between layers in the

output partition of Louvain

(d) Mean number of nodes that change
community assignment between layers in the

output partition of LouvainRand

Figure 4.7: Comparison between the Louvain and LouvainRand heuristic algorithms. The
sample of inter-layer coupling values is the set {0, 0.02, . . . , 0.98, 1} with a discretization step
of 0.02 between each pair of consecutive values. (a,b) The number of nodes that have been
merged with at least one node from the same layer after the first completion of phase 1
of (a) the Louvain heuristic and (b) the LouvainRand heuristic. For each heuristic, we
show the average number of nodes over |T | = 238 layers and 100 iterations. The error
bars in panels (a,b) indicate standard deviations. (c,d) The value of 1�Pers(C)|s/N in an
output multilayer partition averaged over 100 runs of (c) the Louvain heuristic and (d) the
LouvainRand heuristic.

to use ! > 1 to gain insight into a network’s multilayer community structure (e.g.,

this occurs in both toy examples of Section 4.2.1).

To mitigate this problem, we change the condition for merging nodes in the Lou-

vain heuristic. Instead of moving a node to a community that maximally increases

modularity, we move a node to a community chosen uniformly at random from those

that increase modularity. We call this heuristic LouvainRand [2], and we illustrate

the results of using it on AssetClasses in Figs. 4.7(b,d). Although LouvainRand

can increase the output variability (by increasing the search space of the optimiza-
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Figure 4.8: We perform 10 runs of Louvain and LouvainRand on AssetClasses for
each value of ! 2 {0.01, . . . , 0.99, 1} (this gives a total of 100 ! values). We show (a)
nomalized intra-layer modularity, (b) normalized persistence before post-processing, and
(c) normalized persistence after post-processing with Louvain; and (d) normalized intra-
layer modularity, (e) normalized persistence before post-processing, and (f) normalized
persistence after post-processing with LouvainRand. (Recall that intra-layer modularity is
not a↵ected by post-processing.) We normalize persistence by N(|T | � 1) and intra-layer

modularity by
P|T |

s=1

1

T
As1. All values are averages over 10 runs of the corresponding

algorithm. The error bars in all panels indicate standard deviations.

tion process), it seems to mitigate the problem for multilayer networks with ordinal,

diagonal, and uniform coupling. We show plots of intra-layer modularity, persistence

before post-processing, and persistence after post-processing, for an output partition

obtained with LouvainRand in Fig. 4.8(d,e,f) averaged over 10 runs of the algorithm.

We carry out further numerical comparisons between Louvain and LouvainRand on

benchmark multilayer networks in Chapter 5.

4.2.3.2 Spectral bipartitioning

We end our discussion on computational issues with a brief comment on Newman’s

spectral bipartitioning heuristic in Section 2.3.3 for multilayer networks with ordinal,
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diagonal, and uniform inter-layer coupling. Consider a multilayer modularity matrix

B! =

2

6666664

B

1

!I 0 . . . 0

!I
. . . . . . . . .

...

0
. . . . . . . . . 0

...
. . . . . . . . . !I

0 . . . 0 !I B|T |

3

7777775
, (4.13)

where we include the subscript ! for clarity. Every single-layer modularity matrix

Bs is symmetric and thus has a set of N orthonormal eigenvectors {µs1, . . . ,µsN}
with corresponding eigenvalues ↵s1  . . .  ↵sN [192]. It follows that the multilayer

modularity matrix B
0

has a set of N |T | orthonormal eigenvectors given by

V(B
0

) =

8
>>><

>>>:

2

6664

µ

11

0
...
0

3

7775
, . . . ,

2

6664

µ

1N

0
...
0

3

7775
; . . . ;

2

6664

0
...
0

µ|T |1

3

7775
, . . . ,

2

6664

0
...
0

µ|T |N

3

7775

9
>>>=

>>>;
,

with a corresponding set of eigenvalues {↵
11

, . . . ,↵
1N ; . . . ;↵|T |1, . . . ,↵|T |N}. Denote

the ith eigenvector (respectively, eigenvalue) of B
0

by v

0i (respectively, �0i) and con-

sider the eigenvalue problem

B!v!i = �!iv!i . (4.14)

In the discussion to follow, we assume that ! is “small” and we use first order

perturbation analysis to examine how an o↵-diagonal perturbation of B
0

with uni-

form, diagonal, and ordinal inter-layer coupling can a↵ect the eigenvalues and eigen-

vectors of the multilayer modularity matrix. Write (4.13) as B! = B
0

+ !B(1),

v!i = v

0i + !v(1) + O(!2), and �!i = �
0i + !�(1) + O(!2). Substituting these three

expressions in (4.14) and equating first order terms, one obtains the equality

B
0

v

(1) +B(1)

v

0i = �(1)

v

0i + �
0iv

(1) .

By writing v

(1) as a linear combination of {v
01

, . . . ,v
0N |T |} and using the orthonor-

mality of the vectors v
0j, one obtains the following expressions for v(1) and �(1)

v

(1) =
X

i 6=j

v

T
0j

�
B(1)

v

0i

�

�
0i � �

0j
v

0j , (4.15)

�(1) = v

T
0i

�
B(1)

v

0i

�
, (4.16)

under the assumption that eigenvalues of di↵erent layers are pairwise distinct.
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Figure 4.9: We use the uniform null network with � = 1 and ! = 0.1. We indicate the
number of communities in the corresponding output partition in each panel. (a) Example
output partition with spectral bipartitioning on AssetClasses, (b) Output partition with
spectral bipartitioning on a 60 layer network in which every layer is given by the first layer
A

1

of AssetClasses (see Fig. 3.4(a)), and (c) Example output partition with spectral
bipartitioning on a 60 layer network in which every layer s < 60 is given by the first layer
A

1

ofAssetClasses and the last layer s = 60 is given by the last layerA
238

(see Fig. 3.4(f))
of AssetClasses, which has a leading eigenvalue that is larger than the leading eigenvalue
of A

1

.

In our case, the matrix B(1) has the form

B(1) =

2

6666664

0N I 0 . . . 0

I

. . . . . . . . .
...

0
. . . . . . . . . 0

...
. . . . . . . . .

I

0 . . . 0 I 0N

3

7777775
.

The sparsity pattern of B(1) (or more generally, the sparsity pattern of any matrix

with zero diagonal blocks) implies that vT
0i

�
B(1)

v

0i

�
= 0 for all v

0i 2 V(B
0

), and thus

that �(1) = 0 in (4.16). The term v

T
0j

�
B(1)

v

0i

�
in v

(1) is only nonzero if v
0j is an

eigenvector in V(B
0

) that corresponds to a layer s that is contiguous to the layer that

corresponds to v

0i (because only the first o↵-diagonal blocks of B(1) are nonzero). It

follows that v(1) in (4.15) has at most 2N nonzero terms.

The point of this discussion is to illustrate that for “small enough” ! the eigen-

vectors of B! are “close” to those of B

0

and thus tend to be “localized” on in-

dividual layers (see [188] for similar observations). This can be problematic when

using a heuristic that bipartitions a multilayer network based on the sign of the lead-

ing eigenvector of B!. We show example output multilayer partitions with spectral

bipartitioning on AssetClasses in Fig. 4.9.
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4.2.4 Multilayer community structure in asset correlation
networks

To end this chapter, we show preliminary computational experiments with Asset-

Classes data set that illustrate some of the concepts that we discussed. We fix the

value of the resolution parameter � in all experiments and vary the value of inter-layer

coupling !. We use the uniform null network (i.e., Pijs = hAis) and set � = 1. We

use the LouvainRand heuristic to identify multilayer partitions and apply our post-

processing procedure that increases persistence without changing partitions induced

on individual layers to all output multilayer partitions. We showed in Proposition

4.2.5 that for 2! > 2!1 = |T |N2

⇥
max(B

diag

)�min(B
diag

)
⇤
, the set C

max

(!) of global

optima no longer changes and every optimal partition in this set has maximal persis-

tence.9 In the AssetClasses data set, |T |N2 [max(B
diag

)�min(B
diag

)]  2|T |N2,

with N = 98 and |T | = 238. However, for the purposes of these experiments, we

take the set {0, 0.1, . . . , 49.9, 50} with a discretization step of 0.1 between consecutive

values (giving 501 values in total) as our sample of ! values.

In agreement with the properties derived in Propositions 4.2.7 and 4.2.8, we ob-

serve in Fig. 4.10(a) that normalized persistence (given by Pers(C)/[N(|T | � 1)])

tends to be larger for larger values of inter-layer coupling, and in Fig. 4.10(b) that

intra-layer modularity (which we normalize by
P|T |

s=1

(1T
As1)) tends to be smaller for

larger values of inter-layer coupling. The increase of persistence and the decrease of

intra-layer modularity need not be monotonic, because we are a finding a set of local

optima for each value of ! rather than the set of global optima.

In Fig. 4.10(c), we show a sample output of the multilayer partition (which con-

tains 35 communities). (See Section 3.3 for our definitions of the asset-class abbre-

viations.) Some of the changes in community structure correspond to known events

(e.g., Lehman Bankruptcy in September 2008 [marked by an increase in the size

of the equity asset class]). Observe that the two largest communities are the ones

that contain the government bond assets and the equity assets. In particular, the

community that contains equities becomes noticeably larger between 2006 and 2007,

and again towards the end of 2008 [after the pink streak between 2008 and 2009 in

Fig. 4.10(d)]. For larger values of the resolution parameter, this community instead

becomes noticeably larger only in 2008. (By inspecting the correlation matrices in

9Note that there can also be smaller values of !1 for which this is true; in other words, we did
not show that !1 is the smallest lower bound of the set {w : Pers(C!

max

) = N(|T |�1) for all C!

max

2
C
max

(!)}.
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Figure 4.10: Numerical experiments with AssetClasses. We sample the set of inter-
layer edge weights uniformly from the interval [0, 50] with a discretization step of 0.1 (so
there are 501 values of ! in total), and we use the uniform null network (i.e., Pijs = hAsi)
with � = 1. (a) The persistence normalized by N(|T | � 1) for each value of ! averaged

over 20 runs of LouvainRand. (b) The intra-layer modularity
P|T |

s=1

PN
i,j=1

Bijs�(cis , cjs)

normalized by
P|T |

s=1

PN
i,j=1

Aijs for each value of ! averaged over 20 runs of LouvainRand.
(d) Sample output multilayer partition. Each point on the horizontal axis represents a
single time window, and each position on the vertical axis is an asset. We order the assets
by asset class, and the colors represent communities. (e) Association matrix of normalized
persistence values between all pairs of layers averaged over all values of ! 2 [0, 50] in our
sample and 20 runs for each value. The normalized persistence between a pair of layers
{s, r} is

PN
i=1

�(cis, cir)/N . (f) Association matrix indicating the co-classification of nodes
averaged over the set of partitions induced on each layer for each value of ! and 20 runs of
LouvainRand.

Fig. 3.4 for example, one can see that the increase in correlation between equities and

other assets is greater in 2008 than in 2006.)

In Fig. 4.10(d), we show the matrix of mean values of persistence between all

pairs of layers. The (s, r)th entry is the term Pers(C)|s,r/N =
PN

i=1

�(cis , cir)/N

(4.5), where s, r 2 {1, . . . , |T |} need not be from consecutive layers, averaged all
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values of ! 2 [0, 50] in our sample, and multiple runs for each value of !. Instead

of only plotting Pers(C)|s for consecutive layers, Fig. 4.10(d) gives some indication

as to whether nodes change communities between layers s and s + 1 to join a com-

munity that contains a copy of some of these nodes from another time layer (i.e.,
PN

i=1

�(cis+1

, cir) 6= 0 for some r) or to join a community that does not contain a copy

of these nodes in any other time layer (i.e.,
PN

i=1

�(cis+1

, cir) = 0 for all r). Figure

4.10(d) also gives some insight into whether there are sets of consecutive layers across

which persistence values remain relatively large. This may shed light on when con-

nectivity patterns change in a multilayer network. As indicated by the values on the

color scale, the values of persistence in Fig. 4.10(d) remain relatively high across all

layers (which can partly be explained by the fact that equities and bonds remain in

the same community across almost all layers, and these constitute roughly 50% of

the node sample). The most noticeable separation into diagonal blocks in the middle

of Fig. 4.10(d) corresponds to the change in Fig. 4.10(c) between 2005 and 2006, at

which various currencies, metals, and fuels separate from the bond community (blue)

to form a dark green community. The smaller diagonal block at the bottom right of

Fig. 4.10(d) corresponds to the change in Fig. 4.10(c) after the Lehman Bankruptcy

between 2008 and 2009 [after the pink streak in Fig. 4.10(c)].

In Fig. 4.10(e), we show the co-classification index of nodes in partitions induced

on individual layers, which we average over layers, all values of ! 2 [0, 50] in our

sample, and multiple runs for each value of ! (we re-order the nodes to emphasize

diagonal blocks in the association matrix). This figure yields insight into what sets

of nodes belong to the same community across layers for increasing values of !. This

may shed light on connectivity patterns that are shared across layers. Unsurprisingly,

the first diagonal block mainly corresponds to bond assets and the second diagonal

block mainly corresponds to equity assets. Figures 4.10(d,e) complement each other:

at a given � resolution, the former gives an idea about when community structure

has changed, and the latter gives an idea about how it has changed. We use these

ideas in Chapter 6, where we perform further numerical experiments on both data

sets AssetClasses and SingleAssetClass.

The insight gained from Fig. 4.10 is useful to financial practitioners in that it high-

lights changes in correlation structure that did not stand out with more standard data

analysis techniques, in which connectivity patterns on individual layers are considered

independently (e.g., the change between 2005 and 2006, and the pink streak between

2008 and 2009). Furthermore, the multilayer partition in Fig. 4.10(c) can provide a
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single ordering of the N assets that one can use for visualizing the correlation matri-

ces of AssetClasses between 2000 and 2010 (as done in Fig. 4.2(a)). The ordering

used in Fig. 4.2(a) emphasizes block-diagonal structure in the correlation matrix of

the last layer of AssetClasses, but may not be appropriate for correlation matrices

in other layers. By computing the association matrix for the set of partitions induced

on individual layers in the multilayer output partition of Fig. 4.10(c), one can extract

a single node ordering that takes into account connectivity patterns in all layers.

We also note that one can repeat the experiments in Fig. 4.10 with a nonuniform

choice of interlayer coupling such that values tend to be lower for “dissimilar” cor-

relation matrices and larger for “similar” correlation matrices. For example, a first

intuitive choice would be to take the value of inter-layer coupling as the autocorrela-

tion between time series from consecutive time windows. The value of autocorrelation

between logarithmic returns is statistically insignificant for our choice of (|T |, �t), but
one could perform further experiments with shorter time window lengths. One can

also perform experiments in which the value of inter-layer coupling is uniform between

each pair of contiguous layers but may di↵er from pair to pair (e.g., one can use a

measure of similarity between contiguous correlation matrices, or a measure of simi-

larity between partitions induced on individual layers obtained with ! = 0 and then

repeat this process iteratively). One could then repeat the experiments in Fig. 4.10

with ! as a scaling parameter for the nonuniform vector of inter-layer coupling (as

described at the end of Section 4.2.2) and compare the results to those of the uniform

case.

4.3 Summary

Modularity maximization in temporal multilayer networks is a clustering technique

that produces a time-evolving partition of nodes. We have investigated two ques-

tions that arise when using this method: (1) the role of null networks in modularity

maximization, and (2) the e↵ect of inter-layer edges on the multilayer modularity-

maximization problem.

At the heart of modularity maximization is a comparison between what one antic-

ipates and what one observes. The ability to specify what is anticipated is a desirable

feature of modularity maximization, because one can explicitly adapt it for di↵erent

applications. However, one needs to be very careful with one’s choice of null network

because it determines what one regards as densely connected in a network: di↵erent
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choices in general yield di↵erent communities. We illustrated in Section 4.1 for finan-

cial correlation networks that one should be cautious when interpreting communities

that one obtains with a null network in which the distribution of edge weights is

sample-dependent. Such a choice can have a large impact on results, and can lead to

misleading conclusions.

Furthermore, we defined a measure that we called persistence and showed that an

optimal partition in multilayer modularity maximization reflects a trade-o↵ between

time-independent community structure within layers (i.e., intra-layer modularity) and

persistence of community structure across layers. One can try to exploit this in prac-

tice to detect changes in connectivity patterns and shared connectivity patterns in

a time-dependent network. In 4.2.2, we proved several properties that describe the

e↵ect of uniform, ordinal, and diagonal inter-layer coupling on multilayer modularity

maximization. Our multilayer analysis only depends on the form of the maximization

problem in (2.24) and still holds if one uses a quality function other than the modu-

larity quality function, provided it has the form. Although our theoretical results do

not necessarily apply to the local optima that one attains in practice, they do provide

useful guidelines for how to interpret the outcome of a computational heuristic: if a

multilayer partition is inconsistent with one of the proven properties, then it must be

an artifact of the heuristic and not a feature of the quality function.

Finally, we illustrated an issue that can arise when one uses spectral bipartition-

ing to solve the multilayer maximization problem. We also showed that the Louvain

heuristic can pose two issues when applied to multilayer networks with ordinal, di-

agonal, and uniform coupling. We proposed ways to try to mitigate the issues with

Louvain and showed several numerical experiments on real data as illustrations.
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Community-detection benchmarks for single-layer networks generally consist of gen-

erating a network partition, often called a planted partition (see Section 2.1.1), and

a network that “fits” a planted partition (e.g., a network sampled from a stochas-

tic block model where each block is a community and the expected edge density

within communities is higher than the expected edge density between communi-

ties) [45, 49, 73, 88]. While it is perhaps not best practice to assess and compare

methods and heuristic algorithms mainly via (real or synthetic) benchmarks, it is

common practice in community detection [117, 125, 150, 163, 207]. The main reason

for this is twofold. While most would agree that a community should correspond to a

set of nodes that is “surprisingly well-connected”, there is no agreed-upon definition

of community that one can compare against. Di↵erent applications warrant di↵er-

ent interpretations of “surprisingly well-connected” and di↵erent methods were often

developed with di↵erent definitions in mind [68,163]. Furthermore, most community-

detection methods cannot be solved in polynomial time and popular scalable heuristics

currently have few or no theoretical guarantees on how closely an identified partition

resembles an optimal partition [37, 77]. It is clear that e↵orts towards establishing

further theoretical grounding for both community-detection methods and heuristics

need further development. Nonetheless, community-detection benchmarks can be

useful in that they can provide some insight on whether and how certain methods or

algorithms may be e↵ective (or, also useful to know, ine↵ective).

Community detection in multilayer networks is a recent area of research [31, 109]

and there is currently no “standard” (synthetic or real) multilayer benchmarks that

one can use to compare multilayer community detection methods or heuristics. Fur-

thermore, in contrast to the single-layer case (where there is some consensus), there is

currently no consensus on the intuition behind what a community should represent in

a multilayer network, and where possibly such an intuition should depend on how the
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layers are related (e.g., temporal or multiplex [109]) and on what the inter-layer edges

represent (e.g., uniform parameter or edge-weight with a physical interpretation).

The purpose of this chapter is to propose a benchmark for community detection

in temporal multilayer networks. Our goal is not to model the temporal evolution

of communities, but to suggest a way of generating an ordered sequence of single-

layer partitions and networks that are correlated in some way. In contrast to single-

layer community benchmarks, which one can use to generate a sequence of networks

with uncorrelated planted community structure, we incorporate a simple probabilis-

tic model for the persistence of community assignments between successive layers

to generate a sequence of single-layer networks with correlated planted community

structure.

This chapter is organized as follows. We first give an overview of existing community-

detection benchmarks for single-layer and multilayer networks. We then describe

our community-detection benchmark for temporal multilayer networks. We high-

light some of its properties and comment on the e↵ect of some of its parameters on

the resulting benchmark multilayer partition. Finally, we perform several numerical

experiments using di↵erent methods and computational heuristics to try and gain

some insight into the following points: (1) how does varying ! in multilayer modu-

larity maximization a↵ect the recovery of a planted partition for di↵erent heuristics

and di↵erent parameter choices of the benchmark? and (2) how does varying the

“relax-rate” in multilayer map minimization (see Section 2.2.3) a↵ect the recovery of

a planted partition for di↵erent parameter choices of the benchmark?

