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Abstract

Many systems studied in the biological, physical, and social sciences are

composed of multiple interacting components. Often the number of com-

ponents and interactions is so large that attaining an understanding of

the system necessitates some form of simplification. A common represen-

tation that captures the key connection patterns is a network in which

the nodes correspond to system components and the edges represent in-

teractions. In this thesis we use network techniques and more traditional

clustering methods to coarse-grain systems composed of many interacting

components and to identify the most important interactions.

This thesis focuses on two main themes: the analysis of financial systems

and the study of network communities, an important mesoscopic feature

of many networks. In the first part of the thesis, we discuss some of the

issues associated with the analysis of financial data and investigate the

potential for risk-free profit in the foreign exchange market. We then use

principal component analysis (PCA) to identify common features in the

correlation structure of different financial markets. In the second part of

the thesis, we focus on network communities. We investigate the evolving

structure of foreign exchange (FX) market correlations by representing the

correlations as time-dependent networks and investigating the evolution

of network communities. We employ a node-centric approach that allows

us to track the effects of the community evolution on the functional roles

of individual nodes and uncovers major trading changes that occurred in

the market. Finally, we consider the community structure of networks

from a wide variety of different disciplines. We introduce a framework

for comparing network communities and use this technique to identify

networks with similar mesoscopic structures. Based on this similarity,

we create taxonomies of a large set of networks from different fields and

individual families of networks from the same field.





Publications

Much of the work in this thesis has been published or a manuscript has been

submitted and is under review. Details of these publications are given below.

[P1] D. J. Fenn, M. A. Porter, M. McDonald, S. Williams, N. F. John-

son, and N. S. Jones, Dynamic Communities in Multichannel Data: An

Application to the Foreign Exchange Market During the 2007-2008 Credit Cri-

sis, Chaos, 19 (2009), 033119.

[P2] D. J. Fenn, S. D. Howison, M. McDonald, S. Williams, and N. F.

Johnson, The Mirage of Triangular Arbitrage in the Spot Foreign Exchange

Market, International Journal of Theoretical and Applied Finance, 12 (2009)

pp. 1–19.

[P3] D. J. Fenn, M. A. Porter, P. J. Mucha, M. McDonald, S. Williams,

N. F. Johnson, and N. S. Jones, Dynamical Clustering of Exchange Rates,

arXiv:0905.4912, submitted (2010).

[P4] J.-P. Onnela∗, D. J. Fenn∗, S. Reid, M. A. Porter, P. J. Mucha,

M. D. Fricker, and N. S. Jones, A Taxonomy of Networks, arXiv:1006.5731,

submitted (2010).

[P5] D. J. Fenn, M. A. Porter, M. McDonald, S. Williams, N. F. John-

son, and N. S. Jones, Temporal Evolution of Financial Market Correlations,

arXiv:1011.3225, submitted (2010).

∗These authors are listed as joint first authors on these papers. I performed all of the analysis
that we describe in publication [P4] and that I present in this thesis.



I have undertaken additional research during my D. Phil. that I do not include

in this thesis due to its disparate nature. For completeness, I list the publications

resulting from this work below.

[P7] Z. Zhao, J.-P. Calderon, C. Xu, G. Zhao, D. J. Fenn, D. Sornette,

R. Crane, P.-M. Hui, and N. F. Johnson, Common group dynamic drives

modern epidemics across social, financial and biological domains, Physical Re-

view E, 81 (2010), 056107. [Selected to appear in Volume 19, Issue 11 (2010)

of the Virtual Journal of Biological Physics Research.]

[P8] D. J. Fenn, Z. Zhao, P.-M. Hui, and N. F. Johnson, Competitive carbon

emission yields the possibility of global self-control, Journal of Computational

Science, 1 (2010) pp. 63–74.

[P9] Z. Zhao, D. J. Fenn, P.-M. Hui, and N. F. Johnson, Self-organized global

control of carbon emissions, Physica A, 389 (2010) pp. 3546–3551.



Statement of Originality

The research in this thesis is a result of collaboration between myself and my coauthors

on the listed publications. My collaborators have helped develop the ideas described

in this thesis, but I have performed all of the analysis leading to the results that I

present.





Contents

1 Introduction 1

1.1 Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1.1 Topology and weighted networks . . . . . . . . . . . . . . . . 3

1.1.2 Community structure . . . . . . . . . . . . . . . . . . . . . . . 4

1.1.3 Dynamics of and on networks . . . . . . . . . . . . . . . . . . 4

1.2 Financial systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.3 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2 Triangular Arbitrage in the FX Market 9

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.1.1 The foreign exchange market . . . . . . . . . . . . . . . . . . . 10

2.1.2 Indicative versus executable prices . . . . . . . . . . . . . . . . 11

2.1.3 Prior studies . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.2 Triangular arbitrage . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.3 Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.4 Arbitrage properties . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.4.1 Rate products . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.4.2 Durations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.4.3 Magnitudes . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.4.4 Seasonal variations . . . . . . . . . . . . . . . . . . . . . . . . 21

2.4.5 Annual variations . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.5 Profitability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.6 Fill probabilities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3 Financial Market PCA 33

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.1.1 Components and factors . . . . . . . . . . . . . . . . . . . . . 34

i



Contents

3.1.1.1 Factor models . . . . . . . . . . . . . . . . . . . . . . 34

3.1.1.2 Principal component and factor analysis . . . . . . . 35

3.1.2 Random matrix theory . . . . . . . . . . . . . . . . . . . . . . 37

3.2 Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.2.1 Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.2.2 Returns . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.2.3 Correlations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.2.3.1 Correlations for all assets . . . . . . . . . . . . . . . 42

3.2.3.2 Intra-asset-class correlations . . . . . . . . . . . . . . 43

3.3 Principal component analysis . . . . . . . . . . . . . . . . . . . . . . 44

3.3.1 Eigenvalues . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.3.2 Eigenvectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.4 Temporal evolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.4.1 Proportion of variance . . . . . . . . . . . . . . . . . . . . . . 50

3.4.2 Significant principal component coefficients . . . . . . . . . . . 51

3.4.3 Number of significant components . . . . . . . . . . . . . . . . 53

3.5 Asset-component correlations . . . . . . . . . . . . . . . . . . . . . . 55

3.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4 Community Structure in Networks 61

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

4.2 Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

4.3 Community detection methods . . . . . . . . . . . . . . . . . . . . . . 62

4.3.1 k-clique percolation . . . . . . . . . . . . . . . . . . . . . . . . 63

4.3.2 Modularity maximization . . . . . . . . . . . . . . . . . . . . 64

4.3.3 Potts method . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

4.4 Edge communities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

4.5 Clustering networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

4.6 Community dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

4.6.1 Early studies . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

4.6.2 Comparing and mapping communities . . . . . . . . . . . . . 71

4.6.3 Dynamics of known partitions . . . . . . . . . . . . . . . . . . 72

4.6.4 Dynamic subgraphs and cliques . . . . . . . . . . . . . . . . . 74

4.6.5 Dynamic clique percolation . . . . . . . . . . . . . . . . . . . 76

4.6.6 Edge betweenness methods . . . . . . . . . . . . . . . . . . . . 77

4.6.7 Density methods . . . . . . . . . . . . . . . . . . . . . . . . . 79

ii



Contents

4.6.8 Random walkers . . . . . . . . . . . . . . . . . . . . . . . . . 80

4.6.9 Graph colouring . . . . . . . . . . . . . . . . . . . . . . . . . . 83

4.6.10 Graph segmentation and change points . . . . . . . . . . . . . 83

4.6.11 Node-centric methods . . . . . . . . . . . . . . . . . . . . . . 85

4.6.12 Evolutionary clustering . . . . . . . . . . . . . . . . . . . . . . 88

4.6.13 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

5 Dynamic Communities in the FX Market 93

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

5.2 Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

5.2.1 Returns . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

5.2.2 Adjacency matrix . . . . . . . . . . . . . . . . . . . . . . . . . 96

5.3 Detecting communities . . . . . . . . . . . . . . . . . . . . . . . . . . 98

5.4 Robust community partitions . . . . . . . . . . . . . . . . . . . . . . 99

5.5 Community detection in dynamic networks . . . . . . . . . . . . . . . 102

5.5.1 Choosing a resolution . . . . . . . . . . . . . . . . . . . . . . . 102

5.5.2 Testing community significance . . . . . . . . . . . . . . . . . 103

5.5.3 Community properties . . . . . . . . . . . . . . . . . . . . . . 105

5.6 Minimum spanning trees . . . . . . . . . . . . . . . . . . . . . . . . . 107

5.7 Exchange rate centralities and community persistence . . . . . . . . . 113

5.7.1 Centrality measures . . . . . . . . . . . . . . . . . . . . . . . . 113

5.7.2 Community tracking . . . . . . . . . . . . . . . . . . . . . . . 114

5.7.3 Exchange rate roles . . . . . . . . . . . . . . . . . . . . . . . . 115

5.8 Major community changes . . . . . . . . . . . . . . . . . . . . . . . . 117

5.8.1 Mexican peso crisis . . . . . . . . . . . . . . . . . . . . . . . . 121

5.8.2 Asian currency crisis . . . . . . . . . . . . . . . . . . . . . . . 121

5.8.3 Credit crisis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

5.9 Visualizing changes in exchange rate roles . . . . . . . . . . . . . . . 124

5.9.1 Average roles . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

5.9.2 Annual roles . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

5.9.3 Quarterly roles . . . . . . . . . . . . . . . . . . . . . . . . . . 127

5.10 Robustness of results . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

5.11 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

iii



Contents

6 A Taxonomy of Networks 131

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

6.2 Multi-resolution community detection . . . . . . . . . . . . . . . . . . 133

6.2.1 Resolution matrix . . . . . . . . . . . . . . . . . . . . . . . . . 133

6.2.2 Problems with comparing networks using resolution . . . . . . 134

6.2.3 Effective fraction of antiferromagnetic links . . . . . . . . . . . 135

6.2.3.1 Properties . . . . . . . . . . . . . . . . . . . . . . . . 136

6.3 Mesoscopic response functions . . . . . . . . . . . . . . . . . . . . . . 137

6.3.1 Example MRFs . . . . . . . . . . . . . . . . . . . . . . . . . . 139
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Chapter 1

Introduction

1.1 Networks

A variety of systems studied across a range of academic disciplines are composed of

multiple components that interact with each other in some way. Often these systems

are described as complex [47]. Although there is no precise definition of a complex

system, roughly speaking, a system is considered complex if it possesses many parts,

whose behaviours are highly variable and strongly dependent on the behaviours of

the other parts [270,274]. Many authors also agree that for a system to be considered

complex, it should possess emergent properties that arise through the interactions of

the components in the absence of any central controller [13]. However, the concept of

emergence is also slippery and there is currently no standard definition [25, 51, 172].

Irrespective of the precise definitions of complex systems and emergence, for systems

composed of interacting components, the pattern of connections between the com-

ponents are often crucial to the behaviour of the system. The system cannot be

understood by studying the parts in isolation; it is essential to consider the interac-

tions.

When studying systems that possess many components and interactions, to make

the analysis tractable it is often necessary to simplify the analysis by focusing on a

subset of key interactions. A common way of studying the pattern of interactions

in a given system is to construct a network (or graph) in which the components

are represented as nodes and the connections are represented as edges [9, 60, 217,

223].1 A network is therefore a simplified representation that reduces a system to a

structure that captures only the key connection patterns; however, information is lost

in the simplification process, so for any analysis to be meaningful it is important to

1Nodes are sometimes referred to as vertices and edges as links. In this thesis, we use these terms
interchangeably.
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ensure that the discarded details are not critical to the properties of the system being

investigated. Networks can take different forms: they can be embedded in Euclidean

space, such as airline networks and neural networks; or they can be defined in an

abstract space, such as social networks2 and language networks [46].

Traditionally, the study of networks lay within the domain of graph theory [49],

which is usually considered to date back to 1736 when Euler published a solution to

the Königsberg bridge problem. Initially graph theory focused on regular graphs, but

since the 1950s graph theorists have also investigated random graphs [50]. This shift

was stimulated by the work of Rapoport [249,250,277] and Erdős and Rényi [86–88] on

a simple random graph model. In the model, one begins with N nodes and connects

them uniformly at random with probability p, creating a graph which on average has
1
2
pN(N − 1) edges distributed at random.

In addition to the developments in mathematical graph theory, beginning in the

1920s, social scientists started to use networks to study the relationships between

social entities, e.g., [76, 98, 111, 213, 249, 251, 258, 304]. Because of the difficulty in

collecting and analyzing large data sets, most of the early studies of social networks

were very small and the networks usually only included tens of nodes. In many of these

studies, the social scientists were often interested in answering questions relating to

the meaning of edges in the networks, such as whether they arose through friendship,

obligation, strategic alliance, or something else [127].

In the late 1990s, a surge of interest in network research across a wide range of

disciplines [225] was sparked by the publication of seminal papers by Watts and Stro-

gatz [305] and Barabási and Albert (BA) [26]. These and subsequent developments

in network science were made possible by two key factors: (1) the computerization of

data acquisition, which meant that it was significantly easier to collect data for large

networks, and (2) the increase in computational resources, which enabled researchers

to analyze these data sets. An important observation from the new data was that,

in contrast to ER random graphs, real-world networks often possess significant inho-

mogeneities.3 For example, many networks display the “small-world” phenomenon –

despite the fact that networks contain a large number of nodes, there is often a rela-

tively short path between two nodes (i.e., a small average path length) – studied by

Milgram [209], whose work spawned the phrase the six degrees of separation. Watts

and Strogatz observed that networks that possess the small-world property often also

2Social networks can sometimes contain implicit geographical information.
3An example of a homogeneous property of ER random graphs is the degree (number of neigh-

bours) of each vertex. Because there is an equal probability of all edges existing, most nodes in ER
networks have similar degrees.
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show high levels of clustering – two nodes with a common neighbour are more likely

to be connected [305]. Another important observation was that the degree distribu-

tion of many real-world networks significantly deviates from the Poisson distribution

expected for random graphs, with some nodes having significantly more edges than

expected. This led Barabási and Albert (BA) [26] to propose a preferential attach-

ment model for network growth (in which there is a higher probability for new edges

to attach to nodes with high degree) which produces network with a power-law degree

distribution.4

1.1.1 Topology and weighted networks

Much of the early work on networks focused on topological properties and the char-

acterization of unweighted networks. In unweighted networks, two nodes are either

connected or they are not; all edges in the network have the same weight. Many

features of a network depend on its topology. For example, topology is crucial to

the robustness of a network to external perturbations such as random failures or

targeted attacks on nodes [10, 46, 56, 62, 70, 151]. Topology also plays an important

role in the behaviour of different spreading processes operating on the network, such

as the spread of diseases, information, or rumours [46, 191, 213, 236, 316]. In many

networks there are also heterogeneities in the capacity or intensity of the edges [232].

The heterogeneities in the interaction strengths between components has important

effects on the function and behaviours of many systems, which has led to the study

of networks in which a weight (usually a real number) is associated with each edge.

For example, a consideration of weighted networks [232] has provided insights into

Granovetter’s weak ties hypothesis [135], which states that the relative overlap of the

friendship circles of two individuals increases with the strength of the links connect-

ing them. Another network in which connection weights play an important role is

the internet. The internet is a network for transmitting data; in its simplest network

representation, the nodes correspond to computers and other devices and the edges

represent physical connections between them, such as optical fibre lines [223]. These

connections have different bandwidths and different amounts of data flowing down

them at any point in time. Because of these heterogeneities, it is necessary to consider

link weight in order to determine optimal paths for routing data around the internet.

4In fact, this type of “rich get richer” growth mechanism dates back to the works of Yule [314],
Simon [273], and Price [246].
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1.1.2 Community structure

A further inhomogeneity in the structure of real-world networks is in the local distri-

bution of edges. In many networks, there are high concentrations of edges between

particular groups of vertices, with relatively fewer edges between different groups.

This feature of networks is termed community structure [105,244]. Although there is

no rigorous definition, a “community” is usually considered to be a group of nodes that

are relatively densely connected to each other but sparsely connected to other dense

groups in the network. Network comunities can represent functionally-important sub-

networks [2,75,105,107,121,139,243,244,295] and their identification can have useful

applications. For example, identifying groups of customers with similar interests in

networks representing the relationships between customers and products that they

purchase can lead to the development of improved product recommendation systems

for on-line retailers [253]. The algorithmic detection of communities and the devel-

opment of tools to analyze them is currently one of the most active areas of research

in networks [105,244]. We return to communities in Chapter 4 in which we present a

more detailed discussion of the different community detection methods.

1.1.3 Dynamics of and on networks

Another active area of research is the study of the dynamical behaviour of networks,

both in terms of the structural dynamics of the networks themselves, e.g., [23,185,233]

and the dynamics of processes taking place on the network, e.g., [10,46,56,62,70,123,

151]. Most early studies of networks involved the analysis of a network at a fixed

point in time or the analysis in a single network of all of the cumulative interactions

up to a point in time, e.g., [127]. An example of the latter is the construction of

coauthorship networks that represent all collaborations between researchers during

a time period [216]. Many different approaches have been adopted for constructing

and analyzing the structural dynamics of networks. For example, networks have

been constructed in which the interactions accumulate over time and the network

dynamics investigated by comparing the structure of the aggregate network with its

structure at earlier points in time, e.g., [152]. A related approach is to construct

cumulative networks, but to add an additional decay parameter that reduces the

weight of edges based on the time that had elapsed since the interaction took place

and to remove edges whose weight falls below a threshold. The network dynamics can

then be investigated by observing changes taking place in the network, e.g., [233]. A
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third possibility is the comparison of networks for interactions aggregated over non-

overlapping time windows, e.g., [92].