5.1 Description of existing benchmarks

5.1.1 Single-layer benchmarks

Various benchmarks have been developed for testing community-detection methods

and heuristic algorithms in single-layer networks. One of the earlier well-known bench-

marks was a planted-partition model introduced by Girvan and Newman (GN) in

2002 [73]. The planted partition consists of 128 nodes divided into four equal-sized

communities (of 32 nodes). The benchmark networks are unweighted and edges are

generated using a stochastic block model (see Section 2.1.1) for community struc-

ture [88]. That is, edges between nodes in the same community are present with

probability p
in

and edges between nodes in di↵erent communities are present with

probability p
out

, where 0  p
out

< p
in

. The values of p
in

and p
out

are chosen such

that the expected degree of each node is 16 (i.e., E[ ki ] = 32p
in

+ 96p
out

= 16, so
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that 0.125 < p
in

 0.5). This benchmark is a special case of the planted l-partition

model [45], which is a generalization of the planted bisection model [99].

On the one hand, the GN benchmark is appealing because it can be used as a

test in which the division of nodes into clusters is clear and simple. On the other

hand, community detection is performed in practice on real networks and the GN

benchmark produces networks with unrealistic properties: the number of nodes is

relatively small, the expected strength is the same across all nodes, and the expected

community size is the same across all communities [49, 117, 120]. For this reason,

various benchmarks have been suggested in an attempt to produce more realistic

networks.

Danon et al. generalized the GN benchmark in 2006 to allow for heterogenous

expected strength and heterogenous community sizes [49]. The planted partition in

their generalization consists of N nodes divided into l clusters each with size li. Nodes

in the same cluster are connected by an edge with probability p
in

and nodes in di↵erent

communities are connected by an edge with probability p
out

, where 0  p
out

< p
in

.

The authors chose p
in

= F/li, 0  F  li, so that the expected number of edges

within a community scales linearly with its size rather than the square of its size, as

it would in a GN-type stochastic block model. In this benchmark, the heterogeneity

of expected strength is fully determined by the heterogeneity in community sizes (in

contrast to the LFR benchmark, which we describe below).

The most popular benchmark for single-layer networks is the Lancichinetti–Fortuna

-to–Radicchi (LFR) benchmark. A first version was introduced in [120] for generat-

ing unweighted networks with heterogenous degrees and heterogeneous community

sizes. In this benchmark, the authors fit a network to a partition (rather than the

other around) by adopting a procedure that can briefly be summarized as follows.

They first sample a degree sequence from a power-law distribution (with an upper

and lower bound on degree) and generate an unweighted network with the sampled

degree sequence using a configuration model “half-stub” approach, where one gen-

erates ki “half-edges” for each node and subsequently connects half-edges uniformly

at random [147]. They then sample a sequence of community sizes that sum to N

from a power-law distribution (with an upper and lower bound on community size)

and place each node i in exactly one community such that (1� µ)ki of its edges fall

within communities and µki of its edges fall between communities, where µ 2 [0, 1]

is termed the topological mixing parameter. That is, the fraction of edges that lie

inside a node’s community is 1� µ, and the fraction of edges with endpoints outside

a node’s community is µ. To enforce this condition, the authors perform “several
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rewiring steps” in their implementation that preserve node degrees but that poten-

tially require adjusting community sizes [120]. Two of the authors later generalized

this benchmark in [117] to allow for directed and weighted networks, as well as net-

works with overlapping community structure. Several other authors have also sug-

gested single-layer community-detection benchmarks to account for various network

features encountered in applications (e.g., overlapping community structure [176] and

spatial networks [175]). There has also been some e↵ort towards highlighting unre-

alistic features of the LFR benchmark [100] and towards developing more realistic

single-layer benchmarks [155].

5.1.2 Multilayer benchmarks

As community detection in multilayer networks is a relatively recent research area,

there is still no “standard” multilayer community detection benchmark. We mention

a few suggestions that have recently appeared in the literature. An early multilayer

benchmark appeared in [56], with the first generalization of map minimization [171]

to “multiplex” networks.1 The authors of [56] compare their method to the gener-

alization of modularity to “multiplex” networks suggested in [140] on the following

benchmark multilayer networks. They first generate an unweighted single-layer net-

work and a planted single-layer partition with the LFR benchmark described in the

previous section. They then sample L networks from the single-layer network by

keeping each edge of the network with probability 1/L (the sampled networks are

sparser when there are more layers). This generates L single-layer networks that “fit”

the LFR-generated planted partition. They repeat this process M times to produce a

multilayer network with LM layers andM distinct single-layer planted partitions: the

first L layers of the multilayer partition all have one planted single-layer partitition,

the second L layers of the multilayer network all have another planted single-layer

partitition, and so on. The inter-layer community labeling (i.e., the labeling that

determines which nodes remain/change communities across layers) they adopt is the

following: a node keeps the same community assignment within all M chains of L lay-

ers with the same planted single-layer partition, but changes community assignments

between chains.
1In the multiplex networks considered in [56], layers represent di↵erent types of connections

between a set of nodes (e.g., interactions on Facebook and interactions on Twitter) rather than a
specific type of connection at di↵erent points in time, which we refer to in this thesis as a “temporal
multilayer network” or simply “multilayer network”.
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A multilayer benchmark was suggested for temporal multilayer networks in [78].

The goal of the paper is to put forward a model for two types of community evolution

events: “growth”/“shrinkage” and “merge”/“split” [156]. In particular, they propose

a model for the temporal evolution of the number of nodes in two communities.2

They investigate three cases: a first in which two communities can grow and shrink,

a second in which two communities can merge and split, and a third which consists

of four communities and combines both previous cases (the first pair of communities

corresponds to the first case and the second pair of communities to the second). For

each layer, they then generate a single-layer network thats fits the partition induced

on the layer using a stochastic block model [88]. The authors perform numerical

experiments with multilayer modularity for di↵erent ! values using LouvainRand on

each of these three cases.

There are also suggestions in the literature for temporal multilayer benchmarks

that are “node-centric” (as opposed to the “community-centric” model in [78]) and

where the correlation between partitions induced on individual layers is governed by

a probabilistic model on community assignments [72]. This approach is a simple

starting point and is analytically tractable, and it is the approach that we adopt

for developing our benchmarks. One can find various other recent generalizations of

single-layer stochastic block models to multilayer networks in [83, 158,160,193,203].

5.2 Description of our benchmarks

In this section, we propose a benchmark for community detection in temporal multi-

layer networks with |T | layers. Every multilayer partition C 2 C induces |T | single-
layer partitions {C|s, s = 1, . . . , |T |} on the number of layers. We propose a way of

generating a multilayer partition in which the members of the set of |T | single-layer
partitions are correlated through a probabilistic model of persistence. The bench-

mark consists of two main steps: (1) generate a multilayer partition and (2) generate

|T | single-layer networks that “fit” the |T | single-layer partitions induced by the

multilayer partition. We use block models in our numerical experiments.

2The evolution of nodes in one community depends on the number of nodes in the other commu-
nity as the sum of community sizes must equal N . One would need to bear this in mind if attempting
to generalize the model in [78] to more than two communities.

93



Chapter 5. Temporal Multilayer Benchmark

Step 1 Generate a single-layer partition for s = 1 by choosing a com-
munity assignment for each node in layer 1 using Ps

0

.

Step 2 a. With probability p 2 [0, 1], the community assignment of
node is remains the same in layer s+1 (i.e., �(cis , cis+1

) = 1).
b. With probability 1� p the community assignment of node
is+1

is chosen using Ps
0

.

Step 3 Repeat step 2 until s+ 1 = |T |.

Table 5.1: Steps for generating a temporal multilayer benchmark partition.

5.2.1 Benchmark multilayer partition

5.2.1.1 Description

Suppose we fix the number |T | of layers and the number N of nodes in each layer.

As we did earlier, let s 2 {1, . . . , |T |} denote a layer of the multilayer network, is

a node i 2 {1, . . . , N} in layer s, and cis the integer set assignment of node is in

a multilayer partition C 2 C. We generate a benchmark multilayer partition via a

three-step process:

1. Generate a single-layer partition for s = 1 by choosing a community assignment

for each node in layer 1 “at random”.

2. a. With probability p 2 [0, 1], the community assignment of node is remains

the same in layer s+ 1 (i.e., �(cis , cis+1

) = 1).

b. With probability 1 � p the community assignment of node is+1

is chosen

“at random”.

3. Repeat step 2 until s+ 1 = |T |.

We call the null distribution the probability distribution that assigns nodes to

communities “at random” in Step 1 and Step 2b and we denote the null distribution

of layer s by Ps
0

. We list the steps for generating a multilayer benchmark partition

in Table 5.1 and illustrate them with a toy example in Fig. 5.1. Let C
bench

(Ps
0

; p)

be the set of possible benchmark multilayer partitions for a fixed choice of {Ps
0

, s =

1, . . . , |T |} and p 2 [0, 1]. Before describing possible choices for Ps
0

, we point out

features of the benchmark that hold for all Ps
0

.

Let C 2 C
bench

(Ps
0

; p) and let cis be the community assignment of node is in C.

94



Chapter 5. Temporal Multilayer Benchmark

Step 0 Step 1 Step 2a Step 2b Step 2a Step 2b

Figure 5.1: Toy example illustrating the steps in Table 5.1 for generating a temporal
multilayer benchmark partition. We consider three layers (|T | = 3) and five nodes in each
layer (N = 5). Each 5⇥ 3 rectangular block represents the nodes in the multilayer network
at successive steps of the multilayer partition generation process. In each block, the sth

column of circles represent the nodes in the sth layer. We order the nodes from 1 to 5 in
all layers. Gray cicles represent unassigned nodes and all other colors represent community
assignments. Nodes in the same community have the same color. For example, the partition
induced on layer 2 is complete in the fourth block. In layer 2, the blue community label
gains a node (node 3) and loses a node (node 4), and a new community label appears (purple
label).

Proposition 5.2.1. For all k 2 {1, . . . , N |T |} and s 2 {1, . . . , |T |�1}, the following
conditions are satisfied:

P
⇥
cis+1

= k
�� C|s

⇤
= �(cis , k)p+ Ps

0

⇥
cis+1

= k
⇤
(1� p) , (5.1)

E [Pers(C)|s,r] � Npr�s , r > s , (5.2)

where C|s is the N-node partition induced on layer s by the multilayer partition C

and Pers(C)|s,r =
PN

i=1

�(cis , cir), r 2 {1, . . . , |T |}, r > s.

Proposition 5.2.1 follows directly from Step 2 in Table 5.1. It states that com-

munity assignments in a given layer only depend on community assignments in the

previous layer (i.e., the previous temporal snapshot) and on the null distribution Ps
0

.

This respects the arrow of time. The weight importance of the previous layer versus

the null distribution is determined by the value of p. When p = 0, community as-

signments in a given layer only depend on the null distribution of that layer [i.e., the

second term on the right-hand side of (5.1)]. When p = 1, community assignments

in a given layer only depend on community assignments of the previous layer (and

consequently on community assignments in the first layer, by recursion). In the latter

case, persistence between consecutive layers is maximal (i.e., Pers(C)|s,s+1

= N for

all s) and partitions induced on individual layers are all identical (i.e., C|s = C|s+1

for all s) by Proposition 4.2.3. The di↵erence between E [Pers(C)|s,r] and Npr�s in

(5.2) when p 2 [0, 1) depends on the null distribution.
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Proposition 5.2.2. For all k 2 {1, . . . , N |T |} and s 2 {1, . . . , |T |}

P [ci
1

= k] = P1

0

[ci
1

= k] , (5.3)

P [cis = k] = P
⇥
cis�1

= k
⇤
p+ Ps

0

[cis = k] (1� p) ,

= P1

0

[ci
1

= k] ps�1 + (1� p)
s�1X

r=2

Pr
0

[cir = k] ps�r

+(1� p)Ps
0

[cis = k] , s > 1 . (5.4)

Proposition 5.2.2 follows from Step 1 and Step 2 in Table 5.1 and one can prove

the third equality by induction on the number of layers. For p = 1, the second and

third terms in equation (5.4) are 0 and P [cis = k] only depends on the null distribution

in layer 1. For p = 0, the first two terms in equation (5.4) are 0 and P [cis = k] only

depends on the null distribution in layer s.

We now comment on some features of Step 2 in Table 5.1 that govern how

community assignments vary between consecutive layers. In Step 2a, a commu-

nity assignment k in layer s can do one of 3 things: it can lose some of its nodes

in layer s + 1 (i.e., {i : cis+1

= k} ⇢ {i : cis = k}); keep all of its nodes (i.e.,

{i : cis+1

= k} = {i : cis = k}); or disappear (i.e., {i : cis+1

= k} = ? and

{i : cis = k} 6= ?). The null distribution in Step 2b is responsible for a community

assignment k gaining new nodes (i.e., {i : cis+1

= k} 6⇢ {i : cis = k}) or for a com-

munity label appearing (i.e., {i : cis+1

= k} 6= ? and {i : cis = k} = ?). One needs

to bear this in mind when defining the null distributions Ps
0

. To illustrate how the

null distribution and our model of persistence can interact, we give the conditional

probability that a label disappears in layer s+1 and the conditional probability that

a label appears in layer s+ 1 in Propositions 5.2.3 and 5.2.4, respectively.

Proposition 5.2.3. For all k 2 {1, . . . , N |T |} and s 2 {1, . . . , |T |� 1}

P
⇥
{i : cis+1

= k} = ?
�� C|s

⇤

=
⇥
(1� p)

�
1� Ps+1

0

[cis+1

= k]
�⇤PN

i=1

�(cis ,k) ⇥
⇥
p+ (1� p)

�
1� Ps+1

0

[cis+1

= k]
�⇤N�

PN
i=1

�(cis ,k) .

The first term on the right-hand side of the equation in Proposition 5.2.3

⇥
(1� p)

�
1� Ps+1

0

[cis+1

= k]
�⇤PN

i=1

�(cis ,k) ,

is the probability that all of the nodes in layer s with community label k change

communities in Step 2a and are not assigned to label k in Step 2b (we use our node

independence assumption). The second term in Proposition 5.2.3,

⇥
p+ (1� p)

�
1� Ps+1

0

[cis+1

= k]
�⇤N�

PN
i=1

�(cis ,k) ,
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is the probability that none of the nodes with community label k0 in layer s (where k0 6=
k) acquire the label k in layer s+ 1. The expression between brackets has two parts:

either a node keeps the same community label or a node changes community labels and

is not reassigned to label k. When Ps+1

0

[cis+1

= k] = 0 (i.e., the probability of being

assigned to label k is zero using the null distribution of layer s+1), the expression in

(5.2.3) only depends on our model of persistence and simplifies to (1� p)
PN

i=1

�(cis ,k).

Furthermore, as Ps+1

0

[cis+1

= k] increases, the probability that a label disappears

decreases.

Proposition 5.2.4. For all k 2 {1, . . . , N |T |} and s 2 {1, . . . , |T |� 1}

P
⇥
{i : cis+1

= k} 6= ?
�� {i : cis = k} = ?

⇤
= 1�


p+(1�p)

� X

Cj |s2C|s

Ps+1

0

[cis+1

= j]
��N

.

Proposition 5.2.4 gives the probability that at least one node in layer s + 1 has

the label k, given that no node in layer s has the label k. The term in square

brackets on the right is the probability that none of the nodes in layer s+1 have the

label k (conditional on k being absent in layer s). The term inside square brackets

has two parts corresponding to the events either that a node keeps its label or that

a node changes its label and is assigned to a label that already exists in layer s.

When
P

Cj |s2C|s P
s+1

0

[cis+1

= j] = 0 (i.e., the community labels in layer s and s + 1

do not overlap), the probability that a community label appears only depends on

our model of persistence and is given by 1 � pN . Furthermore, higher values of
P

Cj |s2C|s P
s+1

0

[cis+1

= j] decrease the probability that a label appears in layer s+ 1.

5.2.1.2 Multinomial null distribution

Suppose the null distribution Ps
0

for each layer is independent of any sampled bench-

mark multilayer partition. That is, before performing Step 1, Step 2, and Step 3 in

Table 5.1 to generate a sample multilayer benchmark partition C 2 C
bench

(Ps
0

; p), we

fix |T | vectors (one for each layer) with non-negative entries

{ps, s = 1 . . . |T |} ,

such that 1T
p

s = 1 for all s 2 {1, . . . , |T |}. Every vector ps defines the probabilities

of a multinomial null distribution that assigns nodes in layer s to |ps| communities.

When p = 0, the expected community sizes in each layer are those of the multinomial

null distribution in that layer. The support c

s = {cs
1

, . . . , cs|ps|} of the multinomial
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distribution of layer s corresponds to community labels and an unassigned node is

assigned to the community with label csk with probability

Ps
0

[cis = csk] =

⇢
psk if k  |ps| ,
0 otherwise .

To gauge the e↵ect of the choices {ps, s = 1, . . . , |T |} and {cs, s = 1, . . . , |T |} on

C 2 C
bench

(Ps
0

; p), we consider a few special cases.

Suppose that one takes these parameters to be the same across all layers (i.e.,

p

s = p and c

s = c for all s). The expected number of community labels per layer is

then the same and the expected number of nodes per layer with community label ck

is also the same and is given by

E
⇥
|{i : ci

1

= ck}|
⇤

= Npk ,

E
⇥
|{i : cis = ck}|

⇤
= NP [cis = ck]

= Npk ,

where the third equality follows on using the expression for P [cis = ck] in Eq. (5.4)

and the assumption that c

s = c for all s. At each iteration of Step 2, one expects

Nppk nodes with label k in layer s to keep the label k layer s + 1 and N(1 � p)pk

nodes with label k in layer s to potentially change labels in layer s+1. The additional

constraint c

s = c produces a temporal network in which nodes change community

labels across layers such that the expected number of communities and the expected

size of communities both remain constant.

Now suppose that one takes the parameter ps to be the same across all layers (i.e.,

p

s = p for all s) but takes the community assignments cs to be disjoint between all

pairs of layer (i.e., cs\cr = ? for all s 6= r). At each iteration of Step 2, a community

label can only lose members;3 and with probability 1 � pN , at least one new label

will appear in every subsequent layer. In this case, one expects Nppk members of

community k in layer s to remain in community k in layer s + 1 and N(1 � p)pk

members of community k in layer s to be assigned to new communities (because

labels are non-overlapping) in layer s+ 1. This choice produces multilayer partitions

in which the expected number of new community labels per layer is nonzero (unless

p = 1) and the expected size of a given community decreases in time.

Finally, instead of considering the same vector across all layers, suppose that we

generate |T | vectors {ps, s = 1, . . . , |T |} independently. The di↵erence in vector

3Overlap between c

s and c

s+1 (i.e., cs+1 \ c

s 6= ?) is a necessary condition for communities in
layer s to gain new members in layer s+ 1.
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lengths and vector entries depends on how they are generated (for example if we gen-

erate them by sampling each entry successively from a given distribution conditional

on the entries summing to 1, these di↵erences will depend on the chosen distribution

and its parameters). As with community labels, di↵erent choices can have di↵erent

biases. For example, if one fixes a sequential ordering (i.e., csk = k for all s), labels 1 to

mins |cs| have a nonzero probability of appearing in all layers. However, if one chooses

completely non-overlapping community labels, then a community label cannot gain

new nodes.

The point of the above discussion is to illustrate that the choices {ps, s = 1, . . . , |T |}
and {cs, s = 1, . . . , |T |} can have a rather big e↵ect on C

bench

(Ps
0

; p). The issue of

choosing one choice over another is in general nontrivial (and possibly depends on

the question one is trying to answer). The focus of the present chapter is to carry

out a preliminary comparison between multilayer community-detection methods and

between di↵erent heuristics for a given method. Accordingly, we consider two choices

for ps:

1. p

s = p and pi = pj for all s = 1, . . . , |T | and i, j 2 {1, . . . , |p|} ;

2. p

s are independent samples drawn from a specified distribution.

In the first case, the expected size of a community is the same across layers and

across communities in a given layer (the authors of [72] adopt this choice). In the

second case, the expected size of a community can vary across layers and across com-

munities of a given layer. We choose the community assignments {cs, s = 1, . . . , |T |}
of each layer uniformly at random (without replacement) for both cases from the set

{1, . . . ,maxs |cs|} of integers. This reduces to using the same labels in all layers for

our first choice of ps. We include a parameter ↵ 2 N in our implementation that

a user can specify to increase the size of this set and select community assignments

uniformly at random from {1, . . . ,↵maxs |cs|}. For our second choice of ps, we sam-

ple the entries of cs from a power-law distribution with exponent ⌧ (independent of

s), and we place a lower bound |C|
min

and an upper bound |C|
max

on the expected

community size. We choose a power-law distribution because it is common practice

in the literature (e.g., [117,120]) but stress that one could substitute this choice with

any other distribution. We show pseudo-code for generating a vector of expected

community sizes in Algorithm 1.
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Algorithm 1 Sample expected community sizes from power-law distribution with
cuto↵s c

min

and c
max

.
function SampleCommunitySizes(⌧, c

min

, c
max

, N)
r = N
i = 1
while r > 0 do

ci =Power(⌧, c
min

, c
max

) . sample from power-law
if r � ci < c

min

then . stop sampling if remainder is too small
if r < c

max

then
ci = r

else if r � c
min

< c
min

then
ci = r . constraints not satisfied

else
ci =Power(⌧, c

min

,min(c
max

, r � c
min

))
end if

end if
r = r � ci
i = i+ 1

end while
c =RandPerm(c) . permute community sizes uniformly at random
nc = i� 1
return c, nc

end function

5.2.1.3 Examples

We end this section with a few examples in order to visualize some features of

the benchmark multilayer partition. We show a plot of the value of persistence in

Fig. 5.2(a) for a multilayer partition with (|T |, N) = (100, 100) and p 2 {0, 0.01, . . . ,
0.99, 1}. We plot the mean value of persistence over 100 sample multilayer partitions

for each value of p. The di↵erence between the dotted black curve (persistence of

benchmark multilayer partition averaged over 100 samples) and the dotted blue curve

(pN |T |) in Fig. 5.2(a) represents the contribution of the null distribution (and its re-

lated parameter choices) to the value of persistence. If one chooses non-overlapping

community labels, then the black curve would be identical to the blue curve in both

Fig. 5.2(a) and Fig. 5.2(b). Note additionally that pairwise persistence drops below

0.4 near s � r = 10 for the blue curve and near s � r = 15 for the black curve. In

practice, this implies that although consecutive layers will be similar for p = 0.9,

those that are ten layers apart will be rather dissimilar.

In Fig. 5.3, we show example partitions generated with our benchmark for a

multilayer network with ten layers (i.e., |T | = 10) and one hundred nodes in each
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(b) Normalized pairwise persistence

Figure 5.2: The sample of p values is the set {0, 0.1, . . . , 0.99, 1} with a discretization step
of 0.01 between each pair of consecutive values. The null distribution for each layer is a
power-law distribution with exponent ⌧ = �1, the lower bound on the expected community
size is |C|

min

= 0.1N , and the upper bound on the expected community size is |C|
max

=
0.3N . For each value of p, we generate 100 sample benchmark partitions with (N, |T |) =
(100, 100). (a) The value of normalized persistence Pers(C)/[N(|T | � 1)] averaged over
100 sample benchmark partitions (black dashed line) and the expected value of persistence
pN(|T |� 1) not accounted for by the null distribution (blue dashed line). (b) The value of
normalized pairwise persistence for p = 0.9 averaged over 100 sample benchmark partitions
and all pairs of layers s, r with the same layer di↵erence s � r (black dashed curve) and
the expected value of pairwise persistence Nps�r(s > r) not accounted for by the null
distribution (blue dashed curve).

layer (i.e., N = 100). We show sample partitions for p 2 {0, 0.3, 0.6, 0.8, 0.9, 1} and

indicate the value of normalized persistence Pers(C)/[N(|T |� 1)] for each partition.

As one would anticipate, multilayer partitions generated with a larger value of p have

a larger value of persistence.

5.2.2 Benchmark multilayer network

There are various models for generating networks that “fit” a single-layer partition

[49, 88, 117, 120]. For the purposes of the numerical experiments in this chapter, we

use two simple models.

5.2.2.1 Unweighted stochastic block model

Every multilayer partition C that we generate induces |T | single-layer partitions

{C|
1

, . . . , C||T |}. The main model we use to generate a multilayer network that fits a

multilayer partition is an unweighted stochastic block model on intra-layer edges [88].

For every layer s, we generate a network such that every pair of nodes in the same
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Figure 5.3: We fix (N, T ) = (100, 10) and a power-law null distribution with exponent
⌧ = �1, the lower bound on the expected community size is |C|

min

= 0.1N , and the
upper bound on the expected community size is |C|

max

= 0.3N . We show example output
benchmark partitions for (a) p = 0, (b) p = 0.3, (c) p = 0.6, (d) p = 0.8, (e) p = 0.9,
and (f) p = 1 and the mean normalized persistence (hnPers(C)i) computed over 100 sample
multilayer partitions with the same parameter values (rounded the nearest second decimal).
Standard deviation for all samples is at least on the order of 10�2 and decreases as p
increases (until it reaches 0 when p = 1). Colors represent community assignments. For
each multilayer partition, we choose a node ordering that emphasizes (whenever possible)
persistent community structure in that multilayer partition.

.

community in the partition C|s is connected with probability 1� µ and every pair of

nodes in di↵erent communities is connected with probability µ 2 [0, 1] [88]. That is,

P [Aijs = 1] =

⇢
1� µ if �(cis , cjs) = 1 ,
µ otherwise ,

(5.5)

where As 2 {0, 1}N⇥N is the adjacency matrix of layer s and Aijs is the (i, j)th entry

of As. Suppose that C|s has K communities C
1

|s, . . . , CK |s and denote the size
��Ck|s

��

of the kth community by ↵k for ease of writing. The expected number of edges within

a community of size ↵k using this model is

E
⇥
|{Aij = 1|i 2 Ck, j 2 Cl}|

⇤
=

⇢
(1� µ)↵k(↵k � 1) if Ck = Cl ,
µ↵k↵l otherwise .
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Figure 5.4: We fix N = 150 and a power-law null distribution with exponent ⌧ = �1,
the lower bound on the expected community size is |C|

min

= 0.1N , and the upper bound
on the expected community size is |C|

max

= 0.3N . We show example adjacency matrices
for (a) (µ,) = (0.1, 1), (b) (µ,) = (0.2, 1), (c) (µ,) = (0.3, 1), (d) (µ,) = (0.2, 0.8), (e)
(µ,) = (0.2, 0.5), and (f) (µ,) = (0.2, 0.2). Nodes are ordered by community assignment
in all panels and we use the same planted partition for all adjacency matrices. Each panel
shows the sparsity pattern of each adjacency matrix: entries equal to 1 are shown in blue
and entries equal to 0 are shown in white (one can generate these figures with the spy

command in MATLAB).

We also include a parameter  to control the sparsity of edges in a network given a

choice µ:

P [Aijs = 1] =

⇢
(1� µ) if �(cis , cjs) = 1 ,
µ otherwise .

(5.6)

The model in (5.5) corresponds to the choice  = 1 in (5.6). For a given choice of

(µ,), the expected edge density within a community is always greater or equal to

the expected edge density between communities when µ 2 [0, 0.5]. For a fixed choice

of µ, the expected number of edges in the network is larger for a larger choice of .

We show example adjacency matrices for di↵erent choices of (µ,) in Fig. 5.4.
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5.2.2.2 Weighted block model

We also use weighted block models similar to the toy examples that we used in Section

4.1. That is,

Aijs =

⇢
a if �(cis , cjs) = 1 ,
b otherwise ,

(5.7)

where a > b � 0. For example, in a partition with three communities of sizes three,

four, and two, the adjacency matrix of layer s (with nodes ordered by community

assignments) is given by

As =

2

6666666666664

a a a b b b b b b
a a a b b b b b b
a a a b b b b b b
b b b a a a a b b
b b b a a a a b b
b b b a a a a b b
b b b a a a a b b
b b b b b b b a a
b b b b b b b a a

3

7777777777775

.

A key di↵erence between this single-layer network model and the previous one is

that all inter-community edges have a lower edge weight than intra-community edge

weights (this is only guaranteed in the previous model if µ = 0). This can make

planted partitions more easily detectable by Louvain-like heuristics when using the

model in (5.7).4

5.2.2.3 Examples

Before performing numerical experiments to compare the performance of di↵erent

methods and heuristics, we give four toy examples to illustrate using our benchmark

the potential use of the parameter ! in practical contexts.

Changes in connectivity patterns

We first illustrate how varying the parameter ! can help di↵erentiate between changes

in community structure. We generate a multilayer network that is similar to the toy

example considered in Section 4.2. Consider a multilayer network where (|T |, N) =

4For examples, suppose that one uses multilayer modularity maximization with a uniform null
network and hA

s

i > b for all s. In the non-stochastic block model (5.7), all inter-community entries
in the single-layer modularity matrices are negative. It follows that for small enough ! (e.g., ! = 0),
merging pairs of nodes in the same layer but in di↵erent communities will not be feasible moves in
the first iteration of phase 1 of Louvain as they cannot increase the quality function. This does not
hold for the model in (5.6).
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Figure 5.5: We fix (N, |T |) = (150, 100) and a power-law null distribution with exponent
⌧ = �1, the lower bound on the expected community size is |C|

min

= 0.1N , and the upper
bound on the expected community size is |C|

max

= 0.3N . We generate a multilayer partition
with p = 1 and perturb the partition induced on layer 50 and 75 with p = 0.5. (We use the
same perturbed partition for both layers.) We generate a multilayer network using the non-
stochastic block model in (5.7) and set (a, b) = (0.3, 0) in layer 50, (a, b) = (0.1, 0) in layer
75, and (a, b) = (1, 0) in all remaining layers. We use multilayer modularity maximization
with the uniform null network, � = 1, and LouvainRand to generate output partitions. The
sample of ! value is {0, 0.1, . . . , 4.9, 5} with a discretization step of 0.1 between consecutive
values (giving 51 distinct values). We perform one run for each value of !. We post-
process each output partition and iterate LouvainRand on the post-processed partition as
an initial partition until it converges. That is, we iterate with the post-processed output as
the starting partition instead of an all singleton starting partition. We use the Hungarian
algorithm for post-processing [113], which maximizes persistence without changing intra-
layer partitions for a given multilayer partition (see Section 4.2.3.1). The maximum number
of iterations until convergence is 4 for all values of !. (a) Planted partition. (b) Pairwise
persistence |T | ⇥ |T | matrix (with (s, r)th entry

PN
i,j=1

�(cis , cir)). Colors scale with the
entries of the matrix from deep blue (entries close to 0.5) to deep red (entries close to 1).
(c) Normalized persistence, normalized intra-layer modularity, and nVI (with respect to the
planted partition) of the output partition with the largest value of multilayer modularity
for each value of !. (We plot 1�nVI to include all plots in the same figure.) We normalize
intra-layer modularity by the sum of positive entries on the diagonal blocks of the multilayer
adjacency matrix (i.e.,

P
i,j,sBijs for Bijs > 0). The largest di↵erence in absolute value

between the plots in (c) and the same plots computed for the identified output partition
(as opposed to the one with largest value of multilayer modularity) is 10�4.

(100, 150) and in which the partition C|s induced on each layer is the same in all

but two layers. In these two layers, we perturb the single-layer partition by applying

Step 2 in Table 5.1 to C|s with p = 0.5.5 We set inter-community edge weights to

zero in all layers (i.e., b = 0) and intra-community edge weights to one (i.e., a = 1)

5Note that one could generate this multilayer partition directly from our benchmark by intro-
ducing into the parameter p a dependence on each layer and longer memory (i.e., by making the
multilayer generation process non-Markovian). For example, a node in layer s, s > 2, has a proba-
bility p

s1

of keeping its label from layer s� 1 and p
s2

of keeping its label from layer s� 2.

105



Chapter 5. Temporal Multilayer Benchmark

in all but two layers. In particular, we set a = 0.3 in layer 50 and a = 0.1 in layer

75. We choose these values so that b < hAsi in all layers and so that the planted

partition is harder to change (in terms of modularity cost) in layer 50 than in layer 75

(since C|
50

= C|
75

and 0.1 < 0.3). We show the planted partition in Fig. 5.5(a) and

the matrix of pairwise persistence between all pairs of layers averaged over increasing

values of ! in Fig. 5.5(b). (We describe in detail how we generate each panel in

the figure caption of Fig. 5.5.) As anticipated, larger values of ! are required to

change the planted partition in layer 50 in favor of persistence. In 5.5(c) we plot the

persistence, intra-layer modularity, and normalized variation of information (nVI, see

Section 2.4) with respect to the planted partition as a function of !. For small enough

values of !, the planted partition is identified and for large enough values of !, the

output partition has optimal persistence. For intermediate values, the single-layer

partition in layer 75 is first a↵ected (by inspection, when ! . 2.6) followed by the

single-layer partition in layer 50 (by inspection, when ! & 2.6).

Shared connectivity patterns

As a second simple experiment, we illustrate how varying the parameter ! can help

detect block-diagonal structure that is present in all layers but is not optimal for any

individual layer (see, e.g., the toy example in Fig. 4.5 of Section 4.2). We generate a

first multilayer partition with p = 0 and a second with p = 1. The first will constitute

the planted partition if one were to consider each layer individually and the second

will constitute the planted partition which is not optimal for any individual layer

but which is shared across layers. We anticipate that the first multilayer partition

will be detected for small enough values of ! (intra-layer modularity is favored over

persistence) and the second will be detected for large enough values of ! (persistence

is favored over intra-layer modularity). For each layer we generate two adjacency ma-

trices using the non-stochastic block model: one that fits the first partition (A1

s) and

one that fits the second (A2

s). We set (a, b) = (1, 0) in A

1

s for the first planted parti-

tion and (a, b) = (0.5, 0) in A

2

s for the second planted partition (note that A2

s = A

2

r

for all s, r because p = 1 in the second planted partition). We then sum the adjacency

matrices of each layer to obtain a proxy of a multilayer network with a sub-optimal

but shared planted partition (i.e., A3

s = A

1

s + A

2

s). This is the multilayer network

we use in this experiment. Figure 5.6(a) shows the association matrix computed over

the set of partition induced on individual layers for increasing values of ! (nodes are

ordered according to their community assignments in the shared planted partition).

The association matrix clearly reflects the planted shared structure. Figures 5.6(b,c)
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Figure 5.6: We fix (N, T ) = (150, 100) and a power-law null distribution with exponent
⌧ = �1, the lower bound on the expected community size is |C|

min

= 0.1N , and the upper
bound on the expected community size is |C|

max

= 0.3N . We generate a multilayer parti-
tion with p = 0 and a multilayer partition with p = 1. We generate two multilayer networks
using the non-stochastic block model and set (a, b) = (1, 0) for the first multilayer partition
and (a, b) = (0.5, 0) for the second. We perform all numerical experiments on a multi-
layer network with adjacency matrix for each layer given by the sum of the corresponding
adjacency matrices for each of the two planted partitions. We use multilayer modularity
maximization with the uniform null network, � = 1, and LouvainRand to generate output
partitions. The sample of ! values is {0, 0.2, . . . , 9.8, 10} with a discretization step of 0.2
between consecutive values (giving 51 distinct values). We perform one run for each value
of !. We post-process each output partition and iterate LouvainRand on the post-processed
partition until it converges. The mean number of iterations across ! values is 2 and the
maximum number of iterations is 5. (a) Association matrix indicating the co-classification
index of nodes averaged over the set of partitions induced on each layer and over ! values in
{0, 0.2, . . . , 0.98, 1}. Colors scale with the entries of the matrix from dark blue (entries close
to 0) to deep red (entries close to 1). (b) Normalized persistence and intra-layer modularity
for each value of ! of the identified output partition (dashed black and dashed red curves,
respectively) and of the output partition with the largest value of multilayer modularity
(solid black and solid red curves, respectively). (c) 1�nVI with respect to the optimal and
shared planted partitions for each value of ! of the identified output partition (dashed blue
and dashed green curves, respectively) and of the output partition with the largest value
of multilayer modularity (solid line blue and solid line green curves, respectively). We nor-
malize intra-layer modularity by the sum of positive entries on the diagonal blocks of the
multilayer adjacency matrix (i.e.,

P
i,j,sBijs for Bijs > 0).

show plots of persistence, intra-layer modularity, and nVI with respect to each of

the two planted multilayer partition. Figures 5.6(b,c) suggest the existence of two

regimes: one in which the first planted partition yields a larger value of multilayer

modularity and one in which the second (shared) planted partition yields a larger

value of multilayer modularity.
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Figure 5.7: We fix (N, |T |) = (150, 100) and a power-law null distribution with exponent
⌧ = �1, the lower bound one the expected community size is |C|

min

= 0.1N , and the upper
bound on the expected community size is |C|

max

= 0.3N . We generate a multilayer partition
with p = 0.8. We generate a multilayer network using a stochastic block model. We choose
50 layers uniformly at random and set (µ,) = (0.4, 1) in these layers and (µ,) = (0.1, 1)
in the remaining layers. We use multilayer modularity maximization with the uniform
null network, � = 1, and LouvainRand to generate output partitions. The sample of !
values is {0, 0.2, . . . , 9.8, 10} with a discretization step of 0.1 between consecutive values
(giving 51 distinct values). We perform one run for each value of !. We post-process
each output partition and iterate LouvainRand on the post-processed partition until it
converges. The maximum number of iterations until convergence is 5. (a) Planted partition.
(b,c) Normalized persistence and intra-layer modularity for each value of ! of the identified
output partition (dashed black and dashed red curves, respectively) and of the output
partition with the largest value of multilayer modularity (solid black and solid red curves,
respectively). (d) 1�nVI with respect to the planted partitions for each value of ! of the
identified output partition (dashed blue curve) and of the output partition with the largest
value of multilayer modularity (solid blue curve). We normalize intra-layer modularity by
the sum of positive entries on the diagonal blocks of the multilayer adjacency matrix (i.e.,P

i,j,sBijs for Bijs > 0).

Noisy connectivity patterns

We generate a multilayer network with p = 0.8 and (N, |T |) = (150, 100), and we

generate a multilayer network that fits the planted partition using the stochastic block

model in equation (5.6). We choose 50 layers uniformly at random and set (µ,) =

(0.4, 1) in these layers and (µ,) = (0.1, 1) in the remaining layers. We choose these

values such that the planted partition cannot be recovered by LouvainRand when

performed on the noisy layers individually but can be recovered for the remaining

layers. We show the planted multilayer partition in Fig. 5.7(a). We order nodes

according to community assignments in the first layer. As anticipated from Fig. 5.2,

when p = 0.8 the similarity between single-layer planted partitions with respect to the

first layer’s planted partition decays quickly. We show plots of persistence, intra-layer

modularity, and 1�nVI with respect to the planted partition in Fig. 5.7(b,c,d). These

plots indicate that one can recover a partition that is close to the planted partition
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Figure 5.8: We fix (N, |T |) = (150, 100) and a power-law null distribution with exponent
⌧ = �1, the lower bound on the expected community size is |C|

min

= 0.1N , and the
upper bound on the expected community size is |C|

max

= 0.3N . We generate a multilayer
partition with p = 1 and a multilayer network using the stochastic block model in (5.6)
with (µ,) = (0.1, 0.05). We use multilayer modularity maximization with the uniform null
network, � = 1, and LouvainRand to generate output partitions for ! = 0.1 and ! = 1.6.
We perform one run for each value of !. We post-process each output partition and iterate
LouvainRand on the post-processed partition until it converges. The maximum number of
iterations for convergence is 5. (a) Planted partition. (b) Output partition for ! = 0.1. (c)
Output partition for ! = 1.6.

by increasing !. In particular, 1 � nV I ⇡ 0.93 when 4 . ! . 5). We do not show

the recovered partition because as one would expect from Fig. 5.7(a), it is di�cult to

tell visually that they are similar. We comment on the increasing gap between the

dotted and solid curves in Fig. 5.7(c,d) in the last section of this chapter.