The spreading processes on network (such as the spread of diseases, information,

or rumours) mentioned earlier in this section in the context of network topology are

particular examples of the more general concept of dynamical systems on networks

[223]. A dynamical system is any system whose state, as represented by some set of

variables, changes over time according to a set of rules or equations [281]. Typically,

dynamical systems on networks consist of independent dynamical variables associated

with each node that are only coupled together along the edges of the network. Many

real-world processes can be represented as dynamical systems operating on a network.

For example, the flow of traffic on roads, electricity over power grids, or the changing

concentrations of metabolites in cells [223]. One particular area of focus is the study of

the synchronization of coupled oscillators on networks, which represents an important

feature of many real-world systems [15,46]. For example, evidence suggests that there

is a pathological synchronization of neural populations during epileptic attacks [46].

In this thesis, we investigate the properties of networks possessing each of the

characteristics described in the previous three sections. In Chapter 5, we analyze

the evolving community structure of a dynamic, weighted network, and in Chapter 6

we compare the community structures of a wide variety of weighted and unweighted

networks.

1.2 Financial systems

In Chapters 2, 3, and 5, we focus on financial markets, which are often considered

to be evolving complex systems [14, 18, 19, 45]. Markets are composed of a myriad

of financial agents, such as banks, consumers, investors, and companies, that con-

tinually adjust their buying and selling decisions, prices and forecasts based on the

state of the market, which is itself determined by these decisions [18]. The state

of the market emerges through this system of interactions and feedback and cannot

be determined by considering the individual components in isolation. Because of

the wealth of components and the complex pattern of connections between them, to

gain any insights into financial systems it is necessary to focus on particular subsets

of components and interactions. For example, insights into to the global economy

can be attained by studying the flow of imports and exports between different coun-

tries [275]. However, even focusing on a particular aspect of the financial system,

the number of interactions is often so large that further simplification is required.
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Several studies have attempted to tackle this problem using networks. For example,

networks have been used to analyze the trade relationships between nations [275] and

liabilities in the inter-bank lending market [52]. Perhaps the most common applica-

tion of networks to financial market is in the study of the relationships between the

price time series of financial assets, e.g., [197,198,229]. In this approach, each node in

the network represents an asset and each weighted edge represents a time-dependent

correlation between the asset price time series.

In Chapter 5, we study FX market networks in which each node represents an

exchange rate and the edges represent the correlations between rates. An argument

made to justify the study of networks constructed from asset price time series is as

follows [228]. In markets, traders repeatedly compete for a limited resource, as they

buy and sell assets, with the exact timing of these trading decisions often driven by

exogenous events, such as news announcements, scheduled economic data releases,

and other events. Although the exact nature of the interactions between market

participants is often not known, the asset prices should reflect the complex pattern of

actions, feedback, and adaptation of traders, so the price time series can be considered

as the manifestation of these interactions. Under these assumptions, instead of the

nodes representing the interacting components (i.e., the traders), they represent the

resource that the components are competing for (i.e., the assets) and instead of the

edges representing the interactions between the components (i.e., buying and selling

actions) they represent correlations in a signal that results from this process (i.e., the

asset price).

Irrespective of the exact relationship between the network and the underlying

financial system, it is insightful to investigate networks based on the correlations

between different assets. In fact, this example demonstrates the power of the network

framework. Because we work with networks in an abstract form, the tools of network

analysis can in theory be applied to any system that can be represented as a network

[223]. In essence, networks methods are simply a set of techniques for studying and

identifying patterns in data generated by interacting systems. Of course, the insights

that can be gained using a network approach depend on the suitability of the technique

to the problem and for some systems other methods will be more appropriate.

1.3 Outline

This thesis is organized into six additional chapters. In each chapter in which we

present new research we provide an overview of the relevant literature and a motiva-
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tion for the work. The chapters are more or less distinct and can be read in isolation.

However, a continuous thread runs through the thesis as we move from an analysis of

financial systems to an investigation of communities in financial systems to a study

of communities in systems from a wide variety of different disciplines.

In Chapter 2, we discuss some of the problems associated with analyzing financial

data and present a study in which the type of data used is critical to the output of the

analysis. We also describe the FX market, which is the focus of Chapters 2 and 5. The

results of Chapter 2 answer a question of particular interest to market practitioners

regarding the possibility of making risk-free profit in the FX market. In Chapter 5, we

continue to investigate financial markets, but we extend the analysis to include assets

from a variety of different markets. We study the correlation structure across these

different markets by using principal component analysis to coarse-grain the data and

identify common features. We then study the way in which these relationships evolve

through time and discuss how the features are affected by different market events.

In the remainder of the thesis, we focus on communities in networks. In Chapter 4

we describe some of the most widely used techniques for detecting communities in

networks and present a relatively comprehensive review of the literature on communi-

ties in dynamic networks. In Chapter 5, we study the structure of the FX market by

representing the correlations between currency exchange rates as time-dependent net-

works and investigating the evolution of network communities. We propose a method

for tracking communities in dynamical networks and use this approach to identify

significant changes in the structure of the FX market. In Chapter 6, we investigate

the community structure of networks from a range of different disciplines, including

biology, sociology, politics, and finance, and introduce a framework for comparing

network communities. We use this technique to identify networks with similar meso-

scopic structures. Based on this similarity, we create taxonomies of a large set of

networks from different fields and individual families of networks from the same field.

Finally, in Chapter 7, we offer some conclusions and suggest some possible directions

for future research.
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Chapter 2

The Mirage of Triangular
Arbitrage in the Foreign Exchange
Market

The work described in this chapter has been published in reference [P2]. We highlight

that this is an empirical chapter and the analysis we present is not technical. However,

this simplicity serves to emphasize one of the main purposes of this chapter which is

to demonstrate that one needs to exercise caution when analyzing financial data. If

one uses data that is inappropriate for a particular analysis, it is easy to reach false

conclusions. We show how even for the simplest financial questions, seemingly similar

data can produce very different results. In demonstrating this, we answer a question

of interest to financial market practitioners.

2.1 Introduction

The advance in computing power during the last two decades has facilitated the stor-

age and analysis of increasingly large data sets. The increased storage capacity is

particularly useful in financial markets because, as well as enabling market partici-

pants to record details of executed transactions, institutions are now able to record

additional market information even if a trade is not executed (such as the best avail-

able price and the volume available at this price). The increased computing power has

also enabled exchanges to publish prices at increasingly higher frequencies, with some

exchanges in the FX market now publishing price updates every 250 milliseconds.

The availability of these enormous, accurate, high-frequency data sets has pro-

vided economists and financial mathematicians with unprecedented resources to test

their models and has resulted in many researchers from other disciplines studying fi-
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nancial problems. However, the widespread availability of this data is a double-edged

sword: while it is undoubtedly positive that more financial data is widely accessible,

this has also led to work in which data is used that is not appropriate for the study.

Asset prices provide a good example of where confusion can arise because single

assets can have several prices associated with them. For example, assets can have

an indicative price (a quote providing an indication of the level at which an asset is

currently trading), an executable price (the price at which a trade can actually be

executed in the market at a particular time, although the party posting the price

can remove it before an opposite trade is matched against it), or a traded price (the

price at which a trade is actually executed). The most appropriate price for a study

depends on the question being posed. Financial time series can also have specific

peculiarities associated with them. For example, many currencies are pegged to the

U.S. dollar, which results in their exchange rates tracking the U.S. dollar exchange

rate. If one does not use the correct type of data, or fails to deal properly with

asset-specific artifacts, then the wrong conclusions can easily be reached.

In this chapter, we investigate triangular arbitrage within the spot FX market1

using high-frequency executable prices [73]. Arbitrage is the practice of taking advan-

tage of mis-pricings in financial markets to realize risk-free profits; triangular arbitrage

is the simplest arbitrage in the FX market. As an example of triangular arbitrage,

consider the situation where one initially holds xi euros. If one sells these euros and

buys dollars, converts these dollars into Swiss francs, and then converts these francs

into xf euros, if xf > xi a profit is realized. This is a triangular arbitrage.

Prior studies of triangular arbitrage indicate the existence of large arbitrage op-

portunities that remain in the market for long periods of time, e.g., [7,169]; however,

such profit opportunities would come as something of a surprise to most FX traders.

We demonstrate that the incorrect identification of triangular arbitrage opportunities

in these prior studies results from the use of the wrong type of data. Although the

original objective of this study was to determine whether or not triangular arbitrage

opportunities exist, the study serves as a good example of the care that one needs to

take when analyzing financial data.

2.1.1 The foreign exchange market

The FX market is the world’s largest financial market with an average daily trade

volume of approximately 3.2 trillion U.S. dollars [147]. Prices in the FX market

1In the spot FX market, currencies are bought and sold for immediate delivery (actually two
business days after the trade day), rather than for delivery in the future.
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are quoted as exchange rates of the form XXX/YYY, which indicate the amount of

currency YYY that one would receive in exchange for one unit of currency XXX. In

this thesis, we refer to currencies with the standard three letter abbreviations (tickers)

used to identify them in the FX market. The codes for the currencies we study are

USD - U.S. dollar, CHF - Swiss franc, JPY - Japanese yen, EUR - euro, DEM -

German mark, AUD - Australian dollar, CAD - Canadian dollar, XAU- gold2, GBP

- pounds sterling, NZD - New Zealand dollar, NOK - Norwegian krone, and SEK -

Swedish krona. In contrast to most other markets, the FX market is liquid 24 hours

a day.3 There are two prices quoted for an exchange rate: a bid and an ask price.

These give the different prices at which one can buy and sell currency, respectively,

with the ask price tending to be larger than the bid price. The exchange rate between

EUR and USD may, for example, be quoted as 1.4085/1.4086. A trader then looking

to convert USD into EUR might have to pay 1.4086 USD for each EUR, while a

trader looking to convert EUR to USD may receive only 1.4085 USD per EUR. The

difference between the bid and ask prices is the bid-ask spread.

2.1.2 Indicative versus executable prices

Although prior studies of triangular arbitrage exist, e.g., [7, 169], there is no robust

study that provides a definitive answer to the question of whether triangular arbitrage

can be profitable. The main reason for this is that, until recently, the available data

has not been sufficiently accurate or of a sufficiently high frequency.

As a result of the size and liquidity of the FX market, price updates occur at

extremely high frequencies. For example, the EUR/USD rate has in excess of 100 price

updates a minute during the most liquid periods. Therefore one requires an equally

high-frequency data set to test for triangular arbitrage opportunities. In addition, it is

necessary to know that the prices are ones at which a trade could indeed be executed

as opposed to simply being indicative price quotes. An indicative bid/ask price is a

quote that gives an approximate price at which a trade can be executed; at a given

time one may be able to trade at exactly this price or, as is often the case, the real price

at which one executes the trade, the executable price, differs from the indicative price

2We include gold in the study because it has many similarities with a currency [204].
3There are many different definitions of liquidity [263]. We consider the market to have high

liquidity if there is a large depth of resting orders and this depth is refreshed quickly when orders
are filled. A resting order is an order to buy at a price below or sell at a price above the prevailing
market price. Such orders are not filled immediately, but instead rest on the order book until they
are matched. High liquidity implies that one can usually find a counterparty to a trade.
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by a few basis points4. The main purpose of an indicative price is to supply clients of

banks with a gauge of where the price is. A large body of academic research into the

FX market has been performed using indicative quotes often under the assumption

that, due to reputational considerations, “serious financial institutions” are likely to

trade at exactly the quoted price, especially if they are hit a short time after the

quote is posted [73, 74, 138]. The efficiency of using indicative quote data for certain

analyses has, however, been drawn into question, e.g., [193,200]. In Ref. [193], Lyons

highlights some of the key problems with indicative prices: indicative prices are not

transactable; the indicative bid-ask spread, despite usually “bracketing” the actual

tradeable spread, is usually two to three times as large (i.e., the tradeable bid and

ask prices usually lie between the indicative bid and ask prices); during periods of

high trading intensity market makers are too busy to update their indicative quotes;

and market makers themselves are unlikely to garner much of their high-frequency

information from indicative prices. In the FX market today indicative prices are

typically updated by automated systems, nevertheless the quoted price is still not

necessarily a price at which one could actually execute a trade.

Goodhart et al. [131] performed a comparison of indicative bid-ask quotes from

the Reuters FXFX page and executable prices from the Reuters D2000–2 electronic

broking system over a 7 hour period and found that the behaviour of the bid-ask

spread and the frequency at which quotes arrived were quite different for the two

types of quote. In particular, the spread from the D2000–2 system showed greater

temporal variation, with the variation dependent upon the trading frequency. In

contrast, the indicative price spread tended to cluster at round numbers, a likely

artifact of the use of indicative prices as a market gauge. This discrepancy between

indicative and executable prices is likely to be less important if one is performing a

low frequency study, arguably down to time scales of 10–15 minutes [138]. If, however,

one is considering very high-frequency data, this difference becomes highly significant.

For example, in Ref. [130] Goodhart and Figliuoli find a negative first-order auto-

correlation in price changes at minute-by-minute frequencies using indicative data.

In Ref. [131], however, Goodhart finds no such negative auto-correlation when real

transaction data is used. Indicative data seem particularly unsuitable to many market

analyses today because banks are now able to provide their clients with automated

4A basis point is equal to 1/100th of a percentage point. In this paper we will also discuss points,
where a point is the smallest price increment for an exchange rate. For example, for the EUR/JPY
exchange rate, which takes prices of the order of 139.60 over the studied period, 1 point corresponds
to 0.01. In contrast, for the EUR/USD rate with typical values around 1.2065, 1 point corresponds
to 0.0001.
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executable prices through an electronic trading platform so there is even less incentive

for them to make their indicative quotes accurate.

2.1.3 Prior studies

Some analyses of triangular arbitrage have been undertaken using indicative data. In

Ref. [7], Aiba et al. investigated triangular arbitrage using indicative quote data pro-

vided by information companies for the set of exchange rates {EUR/USD, USD/JPY,

EUR/JPY} over a roughly eight week period in 1999. They found that, over the

studied period, arbitrage opportunities appeared to exist about 6.4% of the time,

or around 90 minutes each day, with individual arbitrages lasting for up to approxi-

mately 1, 000 seconds. In Ref. [169], Kollias and Metaxas investigated 24 triangular

arbitrage relationships, using quote data for seven major currencies over a one month

period in 1998, and found that single arbitrages existed for some currency groups for

over two hours, with a median duration of 14 and 12 seconds for the two transactions

formed from {USD/DEM, USD/JPY, DEM/JPY}.
When considering whether triangular arbitrage transactions can be profitable it

is important to consider how long the opportunities persist. The time delay between

identifying an opportunity and the arbitrage transaction being completed is instru-

mental in determining whether a transaction results in a profit because the price may

move during this time interval. Kollias and Metaxas [169] tested the profitability of

triangular arbitrage transactions by considering execution delays of between 0 and

120 seconds and, in a similar manner, Aiba et al. accounted for delays by assuming

that it took an arbitrageur between 0 and 9 seconds to recognize and execute an

arbitrage transaction. Kollias and Metaxas found that for some transactions triangu-

lar arbitrage continued to be profitable for delays of 120 seconds and Aiba et al. for

execution delays of up to 4 seconds. These durations differ markedly from the beliefs

of market participants; we suggest that this discrepancy results from the invalid use

of indicative data in these studies.

In contrast to prior studies, in this chapter we use high-frequency, executable price

data to investigate triangular arbitrage. This means that, for each arbitrage oppor-

tunity that we identify, one could potentially have executed a trade at the arbitrage

price. Furthermore, and importantly, we consider the issue of not completing an ar-

bitrage transaction. In the FX market today, where electronic trading systems are

widely used, it is possible to undertake the three constituent trades of an arbitrage

transaction in a small number of milliseconds; but, despite this execution speed, one
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Chapter 2 | Triangular Arbitrage in the FX Market

is not guaranteed to complete a triangular arbitrage transaction. We discuss the

reasons for this in Section 2.4.2.

2.2 Triangular arbitrage

In a market as liquid as the FX market, one would expect triangular arbitrage op-

portunities to be limited and, if they do occur, for the potential profits to be small.

This means that when identifying arbitrage opportunities on a second-by-second time

scale the possible discrepancy between an indicative and an executable price becomes

extremely important. It is, in fact, essential to use executable data if one is to draw

reliable conclusions on whether triangular arbitrage opportunities exist.

Triangular arbitrage opportunities can be identified through the rate product

γ(t) =

3
∏

i=1

pi(t), (2.1)

where pi(t) denotes an exchange rate at time t [7]. An arbitrage is theoretically

possible if γ > 1, but a profit will only be realized if the transaction is completed at

an arbitrage price.

For each group of exchange rates there are two unique rate products that can be

calculated. For example, consider the set of rates {EUR/USD, USD/CHF, EUR/CHF}.
If one initially holds euros, one possible arbitrage transaction is EUR→USD→CHF→EUR

with a rate product given by

γ1(t) =

[

EUR/USDbid(t)

]

×
[

USD/CHFbid(t)

]

×
[

1

EUR/CHFask(t)

]

; (2.2)

the second possible arbitrage transaction is EUR→CHF→USD→EUR with a rate

product

γ2(t) =

[

1

EUR/USDask(t)

]

×
[

1

USD/CHFask(t)

]

×
[

EUR/CHFbid(t)

]

. (2.3)

These two rate products define all possible arbitrage transactions using this set of

exchange rates.

2.3 Data

The data we use for the analysis consists of second-by-second executable prices for

{EUR/USD, USD/CHF, EUR/CHF, EUR/JPY, USD/JPY}. We investigate trian-

gular arbitrage opportunities for the transactions involving {EUR/USD, USD/CHF,

14



2.3 | Data

EUR/CHF} and {EUR/USD, USD/JPY, EUR/JPY} for all week days over the pe-

riod 02/10/2005–27/10/2005 and we compare the results with those for two earlier

periods: 27/10/2003–31/10/2003 and 01/10/2004–05/10/2004.5 The full data set

consists of approximately 2.6 million data points for each of the rate products γ1 and

γ2, 5.2 million data points for each of the currency groups, and 10.4 million data

points in total. A rate product, indicating whether or not a triangular arbitrage op-

portunity existed, was found for each of these points. We show a sample of one of the

sets of exchange rates and the corresponding time series of bid-ask spreads in Fig.

2.1.
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Figure 2.1: Exchange rate time series for EUR/USD, USD/CHF and EUR/CHF
on 12/10/2005. Upper: bid and ask prices. Lower: bid-ask spread. Each marker
represents the spread at a single time step. The vertical axes have been truncated to
make the detail around the typical values clearer.

5All times in this paper are given in GMT. The full day 28/10/2005 is excluded from the analysis
for the JPY group of exchange rates due to an error with the data feed on this day. During periods
of lower liquidity it is possible that there were times at which no party was offering a bid and/or ask
price. At these times it would not have been possible to complete a triangular transaction involving
the missing exchange rate so we set the associated rate product to zero.
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2.4 Arbitrage properties

2.4.1 Rate products

Figure 2.2 shows an example of the temporal evolution of the rate product γ over one

of the weeks analyzed. If it were possible to buy and sell a currency at exactly the

same price then one would expect the rate product to always equal one. However, the

prices at which currencies can be bought and sold differ, with the ask price exceeding

the bid price, and as a result the rate product is typically expected to be slightly less

than one. Rate products with a value just below one can be considered to fall in a

region of “triangular parity”.6
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1.0004

time

γ
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1.0002

1.0004

time

γ

Figure 2.2: Rate product evolution for the period 03/10/2005–07/10/2005 for the
transaction EUR→USD→JPY→EUR. Upper: all rate products, with a few extreme
values removed so that the structure around the typical values is clearer. All points
above the red line correspond to potential triangular arbitrages. Lower: the same plot
truncated vertically at γ = 1 so that each spike represents an arbitrage opportunity.

The distributions in Fig. 2.3 show that, as expected, the rate product tends to be

slightly less than one and typically γ ∈ [0.9999, 1]. The log-linear plots also highlight

that the distributions possess long tails extending to smaller values of the rate product

and that there are some times when γ > 1. This means that for the majority of

6Triangular parity implies that the direct exchange rate is equal to the exchange rate generated
through the cross-rates. For example, EUR/USD = (EUR/JPY)/(USD/JPY), where one needs to
use the correct bid and ask price to construct the synthetic exchange rate.
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deviations from triangular parity the individual exchange rates are shifted in such

a direction that triangular arbitrage is not possible, but that occasionally potential

profit opportunities do occur. Over the four week period analyzed there are 10, 018

triangular arbitrage opportunities for the two CHF-based transactions given by Eqs.

(2.2) and (2.3) and 11, 367 for the equivalent JPY transactions.

We now establish both the duration and magnitude of these potential arbitrages

and attempt to determine whether or not they represent genuine, executable profit

opportunities.
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Figure 2.3: Occurrence frequency for rate products of different magnitudes for the
period 02/10/2005–27/10/2005. Upper: aggregated results for both JPY transactions
and CHF transactions. Any parts of the histograms to the right of the line at γ = 1
correspond to potential triangular arbitrages. The JPY panels show all data points
within this period and the CHF panels all points except a few at very small and very
large γ. Lower: the same distributions on a log-linear scale.

2.4.2 Durations

Firstly, we consider the length of periods for which γ > 1 and thus over which trian-

gular arbitrage opportunities exist. We define an X second arbitrage as one for which

γ > 1 for more than X − 1 seconds, but less than X consecutive seconds. In Fig. 2.4,

we show the distributions of the observed durations of arbitrage opportunities and

we provide summary statistics for these distributions in Table 2.1. The vast majority

of arbitrage opportunities are very short in duration; although some opportunities
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appear to exist for in excess of 100s, for both currency groups 95% last for 5 seconds

or less and 60% for 1 second or less.
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Figure 2.4: Distributions showing the durations of arbitrage opportunities for the
period 02/10/2005–27/10/2005 for JPY (upper) and CHF (lower) transactions. The
insets show the region of the distributions for arbitrage opportunities with durations
of between 1 and 10 seconds.

The three constituent trades of a triangular arbitrage transaction can be submitted

extremely fast using an electronic trading system, but there is still a delay from the

time that the opportunity is identified, and the trades initiated, to the time that the

trades arrive at the price source. Although this delay is typically only of the order

of milliseconds, it is nonetheless significant. If the trader places each trade as a limit

order that will only be filled at the arbitrage price then if one of the prices moves, due

to trading activity or the removal of a price by the party posting it, the transaction will

not be completed. For example, consider the transaction EUR→USD→CHF→EUR

and assume that a trader completes the EUR→USD and CHF→EUR transactions

at arbitrage prices. If the USD→CHF transaction is not completed because the

USD/CHF has moved to an arbitrage-free price the trader will be left with a long
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Transaction
Duration (s) Percentage of opportunities

mean median min. max. 1s 2s 3s 4s 5s > 5s
JPY 2.01 1 1 70 60 21 8 4 2 5
CHF 2.09 1 1 144 60 21 8 4 2 5

Table 2.1: Summary statistics for the duration of arbitrage opportunities for the
two JPY and two CHF transactions for the period 02/10/2005–27/10/2005. An
opportunity labelled as Xs lasted for more than X − 1 but less than X seconds.

position in USD and a short position in CHF.7 The trader may choose to unwind8 this

position immediately by converting USD into CHF and this transaction will cost the

amount by which the price has moved from the arbitrage price. Over a short time-

scale, this is likely to be 1–2 points (approximately 1.5–2 basis points). Incomplete

arbitrage transactions therefore typically cost a small number of basis points.

The extremely short time scales involved in these trades means that the physical

distance between the traders and the location where their trades are filled is important

in determining which trade arrives first and is completed at the arbitrage price. This

explains why a number of exchanges have begun to offer the possibility of locating

trading systems on their premises. A trader has a higher chance of completing an

arbitrage transaction for opportunities with longer durations because the arbitrage

prices remain active in the market for longer. When an arbitrage signal is received,

however, there is no way of knowing in advance how long the arbitrage will exist.

Over half of all arbitrage opportunities last for less than 1 second, so there is a high

probability that any signal that is traded on is generated by an opportunity of less

than a second. This includes many opportunities that last for only a few milliseconds.

For these opportunities there is a smaller chance of the transaction being completed

at an arbitrage price. For each attempted arbitrage, one cannot eliminate the risk

that one of the prices will move to an arbitrage-free price before the transaction is

completed.

2.4.3 Magnitudes

Given these risks, one possible criterion that could be used to decide whether or not

to trade is the magnitude of the apparent opportunity. If the value of the rate product

7In market parlance, a trader buying an asset is opening a long position and a trader selling an
asset is opening a short position.

8This is the closure of an investment position by executing the opposite transaction. For example,
if a trader has bought an asset A, they can unwind their position in A by selling the asset.
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is large, and thus it appears that a significant profit could potentially be gained, one

may decide that the potential reward outweighs the associated risks and execute the

arbitrage transactions. In this section we consider the magnitudes of the arbitrage

opportunities.

Basis point threshold 0 0.5 1 2 3 4 5 6 7 8 9 10

JPY
No. of arbitrages 17,314 5,657 1,930 220 50 21 7 3 1 1 1 0
Mean duration (s) 3.3 3.0 2.6 1.5 1.6 1.4 1.6 1.0 1.0 1.0 1.0 0

CHF
No. of arbitrages 10,018 2,376 649 119 37 20 15 7 6 6 6 5
Mean duration (s) 2.1 1.5 1.5 1.9 1.9 1.8 2.0 2.6 2.8 2.8 2.3 2.2

Table 2.2: The number and mean duration of arbitrage opportunities exceeding dif-
ferent thresholds for the two JPY transactions and two CHF transactions for the
period 02/10/2005–27/10/2005. A one basis point threshold corresponds to a rate
product of γ ≥ 1.0001.

Table 2.2 demonstrates that most arbitrage opportunities have small magnitudes,

with 94% less than 1 basis point for both the JPY and CHF. An arbitrage opportunity

of 1 basis point corresponds to a potential profit of 100 USD on a 1 million USD

trade. A single very large trade (or a large number of smaller trades) would thus be

required in order to realize a significant profit on such an opportunity. Large volume

trades are, however, often not possible at the arbitrage price. For example, consider

the transaction EUR→USD→JPY→EUR at a time when EUR/USDbid = 1.2065,

USD/JPYbid = 115.72 and EUR/JPYask = 139.60, resulting in γ = 1.000115903. If

there are only 10 million EUR available on the first leg of the trade at an arbitrage

price then the potential profit is limited to 1, 159 EUR. In practice, the amount

available at the arbitrage price may be substantially less than 10 million USD and

consequently the potential profit correspondingly smaller.

This calculation also assumes that it is possible to convert the full volume of

currency at an arbitrage price for each of the other legs of the transaction. In practice,

however, the volumes available on these legs will also be limited. For example, again

consider the case where there are 10 million EUR available at an arbitrage price on

the first leg of the above transaction. If the full 10 million are converted into USD,

the trader will hold 12.065 million USD. There may, however, only be 10 million USD

available at an arbitrage price on the next leg of the trade. In order for the full volume

to be traded at an arbitrage price, the trader should therefore limit the initial EUR

trade to 10/1.2065 = 8.29 million EUR. The volume available on the final leg of the

trade would also need to be considered in order to determine the total volume that
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can be traded at an arbitrage price. This volume and the total potential profit are

therefore determined by the leg with the smallest available volume.

Occasionally, larger magnitude arbitrage opportunities can occur. Table 2.2 shows

that, over the studied period, there are potential arbitrages of more than 9 basis points

for both currency groups, with a mean duration9 of in excess of 2 seconds for the large

CHF opportunities. This duration suggests that one would have stood a good chance

of completing an arbitrage transaction for one of these opportunities. However, this

mean was calculated using only six opportunities and so does not represent a reliable

estimate of the expected duration. The fact that these large opportunities occur

so infrequently (with only around 20 potential arbitrages in excess of 4 basis points

occurring for each transaction over the four week period analyzed) means that trading

strategies that only trade on these larger opportunities would need to make large

volume trades in order to realize significant profits. As we have already discussed

though, there is only ever a limited volume available at the arbitrage price.

2.4.4 Seasonal variations
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Figure 2.5: Daily arbitrage statistics for the period 02/10/2005–27/10/2005. Upper:
the number of arbitrage opportunities. Lower: mean duration of arbitrage opportu-
nities.

9Each mean duration represents an upper bound. This is because each opportunity labelled as
Xs may have existed for anywhere between X − 1 and X seconds, but in calculating the mean
duration we assume that it lasted for exactly X seconds.
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We now consider whether there is any seasonality in the number and duration

of arbitrage opportunities by investigating daily and hourly statistics. Figure 2.5

shows that the number of arbitrage opportunities per day and their mean duration

is reasonably uniform across days. However, Fig. 2.6 demonstrates that there is a

large amount of variation in these quantities for different hours of the day. Both the

JPY and CHF transactions show a particularly small number of opportunities, with a

large mean duration, between approximately 22:00 and 01:00, and a large number of

opportunities, with a short duration, between 13:00 and 16:00. In general, the hours

with larger numbers of arbitrage opportunities correspond to those with shorter mean

durations and vice versa.
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Figure 2.6: Hourly arbitrage statistics for the period 02/10/2005–27/10/2005. Upper:
the number of arbitrage opportunities. Lower: mean duration of arbitrage opportu-
nities.
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Table 2.3: Grey blocks indicate the hours corresponding to high liquidity for the
Asian, European and American markets.

These differences can be explained by the variation in liquidity throughout the

trading day. Table 2.3 shows the periods during which the Asian, European and
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American FX markets are at their most liquid. The period of highest liquidity is

from 08:00–16:00; over almost all of this period two of the markets are highly liquid

at similar time. The period of least liquidity is from around 22:00–01:00. The hours

with the largest number of arbitrage opportunities and the shortest mean durations

in Fig. 2.6 thus correspond to the periods of highest liquidity. This observation of

more arbitrage opportunities during the periods of highest liquidity seems counter-

intuitive but can be explained as follows. During liquid periods the bid-ask spread is

narrower (see Fig. 2.1) and prices move around at a higher frequency due to the large

volume of trading. This results in more price mis-alignments and consequently more

potential arbitrages. The high trade frequency, however, also ensures that the mis-

pricings are quickly traded away or removed and that any arbitrage opportunities are

short-lived. In contrast, during less liquid periods the spread is wider and the trading

volume lower which leads to fewer arbitrage opportunities. The smaller number of

traders available to correct any mis-pricings during less liquid times also results in

the arbitrages having longer durations.

2.4.5 Annual variations

The analysis so far has focused on a four week period in October 2005. We now

consider how the number and distribution of triangular arbitrage opportunities has

changed over the years by comparing results for the weeks 27/10/2003–31/10/2003,

01/11/2004–05/11/2004 and 17/10/2005–21/10/2005. These three weeks all fall at

the same time of year, so any seasonal factors are eliminated.

Transaction Year No. arbitrages
Percentage of opportunities Rate product statistics

1s 2s 3s 4s 5s > 5s mean stand. dev.
2003 4, 220 40 30 14 6 3 7 0.999625 4.32 × 10−4

JPY 2004 3, 662 49 28 12 5 3 3 0.999723 2.25 × 10−4

2005 2, 963 62 21 7 4 3 3 0.999758 2.17 × 10−4

2003 3, 590 41 29 13 6 4 7 0.999549 6.02 × 10−4

CHF 2004 3, 441 49 27 11 5 3 5 0.999663 3.54 × 10−4

2005 2, 672 64 20 8 3 1 4 0.999725 3.10 × 10−4

Table 2.4: Comparison of the number and percentage of arbitrage opportunities of
selected durations and the mean and standard deviation of the rate product for the pe-
riods 27/10/2003–31/10/2003, 01/11/2004–05/11/2004 and 17/10/2005–21/10/2005.
An opportunity labelled as Xs lasted for more than X − 1 but less than X seconds.

Table 2.4 shows that the number of arbitrage opportunities decreased from 2003–

2005 for the JPY and CHF transactions. This can be explained by the increasingly

wider use of electronic trading platforms and trading algorithms over this period.
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Figure 2.7: Comparison of the rate product distributions for the periods 27/10/2003–
31/10/2003, 01/11/2004–05/11/2004 and 17/10/2005–21/10/2005. Lower: distribu-
tions on a log-linear scale.

These systems enabled traders to execute trades faster and to react more quickly

to price changes, which in turn gave rise to increased trading efficiency, fewer mis-

pricings and fewer triangular arbitrage opportunities. Table 2.4 also demonstrates the

significant effect that this increased execution speed had on the duration of arbitrage

opportunities. From 2003–2005, the proportion of opportunities lasting less than 1

second increased from 40% to 62% for the JPY transactions and from 41% to 64%

for the CHF transactions; and the proportion of opportunities lasting in excess of 5

seconds halved for both sets of transactions.

The distributions in Fig. 2.7 and the distribution statistics in Table 2.4 provide

further evidence of the increased pricing efficiency of the FX market from 2003 to

2005. Over this period the distribution of rate products became concentrated in

a sharper peak, with a smaller standard deviation and mean closer to one, which

demonstrates that triangular parity held a larger proportion of the time.

2.5 Profitability

We provide further insights into the profitability of trading on triangular arbitrage

signals by running simulations to determine the profit or loss that could potentially be

achieved using different trading strategies. For the full time series of JPY and CHF
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rate products (over the period 02/10/2005–27/10/2005) we execute a simulated trade

each time γ exceeds some threshold amount γt. We consider the cases γt = 1, i.e.,

all arbitrage signals are traded on irrespective of their magnitude, and γt = 1.00005

and 1.0001, corresponding to thresholds of half and one basis points respectively. We

consider the following two scenarios for determining whether an arbitrage is filled:

(1) Each traded arbitrage is filled with a fixed probability P1.

(2) All arbitrages with a duration l ≥ 1 second are definitely filled. All opportunities

traded on with a length l < 1 second are filled with probability P2.

We consider that, for each completed arbitrage transaction, a profit determined by

the rate product at the corresponding time step is received and for each unfilled trans-

action a fixed loss, L, is incurred.10 We assume that each arbitrage opportunity with

a duration l ≥ 1 second can only be traded on once, at its initial value, because if the

simulated trader is left unfilled a competing trader must have been filled, resulting in

the opportunity being removed. It is further assumed that, for each filled transaction,

there is sufficient liquidity on each leg of the trade for it to be fully completed at the

arbitrage price.

Figure 2.8 shows the mean profit per trade for scenario (1), as a function of P1 and

L, for the JPY transactions. For a typical fixed loss per unfilled arbitrage of L = 1.5

(see Section 2.4.2), an 80% fill probability is required to just break-even. Even for

P1 = 1 the maximum potential profit is less than half a basis point per transaction

(about 50 USD on a 1 million USD trade).

We consider the total potential profit for the JPY transactions over the four week

period 02/10/2005–27/10/2005 by simulating a trade of 1 million EUR, each time

γ > γt, and we assume a loss of L = 1.5 basis points for each incomplete arbitrage

transaction. Figure 2.9 shows that for a 100% fill probability, and a trade threshold of

γt = 1, a total profit of just under 400, 000 EUR appears possible for both scenarios

(1) and (2). For higher values of γt, and a 100% fill probability, the potential profit

over the same period is smaller. The profit is smaller for higher γt because there are

fewer opportunities exceeding the thresholds, so fewer profit opportunities. The larger

mean profit possible for each opportunity exceeding γt is not sufficient to compensate

for their reduced frequency. For a fill probability of zero, the lower trade frequency

at higher thresholds limits the total possible loss relative to lower thresholds.