Sparse connectivity patterns

As a last introductory experiment, we consider a case in which the probability of an

edge within a community is much higher than the probability of an edge between

communities, but each single-layer network is sparse and planted structure cannot be

recovered by considering each layer individually. We generate a multilayer partition

with (N, |T |) = (150, 100) and p = 1; and a multilayer network that fits the planted

partition using the stochastic block model in equation (5.6) with parameters (µ,) =

(1, 0.05). We perform the same experiment as in the previous three examples for

values of ! 2 {0, 0.1, . . . , 4.9, 5}. We observe that for higher values of !, the identified

partition is more similar to the planted partition. We show example output partitions

in Fig. 5.8(b) for ! = 0.1 (where ! is still too low to recover the planted partition)

and in Fig. 5.8(c) for ! = 1.8 (where ! is high enough to recover a planted partition

that is close to the planted partition). We note that the partition is not exactly the

planted partition: the fourth (brown) community is slightly larger and the fifth (red)
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community is slightly smaller. However, the number of communities drops from 213

in Fig. 5.8(b) to 6 in Fig. 5.8(c).

5.3 Comparison of methods and heuristics

In this section we compare the performance of several heuristics for multilayer mod-

ularity maximization and the performance of two multilayer community-detection

methods (multilayer modularity maximization and multilayer map minimization, see

Section 2.2) on our benchmark. We begin with multilayer modularity maximization.

We adopt the following parameter choices for all numerical experiments with multi-

layer modularity maximization. We fix (N, T ) = (150, 100) and use the uniform null

network with � = 1. We generate a multilayer partition using our benchmark in Table

5.1 with p 2 {0, 0.1, . . . , 0.9, 1} and a power-law null distribution with exponent ⌧ =

�1, the lower bound on the expected community size is |C|
min

= 0.1N , and the up-

per bound on the expected community size is |C|
max

= 0.3N . We generate multilayer

networks using the stochastic block model in (5.6) with µ 2 {0, 0.05, . . . , 4.45, 0.5}
and  2 {1, 0.2, 0.05}.

5.3.1 Variants of Louvain and spectral bipartitioning

5.3.1.1 Louvain, LouvainRand, and spectral bipartitioning

In our first experiment, we fix  = 1 (i.e., the network is dense) and compare the

performance of Louvain (L), LouvainRand (LR), and spectral bipartioning (SB) using

only the leading eigenvector (see Section 2.3.3) in Fig. 5.9. The color of the curves

scales with the value of !: ! < 1 is in blue, ! = 1 is in black, and ! > 1 is in

red. For each pair (p, µ), we generate a multilayer partition and a multilayer network

using the stochastic block model in (5.6). We then apply multilayer modularity

maximization for ! 2 {0, 0.2, . . . , 1.8, 2}. Note that for a given pair (p, µ), we use the

same partition and multilayer network for all values of ! (but we generate a di↵erent

multilayer partition and multilayer network for each distinct pair). Although we

perform this experiment for all values of p 2 {0, 0.1, . . . , 0.9, 1}, we only include plots

for p 2 {0, 0.9, 1} because these illustrate the three main qualitatively di↵erent cases.

We first comment on Fig. 5.9(a,b,c). A first striking feature is the separation

between the red curves and the blue curves. This occurs because of the abrupt fall

to 0 of the number of intra-layer merges during the first completion of phase 1 in

Louvain when ! = maxi,j,s Bijs (see Section 4.2.3.1). We refer to this phenomenon
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Figure 5.9: We fix (N, T ) = (150, 100) and use multilayer modularity maximization with
the uniform null network and � = 1. The sample of ! values is {0, 0.2, . . . , 1.8, 2}. We show
plots for ! < 1 with solid blue curves, those for ! > 1 with solid red curves, and that of
! = 1 with a black dashed curve. We generate a multilayer partition using our benchmark
in Table 5.1 with p 2 {0, 0.9, 1} and a power-law null distribution with exponent ⌧ = �1,
the lower bound on the expected community size is |C|

min

= 0.1N , and the upper bound on
the expected community size is |C|

max

= 0.3N . We generate multilayer networks using the
stochastic block model in (5.6) with µ 2 {0, 0.05, . . . , 4.45, 0.5} and  = 1. We compute the
nVI (2.33) between the planted multilayer partition and the output multilayer partition for
each triplet (p, µ,!). (a,b,c) Louvain (L) and p = 0, 0.9, 1, respectively. (d,e,f) LouvainRand
(LR) and p = 0, 0.9, 1, respectively. (g,h,i) Spectral bi-partitioning (SB) and p = 0, 0.9, 1,
respectively. We use one run for each value of !.

in this chapter as a “phase transition” of Louvain for ease of writing. The plots

suggest that the value maxi,j,s Bijs falls between 0.8 and 1 for all values of µ (which

one can also check numerically by plotting maxi,j,s Bijs for the di↵erent values of

µ). A second observation is that the intercept of the red curves with the vertical

axis gradually becomes lower as one increases p. This suggests that for a multilayer
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Figure 5.10: We fix (N, T ) = (150, 100) and use multilayer modularity maximization with
the uniform null network and � = 1. The sample of ! values is {0, 0.2, . . . , 1.8, 2}. We show
plots for ! < 1 with solid blue curves, those for ! > 1 with solid red curves, and that of
! = 1 with a black dashed curve. We generate a multilayer partition using our benchmark
in Table 5.1 with p 2 {0, 0.9, 1} and a power-law null distribution with exponent ⌧ = �1,
the lower bound on the expected community size is |C|

min

= 0.1N , and the upper bound
on the expected community size is |C|

max

= 0.3N . We generate multilayer networks using
the stochastic block model in (5.6) with µ 2 {0, 0.05, . . . , 4.45, 0.5} and  = 0.2. We post-
process (PP) multilayer partitions after each pass of phase 1 during its first completion
(post-processing in this way can alter partitions induced on individual layers in the final
output partition). (a,b,c) Louvain (L) and p = 0, 0.9, 1, respectively.

network in which the planted partition has a larger value of persistence, the output

partition identified with Louvain after the phase transition gets closer to the planted

partition. This is consistent with our understanding of the phase transition. When

the value of ! reaches maxi,j,s Bijs, only inter-layer merges form during the first

completion of Louvain’s phase 1. That is, when ! > maxi,j,s Bijs, each set of nodes

at the end of the first completion of phase 1 has the form {is
1

, . . . , isk}, for some

{s
1

, . . . , sk} ✓ {1, . . . , |T |}. We refer to these sets as “inter-layer chains”. When

! > maxi,j,s Bijs, the output partition becomes more representative of a partition in

which the modularity matrix (or parts of the modularity matrix, depending on how

inter-layer chains are formed during the first completion of phase 1 as one loops over

nodes in a random order) of certain layers are aggregated together. Provided these

chains are su�ciently short (because in our benchmark, only a few consecutive layers

look alike, as observed in Fig. 5.2(b) and Fig.5.7(a)), one could imagine that the

output of Louvain after the phase transition could reflect the planted partition more

accurately for larger p.

Furthermore, the output of Louvain after the phase transition could also reflect the

planted partition more accurately than before the phase transition for larger values

of µ (since aggregation of single-layer modularity matrices can emphasize planted

structure and can thus help mitigate “noise” induced by larger values of µ). In
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fact, when p = 1, we observe in Fig. 5.9(c) that the output partition identified with

Louvain after the phase transition is at least as close to the planted partition as

the output partition identified before the phase transition for all values of µ. This

occurs because any aggregation of single-layer modularity matrices is representative

of planted structure in any layer (because planted structure is the same in all layers

when p = 1). We therefore observe that Louvain in Fig. 5.9(c) performs similarly

to LouvainRand in Fig. 5.9(f) up to roughly µ ⇡ 0.3, after which Louvain is better

(since the inter-layer chains help to mitigate the “noise” induced by larger values of

µ). To test our interpretation, we re-apply Louvain and post-process the multilayer

partition after each pass of the first phase during its first completion. Doing this

causes the inter-layer chains to have length |T |�1 once ! > maxi,j,s Bijs (and Louvain

becomes equivalent to performing modularity maximization on the mean single-layer

modularity matrix). The qualitative behaviour of the phase transition is similar for

all values of p < 1 and di↵erent at p = 1. We show the cases p 2 {0, 0.9, 1} in

Fig. 5.10(a,b,c).

In the case of LouvainRand, the qualitative behaviour of the plots is similar for all

values of p 2 {0, 0.1, . . . , 1} and all values of ! 2 {0, 0.2, . . . , 2}. One explanation for

this is that the network is su�ciently dense that the multilayer partition can either

be recovered by all values of ! or by none. We note that although it is not clear in the

figures (because the curves are close together), the order of the curves changes near

p = 0.5. That is, the red curves are slightly above the blue curves, instead of the other

way around. It seems that for values of p smaller than 0.5, ! favors more persistence

than is present in the planted partition. We repeat this experiment with a lower value

of  and show the results for Louvain and LouvainRand for p 2 {0, 0.2, . . . , 0.8, 1} in

Fig. 5.11. The separation between the blue curves and the red curves for p = 1 in

Fig. 5.11(l) is more accentuated for lower values of  (as suggested in Fig. 5.8). We

show an example in Fig. 5.12 for p = 1 and  = 0.05.

In the case of the spectral bipartitioning, the qualitative behaviour of all plots is

similar except for p = 1. We suspect this is because the eigenvectors of the multilayer

modularity matrix are “localized”, as discussed in Section 4.2.3.2. It follows that

the leading eigenvector mainly contains information about the layer with the leading

eigenvalue, and hence the performance of spectral bipartitioining only improves when

p = 1 (because all layers are identical in this case).
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Figure 5.11: We fix (N, T ) = (150, 100) and use multilayer modularity maximization with
the uniform null network and � = 1. The sample of ! values is {0, 0.2, . . . , 1.8, 2}. We show
plots for ! < 1 with solid blue curves, those for ! > 1 with solid red curves, and that of
! = 1 with a black dashed curve. We generate a multilayer partition using our benchmark
in Table 5.1 with p 2 {0, 0.1, . . . , 0.9, 1} and a power-law null distribution with exponent
⌧ = �1, the lower bound on the expected community size is |C|

min

= 0.1N , and the upper
bound on the expected community size is |C|

max

= 0.3N . We generate multilayer networks
using the stochastic block model in (5.6) with µ 2 {0, 0.05, . . . , 4.45, 0.5} and  = 0.2.
(a,b,c,d,e,f) Louvain (L) and p 2 {0, 0.2, . . . , 0.8, 1}, respectively. (g,h,i,j,k,l) LouvainRand
(LR) and p 2 {0, 0.2, . . . , 0.8, 1}, respectively. We perform one run of L and LR for each
value of ! on each multilayer network.
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Figure 5.12: We fix (N, T ) = (150, 100) and use multilayer modularity maximization with
the uniform null network and � = 1. The sample of ! values is {0, 0.2, . . . , 1.8, 2}. We show
plots for ! < 1 with solid blue curves, those for ! > 1 with solid red curves, and that of
! = 1 with a black dashed curve. We generate a multilayer partition using our benchmark
in Table 5.1 with p = 1 and a power-law null distribution with exponent ⌧ = �1, the
lower bound on the expected community size is |C|

min

= 0.1N , and the upper bound on
the expected community size is |C|

max

= 0.3N . We generate multilayer networks using the
stochastic block model in (5.6) with µ 2 {0, 0.05, . . . , 4.45, 0.5} and  2 {0.05, 0.2}.

5.3.1.2 Variants of Louvain

In this section, we perform similar experiments to those of the previous section with

larger values of !, and the same values of p and µ. We notice that as one increases !,

LouvainRand has a tendency to over-merge nodes into sets within layers (in fact this

is what causes the discrepancy between the dashed curves and solid curves in Fig.

5.7(c,d)). (The resulting multilayer partition can even be a single community for large

enough values of !.) If one uses the parameter choices in Fig. 5.11, this phenomenon

starts to manifest with LouvainRand for ! ⇡ 5 for all values of p. The manifestation

tends to be more pronounced when p is small and/or when  is small. One explanation

for this is that as one increases !, many moves that are suboptimal for individual

layers but that increase persistence slightly become possible. Because of transitivity

of community assignments, this can result in many nodes from the same layer being

merged into the same set. In some sense, this is partly a consequence of the fact

that the heuristic performs a local search on the space of partitions (in particular,

only one node is moved at a time). When ! is large enough, many more moves can

increase multilayer modularity (and are thus feasible moves with equal probability in

LouvainRand) because inter-layer contribution can compensate for many suboptimal

intra-layer merges.

To try and mitigate this problem, we implement a second variant of Louvain

where instead of moving a node to a set that increases modularity chosen uniformly
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at random, we move a node to a set that increases modularity with probability pro-

portional to the increase (we define the probability to be the increase of a particular

move divided by the sum of all possible increases). We call this heuristic Louvain-

RandWeighted (LRW) and show the results in Fig. 5.13. The phenomenon that we

mention in the previous paragraph seems to be less pronounced with this variant of

Louvain. Although one would expect the issue to potentially still manifest for some

range of ! values, the probability of an inter-layer merge will be much larger than the

probability of an intra-layer merge for large enough !, and one would expect LRW

to then favor inter-layer merges over intra-layer merges during the first completion of

phase 1.

We observe in Fig. 5.13(i,j), where p 2 {0.8, 0.9} that – as one would anticipate

– increasing the value of ! produces an output partition that is closer to the planted

partition up to ! ⇡ 2.4, after which ! favors more persistence than is present in the

planted partition and the nVI between the identified and planted partitions starts to

increase. This does not apply to the case p = 1 in Fig. 5.13(k) (because a planted

partition with p = 1 has maximal persistence so no amount of favored persistence is

“too high”). We repeat the experiments in Fig. 5.13 with the Jaccarad coe�cient, a

di↵erent normalization of VI, and a uniform choice of null distribution between and

within layers (i.e., ps = p for all s, and pi = pj for all i, j 2 {1, . . . , |p|}) in Appendix

C to check that the qualitative behaviour observed in Fig. 5.13 is relatively robust to

our choice of similarity measure and our choice of null distribution.
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Figure 5.13: We fix (N, T ) = (150, 100) and use multilayer modularity maximization with
the uniform null network and � = 1. The sample of ! values is {0, 0.2, . . . , 4.8, 5}. We show
plots for ! < 2.4 with solid blue curves, those for ! > 2.4 with solid red curves, and that of
! = 2.4 with a black dashed curve. We generate a multilayer partition using our benchmark
in Table 5.1 with p 2 {0, 0.1, . . . , 0.9, 1} and a power-law null distribution with exponent
⌧ = �1, the lower bound on the expected community size is |C|

min

= 0.1N , and the upper
bound on the expected community size is |C|

max

= 0.3N . We generate multilayer networks
using the stochastic block model in (5.6) with µ 2 {0, 0.05, . . . , 4.45, 0.5} and  = 0.2.
(a,b,c,d,e,f,g,h,i,j,k) LouvainRandWeighted (LRW) and p 2 {0, 0.1, . . . , 0.9, 1}. We obtain
the output partition after iterating LRW on a post-processed output partition until the
partition no longer changes (as we did in Figs 5.5–5.8). The number of iterations is no more
than five in all cases. In Appendix C, we show the results for output partitions after one
iteration.

117



Chapter 5. Temporal Multilayer Benchmark

0 0.5 1 1.5 2 2.5 3
0.5

0.6

0.7

0.8

0.9

1
N

o
rm

a
liz

e
d

 p
e

rs
is

te
n

ce

ω

(a) Normalized
persistence, LR

0 0.5 1 1.5 2 2.5 3
0.4

0.42

0.44

0.46

0.48

0.5

In
tr

a
−

la
ye

r 
m

o
d

u
la

ri
ty

ω

(b) Normalized intra-layer
modularity, LR

0 0.5 1 1.5 2 2.5 3
0

0.1

0.2

0.3

n
V

I

ω

(c) nVI, LR

0 0.5 1 1.5 2 2.5 3
0.5

0.6

0.7

0.8

0.9

1

N
o

rm
a

liz
e

d
 p

e
rs

is
te

n
ce

ω

(d) Normalized
persistence, LRW

0 0.5 1 1.5 2 2.5 3
0.4

0.42

0.44

0.46

0.48

0.5
In

tr
a

−
la

ye
r 

m
o

d
u

la
ri
ty

ω

(e) Normalized intra-layer
modularity, LRW

0 0.5 1 1.5 2 2.5 3
0

0.1

0.2

0.3

n
V

I

ω

(f) nVI, LRW

Figure 5.14: We fix (N, T ) = (150, 100) and use multilayer modularity maximization with
the uniform null network and � = 1. We generate a multilayer partition using our bench-
mark in Table 5.1 with p 2 {0.9, 0.91, . . . , 0.99, 1} and a power-law null distribution with
exponent ⌧ = �1, the lower bound on the expected community size is |C|

min

= 0.1N , and
the upper bound on the expected community size is |C|

max

= 0.3N . We generate multilayer
networks using the stochastic block model in (5.6) with µ = 0.1 and  = 0.2. The sample of
! values is {0, 0.1, . . . , 2.9, 3}. We show plots of normalized persistence, normalized intra-
layer modularity, and nVI between the output and planted multilayer partitions for (a,b,c)
LouvainRand, and (d,e,f) LouvainRandWeighted. We normalize persistence by N(|T |� 1)

and intra-layer modularity by
P|T |

s=1

(1TAs1). We obtain the output partitions that we use
in these panels after iterating each heuristic on a post-processed output partition until the
partition no longer changes (as we did in Figs 5.5–5.8). The number of iterations until con-
vergence is not more than five in all cases. In Appendix C, we show the results for output
partitions after one iteration and after convergence for values of ! 2 {0, 0.1, . . . , 9.9, 10}.

We end this section with an experiment in which we fix (µ,) = (0.1, 0.2), so

that one cannot recover the planted partition with ! = 0, and we show the values

of persistence, intra-layer modularity, and nVI as a function of ! for LouvainRand

and LouvainRandWeighted. One can see in our previous experiments in Fig. 5.13

that increasing ! starts to help with the recovery of a planted partition for p ' 0.6

(this is consistent with Fig. 5.11(g–l)), and that values of ! ' 2.4 (red curves) tend

to favor more persistence than is present in the planted partition for p 2 {0.8, 0.9}.
This is partly because of how our multilayer benchmark partition is designed: the

partition induced on individual layers is di↵erent across all layers unless p = 1, and
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Chapter 5. Temporal Multilayer Benchmark

partitions that are more than ten layers apart are already rather dissimilar (see, e.g.,

Fig. 5.3). Accordingly, we consider the sample ! 2 {0, 0.1, . . . , 2.9, 3} and take a closer

look at the interval p 2 [0.9, 1] in Fig. 5.14. (The plots in each panel of Fig. 5.14

now correspond to di↵erent values of p and not to di↵erent values of !.) As !

becomes larger, the values of persistence tend to increase and the values of intra-layer

modularity tend to decrease in Figs 5.14(a,b,d,e). The nVI between the recovered and

planted partition reaches its minimum near ! ⇡ 1.5 in all cases. As ! increases, the

nVI between the planted partition and the identified partition seems to increase more

rapidly for smaller values of p (i.e., lower expected value of persistence in the planted

partition) in Figs 5.14(c,f) and less rapidly for larger values of p (i.e., larger expected

value of persistence in the planted partition) in Figs 5.14(c,f). In theory, the only

value of p for which nVI should never increase is p = 1, because for large enough values

of !, the globally optimal partition will have maximal persistence by Proposition 4.2.5

(and the only planted partition with maximal persistence irrespective of one’s choice

of null distribution Ps
0

is that of p = 1.) We show the analogous figure to Fig 5.14 for

! 2 {0, 0.1, . . . , 9.9, 10} in Appendix C.