10A fixed loss for each unfilled transaction is unrealistic and means that it is not possible to reliably
estimate the volatility of the returns. It is, however, a reasonable first approximation.
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Figure 2.8: Mean profit/loss per trade (in basis points) as a function of the probability
of a transaction being filled at an arbitrage price and the loss incurred on missed
arbitrages for JPY transactions over the period 10/02/2005–10/27/2005. We assume
a trade threshold γ = 1 and scenario (1). The grey curve shows the break-even fill
probabilities. The probabilities are averaged over 100 simulations.

In order to achieve the 400, 000 EUR profit, it would have been necessary to stake

1 million EUR more than 17, 000 times. If we estimate transaction fees and settlement

costs at 2 EUR per trade, then each arbitrage transaction costs 6 EUR. The total

cost of 17, 000 transactions is then 102, 000 EUR, which is a significant proportion

of the potential profits. This profit is also likely to be a significant over-estimate.

In the simulations, we assumed that each arbitrage transactions is completed for

the full 1 million EUR initially staked. As discussed in Section 2.4.3, however, the

amount available at the arbitrage price is limited and may be less than this amount.

More importantly, a 100% fill probability is extremely unrealistic and in practice

the achievable fill probability will be significantly smaller. At a still unrealistic fill

probability of P2 = 0.8, for scenario (2), the potential profit is reduced to around

100, 000 EUR. This potential profit is already less than the estimated transaction

costs and there are additional infrastructure costs that also need to be considered.

2.6 Fill probabilities

Finally, we investigate the fill probabilities in more detail to provide more insight

into the chances of completing an arbitrage transaction. For scenario (1), consider a
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Figure 2.9: Total profit (in EUR) for JPY transactions over the period 02/10/2005–
27/10/2005. Each arbitrage transaction is traded with an initial currency outlay of 1
million EUR and each completed transaction is filled for the full traded volume. We
assume a fixed loss L = 1.5 basis points for each incomplete arbitrage transaction.
Left: scenario (1). Right: scenario (2). Error bars indicate the standard deviation
in the profit over 100 simulations. The standard deviations in the profit for P1 = 0,
P1 = 1, P2 = 0, and P2 = 1 are zero because the same arbitrage opportunities are
filled for each simulation.
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trading strategy in which a volume V is traded on each of Na arbitrage opportunities

exceeding a threshold γt over some time interval W . The total potential profit Π1

over this interval is then given by

Π1 = NaV [P1〈γ − 1|γ > γt〉 − (1 − P1)L] , (2.4)

where 〈γ − 1|γ > γt〉 denotes the average value of γ − 1 over the interval W given

that γ > γt, and the break-even fill probability P b
1 (found when Π1 = 0) is given by

P b
1 =

[

1 +
〈γ − 1|γ > γt〉

L

]−1

. (2.5)

The break-even fill probability P b
1 is therefore independent of the number of arbitrage

opportunities and decreases with increasing 〈γ − 1|γ > γt〉. This can be seen in Fig.

2.10 where the break-even fill probabilities are smaller for larger γt. For scenario (2),

we take Na = ng + n, where ng is the number of opportunities over W that last for

l ≥ 1 second, and n the number with l < 1 second. The total profit Π2 is then given

by

Π2 = ngV 〈γ − 1|γ > γt, l ≥ 1〉 + nV [P2〈γ − 1|γ > γt, l < 1〉 − (1 − P2)L] , (2.6)

and the break-even fill probability by

P b
2 =

[

1 − ng〈γ − 1|γ > γt, l ≥ 1〉
nL

] [

1 +
〈γ − 1|γ > γt, l < 1〉

L

]−1

. (2.7)

For this scenario, the break-even fill probability P b
2 therefore depends on the propor-

tion of arbitrage opportunities with length l ≥ 1, the mean value of the rate product

for opportunities with length l ≥ 1, and the mean rate product for opportunities with

l < 1.

Figure 2.10 shows break-even fill probabilities generated by trading simulations

and highlights the fact that P b
2 is lower than P b

1 , for the corresponding loss, and that

the break-even fill probabilities tend to be slightly lower for the CHF than for the

JPY transactions. This difference is most marked for scenario (2), with γt = 1.0001.

In this case, if a fixed loss of 2 basis points per unfilled arbitrage is assumed, a fill

probability of only 17% is needed to break-even.

Although this fill probability seems low, it would nevertheless be difficult to

achieve. Consider a strategy where a similar fill probability of 20% is required to

break-even. This implies that one would need to be filled on 1 in 5 of the arbitrage

opportunities traded on. If there are 5 market participants trading on each oppor-

tunity, each able to transact at the same speed, then this fill frequency is feasible.
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Figure 2.10: The fill probability required to break-even as a function of the loss in-
curred per incomplete arbitrage transaction. Upper: scenario (1). Lower: scenario
(2). Error bars indicate the standard deviation in the fill probability over 100 simu-
lations.
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However, in the FX market there are many more market participants than this com-

peting for each arbitrage opportunity, so to achieve this fill probability one would

need to identify and execute each arbitrage opportunity faster than most of these

competitors. These competitors are also likely to be continually striving to increase

their execution speeds in the electronic trading “arms race”. Given the costs asso-

ciated with staying ahead in this race, it would be extremely costly to maintain the

fastest execution speeds and to regularly beat the majority of other competitors to

the arbitrage prices over a prolonged period of time. The fill probabilities required

to realize the profits indicated in Fig. 2.9 are therefore very difficult to achieve and,

as a consequence, the profit levels are also extremely unrealistic.

The calculated fill probabilities also represent lower bounds of acceptability be-

cause to justify trading on an opportunity a trader would expect a reasonably high

expected profit and not simply to break-even. When one factors in costs such as

brokerage, the internet connections required to access the market, and the cost of

developing and supporting a sophisticated electronic trading system, the actual fill

probabilities necessary to achieve an acceptable level of profit would be substantially

higher than those calculated. It therefore appears that, although mis-pricings do ap-

pear in the FX market, an unfeasibly large fill probability would need to be achieved

over a prolonged period of time to realize any significant profits from them.

2.7 Summary

We have shown that triangular arbitrage opportunities exist in the FX market, but

the vast majority of these opportunities are less than 1 second in duration and 1 basis

point in magnitude. The longer, larger opportunities that do occur appear with a

significantly lower frequency. We showed that, somewhat counter-intuitively, more ar-

bitrage opportunities occur during periods of higher liquidity, but these opportunities

tend to be removed from the market very rapidly. The increased number of oppor-

tunities during liquid periods was attributed to the higher trading frequency, which

resulted in more mis-pricings, but also ensured that they were quickly corrected. We

have also shown that from 2003 to 2005 the market became increasingly efficient at

eliminating mis-pricings and explained this by the increased use of electronic trading

platforms, which enabled traders to react faster to price changes.

Finally, we used trading simulations to investigate the profitability of trading on

triangular arbitrage signals. Considering the strong competition for each arbitrage,

the costs of trading, and the costs required to maintain a technological advantage, it
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seems that a trader would need to beat other market participants to an unfeasibly

large proportion of arbitrage opportunities for triangular arbitrage to remain prof-

itable in the long-term. We therefore conclude that the FX market appears internally

self-consistent and these results provide a limited verification of FX market efficiency.

This chapter has also demonstrated the critical importance of using the correct

type of data to study financial markets. If one uses data that is inappropriate for

a particular analysis, it is easy to conclude that data artifacts represent meaningful

structure. For example, when indicative FX price data is used to investigate triangular

arbitrage, arbitrage opportunities appear to remain active in the market longer, and

to be more profitable, than when executable data is used.
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Chapter 3

A Principal Component Analysis
of Financial Market Correlations

In this chapter, we continue to investigate financial markets, but extend the analysis

to include assets from other major markets in addition to the FX market. We have

submitted a paper based on this work for publication [P5]. We return to the FX

market in Chapter 5.

3.1 Introduction

The global financial system is composed of a multitude of markets spread across

a range of geographic locations with a wide variety of assets traded in each mar-

ket. There is strong coupling between different financial markets such that the price

changes of particular assets can be driven not only by the price changes of assets

traded in the same market, but also by price changes of assets traded in other

markets. Because of the close relationships between different assets and markets,

a primary concern of market practitioners is estimating the correlations between the

changes in asset price time series. There are many reasons for wanting to understand

correlations in price movements; perhaps the most common motivation is for risk

management purposes. For a portfolio of assets, the likelihood of large losses can

be significantly higher when the assets held in the portfolio are correlated [176]; an

understanding of the correlation between different financial instruments can therefore

help in managing the risk associated with a portfolio. The standard approach for

representing the correlations of a group of financial assets is to calculate the linear

correlation coefficient between pairs of assets. However, for N assets, this results in
1
2
N(N −1) correlation coefficients, so simultaneous investigation of these interactions
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is difficult for even moderate N . Attaining an understanding of the market system

therefore necessitates some form of simplification.

In this chapter, we simplify the analysis of financial market correlations by ex-

tracting common features using PCA. We first coarse-grain the correlation matrix by

identifying the principal components (PCs) that account for a large proportion of the

variability of the system. We then characterize the evolving relationships between

the different assets by analyzing the correlations between the asset price times series

and PCs. By focusing on correlations between the price time series and PCs, we

significantly reduce the number of correlations that we need to consider to attain

an understanding of the system. Using this approach, we uncover notable changes

that occurred in financial markets and we identify the assets that were significantly

affected by these changes.

3.1.1 Components and factors

It has been widely observed that price time series for different financial assets display

similar characteristics and, because the prices often depend on the same economic

data and market signals, it is often hypothesized that financial time series can be

decomposed into common drivers or factors [296]. The aim of factor modelling in

finance is to try to identify these factors. Several approaches to factor modelling

are closely related to PCA and some use PCA as a tool for identifying factors [63].

Because of the close ties between the two techniques, we provide an overview of

factor modelling in this section. We highlight, however, that there is an important

difference between what we are trying to achieve using PCA and the objective of factor

modelling. In factor modelling, the aim is to identify a number of “fundamental”

market factors that drive asset prices; these factors can be unobservable and often

factor models incorporate random errors that represent the variability in the system

not explained by the factors. In contrast, we use PCA to produce a parsimonious

representation of market correlations and we make no assumptions about whether the

components that we identify correspond to fundamental market variables. In fact, it

is likely that the PCs are themselves a combination of several underlying factors.

3.1.1.1 Factor models

Factor models can be separated into two classes: confirmatory and exploratory. Al-

though this classification is slightly fuzzy, it helps to illustrate the different techniques.

Many of these models assume that the observed price series can be written as lin-

ear combinations of common factors. In confirmatory factor modelling, a number
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of indicator variables are selected that are posited to drive the observed price time

series and a factor model is constructed to test this prediction. There are two main

types of confirmatory factor models in finance [296]: macroeconomic and fundamen-

tal models. Macroeconomic factor models attempt to explain the behaviour of asset

returns using macroeconomic variables, such as interest rates and GDP growth rates.

The relationship between these indicator variables and the observed assets is usually

determined using linear regression. Fundamental factor models try to explain price

movements using fundamental properties of the assets; for example, using properties

such as market capitalization and industrial sector to explain equity price movements.

Again, the relationships between the indicator variables and the observed assets are

usually determined using linear regression [63, 296].

3.1.1.2 Principal component and factor analysis

The second class of factor models are exploratory methods. In contrast to confir-

matory models, exploratory methods make no assumptions about which variables

correspond to the underlying factors; instead, the factors are estimated directly from

the asset return time series. Two widely used exploratory techniques are factor anal-

ysis1 (FA) and PCA [63, 301]. The two names are often used interchangeably in the

literature and the two approaches share the common goal of reducing a set of N

observed variables to a set of m < N new variables [301]. However, there are clear

distinctions between the two techniques.

In FA the aim is first to identify factors that are common to two or more variables

and these factors can either be correlated or uncorrelated. In addition to the common

factors, a set of unique factors are also identified that are specific to each variable and

orthogonal to each other and to all of the common factors [103]. In PCA the PCs are

identified on the basis of variance. The first component accounts for as much of the

variance in the system as possible, the second as much of the remaining variance as

possible, and so on. In PCA the components are chosen such that they are mutually

orthogonal and account for all of the variability in the system; there are no unique

components specific to particular variables.

The differences between PCA and FA can be better understood by considering

the decomposition of the covariance matrix of the observed variables in the two cases.

If we let Z represent an N × T matrix of T observations of the return time series of

1Note the distinction between factor modelling and factor analysis – factor analysis is a type of
factor modelling.
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N assets, for FA the covariance matrix ΣZ of Z can be written as

ΣZ = ΩFΣFΩT
F − ε2, (3.1)

where ΩF is a matrix of common factor weights, ΣF is the covariance matrix of the

common factors, ε2 is a diagonal matrix of unique factor variances, and T indicates a

matrix transpose. Using PCA the covariance matrix ΣZ can be written as

ΣZ = ΩΣYΩT , (3.2)

where Ω is the matrix of PC coefficients and ΣY is the covariance matrix of the

principal components.2 Equations 3.1 and 3.2 highlight the key differences between

the two models. The additional term ε2 in the FA equation allows for specific factors

that are unique to particular observed variables [297]. In contrast, PCA does not

explicitly allow for unique factors, instead the components represent both unique and

common variance. The components identified using PCA therefore account for all of

the variability of the system, whereas the common factors in FA often do not.

There is some debate on the relative merits of FA and PCA for factor modelling

and on whether the outputs of the two methods are equivalent [297,301,307]. Because

it is not our objective to use PCA to derive a factor model in this chapter, it is not

necessary to perform a comprehensive comparison of the two techniques. Neverthe-

less, it is instructive to highlight some of the main performance differences. It is often

argued that one of the major advantages of PCA over FA is the relative simplicity of

the process of fitting the model [160, 297] and, in fact, some FA techniques use PCA

as just a first step in the process of identifying the factors [103]. Another argument

used in support of PCA is that it is able to identify the elements in the matrix Ω (to

within a sign), whereas the entries in ΩF cannot be determined exactly [297]. Despite

these differences, it has been noted that the two methods produce very similar results

if the error terms in the factor model all have the same variance [66, 72]. In fact, it

can be seen from Eqs. 3.1 and 3.2 that when the unique variances are zero, the two

models are equivalent.

In this chapter, we use PCA in the same way that it is employed in factor mod-

elling: to decompose the correlation matrix of multiple assets into a few explanatory

variables. However, in contrast to factor modelling, we use PCA simply to charac-

terize the changing correlation structures within markets and do not assume that the

components that we identify are fundamental market factors. To emphasize this, we

refer to components rather than factors.

2We discuss this equation in more detail in Section 3.3.
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PCA is a well established tool in data analysis for generating lower-dimensional

representations of multivariate data [159] and has provided useful insights in a diverse

range of fields, including chemistry, e.g., [89], genetics, e.g., [245], psychology, e.g.,

[252], and astrophysics, e.g., [149]. In finance, PCA has been used to identify common

factors in international bond returns, e.g., [81, 237] and in equity returns, e.g., [159,

296], and has been applied to other problems, such as arbitrage pricing theory, e.g.,

[66, 72], portfolio theory, e.g., [298], and to produce market indices, e.g., [101].

3.1.2 Random matrix theory

PCA is closely linked to random matrix theory (RMT), which was originally devel-

oped by Wigner to deal with the statistics of the energy levels of many-body quantum

systems [308]. Wigner replaced the Hamiltonian of the system under investigation by

an ensemble of random Hamiltonians (given by real symmetric matrices with inde-

pendent random elements), which were considered to describe the generic properties

of the system [137]. Using this method he successfully described the spectra of atomic

nuclei and complex atoms. Subsequently, RMT has become an important tool in a

wide range of other areas, including quantum field theory and two-dimensional grav-

ity [137, 206], and recently in finance, e.g., [176, 239].

The standard financial approach is to compare the eigenvalues and eigenvectors of

an empirical correlation matrix of asset returns with correlation matrices generated

using time series of randomly distributed returns and with analytic distributions from

RMT. The bulk of the eigenvalues of empirical correlation matrices are found to fall

within the range predicted by RMT, which is usually taken as an indication that to

a large extent the correlation matrix is random and dominated by noise. Further, it

has been found that the smallest eigenvalues of the empirical correlation matrix are

most sensitive to noise and, because the eigenvectors corresponding to the smallest

eigenvalues are used to determine the least risky portfolios in Markowitz portfolio

theory [199], this has implications for risk management [166, 176, 238, 239]. For ex-

ample, if one holds a portfolio of two assets with highly correlated price movements,

a decrease in the value of one of the assets is likely to be accompanied by a decrease

in value of the other asset. If the assets in a portfolio are highly correlated, there is

therefore a higher risk of a significant decrease in the portfolio value. This risk would

be lower if there were a small correlation between the asset values. An understanding

of correlations in asset price movements is therefore an important part of successful

risk management and optimal portfolio selection [166,176,199,238,239]. The degree
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to which it is possible to diversify risk is intrinsically linked to the number of com-

mon factors. If there are only a few significant factors driving markets, one would

expect asset prices to be highly correlated and for it to be more difficult for market

practitioners to hold diversified portfolios and consequently to lower their investment

risk.

Prior studies of financial market price data using RMT and PCA have focused on

specific markets. For example, there is a large body of work analyzing equity markets,

e.g., [166, 176, 238, 239], and there have also been investigations of emerging market

equities, e.g., [64,235,309], the FX market, e.g., [82], and bond markets, e.g., [81,237].

Most prior studies only analyze a single correlation matrix and do not investigate the

temporal evolution of correlations. However, changes in correlations are of critical

importance in many financial applications; for example, changes in the extent to

which assets held in a portfolio are correlated can have a significant impact on the

risk associated with the portfolio. The work in this chapter differs from prior studies

by investigating a diverse range of asset classes and by studying the evolution of the

correlations between these assets. By studying the time dynamics of the correlations,

we uncover periods during which there were major changes in the correlation structure

of markets and identify the assets affected by these changes.

3.2 Data

3.2.1 Description

We study correlations for a wide variety of markets, but several factors limit the

assets that we can include. For example, for some time series there are a large

number of missing data points. One solution to this problem is to fill-in the missing

data by interpolating between the data points that we do have, but this approach

is inappropriate when there are several consecutive missing data points. A second

reason for excluding time series is that they begin too recently. In this study, we use

time series beginning in January 1999 because this time interval contains periods of

very different market behaviour that we can compare. However, data is only available

for some instruments for a few years. For example, although some emerging market

corporate bond indices are now published, they have only been published since 2005

and consequently we do not include them. Other time series are complete and cover

the full time period, but are excluded because of the nature of the data. For example,
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we exclude any exchange rate that has been pegged3 for any of the studied period.

The peg implies that the value of the pegged exchange rate can be determined using

the rate (or rates) to which it is pegged, so the pegged rate is redundant.

Taking all of these factors into account, we include time series for 98 financial

products from all of the major markets. This includes 25 developed market equity

indices, 3 emerging market equity indices, 4 corporate bond indices, 20 government

bond indices, 15 exchange rates, 9 metals, 4 fuel commodities, and 18 other com-

modities. (See Table A.1 in Appendix A for a description of all of the assets that we

include.) For many markets, we study indices rather than specific assets so that we

have an aggregate view of the market.4 For all of the commodities, we use futures5

contracts because commodities are most widely traded in the futures market. How-

ever, for single futures contracts, the price time series will have a discontinuity at the

contract expiry date. To minimize this discontinuity, we use the “Generic 1st futures”

contract for each commodity, which is the price of the nearest dated futures contract

(i.e., the contract with the closest expiry date).

We include assets from a range of geographical regions, so many are traded during

different hours of the day. For example, stocks included in the Nikkei 225 are traded

on the Tokyo Stock Exchange, which operates between midnight and 6 AM GMT,

whereas stocks included in the FTSE 100 index are traded on the London Stock

Exchange, which operates between 8 AM and 4:30 PM GMT. To minimize any effects

resulting from the non-synchronicity of the price time series for markets from different

time zones, we use weekly price data. We take the weekly price of an asset to be the

last price posted each week. In this study, we investigate the period from 08/01/1999–

01/01/2010 and we have 575 prices for each asset.

3A pegged exchange rate is an exchange rate regime wherein a currency’s value is matched to
the value of a single currency or a basket of currencies.

4By using indices the data is also representative of a larger set of assets than if we included time
series for individual assets. For example, if we studied individual equities, we would need to include
several stocks from each industrial sector to obtain a representative cross-section of the market;
however, we can only include a limited number of assets in the analysis. We discuss the reasons for
this in Section 3.2.3.

5A future is a standardized contract to buy or sell an asset at a specified future date at a price
agreed on the day that the contract is entered in to.
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3.2.2 Returns

We denote the price of asset i at discrete time t as pi(t), i = 1, . . . , N , and define a

logarithmic return zi(t) for asset i between consecutive time steps as6

zi(t) = ln

[

pi(t)

pi(t − 1)

]

. (3.3)

In Fig. 3.1, we show that there are large differences between the return distributions

for assets from different classes. For example, returns for U.S. government bonds are

concentrated in a sharp peak around zero, whereas the distribution for oil has much

more weight in the tails as a result of regular large moves in the oil price.

In calculating a correlation coefficient for a pair of time series, it is important to

ensure that the time series are stationary [134]. We study returns rather than prices

because, in general, return time series are close to stationary whereas price time series

are not [73]. This can be demonstrated by considering the autocorrelation function

(acf) of the two types of time series. The autocorrelation αi of a time series zi is given

by

αi(τ) =

∑T−τ
t=1

[

zi(t) − 〈zi〉
][

zi(t + τ) − 〈zi〉
]

∑T
t=1

[

zi(t) − 〈zi〉
]2 , (3.4)

where 〈· · · 〉 indicates a time average over T − τ returns and τ is the lag between time

steps over which the autocorrelation is calculated. For stationary time series, the acf

decays rapidly with increasing lag, but this is usually not the case for non-stationary

series [73]. In Fig. 3.2(a), we demonstrate for the EUR/USD exchange rate that the

return time series acf decays rapidly, whereas the price time series decays slowly. In

Fig. 3.2(b), we show that the return time series for all of the studied assets decay

rapidly, with most values falling within the 95% confidence bounds for Gaussian white

noise.7 The rapid decay of the acfs of the return time series suggests that the return

process is stationary, which implies that these time series are suitable for investigating

market correlations.

6An alternative return is the arithmetic return which is defined as za
i (t) = [pi(t)−pi(t−1)]/pi(t−

1). This is equal to the first term in the Taylor expansion of the logarithmic return, so arithmetic and
logarithmic returns are approximately equal for small returns. Logarithmic returns are, however,
often used instead of arithmetic returns because logarithmic returns are symmetric [73]. For example,
an investment of £100 that yields an arithmetic return of 50% followed by an arithmetic return of
-50% results in £75. In contrast, an investment of £100 that yields a logarithmic return of 50%
followed by an logarithmic return of -50% results in £100.

7We note that there are two spikes in the acf for frozen pork bellies (PB1) at 26 and 52 week
lags, which suggests that there is an interesting periodicity in this return time series.
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Figure 3.1: Observed return distributions for the period 08/01/1999–24/07/2009.
We show the S&P equity index (SPX), a U.S. government bond index (USGATR),
a AA-rated corporate bonds index (MOODBAA), the sterling-dollar exchange rate
(GBP/USD), gold (XAU), and crude oil futures (CO1).
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Figure 3.2: a) Comparison of the autocorrelation function for the EUR/USD price
(upper green line) and return (lower blue line) time series. The horizontal red lines
show the 95% confidence intervals assuming Gaussian white noise. b) Autocorrelation
functions for all of the studied return time series. The horizontal red lines show the
95% confidence intervals assuming Gaussian white noise.
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3.2.3 Correlations

To simplify the notation for the definition of the empirical correlation matrix, we

define a standardized return as

ẑi(t) =
zi(t) − 〈zi〉

σ(zi)
, (3.5)

where σ(zi) =
√

〈z2
i 〉 − 〈zi〉2 is the standard deviation of zi over a time window of

T returns and 〈· · · 〉 indicates a time average over T . We represent the standardized

returns as an N × T matrix Ẑ, so the empirical correlation matrix R is given by

R =
1

T
ẐẐT , (3.6)

and has elements r(i, j) that lie in the interval [−1, 1]. Note that, because we have

standardized the time series, the correlation matrix R of returns Ẑ is equal to the

covariance matrix Σ
Ẑ

of Ẑ.

We create an evolving sequence of correlation matrices by rolling the time window

of T returns through the full data set. The choice of T is a compromise between

overly noisy and overly smoothed correlation coefficients [227, 229], but is usually

chosen such that Θ = T/N ≥ 1.8 In this study, we fix T = 100 (each window then

contains just under two years of data and Θ = 1.02) and we roll the time window

through the data one week at a time. By only shifting the time window by one data

point, there is a significant overlap in the data contained in consecutive windows;

however, this approach enables us to track the evolution of the market correlations

and to identify time steps at which there were significant changes in the correlations.

The choice of T results in 452 correlation matrices for the period 1999–2010.

3.2.3.1 Correlations for all assets

In Fig. 3.3, we show the distribution of empirical correlation coefficients aggregated

over all time windows. To highlight any interesting features in the correlations, we

compare the distribution to corresponding distributions for simulated random returns

and randomly shuffled returns. We generate shuffled data by randomly reordering

the full return time series for each asset independently. This process destroys the

temporal correlations between the return time series, but preserves the distribution of

returns for each series. We then produce correlation matrices for the shuffled returns

by rolling a time window of T returns through the shuffled data and calculating a

8We discuss the compromise between overly noisy and overly smoothed correlations in more detail
in Section 5.2.2
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correlation matrix for each position of the window. We produce simulated data by

independently generating N time series of returns (where each series is the same

length as the original data) whose elements are drawn from a Gaussian distribution

with mean zero and unit variance. We again roll a time window of length T through

the data and calculate a correlation matrix for each window.

Figure 3.3 shows that the distribution of correlation coefficients for the market

data is significantly different to the two random distributions, with more large positive

and negative correlations for market returns. The differences between the distribu-

tions demonstrate that there are temporal correlations between returns for financial

assets that are incompatible with the random null models that we consider.

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

r

ob
se

rv
ed

 p
ro

ba
bi

lit
y

 

 

observed
shuffled
simulated

Figure 3.3: Distribution of correlation coefficients r(i, j) aggregated over all time
windows for the observed, shuffled and simulated data.

3.2.3.2 Intra-asset-class correlations

Figure 3.3 shows the distribution of correlations between the return time series of

all assets, but it is instructive to disaggregate this distribution and to consider only

correlations between assets in the same class. In Fig. 3.4 we show that there are clear

differences in the intra-class correlations for different assets. For example, corporates

bonds and government bonds tend to be highly correlated, whereas many of the

assets within the “other commodities” class are uncorrelated (which is unsurprising

given the variety of commodities that we include in this class). The distributions

of correlation coefficients for all of the asset classes deviate from the distributions
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expected for random returns. The deviations from random distributions imply that

financial market correlation matrices contain structure that warrants investigation.
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Figure 3.4: The distribution of correlation coefficients r(i, j) between the return time
series for assets within each class aggregated over all time windows.

3.3 Principal component analysis

We investigate the structure of the correlation matrices using PCA. The aim of PCA

is to find the linear transformation Ω that maps a set of observed variables Ẑ into a

set of uncorrelated variables Y [159]. We define the N × T matrix Y as

Y = ΩẐ, (3.7)

where each column yk (k = 1, . . . , N) corresponds to a PC of Ẑ and the transformation

matrix Ω has elements ωij. The first row ω1 of Ω (which contains the first PC

coefficients) is chosen such that the first PC y1 is aligned with the direction of maximal

variance in the N -dimensional space defined by Ẑ. Each subsequent PC accounts for

as much of the remaining variance of Ẑ as possible, subject to the constraint that the

ωk are mutually orthogonal. We further constrain the vectors ωk such that ωkω
T
k = 1

for all k.

The correlation matrix R is an N ×N diagonalizable, symmetric matrix that can

be written in the form

R =
1

T
EDET , (3.8)
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where D is a diagonal matrix of eigenvalues βk and E is an orthogonal matrix of its

eigenvectors. It can be shown [159] that the eigenvectors of the correlation matrix

correspond to the directions of maximal variance such that Ω = ET and the PCs are

easily found through the diagonalization in Eq. 3.8.9 We note that the signs of the

PCs are arbitrary; if the sign of every coefficient in a component yk is reversed, the

variance of yk and the orthogonality of ωk with all of the other eigenvectors does not

change.

3.3.1 Eigenvalues

In Section 3.1.2, we highlighted the close links between RMT and PCA. A standard

financial application of RMT is to compare the eigenvalues of the correlation matrix

of market returns with the distribution of eigenvalues for random matrices, e.g., [176,

239]. Any deviations from the predictions of RMT are usually considered to indicate

non-random, and potentially insightful, structure in the correlation matrix [176,239].

The correlation matrix for N mutually uncorrelated time series of length T with

elements drawn from a Gaussian distribution is a Wishart matrix [176, 239]. In the

limit N → ∞, T → ∞, and with the constraint that Θ = T/N ≥ 1, the probability

density function ρ(β) of the eigenvalues β of such correlation matrices is given by [269]

ρ(β) =
Θ

2πσ2(Ẑ)

√

(β+ − β)(β− − β)

β
, (3.9)

where σ2(Ẑ) denotes the variance of the elements of Ẑ, and β+ and β− are the maxi-

mum and minimum eigenvalues and are given by

β± = σ2(Ẑ)

(

1 +
1

Θ
± 2

√

1

Θ

)

. (3.10)

When Θ = 1, the lower bound of the range of eigenvalues β− = 0, the upper bound

β+ = 4σ2(Ẑ), and as β → β− = 0, the density of eigenvalues ρ(β) diverges as

∼ 1/
√

β. The above results are only valid in the limit N → ∞; for finite N , the

boundaries of the eigenvalue distribution are blurred with a non-zero probability of

finding eigenvalues larger than β+ and smaller than β−. For the standardized return

matrix Ẑ that we investigate, σ2(Ẑ) = 1 so β+ = 4.

9PCA is sometimes performed on the covariance matrix rather than the correlation matrix.
However, if there are large differences in the variances of the time series used as inputs in the PCA,
the variables with the largest variances will tend to dominate the first few PCs when the covariance
matrix is used. Figure 3.1 shows that there are differences in the variances of the returns for different
assets, so we use the correlation matrix. Of course, the correlation matrix is simply the covariance
matrix for standardized variables.
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In Fig. 3.5, we compare the eigenvalue distribution for market data (aggregated

over all time windows) with the distributions for shuffled and simulated data. In

Fig. 3.5(a), we show that the eigenvalue distribution for market correlations differs

from that of random matrices.There are many eigenvalues larger than the upper bound

β+ = 4 predicted by RMT (with several eigenvalues almost 10 times as large as the

upper bound). In prior studies of equity markets, the eigenvector corresponding to

the largest eigenvalue has been described as a “market” component, with roughly

equal contributions from each of the N equities studied, and the eigenvectors cor-

responding to the other eigenvalues larger than β+ have been identified as different

market sectors [176,239]. In Section 3.5, we discuss the interpretation of the observed

eigenvectors with eigenvalues β > β+. For now, we simply note that the deviations

of the empirical distribution of eigenvalues from the predictions of RMT again im-

ply that the correlation matrices contain structure that is incompatible with the null

models that we consider.

In Figs. 3.5(b) and (c), we illustrate that the distributions for shuffled and simu-

lated data are very similar and that they agree very well with the analytical distribu-

tion given by Eq. (3.9) over most of the range of β. In particular, both distributions

have an upper bound close to the theoretical maximum β+ = 4. However, for Θ ≈ 1.02

(the value that corresponds to the selected T and N), the observed distribution of

eigenvalues for random data does not fit the distribution in Eq. (3.9) as β → 0. For

both the simulated and shuffled data, we observe a much higher probability density

near β = 0 than that predicted by RMT. The high probability density near zero is

a result of the fact that T ≈ N . When we simulate eigenvalue distributions for data

with T ≫ N , we observe a much smaller probability density near zero. In Figs. 3.5(b)

and (c), we also show the theoretical distribution for Θ = 1. In this case, ρ(β) diverges

as β → 0, which fits the randomly generated distributions reasonably well.

3.3.2 Eigenvectors

We now investigate the distribution of the elements ωij (the PC coefficients) of the

eigenvectors of the correlation matrices. We denote the ith element of the kth eigen-

vector as ωk(i) and use the standard approach of normalizing each eigenvector such

that
∑N

i=1 ωk(i)
2 = N [176,238,239]. Correlation matrices R are real symmetric ma-

trices, so we compare the eigenvector properties of the matrices R with those for real

symmetric random matrices. Such random matrices display the universal properties

of the canonical ensemble of matrices known as the Gaussian orthogonal ensemble
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Figure 3.5: The distribution of eigenvalues β of the correlation matrices aggregated
over all time windows for (a) market (b) shuffled, and (c) simulated data. In (b) and
(c), we show the eigenvalue probability density functions for random matrices given
by Eq. 3.9 for Θ = 1.02 (solid red line) and Θ = 1 (dashed green line). The insets
show the distributions of the largest eigenvalues. The distributions for shuffled (b)
and simulated data (c) both have an upper bound close to the theoretical maximum
β+ = 4.
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(GOE) [238,239]. For the GOE, the probability density ρ(ωk) of the elements of the

kth eigenvector is a Gaussian distribution with mean zero and unit variance [137].

In Fig. 3.6, we show the distribution of elements of the eigenvectors k = {1, . . . , 6}
(the six components with the largest eigenvalues), k = {25, 40, 50, 75} (whose eigen-

values lie within the interval [β−, β+] for random matrices), and k = {97, 98} (the two

components with the smallest eigenvalues). We aggregate the distributions for each

eigenvector over all time windows; however, the sign of each eigenvector is arbitrary so,

to ensure that the signs of the eigenvectors are consistent through time, we choose the

sign of the kth eigenvector ωt
k at time step t to maximize

∑N
i=1 sgn[ωt−1

k (i)] sgn[ωt
k(i)],

where sgn[x] is the sign function.10

Figure 3.6 shows that the RMT distribution closely matches the distributions for

shuffled and simulated data, but there are differences between these distributions

and the distributions for the market correlation matrices. These differences are most

pronounced for the first and second PCs; in particular, there are asymmetries in

the distributions for market data that are not present in the random distributions.

The eigenvector distributions for eigenvalues within the interval [β−, β+] also deviate

from the predictions of RMT, which contrasts with the results of similar studies of

equity markets. In Refs. [176, 238], the distributions of elements of the eigenvectors

corresponding to eigenvalues falling within the interval [β−, β+] were found to fit a

Gaussian distribution, which was taken as an indication that these eigenvectors did

not contain any information [176]. However, the eigenvector distributions that we

observe for eigenvalues in the interval [β−, β+] have excess kurtosis compared with a

Gaussian distribution. A key difference between the analysis that we present and prior

studies is that we investigate multiple asset classes, whereas prior studies focused on

a single type of asset. The addition of inter-asset-class correlations may explain the

differences that we observe in the eigenvector distributions.

3.4 Temporal evolution

In Sections 3.3.1 and 3.3.2, we analyzed aggregate results for all time steps. The

results imply that the financial market correlation matrices that we study contain

structure that is incompatible with the random null models that we consider. We

now investigate the evolution of this structure through time.