5.3.2 Multilayer Infomap

We end this chapter with preliminary experiments using multilayer map minimization

(see Section 2.2.3). We use the publicly available heuristic “Infomap” [1] to identify

output partitions. We consider two cases: (1) a “multiplex case”, in which the tran-

sition probabilities are given in (2.26) (this is the case considered in [56]), and (2)

a “temporal case”, in which the transition probabilities are given by the diagonal

blocks and o↵-diagonal blocks in (2.26), and all other blocks are set to zero. (In other

words, the random walker can only “relax” to an adjacent layer.) We take (N, |T |) =
(100, 50), µ 2 {0, 0.2, . . . , 0.18, 0.2}, r 2 {0, 0.01, . . . , 0.09, 0.1, 0.2, . . . , 0.9, 1}, and

 2 {0.2, 1} (note that our discretization for r is finer in [0, 0.1] than in [0.1, 1]).

Although we perform this experiment for all values of p 2 {0, 0.1, . . . , 0.9, 1}, we only
include plots for p 2 {0, 0.9, 1} because these illustrate the three main qualitatively

di↵erent cases. We show the results for all values of p 2 {0, 0.1, . . . , 0.9, 1} for both the

temporal case and the multiplex case in Appendix C. We first comment on Fig. 5.15,

where we take  = 1 (as we did in Fig. 5.9). Note that a value of nVI equal to 1

indicates that the identified partition corresponds to a single community. One obser-

vation is that multilayer Infomap does not recover the planted partition for any value

of µ in our sample when p < 1. (Recall from our network model in (5.6) that when

µ = 0 and  = 1, the planted communities in each layer correspond to disconnected
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Figure 5.15: We fix (N, T ) = (100, 50). The sample of “relax-rate” values is r 2
{0, 0.01, . . . , 0.09, 0.1, 0.2, . . . , 0.9, 1}. We show plots for r < 0.1 with solid blue curves,
those for r > 0.1 with solid red curves, and that of r = 0.1 with a black dashed curve.
We generate a multilayer partition using our benchmark in Table 5.1 with p 2 {0, 0.9, 1}
and a power-law null distribution with exponent ⌧ = �1, the lower bound on the expected
community size is |C|

min

= 0.1N , and the upper bound on the expected community size is
|C|

max

= 0.3N . We generate multilayer networks using the stochastic block model in (5.6)
with µ 2 {0, 0.02, . . . , 0.18, 0.2} and  = 1. For each pair (p, µ) we generate a multilayer
partition and a multilayer network. We perform one run of Infomap for each value of r
on each multilayer network. (a,b,c) Multiplex-case Infomap and p 2 {0, 0.9, 1}. (d,e,f)
Temporal-case Infomap and p 2 {0, 0.9, 1}.

cliques in the single-layer adjacency matrices.) For small values of µ (e.g., µ = 0),

one would expect to obtain better results if one uses single-layer Infomap indepen-

dently on each layer or if one initializes multilayer Infomap on the output partition

of single-layer Infomap instead of an all-singleton partition. A second observation is

that when p = 1, all curves collapse onto one curve in both the multiplex case and

the temporal case. For the multiplex case, the planted partition is identified for all

values of µ < 0.2, after which the output partition abrubtly switches to a partition

with a single community; and for the temporal case, the planted partition is identified

for all values of µ 2 {0, 0.02, . . . , 0.18, 0.2}.
In Fig. 5.16, we repeat the experiments illustrated in Fig. 5.15 with  = 0.2

instead of  = 1. We only include plots for p 2 {0, 0.9, 1} (because these illustrate

the main three qualitatively di↵erent cases) and show the results for all values p 2
{0, 0.1, . . . , 0.9, 1} in Appendix C. Interestingly, the identified partition is not a single
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Figure 5.16: We fix (N, T ) = (100, 50). The sample of “relax-rate” values is
{0, 0.01, . . . , 0.09, 0.1, 0.2, . . . , 0.9, 1}. We show plots for r < 0.1 with solid blue curves,
those for r > 0.1 with solid red curves, and that of r = 0.1 with a black dashed curve.
We generate a multilayer partition using our benchmark in Table 5.1 with p 2 {0, 0.9, 1}
and a power-law null distribution with exponent ⌧ = �1, the lower bound on the expected
community size is |C|

min

= 0.1N , and the upper bound on the expected community size is
|C|

max

= 0.3N . We generate multilayer networks using the stochastic block model in (5.6)
with µ 2 {0, 0.02, . . . , 0.18, 0.2} and  = 0.2. For each pair (p, µ) we generate a multilayer
partition and a multilayer network. We perform one run of Infomap for each value of r
on each multilayer network. (a,b,c) Multiplex-case Infomap and p 2 {0, 0.9, 1}. (d,e,f)
Temporal-case Infomap and p 2 {0, 0.9, 1}.

community for any parameter choice in our sample when  = 0.2, and the value of

nVI is significantly lower than it is when  = 1 for small values of µ and p < 1.

The temporal case seems to be qualitatively similar to the multiplex case, though

the former seems to outperform the latter slightly when p < 1 and the latter seems

to output the former when p = 1. (One can also observe this in Figs C.10–C.15 of

Appendix C.) We note that if we repeat the experiments in Fig. 5.16 with  = 0.1, the

nVI > 0.2 in all cases. This suggests that the threshold for  below which multilayer

Infomap cannot recover a planted partition lies between 0.2 and 0.1. By contrast,

with multilayer modularity maximization it is still possible to recover the planted

partition for  = 0.05 (see, e.g., Fig 5.12). We repeat the experiments in Fig. 5.15

with (N, |T |) = (150, 100) (instead of (N, |T |) = (100, 50)) and show the results

for p 2 {0, 0.1, . . . , 0.9, 1} in Appendix C. A better understanding of whether these

qualitative results are an artifact of the Infomap heuristic, features of the quality
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function, or some combination of both would require further investigation of both the

multilayer map minimization method and the computational heuristic.

5.4 Summary

We proposed a benchmark for community-detection in temporal networks. Our

benchmark consists of generating (1) a sequence of single-layer partitions that are

correlated through a simple model of persistence and (2) a sequence of single-layer

networks using a stochastic block model. We perform various numerical experiments

to compare the behaviour of di↵erent heuristics for solving multilayer modularity

maximization and we perform preliminary experiments with multilayer map mini-

mization using a publicly available heuristic “Infomap” [1]. We use a simple bench-

mark to shed light on features of these methods and heuristics that may not manifest

as clearly when using real data.

In our experiments with multilayer modularity maximization, we use spectral

bipartitioning (see Section 2.3.3) and two variants of Louvain (see Section 2.3.2):

LouvainRand (LR), in which each node is moved to a set chosen uniformly at random

that increases modularity; and LouvainRandWeighted (LRW), in which each node is

moved to a set with probability given by the increase of the move divided by the sum

of all possible increases. The “phase transition” of Louvain that we describe in Section

4.2.3.1 clearly manifests in our benchmark experiments and is marked by a qualitative

decline in the heuristic’s performance (unless the planted multilayer partition has

maximal persistence). We observe that both LR and LRW seem to mitigate this

issue. We further observe that both LR and LRW outperform spectral bipartitioning

in our experiments. The qualitative results that we obtain for LR and LRW tend to be

similar for smaller values of inter-layer coupling, and LRW tends to outperform LR for

larger values of inter-layer coupling. In particular, we notice that LR has a tendency to

over-merge nodes within layers when one increases the value of inter-layer coupling.

Iterating each heuristic on a post-processed (see Section 4.2.3.1) output partition

until it no longer changes seems to improve output partitions for both LR and LRW.

We illustrated the trade-o↵ between persistence and intra-layer modularity discussed

in Section 4.2 with both LR and LRW. Preliminary experiments with multilayer

Infomap suggest that multilayer modularity maximization with variants of Louvain

outperforms multilayer Infomap on our benchmark.
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Application to Financial
Correlation Networks

In this chapter, we perform numerical experiments with the data sets AssetClasses

and SingleAssetClass (see Section 3.3 for descriptions) based on the results and

observations of Chapters 4 and 5. We use the multilayer-network representation

described in Chapter 3 in all experiments. We give some details about the content of

communities identified with di↵erent heuristics and with di↵erent null networks.

6.1 Numerical experiments with AssetClasses

6.1.1 Comparisons with variants of Louvain

We first examine plots of persistence (4.3) and plots of intra-layer modularity (4.4) for

output multilayer partitions obtained with LouvainRand (LR) and LouvainRandWeighted

(LRW). Recall that LR and LRW only di↵er from the Louvain heuristic (see Section

2.3.2) in their condition for moving nodes in phase 1. In LR, one moves each node to

a set, chosen uniformly at random, that increases the quality function. In LRW, one

moves each node to a set, chosen with a probability which is given by the increase of

the move divided by the sum of all possible increases.

For each heuristic, we examine two output multilayer partitions: (1) the output

multilayer partition obtained with an all singleton initial partition and (2) the output

multilayer partition that we obtain with the following three-step procedure:

(a) We store an output multilayer partition obtained with an all singleton initial

partition.

(b) We store an output multilayer partition obtained with the previous multi-

layer output partition as the initial partition.
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Figure 6.1: Persistence and intra-layer modularity plots for 1IT output partitions with
(a,b) LR, and (c,d) LRW; and persistence and intra-layer modularity plots for Cv output
partitions with (e,f) LR, and (g,h) LRW. Each point on the red curve is computed with
the identified partition (i.e., either an 1IT output partition or a Cv output partition), and
each point on the blue curve is computed with the partition that yields the highest value
of multilayer modularity for the corresponding ! value amongst all identified partitions.
Our sample of ! values is {0, 0.1, . . . , 49.9, 50}, and we use the uniform null network (i.e.,
Pijs = hAsi) with � = 1 in all cases. We normalize persistence by N(|T |�1) and intra-layer

modularity by
P|T |

s=1

PN
i,j=1

Aijs.

(c) We iterate (b) until the output multilayer partition no longer changes.

We refer to the output multilayer partition in (1) as “1It output partition” and to

the output multilayer partition in (2) as “Cv output partition”. The number of

iterations until convergence to the Cv output partition for both heuristics and all

values of ! varies between 2 and 6 for the AssetClasses data set. We apply our

post-processing procedure from Section 4.2.3.1 to all 1It output partitions and to all

Cv output partitions. (Recall that post-processing maximizes the persistence of a

multilayer partition without changing the partitions that are induced on individual

layers.) We use the uniform null network on correlation matrices linearly shifted

to [0, 1] with a resolution parameter of � = 1 in all experiments,1 and we take

{0, 0.1, . . . , 49.9, 50} as our sample of ! values (giving 501 values in total).

1By linearity of the mean, multilayer modularity maximization with a uniform null network (i.e.,
P
ijs

= hA
s

i) on a linearly shifted correlation matrix (i.e., A
s

2 [0, 1]) and an unshifted correlation
matrix (i.e., A

s

2 [�1, 1]) yield equivalent maximization problems when � = 1.
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In Fig. 6.1, we show plots of persistence and intra-layer modularity for the 1It

output partitions and the Cv output partitions with LR (four panels on the left-hand

side) and for the 1It output partitions and the Cv output partitions with LRW (four

panels on the right-hand side). We show two curves in panels (a)–(d). Each point

on the red curve is computed with the corresponding 1It output partition, and each

point on the blue curve is computed with the 1It output partition that yields that

largest value of multilayer modularity for the corresponding ! value. Similarly, each

point on the red curve in panels (e)–(h) is computed with the corresponding Cv

output partition, and each point on the blue curve is computed with the Cv output

partition that yields that largest value of multilayer modularity for the corresponding

! value. We store one 1It multilayer partition and one Cv output partition for each

value of !. This gives a total of 501 multilayer partitions per panel.

As anticipated, the blue curves that correspond to persistence are non-decreasing

functions of ! and the blue curves that correspond to intra-layer modularity are non-

increasing functions of !. The increase of persistence and the decrease of intra-layer

modularity is not monotonic for the red curve, because there is a single local optimum

for each value of !. One would expect the red curves to be “smoother” if one averages

over multiple runs of the heuristic [compare Fig. 6.1(b) with Fig. 4.10(b)], as one then

has multiple local optima instead of a single local optimum for each ! value. The

di↵erence between the red and the blue curves appears to be more pronounced with

LR than with LRW, and in particular, seems to be least pronounced in Fig. 6.1(g,h).

In Fig. 6.2, we focus on output partitions obtained with LRW [i.e., the output

partitions that we use to generate Fig. 6.1(c,d,g,h)]. We consider 501 1It output

partitions, 501 Cv output partitions, a set of 501 output partitions in which the

kth partition yields the largest value of multilayer modularity for the kth value of !

in {0, 0.1, . . . , 49.9, 50} amongst all 1It output partitions, and a set of 501 output

partitions in which the kth partition yields the largest value of multilayer modu-

larity for the kth value of ! in {0, 0.1, . . . , 49.9, 50} amongst all Cv output parti-

tions. The last two sets of output partitions contain duplicates because the same

output multilayer partition can yield the largest value of multilayer modularity for

multiple ! values [as suggested by the presence of “plateaus” in Fig. 6.1(c,d,g,h)].

In Figs 6.2(a,c,e,g), we show the normalized |T | ⇥ |T | pairwise persistence matrix

with entries Pers(C)|s,r =
⇣PN

i=1

�(cis , cir)
⌘
/N averaged over the ! values. In

Figs 6.2(b,d,f,h), we show the N ⇥ N association matrix who entries are the co-

classification index
⇣P|T |

s=1

�(cis , cjs)
⌘
/|T | between pairs of nodes across layers aver-

aged over the ! values. As we discussed in Chapter 4, the former can give an idea
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Figure 6.2: We show normalized pairwise persistence [i.e., Pers(C)|s,r =PN
i=1

�(cis , cir)/N ] and pairwise co-classification of nodes across layers [i.e.,⇣P|T |
s=1

�(cis , cjs)
⌘
/|T |] averaged over ! 2 {0, 0.1, . . . , 49.9, 50} for (a,b) 1It output

partitions , (c,d) 1It output partition for each ! with highest multilayer modularity, (e,f)
Cv output partitions, and (g,h ) Cv output partitions for each ! with highest multilayer
modularity. Dates in panels (a,c,e,g) correspond to the first layer that contains a data
point from the specified year. We use LRW and the uniform null network (i.e., Pijs = hAsi)
with � = 1 in all cases.

about when connectivity patterns change in a temporal network, and the latter can

give an idea about how they have changed. We reorder all matrices identically in

Figs 6.2(b,d,f,h) using a node ordering based on the partitions that we obtain with

the U null network that emphasizes block-diagonal structure in each matrix.

Observe that panels in Figs 6.2(a,c,e,g) and panels in Figs 6.2(b,d,f,h) are visually

similar. This suggests that pairwise persistence and pairwise node co-classification

across layers averaged over ! values in {0, 0.1, . . . , 49.9, 50} with LRW are fairly con-

sistent between 1It output partitions, Cv output partitions, the subset of 1It output

partitions with highest multilayer modularity, and the subset of Cv output partitions

with highest multilayer modularity.2 We first focus on Figs 6.2(a,c,e,g). We find

2The panels in Fig. 6.2 are also visually similar to Figs 4.10(d,e), which we computed with multiple
runs of LR and which we briefly discussed in Section 4.1.2. This suggests that pairwise persistence
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that the most noticeable separation between diagonal blocks in the middle of panels

(a,c,e,g) occurs near the layer that corresponds to the time interval 01 Aug 03–24

Jun 05. Although it is not clear whether this time interval coincides with a notable

event, the correlation network (as it is currently computed) does exhibit a change in

connectivity patterns around that period. Roughly speaking, connectivity patterns

in the correlation network around 01 Aug 03–24 Jun 05 change so that government

and corporate bond assets belong to a first community, equity assets belong to a

second community, and most remaining assets either belong to neither of these two

communities or they belong to the community that contains equity assets. (See the

correlation matrix in Fig. 3.4(d) for an example of how connectivity patterns change

during that period.) This change in connectivity patterns becomes more pronounced

after the Lehman bankruptcy. (See, e.g., the correlation matrix in Fig. 3.4(f).) The

dark red diagonal block in the bottom right corner of Figs 6.2(a,c,e,g) between the

end of 2008 and 2010 begins near the layer that corresponds to 01 Dec 06–24 Oct 08.

This layer contains five data points after the Lehman bankruptcy.

We now focus on Figs 6.2(b,d,f,h). Recall that diagonal blocks in these panels

correspond to assets that are often assigned to the same community across layers

(i.e., across time) and across ! 2 {0, 0.1, . . . , 49.9, 50}. As pointed out earlier, we use

the same node ordering for all panels. Since panels (b,d,f,h) are visually similar, the

asset content of diagonal blocks in panels (b,d,f,h) is fairly consistent across panels.

We list the assets that belong to some of the more striking red diagonal blocks of

Fig. 6.2(h). The first red diagonal block (i.e., nodes 1–24 in Fig. 6.2(h)) contains all

24 government and corporate bonds (i.e., all the assets in Table A.1). The Japanese

government bond (“JNGATR”) has a lower co-classification index with the rest of

the bonds (it is approximately equal to 0.9) relative to the co-classification the rest of

the bonds have with each other (approximately equal to 1). The very small diagonal

block directly following the bond diagonal block (i.e., nodes 27–29 in Fig. 6.2(h)) cor-

responds to three of the four fuel assets in Table A.3. These are “HO1” (Heating oil),

“CL1” (Crude oil, WTI), and “CO1” (Crude oil, brent). The natural gas fuel “NG1”

is not in this block. The third slightly framented diagonal block (i.e., nodes 30–43

in Fig. 6.2(h)) contains 11 currencies and 3 metals. These are “EURUSD” (Euro),

“GBPUSD” (Pounds sterling), “SEKUSD” (Swedish krona), “NOKUSD” (Norwegian

krone), “CZKUSD” (Czech koruna), “CHFUSD” (Swiss franc), “ZARUSD” (South

and pairwise node co-classification across layers averaged over ! values in {0, 0.1, . . . , 49.9, 50} are
fairly consistent between LR and LRW for the AssetClasses data set.
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African rand), “IDRUSD” (Indonesian rupiah), “AUDUSD” (Australian dollar), “NZ-

DUSD” (New Zealand dollar), “CADUSD” (Canadian dollar) “XAU” (Gold), “XAG”

(Silver), and “XPT” (Platinum). The highest co-classification index in this block is

between the 6 the european currencies (it is approximately 0.95) and the lowest

co-classifiaction is between Platinum and the rest of the assets in the block (it is

approximately 0.6).

The largest diagonal block (i.e., nodes 44–79 in Fig. 6.2(h)) contains all equity

assets in Table A.2 except for “NZSE” (New Zealand All Ordinaries Index), 4 cur-

rencies, and 5 metals. In the order in which they appear in the block, we list these 36

assets in Table 6.1. The highest co-classification index in this block is between the first

24 equities of the list (it is approximately equal to 1) and the lowest co-classification

index is between the Philippines peso and all other assets in the block (it is approx-

imately equal to 0.7). Finally, by magnifying the bottow right corner of Fig. 6.2(h),

one can also observe small blocks of commodities with a high co-classification index.

For example nodes 83–85 correspond to “S 1” (Soybean), BO1 (Soybeanoil), and

“‘SM1” (Soybean meal), and nodes 81–82 correspond to “CC1” (Cacao) and “KC1”

(Co↵ee).
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Ticker Asset class Description
GDUEEGFL Equities Emerging markets: Latin America
GDUEEGFA Equities Emerging markets: Europe, Middle East, Africa
SPX Equities Standard and Poors 500
INDU Equities Dow Jones Industrial Average Index
NDX Equities NASDAQ 100 Index
RTY Equities Russell 2000 Index
NKY Equities Nikkei 225 Index
HSI Equities Hang Seng Index
AS30 Equities Australian All Ordinaries Index
SPTSX Equities S&P/Toronto Stock Exchange Index
UKX Equities FTSE 100 Index
DAX Equities German DAX Index
CAC Equities French CAC 40 Index
IBEX Equities Spanish IBEX 35 Index
FTSEMIB Equities Italian FTSE MIB Index
SMI Equities Swiss Market Index
BVLX Equities PSI General Index
ISEQ Equities Irish Overall Index
BEL20 Equities Belgium BEL 20 Index
KFX Equities OMX Copenhagen 20 Index
HEX Equities Helsinki Stock Exchange General Index
OBX Equities Norwegian OBX Stock Index
OMX Equities OMX Stockholm 30 Index
ATX Equities Austrian Traded Index
ASE Equities Athens Stock Exchange General Index
AEX Equities AEX Index
MXNUSD Currencies Mexican peso
GDDUEMEA Equities Emerging markets: Asia
NZSE Currencies New Zealand dollar
HG1 Metals Copper
LT1 Metals Tin
LA1 Metals Aluminium
LN1 Metals Nickel
LL1 Metals Lead
KRWUSD Currencies Korean won
PHPUSD Currencies Philippines peso

Table 6.1: Set of assets in the largest diagonal block (i.e., nodes 44–79) of Fig. 6.2(h).