10That is, for each time step we perform the two summations
∑N

i=1
sgn[ωt−1

k (i)] sgn[ωt
k(i)] and

∑N

i=1
sgn[ωt−1

k (i)] sgn[−ωt
k(i)] and choose whichever of −ωt

k or ωt
k results in the largest value for the

sum.
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Figure 3.6: The distribution ρ(ωk) of the elements ωk(i) of the i = 1, . . . , N elements
of the kth eigenvector aggregated over all time windows. We show the distributions
for k = 1, . . . , 6 (the six eigenvectors with the largest eigenvalues), k = 25, 40, 50, 75
whose eigenvalues fall within the range [β−, β+] predicted by RMT, and k = 97, 98
(which have very small eigenvalues). The red line histograms show the equivalent
distributions for shuffled data and the green lines show the distribution predicted by
RMT.
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3.4.1 Proportion of variance

We begin by investigating the eigenvalues of the correlation matrices. We can write

the covariance matrix ΣY for the PC matrix Y as

ΣY =
1

T
YYT =

1

T
ΩẐẐT ΩT = D. (3.11)

where D is the diagonal matrix of eigenvalues β. The total variance of the returns Ẑ

for the N assets is then given by

N
∑

i=1

σ2(ẑi) = tr(Σ
Ẑ
) =

N
∑

i=1

βi =

N
∑

i=1

σ2(yi) = tr(D), (3.12)

where Σ
Ẑ

is the covariance matrix for Ẑ and σ2(ẑi) is the variance of the vector ẑi

of returns for asset i. The proportion of the total variance in Ẑ explained by the kth

PC is then given by
σ2(yk)

∑N

i=1 σ2(zi)
=

βk

β1 + . . . + βN

=
βk

N
, (3.13)

i.e., the ratio of the kth largest eigenvalue βk of the correlation matrix R to the number

of assets studied N is equal to the the proportion of the variance accounted for by

the kth PC.

In Fig. 3.7 we show the fraction of the variance βk/N accounted for by the first

five PCs (k = 1, . . . , 5) as a function of time. From 2001–2004 the fraction of the vari-

ance explained by the first PC increased; between 2004 and 2006 it decreased before

gradually increasing again with a sharp rise as the week including 15th September

2008 entered the rolling time window. This was the day that Lehman Brothers filed

for bankruptcy and Merrill Lynch agreed to be taken over by Bank of America. The

variance explained by the first PC peaks as the week ending 5th December 2008 en-

ters the rolling window (which was the week during which the National Bureau of

Economic Research officially declared that the U.S. was in recession) at which point

it accounts for nearly 40% of the variance in Ẑ.

The amount of variance in market returns explained by a single component is

quite striking and demonstrates that there is a large amount of common variation

in financial markets; this highlights the close links between different assets. The in-

crease in the variance accounted by the first PC between 2001 and 2010 also implies

that markets have become more closely related in recent years. In particular, the

significant rise in the variance of the first PC following the collapse of Lehman Broth-

ers demonstrates that markets became more correlated during the period of crisis

following the failure of this major bank.
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Although the changes in the variance accounted for by the higher PCs are smaller

than the changes for the first PC, the variance explained by the second and third

PCs appears to be anti-correlated with the variance explained by the first PC. This

is expected because the total variance is constrained to sum to N , so when the

first PC accounts for a higher proportion, less remains to be explained by the other

components.

It is also instructive to consider the combined variance explained by the first few

PCs. In 2001 the first twelve PCs accounted for approximately 65% of the variance of

market returns; by 2010 only five PCs explained the same proportion of the variance.

The fact that only a few components account for such a large proportion of the

variance in market returns highlights the close ties between different markets. The

larger amount of common variance also suggests that market correlations can be

characterized by fewer than N components.
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Figure 3.7: Fraction of the variance in Ẑ accounted for by each of the first five PCs
as a function of time. The highest line shows the variance accounted for by the first
PC, the next highest line the variance accounted for by the second PC, and so on.
The date axis shows the date of the last data point lying in each time window.

3.4.2 Significant principal component coefficients

An increase in the variance accounted for by a PC could be the result of increases in

the correlations amongst only a few assets (which then have large PC coefficients) or
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a market-wide effect in which many assets begin to make significant contributions to

the component. This is an important distinction because the two types of changes

have very different financial implications. For example, in optimal portfolio selection,

when correlations between all assets increase it becomes much more difficult to reduce

risk by diversifying across different asset classes. In contrast, increases in correlations

within an asset class that are not accompanied by increases in correlations between

asset classes have a less significant impact on diversification.

We use the inverse participation ratio (IPR) [238] to investigate temporal changes

in the number of assets that make significant contributions to each component. The

IPR is often applied in localization theory [137, 238] in which it is related to the

probability for a quantum particle to remain at a given site for infinite time [115]. In

the current context, the IPR Ik of the kth PC ωk is defined as11

Ik =

N
∑

i=1

[ωk(i)]
4. (3.14)

The IPR can be better understood by considering two limiting cases: (1) an eigenvec-

tor with identical contributions ωk(i) = 1/
√

N from all N assets has Ik = 1/N ; (2)

an eigenvector with a single component ωk(i) = 1 and remaining components equal

to zero has Ik = 1. The IPR quantifies the reciprocal of the number of elements that

make a significant contribution to each eigenvector. For ease of interpretation, we

define a participation ratio (PR) as 1/Ik. A large PR for a PC indicates that many

assets are contributing to it.

In Fig. 3.8(a), we show the PR of the first three PCs as a function of time. The PR

of the first PC increases from 2001–2010, with sharp increases when the weeks ending

12th May 2006 and 19th September 2008 enter the rolling time window. The second

increase is a result of the market turmoil that followed the collapse of Lehman Brothers

and occurs at the same time as a significant increase in the variance accounted for by

the first PC (see Fig. 3.7). The first increase is largely attributable to surging metal

prices. During the week ending 12th May 2006, the price of gold rose to a 25 year

high, reaching over $700 per ounce, and the prices of several other metals also rose to

record levels: platinum and copper reached all time highs; aluminium hit an 18-year

peak; and silver prices rose to their highest levels since February 1998. In addition,

during the same week, corporate bond prices reached a 2 year high and the price of

emerging market equities reached record levels. Although these events resulted in a

11We now normalize the eigenvectors such that ΣN
i=1

ωk(i)2 = 1.
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significant increase in the PR of the first PC, this increase was not accompanied by

a sharp rise in the variance explained by this component.

The sharp rise in the PR of the first PC following the collapse of Lehman Brothers

implies that many different assets were highly correlated during this period of market

turmoil. Based on the value of the PR, over 70% of the assets that we study signif-

icantly contribute to the first PC after Lehman’s collapse. To test the significance

of the PR of the first PC, in Fig. 3.8(b) we compare it to the corresponding PR for

random returns. Figure 3.8(b) shows that between 2006 and 2010 the PR of the

observed returns was significantly larger than the PR expected for random returns.

This demonstrates the strength of the correlations between a wide range of different

assets during this period.

We observe very different behaviours for the evolution of the PRs of the higher

components. For example, between 2001 and 2003 the PR of the second PC doubles;

it then fluctuates around the same level until the collapse of Lehman Brothers, at

which point it decreases sharply. Similarly, the PR of the third PC increases from

2001 until Lehman’s collapse when it also falls sharply. This suggests that following

the collapse of Lehman Brothers the first PC influences a large number of assets at the

expense of higher components. The dominance of a single component again implies a

large amount of common variance in asset returns and further suggests that the key

market correlations can be described using only a few PCs.

3.4.3 Number of significant components

We now try to determine how many PCs are needed to describe the main market

correlations. PCA is widely used to generate lower-dimensional representations of

multivariate data in which the first few “significant” components are retained and the

remaining components discarded [159]. Many heuristic methods have been proposed

for determining the number of significant PCs, but there is no widespread agreement

on the optimal approach [153].

We use two alternative methods to determine the number of significant PCs.

The first is the Kaiser-Guttman criterion [143], which assumes that a component is

significant if its eigenvalue β > 1/N . Any component that satisfies this criterion

accounts for at least a fraction (1/N) of the variance of the system. It is considered

significant because it is assumed to summarize more information than any single

original variable. In the second method, we compare the observed eigenvalues to the

eigenvalues for random data. This method can be understood by considering the

scree plot shown in Fig. 3.9(a). A scree plot shows the magnitude of the eigenvalues
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Figure 3.8: The participation ratio [Ik]−1 as a function of time for (a) the three PCs
with the largest variance (k = 1, 2, 3) (b) the PC with the largest variances (k = 1).
The horizontal solid line (green) shows the mean IPR for 100,000 simulations of
randomized returns with T = 100 and N = 98 and the dashed horizontal lines (red)
show the one standard deviation error bars.
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as a function of the eigenvalue index, where the eigenvalues are sorted such that

β1 > β2 > . . . > βN ; the left most data point in a scree plot shows the magnitude

of the largest eigenvalue and the right most the smallest eigenvalue. The number of

significant PCs is considered to be equal to the number of eigenvalues in the scree

plot for which the eigenvalue for the observed data is larger than the corresponding

eigenvalue for random data.

In Figs. 3.9(b) and (c), we show the number of significant components as a function

of time calculated using the Kaiser-Guttman criterion and the scree plot technique,

respectively. There are large differences in the number of significant components iden-

tified using the two approaches, but both agree that the number decreased between

2001 and 2010. The discrepancies in the results for the two methods imply that we

cannot reliably determine the exact number of significant PCs; however, the similar

trends provide evidence that the number of significant components decreased between

2001 and 2010. This again implies that markets have become more closely related in

recent years. Both methods also agree that the number of significant components is

much lower than the number of assets that we study. Therefore, although we cannot

determine the number of significant components using the methods described in this

section, the results nonetheless suggest that market correlations can be characterized

by fewer than N components.

3.5 Asset-component correlations

We now return to the question that we left open in Section 3.3.1 regarding the inter-

pretation of the eigenvectors with eigenvalues β larger than the upper bound β+ pre-

dicted by RMT. To explain the eigenvectors, we investigate the correlations R(ẑi,yj)

between the asset return time series ẑi and the PCs yj. These correlations are closely

related to the PC coefficients, which represent the weighting of each asset on the PCs;

but, because the correlations R(ẑi,yj) exist over the interval [−1, 1], they are slightly

easier to interpret than the PC coefficients. We use these correlations to measure the

strength of the asset-PC relationships and to determine which assets contribute to

each component. In doing this, we also determine the number of PCs that need to

be retained to describe the main features of the correlation matrices.

To derive the relationship between the PC coefficients and the correlation R(ẑi,yj),

we write the covariance matrix of the original variables Ẑ with the PCs Y as

Σ
YẐ

=
1

T
YẐT =

1

T
ΩẐẐT = ΩΩTDΩ = DΩ. (3.15)
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Figure 3.9: (a) Scree plot showing the magnitude of the eigenvalues as a function of
the eigenvalue index, where the eigenvalues are sorted such that β1 > β2 > . . . > βN .
We show curves for correlation matrices for time windows ending on 09/03/2001 and
27/11/2009. We also show the eigenvalues for random correlation matrices, where
we have averaged the eigenvalues over 500 realizations of the correlation matrix. The
inset zooms in on the region in which the two example curves for observed data cross
the curve for random data. The two plots on the right show the number of significant
components as a function of time determined using (b) the Kaiser-Guttman criterion
(c) by comparing the scree plots of the observed and random data.

56



3.5 | Asset-component correlations

This implies that the covariance of the returns of asset i and the jth PC is given by

Σ(ẑi,yj) = ωijβj and the correlation R(ẑi,yj) by

R(ẑi,yj) =
ωijβj

σ(ẑi)σ(yj)
= ωij

√

βj , (3.16)

where σ(ẑi) = 1 is the standard deviation of ẑi over T returns and σ(yj) =
√

βj is the

standard deviation of yj . The correlations between the PCs and the original variables

are therefore simply equal to the PC coefficients scaled by the appropriate eigenvalue.

The signs of the PC coefficients are arbitrary, so the signs of the PCs and the signs

of the correlations R(ẑi,yj) are also arbitrary. To avoid having to choose a sign

for each correlation coefficient, we consider the absolute correlations |R(ẑi,yk)|. By

considering absolute correlations, we cannot tell if an asset is positively or negatively

correlated with a PC; however, we are interested only in determining which assets

contribute to each component, so it is reasonable to ignore the signs.

In Fig. 3.10, we show the variation through time of the correlation of every as-

set with each of the first six PCs. Figure 3.10 highlights that the number of large

correlations is significantly lower for the higher components. For the first PC, many

of the correlation coefficients are greater than 0.8, but the correlations between the

asset returns and the sixth PC very rarely exceed 0.5. As one looks at increasingly

higher components the maximum correlation decreases until, for the highest compo-

nents, all correlations are less than 0.2. The low correlations between the asset return

time series and the higher PCs implies that much of the key structure from the cor-

relation matrices is contained within the first few PCs. Based on the correlations

shown in Fig. 3.10, it appears that the first five PCs describe the main features of

the correlations for the studied assets.

Figure 3.10 also demonstrates the changing correlations between the different as-

set classes. From 2001–2002, all of the corporate and government bonds (with the

exception of Japanese government bonds) are strongly correlated with the first PC.

Over the same period, most of the equity indices are strongly correlated with the

second PC and most of the currencies with the third PC; six grain commodities (soy-

bean, soybean meal, soybean oil, corn, wheat oats) are strongly correlated with the

fourth PC; and fuel commodities are strongly correlated with the fifth PC. Therefore,

each of the first five PCs corresponds to a specific market over this period and the

separation into components implies low correlations between different assets classes.

During 2002, however, these relationships begin to break down as bonds and equi-

ties both become strongly correlated with the first PC and both asset-classes have a

57



Chapter 3 | Financial Market PCA

correlation of approximately 0.5 with the second PC. The strong correlation of both

bonds and equities with the same PCs marks the start of a period during which the

coupling between asset classes increased and different markets became more closely

related.

There are three major changes in the correlations between the asset return time

series and the PCs between 2002 and 2009. These changes are most obvious for the

second PC in Fig. 3.10. The first change corresponds to a local peak in corporate bond

prices; the second change corresponds to surging metal prices (see Section 3.4.1); and

the third, and most striking, change occurs following the collapse of Lehman Brothers.

After Lehman’s bankruptcy, the first PC becomes strongly correlated with nearly all of

the assets, including equities, currencies, metals, fuels, other commodities, and some

government bonds. The major exceptions are corporate bonds and, to a lesser extent

government bonds, but both sets of bonds are strongly correlated with the second

PC. During this period, only a few assets are strongly correlated with the third PC,

including EUR/USD, CHF/USD, gold, silver, and platinum; and very few assets are

strongly correlated with any of the higher PCS. The strong correlations between the

majority of the studied assets and the first PC following Lehman Brothers’ collapse

further demonstrates the strength of market correlations during this crisis period and

highlights the common behaviour of nearly all markets.

Figure 3.10 also shows that for a system in which the first few PCs account for

a significant proportion of the variance, a consideration of the correlations between

these components and the original variables provides a parsimonious framework to

uncover the key relationships within the system. Instead of having to identify the

important correlations within a matrix with 1
2
N(N − 1) elements, one only needs to

consider the correlations between the N variables and the first few PCs, which reduces

the number of correlations to consider by a factor of N . Figure 3.10 demonstrates

that this method uncovers the changing relationships between the different asset

classes and highlights assets, such as Japanese government bonds, whose behaviour is

unusual. This approach also uncovers notable changes that occurred in markets and

the assets that were significantly affected by these changes.

3.6 Summary

We used PCA to investigate the evolving correlation structure of a variety of financial

assets and to identify common features across different markets. We found that the

percentage of the variance in market returns accounted for by the first PC steadily
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Figure 3.10: The absolute correlation |R(ẑi,yk)| between each asset and the first six PCs (k = 1, . . . , 6) as a function of time.
Each point on the horizontal axis represents a single time window and each position along the vertical axis an asset. Dark
red regions indicate strong correlations (positive or negative) between assets and PCs and dark blue regions indicate weak
correlations.

59



Chapter 3 | Financial Market PCA

increased from 2001–2010, with a sharp rise following the 2008 collapse of Lehman

Brothers. We further found that the number of significant components decreased and

the number of assets making significant contributions to the first PC increased over

this period. We investigated the evolving relationships between the different assets

by analyzing the correlations between the asset price times series and the first few

PCs. From 2001–2002, each of the first five components corresponded to a specific

market; however, after 2002 these relationships broke down and by 2010 nearly all of

the studied assets were significantly correlated with the first PC. The major changes

in the correlation structure following the collapse of Lehman shows the extent to

which market correlations increased during this crisis period.
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Chapter 4

Community Structure in Networks

In this chapter, we describe several concepts that we will use in Chapters 5 and

6 in which we study network communities. We define a community, explain some

of the most widely used techniques for detecting communities in static networks,

discuss attempts to cluster networks using mesoscopic structures, and present a rel-

atively comprehensive review of the literature investigating communities in dynamic

networks.

4.1 Introduction

A network community consists of cohesive groups of nodes that are relatively densely

connected to each other but sparsely connected to other dense groups in the network.

Communities can represent functionally-important subnetworks [2, 75, 105, 107, 121,

139,243,244,295]. For example, a community in a cellular or genetic network might be

related to a functional module; a community in a stock market network might corre-

spond to stocks belonging to the same industrial sector; and a community in a social

network might correspond to a group of friends or a group of work colleagues. Com-

munities can affect dynamical processes (such as the spread of opinions and diseases)

that operate on networks [75, 107, 244], so their identification, and an understanding

of their structure, can potentially provide insights into these processes.