6.1.2 Output multilayer partitions with increasing coupling

In Fig. 6.3, we show nine distinct multilayer partitions. Each partition corresponds

to one of the LRW Cv output partitions that yields the largest value of multilayer
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modularity for some range of ! 2 {0, 0.1, . . . , 49.9, 50}. In particular, we examine the

nine multilayer partitions that correspond to the nine plateaus in Fig. 6.1(g,h). For

each output partition, we specify the number of communities that it contains and

the range of ! values in {0, 0.1, . . . , 49.9, 50} for which it yields the largest value of

multilayer modularity.

Observe that the largest communities in each partition of Fig. 6.3 tend to be the

one that contains bonds (blue community) and the one that contains equities (red

community or brown community). The clear separation into diagonal blocks between

2005 and 2006 in Figs 6.2(a,c,e,g) manifests in all partitions of Fig. 6.3. In Figs 6.3(a–

d), many currencies, metals, and fuels leave the bond community (blue) to form their

own community (brown) between 2005 and 2006. In Figs 6.3(e–i), many currencies

and metals leave the bond community (blue) to join the equity community (red) be-

tween 2005 and 2006. The Lehman bankruptcy (15 Sept 08) manifests in each panel

at the end of 2008 and is marked by an increase in the size of the equity community

in all partitions. Moreover, the four fuels join the bond community (blue) for the first

time in all partitions at the beginning of 2003. In particular, this occurs in the layer

that corresponds to the time interval 13 Apr 01–07 Mar 05. This is the last layer pre-

ceding the Iraq war of 21 Mar 05. (The increase between fuels and government bonds

is visible in the correlation matrix of Fig. 3.4(c).) In Fig. 6.3(a,b), we observe that a

set of assets separate from the equity community just before the Lehman bankruptcy

to form their own community (see the pink streak at the end of 2008). These assets

join the equity community (brown) after the Lehman bankruptcy and remain in it in

all subsequent layers. The pink streak in Fig. 6.3(a,b) contains the following 28 as-

sets : “EURUSD” (Euro), “GBPUSD” (Pounds sterling), “CHFUSD” (Swiss franc),

“NOKUSD” (Norwegian krone), “SEKUSD” (Swedish krona), “CZKUSD” (Czech

koruna), “XAU” (Gold), “XAG” (Silver), “XPT” (Platinum), “XPD” (Palladium),

“LA1” (Aluminium), “LT1” (Tin), “LN1” (Lead), “CL1”(Crude oil, WTI), “CO1”

(Crude oil, brent), “HO1” (Heating oil), “NG1” (Natural gas), “C 1” (Corn), “CC1”

(Cocoa), “CT1” (Cotton), “KC1” (Co↵ee), “RR1” (Rough rice), “S 1” (Soybean),

“QW1” (Sugar), “SM1” (Soybean meal), “W 1” (Wheat), “O 1” (Oats), and “BO1”

(Soybean oil).

We end this section with a comment on three instances where — for a given

asset class — most assets from the class belong to the same community but a couple

do not. The government bond asset that stands out in Fig. 6.3(a–e,g) is “JNGATR”

(Japanese government bond). The equity asset that stands out between the middle of

2006 and the middle of 2007 in Fig. 6.3(a–e) is “NZSE” (New Zealand All Ordinaries
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Figure 6.3: Multilayer Cv output partitions with highest multilayer modularity for the
values of ! in the caption. We use LRW and the uniform null network (i.e., Pijs = hAsi) with
� = 1. Recall that we consider ! 2 {0, 0.1, . . . , 49.9, 50}. Colors correspond to community
assignments, and dates correspond to the first layer that contains a data point from the
specified year.

Index). Finally, the currencies that stand out in all panels between 2007 and 2010

are “CHFUSD” (Swiss franc) and “JPYUSD” (Japanese Yen) when there are two

currencies and “JPYUSD” when there is only one. In both cases, these currencies

leave the equity community to join the bond community. (One can clearly see in the

131



Chapter 6. Application to Financial Correlation Networks

correlation matrix of Fig. 3.4(e,f) that “JPYUSD” is correlated strongly to bonds

and correlated weakly to equities during the time intervals 25 Aug 06–18 Jul 08 and

08 Feb 08–01 Jan 10.)

6.2 Numerical experiments with SingleAssetClass

In this section, we use LRW to identify Cv output partitions and we vary the null

network for the SingleAssetClass data set. We illustrated in Chapter 4 that one

needs to be cautious when interpreting communities that one obtains with a null

network in which the distribution of edge weights is sample-dependent. In particular,

we stated in equation (2.9) that edge weights in the NG null network are given by Pij =

corr(ẑi, ẑtot)corr(ẑj, ẑtot) for a correlation matrix.3 In the case of AssetClasses,

assets in the data set belong to di↵erent classes. The quantity ẑ
tot

thus depends

on the number and type of assets that one chooses to include in each class. As

illustrated in Fig. 4.2, this can lead to misleading results when one interprets the

communities that one obtains for AssetClasses with the NG null network. In the

case of SingleAssetClass, assets belong to a single asset class (i.e., they are all

equity assets) and constitute the S&P 1500. The quantity ẑ
tot

in this case represents

the mean standardized time series of assets in S&P 1500. Whether or not cov(ẑi, ẑtot)

(i.e., ki) is a feature that one may wish to “control for” in a null network is less clear

in this case. Accordingly, we compare some features of the partitions that we obtain

with the U null network and the NG null network (which we apply to shifted and

unshifted correlation matrices) for SingleAssetClass.

6.2.1 Comparisons with di↵erent null networks

In Fig. 6.4, we show plots of persistence (respectively, intra-layer modularity) for the

Cv output partitions obtained with the U null network, the NG null network on

a shifted correlation matrix, and the NG null network on an unshifted correlation

matrix in panels (a)–(c) (respectively, panels (d)–(f)). We show two curves in all

panels. Each point on the red curve is computed with the corresponding Cv output

partition, and each point on the blue curve is computed with the Cv output partition

that yields that largest value of multilayer modularity for the corresponding ! value.

The number of iterations until convergence to the Cv output partition for all three

null networks and all values of ! varies between 2 and 5 for the SingleAssetClass

3The edge weight of the NG null network becomes P
ij

= [cov(ẑ
i

, ẑ
tot

) + N ][cov(ẑ
j

, ẑ
tot

) +
N ]/[cov(ẑ

tot

, ẑ
tot

) +N2] for a correlation matrix that is linearly shifted to [0, 1].
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Figure 6.4: Persistence for Cv output partitions with (a) the U null network, (b) the
NG null network on a linearly shifted correlation matrix, (c) the NG null network on an
unshifted correlation matrix. Intra-layer modularity for Cv output partitions with LRW for
(e) the U null network, (e) the NG null network on a linearly shifted correlation matrix, and
(f) the NG null network on an unshifted correlation matrix. Each point on the red curve
is computed with the identified partition, and each point on the blue curve is computed
with the Cv output partition that yields the largest value of multilayer modularity for
the corresponding ! value amongst all identified Cv output partitions. Our sample of !
values is {0, 0.1, . . . , 49.9, 50}, and we use � = 1 in all cases. We normalize persistence by

N(|T | � 1) and intra-layer modularity by
P|T |

s=1

PN
i,j=1

Aijs in all panels. We use LRW to
identify all Cv output partitions.

data set. We apply our post-processing procedure from Section 4.2.3.1 to all Cv

output partitions. With each null network, we store one Cv multilayer partition for

each value of !. This gives a total of 501 multilayer partitions per panel.

As we pointed out for the experiments in Fig. 6.1, the blue curves that correspond

to persistence are non-decreasing functions of ! and the blue curves that correspond to

intra-layer modularity are non-increasing functions of !. The increase of persistence

and the decrease of intra-layer modularity is not monotonic for the red curve, because

there is a single local optimum for each ! value.

In Fig. 6.5, we show the |T | ⇥ |T | pairwise persistence matrix whose entries are
�
Pers(C)|s,r

�
/N averaged over the ! values. We compute this matrix in panels (a)–(c)

with the set of Cv output partitions and in panels (d)–(f) with the set of Cv output

partitions in which the kth partition yields the highest value of multilayer modularity
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Figure 6.5: We show normalized pairwise persistence (i.e., Pers(C)|s,r =PN
i=1

�(cis , cir)/N), averaged over ! 2 {0, 0.1, . . . , 49.9, 50}, for Cv output partitions with
(a) the U null network, (b) the NG null network on a shifted correlation matrix, and (c)
the NG null network on an unshifted correlation matrix, respectively; and for Cv output
partitions with highest multilayer modularity with (d) the U null network, (e) the NG null
network on a shifted correlation matrix, and (f) the NG null network on an unshifted cor-
relation matrix, respectively. We use LRW with � = 1 in all cases. Dates correspond to the
first layer that contains a data point from the specified year.

for the kth value of ! in {0, 0.1, . . . , 49.9, 50} amongst all Cv output partitions. Note

that the second set of partitions contains duplicates. In particular, the number of

unique partitions is 16 in panel (d), 14 in panel (e), and 9 in panel (f).

Observe that panels (a)–(c) are visually similar to panels (d)–(f) in Fig. 6.5. This

suggests that pairwise persistence computed from the set of 501 Cv output partitions

is fairly consistent with pairwise persistence computed from the set of Cv output

partitions with highest multilayer modularity. Moreover, panels (b,c,e,f) are also vi-

sually similar. This suggests that pairwise persistence computed with the NG null

network on a shifted correlation matrix is relatively consistent with pairwise persis-
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Figure 6.6: We show the pairwise co-classification of nodes across layers (i.e.,⇣P|T |
s=1

�(cis , cjs)
⌘
/|T |) averaged over ! 2 {0, 0.1, . . . , 49.9, 50} for Cv output partitions

with (a) the U null network, (b) the NG null network on a shifted correlation matrix, and
(c) the NG null network on an unshifted correlation matrix; and for the Cv output par-
titions with highest multilayer modularity with (d) the U null network, (e) the NG null
network on a shifted correlation matrix, and (f) the NG null network on an unshifted cor-
relation matrix. We use LRW with � = 1 in all cases. We reorder nodes in all matrices by
sector classification.

tence computed with the NG null network on an unshifted correlation matrix with

SingleAssetClass. In panels (a,d) obtained with the U null network, pairwise per-

sistence is relatively high between all pairs of layers. The highest value in these panels

1 and the lowest value is 0.5. In panels (b,c,e,f), the most noticeable separation be-

tween diagonal blocks occurs between 2009 and 2010, near the layer that corresponds

to the time interval 18 Aug 08–27 Aug 09 (i.e., the first layer that contains a data

point near the middle of 2009).

In Figs 6.6 and 6.7, we show the pairwise co-classification index
⇣P|T |

s=1

�(cis , cjs)
⌘
/|T |

of nodes across layers averaged over !. In both figures, we compute the top three

panels with the set of Cv output partitions and the bottom three panels with the set

of Cv output partitions in which the kth partition yields the highest value of multi-
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Figure 6.7: We show the pairwise co-classification of nodes across layers (i.e.,⇣P|T |
s=1

�(cis , cjs)
⌘
/|T |), averaged over ! 2 {0, 0.1, . . . , 49.9, 50}, for Cv output partitions

with (a) the U null network, (b) the NG null network on a shifted correlation matrix, and (c)
the NG null network on an unshifted correlation matrix; and for the Cv output partitions
with highest multilayer modularity with (d) the U null network, (e) the NG null network on
a shifted correlation matrix, and (f) the NG null network on an unshifted correlation matrix.
We use LRW with � = 1 in all cases. We use a node order that emphasizes block-diagonal
structure in each matrix. We use the same ordering in each of the three pairs (a,d), (b,e),
and (c,d) (but a di↵erent ordering for di↵erent pairs).

layer modularity for the kth value of ! in {0, 0.1, . . . , 49.9, 50} amongst all Cv output

partitions. In Fig. 6.6, we reorder all matrices using the sector classification of nodes.

In Fig. 6.7, we reorder all matrices using a node ordering that we obtain by apply-

ing the U null network to each matrix. This ordering can emphasize block diagonal

structure in a matrix. We use the same node order in Figs 6.7(a,d), Figs 6.7(b,e),

and Figs 6.7(c,f) (but a di↵erent node order for di↵erent pairs). We observe that

matrices in the top three panels of Fig. 6.6 (respectively, Fig. 6.7) are visually similar

to matrices in the bottom three panels of Fig. 6.6 (respectively, Fig. 6.7).

In Figs 6.6(a,d), my matching diagonal and o↵-diagonal blocks to their corre-
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sponding sector(s), we observe that both inter-sector and intra-sector average co-

classification indices seem to be high for all sectors except for consumer staples (Cons.

S.), energy (En.), and healthcare (H.C.). For the energy sector, only intra-sector co-

classification indices seem to be high. For consumer staples and health care, neither

intra-sector nor inter-sector co-classification indices seem to be high. (See Figs. 3.6(b–

f) for example correlation matrices where inter-sector correlation is lower for consumer

staples, energy, and healthcare than it is for other sectors.) In Figs 6.6(b,c,e,f), we ob-

serve that assets from the six following sectors have a relatively high co-classification

index: consumer discretionary (Cons. D), consumer staples (Cons. S.), energy (En.),

financials (Fin.), information technology (Inf. T.), and utilities (Ut.) The four sectors

with highest intra-sector average co-classification index in Figs 6.6(b,c,e,f) are visibly

energy, utilities, information technology, and financials.

In Fig. 6.7, we clearly see features in each panel that do not appear in its corre-

sponding panel of Fig. 6.6. (Recall that we use the same set of matrices to generate

Figs. 6.6 and 6.7.) For example, there are more red diagonal blocks in Fig. 6.7(b,c,e,f)

than there are in Fig. 6.6(b,c,e,f). This suggests that community membership of nodes

is not based solely on sector classification. We briefly comment on Fig. 6.7(a,d). Ob-

serve that Fig. 6.7(a,d) has a large “core” set of assets that often belong to the same

community (i.e., roughly nodes 1–600), many assets that sometimes belong to the

same community as the core (i.e., roughly nodes 600–750), and many assets that do

not have a high co-classification index with the core (i.e., roughly nodes 750–900). In

particular, the number of communities in the set of Cv partitions obtained with the

U null network is of the order of 102 for all values of !. In the multilayer partition

that corresponds to ! = 0 (recall that we maximize persistence for each Cv output

partition with our post-processing procedure), the number of communities is 821, the

largest community contains approximately 66.6% of the N |T | nodes, and the second

largest community contains approximately 4.4% of the N |T | nodes. For the partition
that we obtain with ! = 50 (the largest value in our sample), the number of com-

munities is 196, the largest community contains approximately 72.9% of the N |T |
nodes, and the second largest community contains approximately 1.5% of the N |T |
nodes. This suggests that multilayer partitions with the U null network for Single-

AssetClass contain one large community, to which most nodes in the multilayer

network belong, and many smaller communities. (This observation is consistent with

the correlation values in Figs 3.6(e,f) and Fig. 3.3(b), where we observed that many

of the equity assets are highly correlated.)
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6.2.2 Output multilayer partitions with increasing coupling

As example output multilayer partitions, we show Cv output partitions that we

obtain with the NG null network on an unshifted correlation matrix in Fig. 6.8. That

is, we show the nine Cv output partitions that correspond to the nine “plateaus” in

Figs 6.4(c,f).

The Cv output partition that yields the largest value of multilayer modularity

(amongst identified partitions) for ! = 0 does not yield the largest value of multilayer

modularity for any other value of ! in our sample. This suggests that there is a trade-

o↵ between persistence Pers(C) and intra-layer modularityQ(C|B
1

, . . . ,B|T |; 0) start-

ing at ! = 0.1 in our sample of ! values. This was not the case for AssetClasses

in Fig. 6.3. Moreover, most of the assets from the energy, utilities, information tech-

nology, and financials sectors belong to the same community in several layers of all

output partitions. This is consistent with our observations in Section 6.2.1, where we

noted that these sectors had the highest mean inter-sector co-classification index in

Figs 6.6(b,c,e,f). (Recall that we average the co-classification index over time and !

values in these figures.) The clear diagonal-block separation between 2009 and 2010

in Figs 6.5(b,c,e,f) manifests in all panels of Fig. 6.8. The largest number of assets

from the financials sector that belong to the same community seems to increase be-

tween 2009 and 2010. Additionally, the largest number of assets from the information

technology sector that belong to the same community seems to decrease between 2009

and 2010. We also observe that the largest number of assets from the health care

sector that belong to the same community seems to increase after 2010. (A notable

event that took place on 23 March 2010 is Obama’s Health Care Reform.) We show

the largest number of assets from each of the three sectors that belong to the same

community across time in Fig. 6.9. In each panel, we normalize the number of assets

by the size of each sector.
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(c) Output partition
! 2 {1.3, . . . , 2.9}, |C| = 7
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(d) Output partition
! 2 {3, . . . , 4.9}, |C| = 6
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(g) Output partition
! 2 {21.8, . . . , 29.6}, |C| = 3

20
00

20
01

20
02

20
03

20
04

20
05

20
06

20
07

20
08

20
09

20
10

20
11

20
12

20
13

20
14

Cons.D.

Cons.S.
En.

Fin.

H. C.

Ind.

Inf.T.

Mat.
Tel.S.

Ut.

(h) Output partition
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Figure 6.8: MultilayerCv output partitions with highest multilayer modularity for the val-
ues of ! in the caption. We use LRW and the NG null network (i.e., Pijs = (kiskjs)/(2ms))
on an unshifted correlation matrix (i.e., As 2 [�1, 1]N⇥N ) with � = 1. Recall that
! 2 {0, 0.1, . . . , 49.9, 50} is our sample of ! values. Colors correspond to community assign-
ments, and dates correspond to the first layer that contains a data point from the specified
year.
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Figure 6.9: In each panel, we show nine scatter plots (one for each of the nine Cv output
partitions of Fig. 6.8) of the largest fraction of assets from a given sector that belong to
the same community in a given layer, and we show the mean value of the nine scatter
plots computed at each layer (black dashed curve). We show these plots for (a) financials
(Fin.), (b) information technology (Inf. T.), and (c) healthcare (H.C.). We normalize the
values in each panel by the size of the corresponding sector. Recall from Section 3.3.2
that there are 177 Fin., 140 Inf. T., and 84 H.C assets. Colors of the scatter plots in
each panel scale from deep blue to deep red with the range of ! values for which the
corresponding Cv output partition yields the largest value of multilayer modularity. That
is, the scatter plot that corresponds to the range with lowest values (i.e., ! = 0 in Fig. 6.8)
is in dark blue, and the scatter plot that corresponds to the range with highest values (i.e.,
! 2 {48.8, 48.9, . . . , 49.9, 50} in Fig. 6.8) is in bright red. Dates correspond to the first layer
that contains a data point from the specified year.

6.3 Summary

We carried out various experiments with the data sets AssetClasses and Single-

AssetClass in which we examined persistence (see (4.3)), intra-layer modularity

(see (4.4)), pairwise persistence (see (4.5)) averaged over increasing values of inter-

layer coupling, co-classification indices (see Section 2.3.2) averaged over time and

increasing values of inter-layer coupling, and example multilayer output partitions.

In our experiments, we tried to illustrate three main points: (1) communities that

we identified with multilayer modularity maximization were not based solely on class

or sector classification, (2) we obtained fairly consistent results in the experiments

that we carried out with di↵erent variants of the same heuristics and with di↵erent

sets of output partitions for a given variant of a heuristic, and (3) the output par-

titions that we obtained with higher values of inter-layer coupling di↵ered from the

partitions that we obtained with 0 inter-layer coupling (reflecting a trade-o↵ between

persistence and intra-layer modularity). From a practical viewpoint, some features of

the output partitions obtained with AssetClasses are consistent with observations
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drawn from the same data set with other techniques (e.g., post-Lehman “bi-modal

structure” [65,200]), whereas other features seem to highlight periods in time that are

di↵erent from those previously noticed and that may potentially provide additional

insight (e.g., the change in community structure between 2005 and 2006). We also

illustrated with SingleAssetClass that the ability to explicitly specify the choice

of null network can enable one to extract higher-order structure from a correlation

matrix in which, a priori, most assets are highly correlated. For both data sets, we

pointed out various instances in which a change in community structure in an output

partition corresponds to a change in connectivity patterns in the correlation matrices.
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Discussion and Future Work

In this thesis, we investigated various issues associated with community detection in

temporal networks. We began the thesis with an overview of community-detection

methods for time-independent and temporal networks in Chapter 2. Most community-

detection methods are designed for time-independent networks, and multilayer net-

works is a recent framework for representing a sequence of networks that includes

connections at di↵erent points in time and/or di↵erent types of connections at a given

point in time [31,109]. We highlighted recent e↵orts towards developing a community-

detection method for multilayer networks based on the optimization of a quality

function. In particular, we examined multilayer modularity maximization [140] and

multilayer map minimization [56]. Two key di↵erences between these methods and

their single-layer counterpart are that they produce a multilayer partition (as op-

posed to a single-layer partition) and, more importantly, that communities identified

in individual layers depend on connectivity patterns in other layers. A practical ad-

vantage of methods based on the optimization of a quality function (in contrast to,

say, multilayer block modeling approaches [158,160,186]) is that they do not require

a model of the observed network and they require no a priori estimate of the number

of communities in the final partition. A disadvantage, however, is that they have less

theoretical grounding. Coupled with the many other existing issues in community

detection, this can render the interpretation of communities that one obtains with

these methods all the more di�cult.

In Chapter 4, we tried to better understand how one can interpret communities

with multilayer modularity maximization. We examined two main issues: (1) the role

of null networks and (2) the role of inter-layer coupling. In section 4.1, we illustrated

with financial asset-correlation networks that one needs to choose a null network with

caution because it ultimately determines what one regards as densely connected in

a network. We showed that this choice can lead to misleading conclusions when one
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uses a null network in which the distribution of edge weights is sample-dependent.

In the following paragraph, we will make a few observations on the potential benefits

associated with the flexibility of this choice. The ability to explicitly specify what is

anticipated (e.g., by setting the mean expected edge weight in a null network equal to

the mean edge weight in an observed network) is an appealing feature of modularity

maximization. One can adapt it to di↵erent applications and to di↵erent questions

for a given application. This feature of modularity maximization has been explored

in the context of spatial correlation networks to take into account prior knowledge

that neighboring countries tend to be highly correlated with respect to the spread of

a disease [61, 175]. More recently, the authors in [131] suggested a null network for

correlation networks (though we note that this is not how the authors phrase it) that

only depends on the leading eigenvector and leading eigenvalue of a sample correlation

matrix (i.e., the “market mode” in random matrix theory [162, 164]). The intuition

behind this null network is that it controls for a “common factor influencing all stocks

within a given market” [131]. It would be interesting to compare the partitions that

one obtains with this null network to those one obtains with the Newman–Girvan

null network on the equity data set (i.e., SingleAssetClass), especially in light of

the interpretation of asset strength as the covariance between a standardized time

series and the mean standardized time series. One could also try to incorporate

“ground truth” about a data set into a null network. For example, one could include

prior knowledge that assets from the same asset class tend to be highly correlated by

taking the expected edge weight between two assets to be the mean computed from

the corresponding assets classes (instead of the full correlation matrix).

In the context of correlation networks, for any choice of null network that one

makes, it is important that one’s estimate of a correlation matrix is reliable. In this

thesis, we used Pearson correlation because it is a simple and commonly used estimate

of pairwise correlation [63, 65, 134, 154]. Estimating a correlation matrix from a set

of empirical time series is an active (and unresolved) research area that warrants

further investigation (e.g., one can try to address issues of non-stationarity [178],

one can estimate the true covariance matrix from a sample covariance matrix by

solving a maximum likelihood problem [51], and one can explore the issue of choosing

an appropriate time window length relative to the number of assets in a data set

[65, 153,164]).

Given a choice of observed network and null network (or more generally, given

a choice of matrices {B
1

, . . . ,B|T |}), we explored the e↵ect of inter-layer edges on
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an optimal multilayer partition in Section 4.2. We showed that multilayer modu-

larity maximization reflects a trade-o↵ between intra-layer modularity (i.e., time-

independent community structure) and temporal persistence. The largest achievable

value of persistence for an optimal partition obtained with a given value of inter-layer

coupling is a non-decreasing function in !. Similarly, the largest achievable value of

intra-layer modularity for an optimal partition obtained with a given value of inter-

layer coupling is a non-increasing function in !. Moreover, we showed that there

exists a value !
0

> 0 below which an optimal multilayer partition is also optimal for

! = 0. Similarly, there exists a value !1 above which persistence is maximal and

multilayer modularity maximization reduces to single-layer modularity maximization

on the mean single-layer modularity matrix. These results provide some informa-

tion on an optimal multilayer partition in the extreme cases ! < !
0

and ! > !1,

but it would be useful to further explore whether something can be said about how

intra-layer modularity decreases and how persistence increases between these bounds.

Although this seems nontrivial (for example, one can easily design toy examples in

which these quantities vary very di↵erently across di↵erent examples), it would be

useful to gain some insight on this point that either applies to any choice of single-layer

modularity matrices, or that is at least applicable to a large set of (non-pathological)

single-layer modularity matrices. Such insight could shed light on whether there ex-

ists an interval (or multiple intervals) of ! values between !
0

and !1 in which the

trade-o↵ between persistence and intra-layer modularity yields the most insights.

Another issue in multilayer community-detection that warrants further investiga-

tion is that of interpretability. As we mentioned in Chapter 5, multilayer community-

detection inherits all the issues of single-layer community detection with (at least)

one important additional one: what does “community” mean intuitively in a multi-

layer network? In particular, should one interpret nodes in the same community from

the same layer di↵erently from nodes that are in the same community but belong to

di↵erent layers? One would think that an answer to this question should depend, at

least partly, on how one defines inter-layer edges in a multilayer network. We make

a few observations to illustrate that this point is rather nuanced. Suppose that one

uses cross-correlation matrices (with lags 1, . . . , |T | � 1) on the o↵-diagonal blocks

of the multilayer adjacency matrix in (3.8) instead of uniform, ordinal, and diagonal

inter-layer coupling. It would be sensible, for such a choice, to use a null network on

the o↵-diagonal blocks (much in the same way as one does for the diagonal blocks)

and potentially to interpret communities within and between layers in similar ways.

In this case, both an inter-layer edge weight and an intra-layer edge weight reflect a
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correlation computed from a pair of time series. Furthermore, for this nonuniform

choice of coupling, one cannot infer the inter-layer community assignments of an op-

timal partition knowing only the set of partitions that it induces on individual layers.

Given an optimal partition’s set of intra-layer partitions, its inter-layer assignments

depend on inter-layer edge weights (here given by cross-correlations). In contrast, if

one uses uniform, ordinal, and diagonal inter-layer coupling, one can infer inter-layer

community assignments in an optimal partition knowing only the set of partitions

it induces on individual layers. That is, given the set of intra-layer partitions of an

optimal multilayer partition (for some choice of !), inter-layer community assign-

ments can be inferred by maximizing persistence (which, as defined, is independent

of inter-layer edge weights). In some sense, the information in a multilayer partition

obtained with uniform, ordinal, and diagonal inter-layer coupling is fully contained in

the sequence of intra-layer partitions induced on individual layers (i.e., one can infer

the former from the latter). When ! = 0, elements of this sequence are uncorrelated,

and when ! 6= 0, elements of this sequence are correlated and reflect a trade-o↵ be-

tween intra-layer modularity and persistence. Both the non-uniform choice and the

uniform choice of inter-layer coupling that we described in this paragraph yield mul-

tilayer partitions, but one’s interpretation of multilayer communities (although clear

in neither case) seems like it should di↵er for each choice.

We proposed a simple benchmark that generates a sequence of correlated single-

layer partitions in Chapter 5. In this benchmark, nodes in each layer are independent

and every node keeps the same community assignment between consecutive layers

with probability p. Nodes that are unassigned in each layer get assigned to a com-

munity at random via a null distribution specified for that layer. When p = 0, this

benchmark generates a set of uncorrelated single-layer partitions. When p 6= 0, this

benchmark generates a set of correlated single-layer partitions. We generate a bench-

mark network using a stochastic block model for the set of partitions induced on

the set of layers. We used a simple model in Chapter 5, but there are various next

steps that one could explore to make the benchmark more realistic. For example,

one could consider non-uniform choices for the persistence parameter p and define a

(|T |� 1)-dimensional vector p. Instead of having multilayer benchmark partitions in

which the expected number of nodes that change communities is (potentially) non-

zero between any pair of consecutive layers, this can produce benchmark partitions

with chains of consecutive layers within which structure does not change but between

which structure does change (similarly to the benchmark in [56]). One could also in-

troduce memory e↵ects (e.g., a node in layer s keeps its community assignment from

145



Chapter 7. Discussion and Future Work

layer s � 1 with probability p
1

and its community assignment from layer s � 2 with

probability p
2

) and introduce dependencies between edges in di↵erent layers (e.g., the

probability of an edge between is+1

and js+1

depends on whether there is an edge

between is and js).

In our experiments, we compared the behaviour of di↵erent heuristics for solving

modularity maximization on our benchmark and carried out preliminary experiments

with multilayer Infomap [1]. We showed that a simple benchmark can highlight fea-

tures of heuristics and methods that do not manifest as clearly when one performs

experiments with real data. Such observations can provide useful guidelines regarding

what choices (e.g., choice of a heuristic or parameter choices for a given method) may

be more or less appropriate in di↵erent situations. They also emphasize a need for

further theoretical grounding of both methods and heuristics in community detection.

From a computational viewpoint, it seems that what one wants is a heuristic that

(ideally) satisfies three conditions: (1) it scales well with the size of a network, (2) it

produces sensible ouput partitions, and (3) is has some theoretical guarantee on how

closely an identified partition resembles an optimal partition. Potentially interesting

directions to pursue on this front is whether it is possible to modify the Louvain

algorithm in such a way that it allows modularity-decreasing moves (to mitigate its

tendency to get trapped in local optima) without substantially increasing its com-

putational run-time. One could also investigate whether using more eigenvectors in

a spectral heuristic improves the quality of a multilayer output partition [209]. Our

observations in Section 4.2.3.2 suggest that one may need at least one eigenvector for

every distinct layer. There are also other heuristics in the literature that would be in-

teresting to investigate and that one might be able to extend to multilayer modularity

maximization [92,112,149,206].

The issues discussed in this thesis constitute a small part of many unresolved ques-

tions in community detection, a sub-area of network analysis that itself falls under

the broad umbrella of “data analysis”. Someone once told me that “network analysis

is about giving fuzzy answers to fuzzy questions, but these answers can be useful”.

In some sense, this is a fairly accurate description of much of the work in the field.

Network analysis is a blend of ideas that come from physicists, computer scientists,

mathematicians, sociologists, engineers, and others. It is not surprising that a rela-

tively recent interdisciplinary research area still lacks precision and rigour. Moreover,

any area that deals primarily with data analysis is bound to be interdisciplinary:

“analyzing data” involves di↵erent steps (e.g., developing methods, developing algo-

rithms, and developing visualization tools) and “interpreting data” involves diverse
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expertise (e.g., sociology, finance, and biology). In a day and age where technology —

and thus data — pervades most aspects of our lives, one can expect interdisciplinary

research to continue to grow. It is clear that such research would benefit greatly from

further industry input and from the input of related and more established fields in

mathematics. The sooner we bridge these gaps, the sooner interdisciplinary research

can fulfill its potential.
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Details of Financial Assets

Ticker Asset class Description
AUGATR Govt. bonds Australia
CAGATR Govt. bonds Canada
JNGATR Govt. bonds Japan
NZGATR Govt. bonds New Zealand
USGATR Govt. bonds U.S.
ATGATR Govt. bonds Austria
BEGATR Govt. bonds Belgium
DEGATR Govt. bonds Denmark
FIGATR Govt. bonds Finland
FRGATR Govt. bonds France
GRGATR Govt. bonds Germany
IEGATR Govt. bonds Ireland
ITGATR Govt. bonds Italy
NEGATR Govt. bonds Netherlands
NOGATR Govt. bonds Norway
PTGATR Govt. bonds Portugal
SPGATR Govt. bonds Spain
SWGATR Govt. bonds Sweden
SZGATR Govt. bonds Switzerland
UKGATR Govt. bonds U.K.

MOODCBAA Corp. bonds Moody’s BAA rated
MOODCAAA Corp. bonds Moody’s AAA rated
MOODCAA Corp. bonds Moody’s AA rated
MOODCA Corp. bonds Moody’s A rated

Table A.1: Government bonds and corporate bonds in AssetClasses data set.
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Ticker Asset class Description
GDUEEGFL Equities Emerging markets: Latin America
GDDUEMEA Equities Emerging markets: Europe, Middle East, Africa
GDUEEGFA Equities Emerging markets: Asia
SPX Equities Standard and Poors 500 (U.S.)
INDU Equities Dow Jones Industrial Average Index (U.S.)
NDX Equities NASDAQ 100 Index (U.S.)
RTY Equities Russell 2000 Index (U.S.)
NKY Equities Nikkei 225 Index (Japan)
HSI Equities Hang Seng Index (Hong Kong)
AS30 Equities Australian All Ordinaries Index
NZSE Equities New Zealand All Ordinaries Index
SPTSX Equities S&P/Toronto Stock Exchange Index
UKX Equities FTSE 100 Index (U.K.)
DAX Equities DAX Index (Germany)
CAC Equities CAC 40 Index (France)
IBEX Equities IBEX 35 Index (Spain)
FTSEMIB Equities FTSE MIB Index (Italy)
SMI Equities Swiss Market Index
BVLX Equities PSI General Index (Portugal)
ISEQ Equities Irish Overall Index
BEL20 Equities BEL 20 Index (Belgium)
KFX Equities OMX Copenhagen 20 Index
HEX Equities Helsinki Stock Exchange General Index
OBX Equities OBX Stock Index (Norway)
OMX Equities OMX Stockholm 30 Index
ATX Equities Austrian Traded Index
ASE Equities Athens Stock Exchange General Index
AEX Equities AEX Index (Netherlands)

AUDUSD Currencies Australian dollar
EURUSD Currencies Euro
GBPUSD Currencies Pounds sterling
CADUSD Currencies Canadian dollar
CHFUSD Currencies Swiss franc
JPYUSD Currencies Japanese yen
NOKUSD Currencies Norwegian krone
SEKUSD Currencies Swedish krona
NZDUSD Currencies New Zealand dollar
ZARUSD Currencies South African rand
IDRUSD Currencies Indonesian rupiah
PHPUSD Currencies Philippines peso
MXNUSD Currencies Mexican peso
CZKUSD Currencies Czech koruna
KRWUSD Currencies Korean won

Table A.2: Equities and currencies in AssetClasses data set.
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Ticker Asset class Description
XAU Metals Gold
XAG Metals Silver
XPT Metals Platinum
XPD Metals Palladium
LA1 Metals Aluminium
HG1 Metals Copper
LT1 Metals Tin
LL1 Metals Lead
LN1 Metals Nickel

CL1 Fuels Crude oil, WTI
CO1 Fuels Crude oil, brent
HO1 Fuels Heating oil
NG1 Fuels Natural gas

C 1 Commodities Corn
CC1 Commodities Cocoa
CT1 Commodities Cotton
JO1 Commodities Orange juice
KC1 Commodities Co↵ee
LB1 Commodities Lumber
LC1 Commodities Live cattle
LH1 Commodities Lean hogs
PB1 Commodities Frozen pork bellies
RR1 Commodities Rough rice
S 1 Commodities Soybean
QW1 Commodities Sugar
SM1 Commodities Soybean meal
W 1 Commodities Wheat
O 1 Commodities Oats
BO1 Commodities Soybean oil
FC1 Commodities Feeder cattle
JN1 Commodities Rubber

Table A.3: Metals, fuels, and commodities in AssetClasses data set.
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Appendix B

Robustness of Correlations to
Time Window Length and Overlap

In this section we carry out numerical experiments to investigate the e↵ect of window

length (denoted |T |) and step size between consecutive time windows (denoted �t) on

the sequence of sample correlation matrices {A
1

, . . . ,As|s = 1, . . . , |T |} defined in

Section 3.1.3. Figure B.1 shows the mean, standard deviation, kurtosis, and skewness

of each correlation matrix in the sequence for time window lengths between 50 weeks

(roughly one year of data) and 200 weeks (roughly four years of data). Diagonal

entries are excluded from the computation, and each point on each curve in panels

(a,b,c,d) of Fig. B.1 corresponds to one of the statistics computed for the first time

window that contains a data point from the year on the horizontal axis. For every

choice of time window length, we observe that correlations undergo various changes in

time. The most notable change is around the end of 2008, where the mean correlation

significantly increases for all window lengths considered. We show a frequency plot of

all correlation values in the sequence in Fig. B.2(a) and a table of summary statistics

averaged over all time windows in Fig. B.2(b). The average mean and variance appear

to be relatively robust to the values of time window length considered. The maximum

of the absolute value of the di↵erences is of the order of 10�3 for the former and 10�2

for the latter.

We repeat the same experiments for values of �t ranging from 1 week (the smallest

possible step size for this data set) to 16 weeks (roughly 4 months). We observe in

Figs. B.3 and B.4 that statistics computed at each point in time and statistics averaged

over time seem robust to values of the step size in this range of �t.

We perform similar experiments for the SingleAssetClass data set for values of

|T | ranging from 200 days (ten months excluding weekends) to 450 days (slightly under

two years excluding weekends) in Figs. B.5 and B.6 and for values of �t ranging from
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Figure B.1: Comparison of basic correlation statistics in AssetClasses data set over
time for di↵erent time window lengths.

22 days (one month excluding weekeds) to 132 days (six months excluding weekends)

in Figs. B.7 and B.8. We obtain similar quantitative results regarding robustness for

the range of values considered.

This results in Figs. B.1–B.8 suggests that various features of the correlation

matrices are relatively robust to the di↵erent samples of window length |T | and step

size �t that we consider in this Section.
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(a) Correlation over all time windows for AssetClasses data set

Window length Mean Std. Dev. Skewness Kurtosis
50 0.1151 0.3108 0.6698 3.3223
75 0.1159 0.2992 0.8087 3.6105
100 0.1148 0.2925 0.8868 3.7837
125 0.1146 0.2891 0.9285 3.8750
150 0.1137 0.2866 0.9575 3.9323
175 0.1135 0.2847 0.9750 3.9647
200 0.1132 0.2829 0.9880 3.9964

(b) First four moments averaged over all time windows

Figure B.2: Comparison of basic correlation statistics in AssetClasses data set averaged
over time for di↵erent time window lengths.
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Figure B.3: Comparison of basic correlation statistics in AssetClasses over time for
di↵erent values of the step size between consecutive time windows.
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(a) Correlation over all time windows

Step Mean Std. Dev. Skewness Kurtosis
1 0.1148 0.2925 0.8873 3.7850
2 0.1148 0.2925 0.8868 3.7837
4 0.1152 0.2928 0.8839 3.7763
6 0.1155 0.2935 0.8770 3.7648
8 0.1158 0.2937 0.8704 3.7502
10 0.1154 0.2934 0.8778 3.7640
12 0.1153 0.2936 0.8743 3.7561

(b) First four moments averaged over all time windows

Figure B.4: Comparison of basic correlation statistics in AssetClasses averaged over
time for di↵erent values of the step size between consecutive time windows.
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Figure B.5: Comparison of basic correlation statistics in SingleAssetClass over time
for di↵erent time window lengths.
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(a) Correlation over all time windows

Window length Mean Std. Dev. Skewness Kurtosis
200 0.3005 0.1221 0.1375 3.6101
260 0.3050 0.1171 0.1954 3.7551
350 0.3100 0.1123 0.2550 3.9149
450 0.3151 0.1091 0.3036 4.0441

(b) First four moments averaged over all time windows

Figure B.6: Comparison of basic correlation statistics in SingleAssetClass averaged
over time for di↵erent time window lengths.
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Figure B.7: Comparison of basic correlation statistics in SingleAssetClass over time
for di↵erent values of the step size between consecutive time windows.