In this chapter we review some of the most widely used community detection

techniques. Because there is no rigorous definition of a community, different methods

often define communities in different ways; the main difference between methods is

essentially their precise definition of “relatively densely connected”. A vast amount

of research has been published on community detection in recent years, so this review

is not exhaustive. More detailed reviews of the community detection literature can be

found in Refs. [105,244]. However, these review articles focus on communities in static

61



Chapter 4 | Community Structure in Networks

networks (although there is a brief discussion of the dynamic communities literature

in Ref. [105]). In Chapter 5, we investigate dynamic communities and propose a

method for tracking communities through time; to illustrate how the methods we

present relate to other approaches, in Section 4.6 we review the dynamic communities

literature.

4.2 Notation

First, we introduce some of the notation that we use in the remainder of the thesis.

We consider undirected networks G = (V, E) that consist of a set of vertices V and

a set of edges E . We represent a network as an adjacency matrix A with elements

Aij . For unweighted networks Aij = 1 if an edge exists between nodes i and j and

is 0 otherwise; in weighted networks Aij can take other values (which are always

real numbers for the networks that we consider) that indicate the strength of the tie

between i and j.

We consider partitions P = {C1, · · · , Cη} of a network G into η disjoint communi-

ties C such that Ck ∩ Ck′

= ∅ and ∪η
k=1Ck = V, where |V| = N is the number of nodes

in the network. We use the letter C to identify a community and the scripted letter C
to represent the set of nodes in that community. We also reference the communities

in two different ways: Ck is the set of nodes in community k (k = 1, · · · , η), whereas

Ci is the set of nodes in the same community as node i (i = 1, · · · , N). We represent

the number of nodes in community k as |Ck| = nk.

4.3 Community detection methods

In statistics and data mining, there are a variety of methods for coarse graining data

to extract patterns and identify clusters of similar objects [84, 105]. Partitional clus-

tering techniques such as k-means clustering [84], multidimensional scaling [84], and

PCA1 have been successfully applied to problems from diverse disciplines. For exam-

ple, multidimensional scaling has been used to analyze voting patterns in the United

States Congress and the United Nations General Assembly (see Refs. [203, 241, 302]

and Chapter 6) and in Chapter 3 we use PCA to investigate correlations in financial

markets. Another widely used set of techniques are hierarchical clustering algorithms,

which can be split into two types: agglomerative and divisive. Agglomerative meth-

ods, such as linkage clustering, begin with a set of individual objects and iteratively

1See Chapter 3 for a detailed discussion of PCA
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combine them based on their similarity [84].2 In contrast, divisive algorithms (which

include some spectral methods [221]) begin with all objects in a single cluster and

find smaller groups by iteratively splitting clusters.

Data clustering is closely linked to community detection. The widespread inter-

est of statistical physicists and applied mathematicians in community detection was

sparked by the 2002 publication of a paper by Girvan and Newman [121] in which they

proposed a technique for identifying communities using (geodesic) edge betweenness.

Betweenness [110] is widely used in social network analysis to quantify the extent

to which edges lie on paths that connect agents3. In the Girvan-Newman method,

edges with the largest betweenness are iteratively removed from the network. After

each edge removal the betweenness of the remaining edges is recalculated, which is

important because it can cause previously low-betweenness edges to have higher be-

tweenness. As the edges are removed the network breaks up into progressively smaller

isolated communities.

The main problem with the Girvan-Newman approach is that it tends to be slow

for large networks (unless they are very sparse) and typically produces poor results

for dense networks [244]. Nevertheless, Ref. [121] was the catalyst that led to the

explosion of research on community detection in networks and since its publication

many alternative community detection methods have been proposed. We explain

three of the more prominent methods below.

4.3.1 k-clique percolation

Communities are detected in k-clique percolation [234] using k-cliques, which are

complete subgraphs of k nodes that are connected with all k(k− 1)/2 possible edges.

The clique percolation method (CPM) is based on the idea that intra-community

edges are likely to form cliques as a result of their high density, but inter-community

edges are not. In Ref. [234], two k-cliques are described as adjacent if they share k−1

nodes; the union of adjacent k-cliques is called a k-clique chain; and two k-cliques

are considered to be connected if they are part of a k-clique chain. A community

is then defined as the union of a k-clique and all k-cliques that are connected to

it. By construction k-clique communities can share nodes, so the method allows

for the identification of overlapping communities. This is a useful property because

2We discuss linkage clustering in more detail in Chapter 5.
3Note that the Girvan-Newman community detection method uses edge betweenness, but the be-

tweenness defined in Ref. [110] is the node betweenness [110]. In Chapter 5, we use node betweenness
to study the roles of different exchange rates within the FX market.
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many empirical networks possess overlapping communities. For example, in social

networks people often simultaneously belong to different communities consisting of

family, work colleagues, university friends, etc. The CPM has also been extended

to weighted networks [99]. The main problem with k-clique percolation is that the

community definition is very stringent and the rigid nature of the cliques means that

dense groups of nodes that are not quite as well connected as cliques are not identified

as communities.

4.3.2 Modularity maximization

Perhaps the most popular approach for detecting communities is a technique that

involves the maximization of a quality function known as modularity [224]. The iden-

tification of communities using graph modularity is based on the idea that random

networks are not expected to demonstrate community structure beyond small fluctu-

ations. Modularity therefore identifies communities by finding subsets of nodes that

are more strongly connected to each other than one would expect for a random null

model. We represent a network by an adjacency matrix A whose elements (edges)

Aij indicate how closely nodes i and j are related to each other. In this thesis, we

will only consider undirected networks, which implies that A is symmetric. If we let

P represent a partition of the n nodes in A into mutually disjoint communities, the

modularity Q of partition P is given by

Q(P) =
1

2m

∑

ij

(Aij − Pij)δ(Ci, Cj) , (4.1)

where Ci is the community of node i and the null model Pij denotes the probability

that nodes i and j are connected for unweighted networks and the expected weight of

the link with which nodes i and j are connected for weighted networks. Modularity

is therefore easily extended from unweighted to weighted networks. The quantity m

represents the total number of edges in the network for unweighted networks and

the total edge weight for weighted networks and is given by m = 1
2

∑

i ki, where

ki =
∑

j Aij is known as the degree of node i for unweighted networks and the strength

for weighted networks4.

Communities are identified by finding the partition P that maximizes Q. The

choice of null model is not entirely unconstrained because it is axiomatically the case

that Q = 0 when all of the nodes are placed in a single group.5 One is then restricted

4For an unweighted network a node’s strength is equal to its degree.
5When all of the nodes in a network are in a single community, the number of edges within the

community and the expected number of such edges are both equal to m.
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to null models in which the expected edge weight is equal to the actual edge weight

in the original network [220]. The simplest null model satisfying this criterion is a

uniform null model in which a fixed average edge weight occurs between nodes [244].

However, the strength distribution produced by this model is significantly different

to the distribution observed for many real-world networks. The most popular choice

of null model (introduced by Newman and Girvan [224]) is

Pij =
kikj

2m
, (4.2)

which preserves the strength distribution of the network and is closely related to the

configuration model [212].6

An important issue with using modularity as a quality function to identify com-

munities is that it suffers from a resolution limit [106]. Modularity optimization has

been shown to fail to find communities smaller than a threshold that depends on the

total size of the network and on the degree of interconnectedness between the network

communities. Communities smaller than the threshold tend to be merged into larger

communities, thereby missing important structures. However, many modularity-

maximization techniques can easily be adapted to other quality functions, and several

alternatives have been proposed that avoid the resolution limit by uncovering com-

munities at multiple resolutions, e.g., [17, 179, 220,254].

4.3.3 Potts method

In Ref. [254], Reichardt and Bornholdt proposed a multiresolution method in which

the network A is represented as an infinite-range, N -state Potts spin glass in which

each node is a spin, each edge is a pairwise interaction between spins, and each

community is a spin state. The Hamiltonian of this system is given by

H(λ) = −
∑

ij

Jijδ(Ci, Cj) , (4.3)

where Ci is the state of spin i and Jij is the interaction energy between spins i and j.

The coupling strength Jij is given by Jij = Aij − λPij, where Pij again denotes the

expected weight of the link with which nodes i and j are connected in a null model

and λ is a resolution parameter. If Jij > 0 spins i and j interact ferromagnetically

6The difference between the two models is that the configuration model is conditioned on the
actual degree (strength) distribution, whereas Newman and Girvan’s model is conditioned on the
expected degree (strength) distribution. In the configuration model, the probability of an edge
falling between nodes i and j is also given by Eq. 4.2 in the limit of large network size; however, for
smaller networks, there are corrections of order 1/N [220].
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and seek to align in the same spin-state (join the same community); if Jij < 0

i and j interact antiferromagnetically and try to have different orientations (join

different communities). One can find communities by assigning each spin to a state

and minimizing the interaction energy of these states given by Eq. (4.3). Within

this framework, community identification is equivalent to finding the ground state

configuration of a spin glass.

Tuning λ allows one to find communities at different resolutions; as λ becomes

larger, there is a greater incentive for nodes to belong to smaller communities. The

Potts method therefore allows the investigation of communities below the resolution

limit of modularity. One can write a scaled energy Qs in terms of the Hamiltonian in

Eq. (4.3) as

Qs =
−H(λ)

2m
. (4.4)

The modularity is then the scaled energy with λ = 1. Community detection using

modularity optimization is therefore a special case of the Potts method.7 In this

thesis, we use the Potts method to detect communities and we employ the standard

model of random link assignment Pij = kikj/2m as the null model.

The number of possible community partitions grows rapidly with the number of

nodes [218], so it is typically computationally impossible to sample the energy space

by exhaustively enumerating all partitions [55]. A number of different heuristic pro-

cedures have been proposed to balance the quality of the identified optimal partition

with computational costs, e.g., [75, 107, 244]. In this thesis, we minimize Eq. (4.3)

at each resolution using the greedy algorithm of Ref. [44] which finds good quality

partitions and is computationally fast, so can be used to detect communities in large

networks. We note that quality functions like Eq. 4.3 have complex energy landscapes

and we are optimizing using an optimization heuristic, so care needs to be taken when

interpreting results for this method for real networks [128]. With this in mind, we

validate the results obtained using the greedy algorithm by reproducing the analysis

using spectral [221] and simulated annealing [141] algorithms.8

7Recently, an alternative version of the Potts method has been proposed that is able to deal with
both positive and negative links [294]. Even more recently, a new framework of network quality func-
tions based on modularity has been proposed that can deal with time-evolving networks, networks
with multiple types of links, and multiple scales [214]; we discuss this method in Section 4.6.12

8See Ref. [105] for more details of these and other modularity (energy) optimization heuristics.
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4.4 Edge communities

All of the techniques that we have described thus far define communities as groups of

nodes. Recently, however, some community detection methods have been proposed

in which communities are defined as sets of edges [5, 6, 90]. Edge communities are

identified by considering line graphs [24]. A line graph is a representation of a network

in which the nodes represent edges in the original network and two nodes in the line

graph are connected if the corresponding edges in the original network are attached

to the same node. Identifying communities of nodes in line graphs is equivalent to

finding edge communities in the original network. In Ref. [90], Evans and Lambiotte

present methods for identifying communities in line graphs by maximizing quality

functions (derived from dynamical processes taking place on networks [177]) that are

similar to modularity (see Section 4.3.2).

4.5 Clustering networks

In Chapter 6, we introduce a framework for clustering networks based on comparing

their community structures at multiple resolutions. In this section, we review two

notable prior attempts to cluster networks using mesoscopic structures.

In Ref. [210], Milo et al. clustered a set of networks based on the frequency at

which certain small subgraphs they called motifs appeared in the networks. Motifs

represent small mesoscopic structures and some motifs can be considered as small

communities; for example, a 3-clique can be considered as a community because all

possible connections exist between the members of the motif. Milo et al. created pro-

files for each network indicating the over- or under-representation of motifs compared

to randomized networks with the same degree distribution and clustered the networks

based on these profiles. They studied 19 directed networks and 16 undirected net-

works and identified four families for each type of network. The directed families

included a family containing four gene transcription networks for microorganisms; a

family containing a network of signal-transduction interactions in mammalian cells,

two developmental transcription networks, and a network of synaptic wiring between

neurons; a family of three social networks and three world wide web (WWW) net-

works; and a family including four language networks and a model of a bipartite

network. The undirected network families consisted of a family containing a power

grid network and a “geometric model” network; a family containing another geomet-

ric model network and three protein structure networks; a family of six networks of
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the internet at the level of autonomous systems; and the final family included four

Barabási-Albert preferential attachment networks.

In Ref. [142], Guimerà et al. clustered networks based on the over- or under-

representation of nodes with particular network roles. Guimerà et al. first assigned

each node a role based on the node’s pattern of inter- and intra-community links and

then created profiles indicating the under or over-representation of node roles within

each network compared with randomized networks9. Based on these profiles, Guimerà

et al. identified two clusters of networks. The first cluster included metabolic and

airport networks, and the second cluster included protein interaction and internet

networks. The authors hypothesized that the division of the networks into these

two clusters might result from the fact that the networks in the first cluster are

transportation networks, in which strong conservation laws must be obeyed, whereas

the networks in the second cluster could be considered as signalling networks, which do

not obey conservation laws. We discuss further the clustering in Refs. [210] and [142]

in Section 6.6.4.

4.6 Community dynamics

In comparison with the number of papers investigating communities in static net-

works, there are relatively few studies of communities in dynamic networks [105]. An

important reason for this comparatively small volume of work is the limited availabil-

ity of data sets for time-evolving networks. However, in recent years, time-evolving

data for large networks have become more widely available, in part because of the

rapid expansion of online social communities such as social networking sites and blog

communities. A desire to understand the evolution of these communities has led to

more researchers (particularly computer scientists) studying dynamic networks and

trying to answer some of the fundamental questions on community dynamics. These

include: how do communities change over time; what community properties result in

stable communities; and what features of a community determine whether an individ-

ual will join (or leave) that community? These questions are key to understanding the

evolution of many systems: for example, the evolution of groups of employees within

large organizations can provide insights into the organization’s global decision-making

behaviour; an understanding of the dynamics of sub-populations of people can help

develop strategies for preventing the spread of diseases [23]; and an understanding of

9Guimerà et al. considered two different ensembles of random networks. In the first ensemble,
they preserved only the degree distribution of the original network; in the second ensemble, they
preserved both the degree distribution and the modular structure of each network.

68



4.6 | Community dynamics

the changes in correlations between groups of financial assets can lead to better risk

management tools.

Although the study of dynamic communities is still in its infancy, several methods

have been proposed for detecting and tracking communities in dynamic networks. In

the remainder of this chapter, we describe the different techniques.

4.6.1 Early studies

In an early study of community dynamics, Toyoda and Kitsuregawa investigated the

evolution of communities of web pages [290–293]. They first proposed a method to

identify web page communities in static networks [290] using a modified version of the

Companion algorithm proposed by Dean and Henzinger [78]. Companion finds web

pages related to a particular URL by only exploiting the hyperlink-structure of the

web; i.e., it does not use information about the content or usage levels of web pages.

By following links from seed pages, the algorithm identifies web pages related to the

seed page and considers seed pages to belong to the same community if they are related

to similar sets of pages. In Refs. [291, 292], Toyoda and Kitsuregawa extended this

work to track web communities through time. They mapped communities between

consecutive time steps based on the overlap of nodes (i.e., URLs) and defined the

descendant of a community C(t) as the community C(t + 1) that shared the most

nodes with C(t); if more than one community at t + 1 shared the same number of

nodes with C(t), they selected the community with the largest number of nodes as

the descendant.

Toyoda and Kitsuregawa defined six types of community changes between consec-

utive time steps: emerge (a community C(t+1) emerged if it did not share any nodes

with any of the communities in the network at time t), dissolve (a community C(t)

dissolved if it did not share any nodes with any of the communities in the network at

t+1), grow, shrink, split, and merge. A community C(t) was only considered to grow

or shrink if it shared all of its nodes with one community at t + 1; i.e., a community

grew if the nodes that joined it were new to the network and a community shrunk if

the nodes leaving it disappeared from the network. If a community C(t+1) contained

nodes from more than one community at time t, it was considered to have merged;

similarly, if more than one community at t + 1 contained nodes from a community

C(t), then C(t) was considered to have split.

Based on these events, Toyoda and Kitsuregawa defined several quantities for

describing community evolution, including a growth rate; a stability index; indices

for measuring the rate at which nodes appeared in (disappeared from) communities;
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and indices for measuring the rate at which split and merge events occurred. They

applied this framework to an evolving sequence of networks of Japanese web archives

for each of the years 1999–2002 and found that changes in the community structure

were largely a result of merge and split events. This observation seems unsurprising

given the tight constraints on nodes’ community membership for the other types of

event. They also found that the distribution of community sizes and the distributions

of the sizes of emerged and dissolved communities followed power laws.

In another early study [152], Hopcroft et al. employed a very different approach

to study the evolution of weighted citation networks10 in which the nodes represented

papers and the weights were given by the cosine similarity [84] between vectors rep-

resenting each paper’s citations. Hopcroft et al. identified communities using ag-

glomerative hierarchical clustering, but found that the clusters were very sensitive to

random perturbations in the network. This led them to define “natural communi-

ties” as clusters that were robust to the random removal of nodes. To identify natural

communities, Hopcroft et al. created n realizations of the network in which 5% of the

nodes were randomly removed and compared clusters C in the original network with

clusters C ′ in the perturbed networks using the similarity function

min

( |C ∩ C′|
|C| ,

|C ∩ C′|
|C′|

)

, (4.5)

where |C ∩C′| indicates the cardinality of the intersection of nodes in the two clusters.