158



Appendix B. Robustness of Correlations to Time Window Length and Overlap

−0.5 0 0.5 1
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

correlation

o
b
se

rv
e
d
 f
re

q
u
e
n
cy

 

 

δt = 22

δt = 55

δt = 87

δt = 132

(a) Correlation over all time windows

Step Mean Std. Dev. Skewness Kurtosis
22 0.3051 0.1171 0.1924 3.7496
55 0.3050 0.1171 0.1954 3.7551
87 0.3028 0.1167 0.1935 3.7848
132 0.3003 0.1162 0.2048 3.8106

(b) First four moments averaged over all time windows

Figure B.8: Comparison of basic correlation statistics in SingleAssetClass averaged
over time for di↵erent values of the step size between consecutive time windows.
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Appendix C

Robustness of Qualitative
Benchmark Results

In this section, we first show that the qualitative results observed with Louvain-

RandWeighted (LRW) in Fig. 5.13 is relatively robust to the choice of similarity mea-

sure (see Figs C.1–C.5) and to a di↵erent choice of null distribution (see Figs C.6–C.7).

We show plots for output partitions obtained after one iteration of the heuristic and

after iterating the heuristic on a post-processed output multilayer partition until the

partition no longer changes. The number of iterations is no more than six in all cases

and we observe that the results from multiple iterations outperform those obtained

after one iteration in all cases (this is particularly noticeable for p 2 {0.8, 0.9, 1}).
Furthermore, we repeat the experiment in Fig. 5.14 and show plots of persistence,

intra-layer modularity, and nVI with LR and LRW for ! 2 {0, 0.1, . . . , 9.9, 10} in-

stead of ! 2 {0, 0.1, . . . , 2.9, 3} (see Figs C.8–C.9). We observe that the results after

multiple iterations outperform the results obtained after one iteration for both LR

and LRW, and that the variability of the output partition seems to increase for ! ' 3.

Finally, we show the experiments with Infomap in Figs 5.15 and 5.16 for all values

p 2 {0, 0.1, . . . , 0.91} instead of only p 2 {0, 0.9, 1} (see Figs C.10–C.13), and for

larger values of N and |T | (see Figs C.14–C.15). We observe that the results are

qualitatively similar to those of Figs 5.15 and 5.16.

In Figs C.1–C.5, we fix (N, T ) = (150, 100) and use multilayer modularity maxi-

mization with the uniform null network and � = 1. We generate a multilayer parti-

tion using our benchmark in Table 5.1 with p 2 {0, 0.1, . . . , 0.9, 1} and a power-law

null distribution with exponent ⌧ = �1, the lower bound on the expected commu-

nity size is |C|
min

= 0.1N , and the upper bound on the expected community size is

|C|
max

= 0.3N . We generate multilayer networks using the stochastic block model in

(5.6) with µ 2 {0, 0.05, . . . , 4.45, 0.5} and  = 0.2. We omit this information from
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the caption of Figs C.1–C.5 and only specify the heuristic that we use, the sample of

! values, and the measure of similarity. In Figs C.6–C.15, we include the complete

details of the figure in the caption.
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Figure C.1: We compute the nVI after one iteration of LouvainRandWeighted. The sample
of ! values is {0, 0.2, . . . , 4.8, 5}. We show plots for ! < 2.4 with solid blue curves, those
for ! > 2.4 with solid red curves, and that of ! = 2.4 with a black dashed curve. Colors
scale with the value of ! from deep blue (! = 0) to deep red (! = 5) (a,b,c,d,e,f,g,h,i,j,k)
correspond to p 2 {0, 0.1, . . . , 0.9, 1}, respectively.
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Figure C.2: We compute the Jaccard coe�cient after one iteration of Louvain-
RandWeighted. The sample of ! values is {0, 0.2, . . . , 4.8, 5}. We show plots for ! < 2.4
with solid blue curves, those for ! > 2.4 with solid red curves, and that of ! = 2.4 with a
black dashed curve. Colors scale with the value of ! from deep blue (! = 0) to deep red
(! = 5) (a,b,c,d,e,f,g,h,i,j,k) correspond to p 2 {0, 0.1, . . . , 0.9, 1}, respectively.
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Figure C.3: We compute the Jaccard coe�cient after iterating LouvainRandWeighted on
the post-processed output partition until it no longer changes. The sample of ! values is
{0, 0.2, . . . , 4.8, 5}. We show plots for ! < 2.4 with solid blue curves, those for ! > 2.4
with solid red curves, and that of ! = 2.4 with a black dashed curve. Colors scale with the
value of ! from deep blue (! = 0) to deep red (! = 5) (a,b,c,d,e,f,g,h,i,j,k) correspond to
p 2 {0, 0.1, . . . , 0.9, 1}, respectively.
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Figure C.4: We compute the nMI after one iteration of LouvainRandWeighted (the ex-
pression for nMI is given by 1�nVI in (2.33) with a normalization of VI in (2.31) by the
joint entropy instead of logN [110, 128]). We plot 1�nMI for consistency with previous
figures. The sample of ! values is {0, 0.2, . . . , 4.8, 5}. We show plots for ! < 2.4 with solid
blue curves, those for ! > 2.4 with solid red curves, and that of ! = 2.4 with a black
dashed curve. Colors scale with the value of ! from deep blue (! = 0) to deep red (! = 5)
(a,b,c,d,e,f,g,h,i,j,k) correspond to p 2 {0, 0.1, . . . , 0.9, 1}, respectively.
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Figure C.5: We compute the nMI after iterating LouvainRandWeighted on the post-
processed output partition until it no longer changes (the expression for nMI is given by
1�nVI in (2.33) with a normalization of VI in (2.31) by the joint entropy instead of logN
[110, 128]). We plot 1�nMI for consistency with previous figures. The sample of ! values
is {0, 0.2, . . . , 4.8, 5}. We show plots for ! < 2.4 with solid blue curves, those for ! > 2.4
with solid red curves, and that of ! = 2.4 with a black dashed curve. Colors scale with the
value of ! from deep blue (! = 0) to deep red (! = 5) (a,b,c,d,e,f,g,h,i,j,k) correspond to
p 2 {0, 0.1, . . . , 0.9, 1}, respectively..
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Figure C.6: We compute the nVI after one iteration of LouvainRandWeighted. We fix
(N, T ) = (150, 100) and use multilayer modularity maximization with the uniform null
network and � = 1. We generate a multilayer partition using our benchmark in Table 5.1
with p 2 {0, 0.1, . . . , 0.9, 1} and we generate multilayer networks using the stochastic block
model in (5.6) with µ 2 {0, 0.05, . . . , 4.45, 0.5} and  = 0.2. We fix a null distribution that is
uniform within and between layers (i.e., ps = p for all s and pi = pj for all i, j 2 {1, . . . , |p|}).
We fix pi = 0.2N for all i (and thus |p| = 5). The sample of ! values is {0, 0.2, . . . , 4.8, 5}.
We show plots for ! < 2.4 with solid blue curves, those for ! > 2.4 with solid red curves,
and that of ! = 2.4 with a black dashed curve. Colors scale with the value of ! from deep
blue (! = 0) to deep red (! = 5) (a,b,c,d,e,f,g,h,i,j,k) correspond to p 2 {0, 0.1, . . . , 0.9, 1},
respectively.
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Figure C.7: We compute the nVI after iterating LouvainRandWeighted on the post-
processed output partition until it no longer changes. We fix (N, T ) = (150, 100) and
use multilayer modularity maximization with the uniform null network and � = 1. We
generate a multilayer partition using our benchmark in Table 5.1 with p 2 {0, 0.1, . . . , 0.9, 1}
and we generate multilayer networks using the stochastic block model in (5.6) with µ 2
{0, 0.05, . . . , 4.45, 0.5} and  = 0.2. We fix a null distribution that is uniform within and
between layers (i.e., ps = p for all s and pi = pj for all i, j 2 {1, . . . , |p|}). We fix pi = 0.2N
for all i (and thus |p| = 5). The sample of ! values is {0, 0.2, . . . , 4.8, 5}. We show plots for
! < 2.4 with solid blue curves, those for ! > 2.4 with solid red curves, and that of ! = 2.4
with a black dashed curve. Colors scale with the value of ! from deep blue (! = 0) to deep
red (! = 5) (a,b,c,d,e,f,g,h,i,j,k) correspond to p 2 {0, 0.1, . . . , 0.9, 1}, respectively.
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Figure C.8: We fix (N, T ) = (150, 100) and use multilayer modularity maximization with
the uniform null network and � = 1. We generate a multilayer partition using our bench-
mark in Table 5.1 with p 2 {0.9, 0.91, . . . , 0.99, 1} and a power-law null distribution with
exponent ⌧ = �1, the lower bound on the expected community size is |C|

min

= 0.1N , and
the upper bound on the expected community size is |C|

max

= 0.3N . We generate multilayer
networks using the stochastic block model in (5.6) with µ = 0.1 and  = 0.2. The sample of
! values is {0, 0.1, . . . , 9.9, 10}. We show plots of normalized persistence, normalized intra-
layer modularity, and nVI between the output and planted multilayer partitions for (a,b,c)
LouvainRand, and (d,e,f) LouvainRandWeighted. Each curve corresponds to a value of p
in our sample. Colors scale with the value of p from deep blue (p = 0) to deep red (p = 1).

We normalize persistence by (N |T | � 1) and intra-layer modularity by
P|T |

s=1

(1TAs1) for
each value of !. The output partitions that we use in these panels are obtained after one
run of the heusistic.
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Figure C.9: We fix (N, T ) = (150, 100) and use multilayer modularity maximization with
the uniform null network and � = 1. We generate a multilayer partition using our bench-
mark in Table 5.1 with p 2 {0.9, 0.91, . . . , 0.99, 1} and a power-law null distribution with
exponent ⌧ = �1, the lower bound on the expected community size is |C|

min

= 0.1N , and
the upper bound on the expected community size is |C|

max

= 0.3N . We generate multilayer
networks using the stochastic block model in (5.6) with µ = 0.1 and  = 0.2. The sample of
! values is {0, 0.1, . . . , 9.9, 10}. We show plots of normalized persistence, normalized intra-
layer modularity, and nVI between the output and planted multilayer partitions for (a,b,c)
LouvainRand, and (d,e,f) LouvainRandWeighted. Each curve corresponds to a value of p in
our sample. Colors scale with the value of p from deep blue (p = 0) to deep red (p = 1). We

normalize persistence by (N |T |� 1) and intra-layer modularity by
P|T |

s=1

(1TAs1) for each
value of !. The output partitions that we use in these panels are obtained after iterating
the heuristic on a post-processed output partition until it no longer changes.

170



Appendix C. Robustness of Qualitative Benchmark Results

0 0.04 0.08 0.12 0.16 0.2
0

0.2

0.4

0.6

0.8

1
n
V

I

µ

(a) p = 0,  = 1

0 0.04 0.08 0.12 0.16 0.2
0

0.2

0.4

0.6

0.8

1

n
V

I

µ

(b) p = 0.1,  = 1

0 0.04 0.08 0.12 0.16 0.2
0

0.2

0.4

0.6

0.8

1

n
V

I

µ

(c) p = 0.2,  = 1

0 0.04 0.08 0.12 0.16 0.2
0

0.2

0.4

0.6

0.8

1

n
V

I

µ

(d) p = 0.3,  = 1

0 0.04 0.08 0.12 0.16 0.2
0

0.2

0.4

0.6

0.8

1

n
V

I

µ

(e) p = 0.4,  = 1

0 0.04 0.08 0.12 0.16 0.2
0

0.2

0.4

0.6

0.8

1

n
V

I

µ

(f) p = 0.5,  = 1

0 0.04 0.08 0.12 0.16 0.2
0

0.2

0.4

0.6

0.8

1

n
V

I

µ

(g) p = 0.6,  =

0 0.04 0.08 0.12 0.16 0.2
0

0.2

0.4

0.6

0.8

1

n
V

I

µ

(h) p = 0.7,  = 1

0 0.04 0.08 0.12 0.16 0.2
0

0.2

0.4

0.6

0.8

1

n
V

I

µ

(i) p = 0.8,  = 1

0 0.04 0.08 0.12 0.16 0.2
0

0.2

0.4

0.6

0.8

1

n
V

I

µ

(j) p = 0.9,  = 1

0 0.04 0.08 0.12 0.16 0.2
0

0.2

0.4

0.6

0.8

1

n
V

I

µ

(k) p = 1,  = 1

Figure C.10: We fix (N, T ) = (100, 50) and use multiplex-case Infomap (i.e., the random
walker in equation (2.26) can “relax” to any layer). The sample of “relax-rate” values is
r 2 {0, 0.01, . . . , 0.09, 0.1, 0.2, . . . , 0.9, 1}. We show plots for r < 0.1 with solid blue curves,
those for r > 0.1 with solid red curves, and that of r = 0.1 with a black dashed curve.
Colors scale with the value of r from deep blue (r = 0) to deep red (r = 1). We generate
a multilayer partition using our benchmark in Table 5.1 with p 2 {0, 0.1, . . . , 0.9, 1} and
a power-law null distribution with exponent ⌧ = �1, the lower bound on the expected
community size is |C|

min

= 0.1N , and the upper bound on the expected community size is
|C|

max

= 0.3N . We generate multilayer networks using the stochastic block model in (5.6)
with µ 2 {0, 0.02, . . . , 0.18, 0.2} and  = 1. For each pair (p, µ) we generate a multilayer
partition and a multilayer network. We perform one run of Infomap for each value of r on
each multilayer network. (a,b,c,d,e,f,g,h,i,j,k) Infomap and p 2 {0, 0.1, . . . , 0.9, 1}.
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Figure C.11: We fix (N, T ) = (100, 50) and use temporal-case Infomap (i.e., the random
walker in equation (2.26) can only “relax” to adjacent layers). The sample of “relax-rate”
values is r 2 {0, 0.01, . . . , 0.09, 0.1, 0.2, . . . , 0.9, 1}. We show plots for r < 0.1 with solid blue
curves, those for r > 0.1 with solid red curves, and that of r = 0.1 with a black dashed curve.
Colors scale with the value of r from deep blue (r = 0) to deep red (r = 1). We generate
a multilayer partition using our benchmark in Table 5.1 with p 2 {0, 0.1, . . . , 0.9, 1} and
a power-law null distribution with exponent ⌧ = �1, the lower bound on the expected
community size is |C|

min

= 0.1N , and the upper bound on the expected community size is
|C|

max

= 0.3N . We generate multilayer networks using the stochastic block model in (5.6)
with µ 2 {0, 0.02, . . . , 0.18, 0.2} and  = 1. For each pair (p, µ) we generate a multilayer
partition and a multilayer network. We perform one run of Infomap for each value of r on
each multilayer network. (a,b,c,d,e,f,g,h,i,j,k) Infomap and p 2 {0, 0.1, . . . , 0.9, 1}.
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Figure C.12: We fix (N, T ) = (100, 50) and use multiplex-case Infomap (i.e., the random
walker in equation (2.26) can “relax” to any layer). The sample of “relax-rate” values is
r 2 {0, 0.01, . . . , 0.09, 0.1, 0.2, . . . , 0.9, 1}. We show plots for r < 0.1 with solid blue curves,
those for r > 0.1 with solid red curves, and that of r = 0.1 with a black dashed curve.
Colors scale with the value of r from deep blue (r = 0) to deep red (r = 1). We generate
a multilayer partition using our benchmark in Table 5.1 with p 2 {0, 0.1, . . . , 0.9, 1} and
a power-law null distribution with exponent ⌧ = �1, the lower bound on the expected
community size is |C|

min

= 0.1N , and the upper bound on the expected community size is
|C|

max

= 0.3N . We generate multilayer networks using the stochastic block model in (5.6)
with µ 2 {0, 0.02, . . . , 0.18, 0.2} and  = 2. For each pair (p, µ) we generate a multilayer
partition and a multilayer network. We perform one run of Infomap for each value of r on
each multilayer network. (a,b,c,d,e,f,g,h,i,j,k) Infomap and p 2 {0, 0.1, . . . , 0.9, 1}.
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Figure C.13: We fix (N, T ) = (100, 50) and use temporal-case Infomap (i.e., the random
walker in equation (2.26) can only “relax” to adjacent layers). The sample of “relax-rate”
values is r 2 {0, 0.01, . . . , 0.09, 0.1, 0.2, . . . , 0.9, 1}. We show plots for r < 0.1 with solid blue
curves, those for r > 0.1 with solid red curves, and that of r = 0.1 with a black dashed curve.
Colors scale with the value of r from deep blue (r = 0) to deep red (r = 1). We generate
a multilayer partition using our benchmark in Table 5.1 with p 2 {0, 0.1, . . . , 0.9, 1} and
a power-law null distribution with exponent ⌧ = �1, the lower bound on the expected
community size is |C|

min

= 0.1N , and the upper bound on the expected community size is
|C|

max

= 0.3N . We generate multilayer networks using the stochastic block model in (5.6)
with µ 2 {0, 0.02, . . . , 0.18, 0.2} and  = 0.2. For each pair (p, µ) we generate a multilayer
partition and a multilayer network. We perform one run of Infomap for each value of r on
each multilayer network. (a,b,c,d,e,f,g,h,i,j,k) Infomap and p 2 {0, 0.1, . . . , 0.9, 1}.
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Figure C.14: We fix (N, T ) = (150, 100) and use multiplex-case Infomap (i.e., the random
walker in equation (2.26) can “relax” to any layer). The sample of “relax-rate” values is
r 2 {0, 0.01, . . . , 0.09, 0.1, 0.2, . . . , 0.9, 1}. We show plots for r < 0.1 with solid blue curves,
those for r > 0.1 with solid red curves, and that of r = 0.1 with a black dashed curve.
Colors scale with the value of r from deep blue (r = 0) to deep red (r = 1). We generate
a multilayer partition using our benchmark in Table 5.1 with p 2 {0, 0.1, . . . , 0.9, 1} and
a power-law null distribution with exponent ⌧ = �1, the lower bound on the expected
community size is |C|

min

= 0.1N , and the upper bound on the expected community size is
|C|

max

= 0.3N . We generate multilayer networks using the stochastic block model in (5.6)
with µ 2 {0, 0.02, . . . , 0.18, 0.2} and  = 0.2. For each pair (p, µ) we generate a multilayer
partition and a multilayer network. We perform one run of Infomap for each value of r on
each multilayer network. (a,b,c,d,e,f,g,h,i,j,k) Infomap and p 2 {0, 0.1, . . . , 0.9, 1}.
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Figure C.15: We fix (N, T ) = (150, 100) and use temporal-case Infomap (i.e., the random
walker in equation (2.26) can only “relax” to adjacent layers). The sample of “relax-rate”
values is r 2 {0, 0.01, . . . , 0.09, 0.1, 0.2, . . . , 0.9, 1}. We show plots for r < 0.1 with solid blue
curves, those for r > 0.1 with solid red curves, and that of r = 0.1 with a black dashed curve.
Colors scale with the value of r from deep blue (r = 0) to deep red (r = 1). We generate
a multilayer partition using our benchmark in Table 5.1 with p 2 {0, 0.1, . . . , 0.9, 1} and
a power-law null distribution with exponent ⌧ = �1, the lower bound on the expected
community size is |C|

min

= 0.1N , and the upper bound on the expected community size is
|C|

max

= 0.3N . We generate multilayer networks using the stochastic block model in (5.6)
with µ 2 {0, 0.02, . . . , 0.18, 0.2} and  = 0.2. For each pair (p, µ) we generate a multilayer
partition and a multilayer network. We perform one run of Infomap for each value of r on
each multilayer network. (a,b,c,d,e,f,g,h,i,j,k) Infomap and p 2 {0, 0.1, . . . , 0.9, 1}.
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