They defined a natural community as a cluster in the original network whose similarity

with any cluster in a perturbed network exceeded a pre-defined threshold p for a

fraction f of the networks with nodes removed.11

Hopcroft et al. tested their method by comparing citation data for the years

1990–1998 with data for 1990–2001, which enabled them to identify changes that

occurred in the community structure during the period 1999–2001. They associated

each community with a research topic by considering the most frequent words in the

titles of the papers in the communities. They then classified the natural communities

in the second period as either established or emerging depending on their overlap with

communities in the first period. They found that some of the established communities

grew rapidly while others stagnated, and that some of the communities that emerged

had split from communities that existed in the first period. Based on the evolution

10The citation data covered the period 1990–2001 and was downloaded from the CiteSeer database,
which is available at http://citeseer.ist.psu.edu/.

11Hopcroft et al. created n = 45 networks in which 5% of nodes were removed and set f = 0.6;
they set p = 0.7 for clusters containing fewer than 1,000 papers and p = 0.5 for larger clusters.
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of the different communities, they identified new, expanding, and declining fields of

research.

An important issue with the approach proposed by Hopcroft et al. is that hier-

archical trees contain clusters at several different levels and their method does not

identify the level at which the clusters are most appropriate. In addition, there

are several parameters that the user must define, including the fraction of nodes to

randomly remove from the original network to create the comparison networks; the

overlap threshold p for a pair of clusters to be considered similar; and the fraction of

perturbed networks f in which a cluster needs to match another cluster for it to be

considered a natural community. The node compositions of the natural communities

depend on all of these parameters.

4.6.2 Comparing and mapping communities

In Ref. [152], Hopcroft et al. used the similarity function defined in Eq. 4.5 to com-

pare communities, but there are several other functions that can be used (some of

which we describe later in this chapter). For many of the methods that compare

communities using a similarity function, it is also necessary to select an appropriate

overlap threshold that the similarity function must exceed for two clusters to be con-

sidered similar (the parameter p in Hopcroft et al.’s study). In most studies a formal

procedure is not defined for selecting the threshold; instead this parameter is chosen

using ad hoc methods or is simply set to a value that is found a posteriori to produce

meaningful results.

Perhaps the most important issue with methods that identify descendent commu-

nities based on maximum node (or edge) overlap is that they can lead to equivocal

mappings following splits and mergers. For example, consider a community Cf(t) that

splits into two communities Cg(t + 1) and Ch(t + 1). If the overlap between Cf(t)

and Cg(t + 1) is identical to the overlap between Cf (t) and Ch(t + 1) then it is not

obvious which community represents the descendent of Cf (t). For the specific case

of two communities with identical node overlaps with a community at the previous

time step, Toyoda and Kitsuregawa [291,292] chose the descendant as the community

containing the largest number of nodes. However, there are other plausible choices.

For example, a tie in node overlap could be broken by selecting the community with

the highest edge overlap as the descendant.

This highlights the more general question of whether communities should be

mapped based on node or edge overlap. For example, consider a community Cr(t) that

splits into two communities Cs(t+1) and Ct(t+1), such that Cs(t+1) has a greater
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node overlap with Cr(t), but Ct(t + 1) has a greater link weight in common with

Cr(t). In this case, either community could be identified as the descendant of Cr(t)

depending on whether one considers node or edge overlap to be a more important

measure of community similarity. Most methods that we describe map communities

based on node overlap; in practice, the choice between node or edge overlap is likely

to depend on which measure is most appropriate for a particular analysis.

4.6.3 Dynamics of known partitions

Although in most work on community dynamics methods are presented both for

community detection and community tracking, in some studies the communities are

already known. In Ref. [23], Backstrom et al. investigated the evolution of com-

munities of bloggers on the LiveJournal blogging website12 and communities within

a co-authorship network of computer scientists taken from the Digital Bibliography

and Library Project (DBLP) website13. Backstrom et al. did not detect communities,

but instead studied the evolution of known groups. In the case of LiveJournal the

communities corresponded to blogging groups that the users joined; for the DBLP

network, conferences were used as proxies for communities.

For both data sets, Backstrom et al. found that the probability of a person joining

a community increased with the number of people that they knew in the community,

but that there was a “diminishing return” property in which this probability rose

at an increasingly slower rate as the number of friends already in the community

increased. For the LiveJournal network, they also showed that an individual was

more likely to join a community if the people that they knew in the community

already knew each other, but that groups with a very large number of 3-cliques

grew less quickly than groups with relatively few such cliques. These results imply

that the tendency of an individual to join a community is not just influenced by the

number of friends that individual has within the community, but crucially also by how

those friends are connected to each other. Backstrom et al. hypothesized that the

slower rate of growth of communities containing large numbers of 3-cliques could be

because such “cliquishness” makes communities less attractive to join; alternatively,

they suggested that many 3-cliques could indicate a community that has stopped

gaining new members, but continues to gain new edges between existing members.

Finding an explanation for this observation is an interesting open question because of

12See http://www.livejournal.com/.
13DBLP is a database of bibliographic information for computer science journals. See http:

//www.informatik.uni-trier.de/~ley/db/.
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its implications for the potential rate of growth of online communities such as social

networking websites.

Berger-Wolf and collaborators have proposed several different methods for study-

ing dynamic communities [35]. In Ref. [36], Berger-Wolf and Saia presented a tech-

nique in which it was assumed that the community partition at each time step was

already known. They created a network of these known communities in which two

communities C and C ′ were linked if the similarity

2|C ∩ C′|
|C| + |C′| (4.6)

exceeded a pre-defined threshold βm. Within this framework two communities could

be connected irrespective of the number of time steps separating the networks in which

they were observed. This is in contrast to other techniques that create networks of

communities but only allow communities to be connected if they appear in networks

separated by a specified number of time steps (e.g., Refs. [91, 93, 96, 97] which we

discuss in Section 4.6.6.).

Using the network of communities, Berger-Wolf and Saia then defined a metagroup

as any connected group of at least αm communities and considered that an individual

node was a member of a metagroup if it belonged to more than γm communities in

that metagroup. They then defined the most persistent metagroup as the metagroup

that contained the most communities; the most stable metagroup as the metagroup

that contained the most links as a fraction of the number of time steps over which

the group persisted; and the largest metagroup as the metagroup that contained the

most nodes.

Berger-Wolf and Saia tested the metagroup framework on the southern women

social network [76], which is a standard benchmark in social network analysis [112].

The southern women data set consists of details of the participation of 18 women

in 14 social events in Mississippi in the 1930s; the network contains 14 communities

corresponding to the groups of women that attended each of the 14 events. Berger-

Wolf and Saia found good agreement between the membership of the most stable

metagroups and the clusters identified in previous studies of the same data. They also

considered the importance of communities and nodes to the existence of metagroups

at different similarity thresholds βm and length thresholds αm and found that the

metagroups were robust to the removal of particular communities and individuals

from the population. Such observations are of practical interest in epidemiology; for

example, targeted vaccination of individuals whose removal results in the break-up of

metagroups might help to prevent the spread of diseases [10,62, 151].
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4.6.4 Dynamic subgraphs and cliques

There are several studies of dynamic networks in which motifs consisting of repeated

subgraphs, such as cliques, are investigated. As we discussed in Section 4.3.1, a

k-clique in an unweighted network is a set of k nodes that are connected with all

k(k− 1)/2 possible edges, so they represent particularly strong relationships between

a group of nodes. Motifs need not contain all possible links between nodes, but

if a subgraph appears regularly through time it indicates a persistent or recurrent

relationship between a group of nodes.

In Ref. [175], Lahiri and Berger-Wolf defined frequent and periodic subgraphs

as groups of nodes that had the same intra-group links for more than a pre-defined

fraction of observed time steps, and groups of nodes that had the same relationships in

networks separated by a constant number of time steps, respectively. For example, a

3-clique that appeared every fifth time step was considered to be a periodic subgraph.

Lahiri and Berger-Wolf investigated subgraph dynamics for a social network of zebras

[283], a network of e-mail exchanges within Enron14, a co-appearance network for

celebrities in photos on the Internet Movie Database (IMDB)15, and a contact network

of mobile phone users at MIT [85]16. Lahiri and Berger-Wolf identified many frequent

and periodic subgraphs for each of these data sets, including a periodic subgraph of

actresses from the television show Desperate Housewives in the IMDB network. This

subgraph had a period of 364 days and is likely to result from the joint appearance

of these actresses at annual awards shows.

In Ref. [311], Yoneki et al. also studied the MIT contact network data set as well

as three other dynamic contact networks. Yoneki et al. focused on the distribution of

the durations of meetings between particular groups and the distribution of the times

between these meetings. They took a stricter approach than Lahiri and Berger-Wolf

[175] by only investigating cliques – this meant that every node in the studied groups

had to be connected to every other node. They analyzed k-cliques with k = {3, · · · , 8}
nodes and found that the durations of meeting times for the cliques were power-law

distributed, but the intervals between these meetings were not.

In another study of dynamic motifs [157], Jin et al. investigated the evolution

of weighted subgraphs. They analyzed networks in which there was a time series

associated with each node and the edge weights were a function of the time-dependent

14The data for the Enron e-mail network is available at https://www.cs.cmu.edu/~enron/.
15See http://www.imdb.com/.
16The contact networks were constructed using mobile phones fitted with proximity tracking

technology that recorded when two individuals were located near to each other.
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pairwise correlations between these time series. Community detection in networks of

this kind is equivalent to the problem of clustering multivariate time series [187]. Jin

et al. defined a trend motif as any subgraphs whose edge (or node) weights consistently

increased (or decreased) by more than a threshold amount over a specified time period.

They investigated a network of trade between countries, in which the node weights

represented each country’s share of global gross domestic product (GDP) [122], a

stock market network [230], and a protein interaction network [27, 278], and found

several examples of trend motifs in each case. For example, they identified a subgraph

in the trade network over the period 1980–1990 containing the U.K., Japan, and the

U.S. in which each country’s share of global GDP was trending upwards. In another

subgraph for the period 1981–1989 containing the U.S., Mexico, Argentina, and South

Africa, the U.S.’s share of global GDP was trending upwards while the share of each

of the other countries was trending downwards.

Jdidia et al. [154] also identified stable cliques in an evolving co-authorship network

for the Infocom conference on computer communications over the period 1985–2007.

They investigated cliques with three of more nodes and considered a clique to be

stable if it appeared in three or more networks. Using this approach, they identified

many stable cliques of collaborators based on their conference publications.

In the same paper, Jdidia et al. also proposed a method for detecting communities

in dynamic networks based on the behaviour of random walkers.17 They first created

an aggregate network consisting of a combination of the networks for individual time

steps coupled through additional links. They introduced two types of links between

consecutive networks: (1) a node in a network at time t was connected to itself if it

also appeared at t + 1, i.e., a link was added between node i at time step t and node

i at time step t + 1; (2) a link was added between node i at time step t and node j

at t + 1 if there existed a node k such that i and k were linked at time step t and j

and k were linked at t + 1; these edges were called transversal edges.

Jdidia et al. detected communities in this network by maximizing modularity us-

ing a variant of the walktrap algorithm proposed by Pons and Latapy [240]. This

algorithm identifies communities based on the observation that random walkers on a

graph tend to get “trapped” in densely connected parts of the graph that correspond

to communities. Jdidia et al. presented an example of an evolving community of

collaborators in which a stable clique of researchers gained and lost additional collab-

orators through time. They also investigated the probability of an author joining the

conference program committee board as a function of the number of their co-authors

17We describe other methods based on random walkers in Section 4.6.8.
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already on the board and found that the probability of an author joining the com-

mittee increased with the number of their co-authors already on it. This result is

consistent with Backstrom et al.’s [23] observation that the probability of a person

joining a community increases with the number of people that they know in that

community.

4.6.5 Dynamic clique percolation

All of the studies that we described in Section 4.6.4 uncovered recurrent relationships

between groups of nodes by detecting frequent subgraphs and cliques. The CPM

method described in Section 4.3.1 extends the idea of cliques by defining communities

as groups of overlapping cliques. This method is based on the observation that intra-

community edges are likely to form cliques as a result of their high density, but inter-

community edges are not. In Ref. [233], Palla et al. extended the CPM framework to

investigate community dynamics.

As we discussed in Section 4.3.1, communities detected using CPM can overlap

(i.e., share nodes), which can lead to additional problems when trying to identify

community descendants using node overlap. For example, consider the situation

in which a community C(t) increases in size between time steps t and t + 1 and the

resulting community C(t+1) overlaps with another community C ′(t+1). The overlap

between C(t + 1) and C ′(t) might be larger than the overlap between C(t + 1) and

C(t) resulting in C(t + 1) being identified as the descendant of C ′(t) and not C(t).

Palla et al. tackled this problem by considering the graph G(t, t +1), which consisted

of the union of nodes and edges from the two graphs G(t) and G(t+1). The rationale

for this approach is as follows. Let P(t) denote the set of communities from graph

G(t), P(t + 1) the set of communities from graph G(t + 1), and P(t, t + 1) the set of

communities identified for the combined graph G(t, t+1). For any community in P(t)

or P(t+1) there is exactly one community in P(t, t+1) containing it, which is found

by comparing edges. The descendant of C(t) is then the community contained in the

same community C(t, t + 1) as C(t) with which C(t) has the largest edge overlap.

Palla et al. applied this method to a call network of mobile phone users and to

a co-authorship network of condensed matter physicists. For both networks, they

found that the age of a community was positively correlated with its size (i.e., older

communities tended to be larger on average) and also found that the membership of

large communities varied more than small communities, which tended to be almost

static. They further found that communities whose members had relatively strong

connections with nodes outside their community were more likely to break up, and
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that nodes that were only loosely connected to their community were more likely

to leave that community than nodes with strong intra-community connections. The

observation that nodes are more likely to leave a community if they are only weakly

connected to that community is complementary to the observation made by Back-

strom et al. [23] and Jdidia et al. [154] that the probability of an individual joining a

community increases with the number of people they know in that community.

Reference [233] provides answers to several of the fundamental questions relating

to community dynamics, but the results should be validated using other techniques.

This is important because there are some issues with the CPM method; for example,

there are several possible choices for the clique size; and the definition of a community

is very stringent (see Section 4.3.1). It would also be interesting to investigate if

similar results are observed for other types of network.

4.6.6 Edge betweenness methods

In contrast to the motif-based methods described in Sections 4.6.4 and 4.6.5, edge

betweenness methods do not require the user to specify the structures to identify.

In Ref. [92], Falkowski et al. investigated community dynamics using the Girvan-

Newman edge betweenness method (see Section 4.3) and a method proposed by

Radicchi et al. [247]. The Radicchi method is similar to the Girvan-Newman method

but, instead of iteratively removing edges with the lowest betweenness centrality,

edges with the lowest edge-clustering coefficient are removed. The edge-clustering

coefficient is analogous to the the node-clustering coefficient [305] and is defined as

the number of 3-cliques to which an edge belongs divided by the total number of

3-cliques the edge could potentially belong to based on the degrees of the nodes it

connects. The basic idea is that edges with a low edge-clustering coefficient belong

to fewer small cliques than edges with high edge-clustering coefficient, so these edges

are considered to be more likely to run between communities.

To create dynamic networks, Falkowski et al. split their network data into time

periods and constructed a network for the interactions within each period.18 Falkowski

et al. mapped communities between consecutive time steps based on the percentage

node overlap exceeding a threshold and defined several community events: persists,

disappears, merges, and splits. They further divided the persist events into grows and

declines transitions. A community grew if the number of members increased between

18This is in contrast to other studies, such as the work of Hopcroft et al. [152], in which community
dynamics were investigated by cumulatively adding data to a network and identifying changes in
the aggregated network.
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time steps; a community declined if the number of members decreased and/or the

number of edges, or the edge weights, decreased between time steps. In contrast to

the grow and shrink events defined by Toyoda and Kitsuregawa in Refs. [291, 292],

the grow and decline events defined by Falkowski et al. allowed nodes to join from

existing communities, or leave to join other communities; i.e., the nodes joining a

community did not have to be nodes not previously in the network and the nodes

leaving a community were not required to be nodes leaving the network. Falkowski

et al. also introduced software for visualizing community dynamics in Ref. [92], but

they did not provide details of any results found using their method.

Falkowski et al. extended the work of Ref. [92] in a series of papers [91,93,96,97] in

which they matched two communities C and C ′ at different time steps if the overlap

function
|C ∩ C′|

min(|C|, |C′|) (4.7)

exceeded a threshold ρm. Instead of simply comparing communities at consecutive

time steps, they matched communities between all networks within τp time steps

of each other. They then constructed a graph in which each community observed

over the full evolution of the network represented a node and they connected all

nodes that appeared in networks within τp time steps of each other for which the

community overlap exceeded ρm. Finally, they found groups of similar communities in

this network of communities using the Girvan-Newman edge betweenness algorithm.

An issue with this method is that it suffers from two of the weaknesses that we

described in Section 4.6.2; namely that the user is required to select values for the

parameters ρm and τp and the detected communities are sensitive to these choices.

Using this method to track dynamic communities, in Ref. [97] Falkowski et al.

defined several quantities that described the relationships between nodes and their

communities. These included the involvement of a node, which measured the number

of intra-community interactions of nodes at a single time step; the participation, which

measured the involvement of nodes in a particular community over all time steps as

a fraction of the total interactions of the node; and the relevance, which measured

the involvement of nodes in a community as a fraction of the total interactions over a

specified period. Falkowski et al. used this framework to perform a “preliminary set

of proof-of-concept experiments” on a social network.19

19Although the network is not specified in Ref. [97], this paper extends the work presented in
Ref. [93] in which an online social network of students from the University of Magdeburg is studied,
so it seems likely that this network is also used in Ref. [97].
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4.6.7 Density methods

Other authors have proposed techniques for detecting communities based on the den-

sity of nodes in different regions of the network, where the precise definition of density

depends on the method. In Refs. [94, 95], Falkowski et al. proposed a density-based

method for detecting communities in graphs that are growing both in terms of the

number of nodes and the number of edges. They assigned nodes to the same cluster

if they were density connected ; nodes were described as density connected if their was

some overlap in their neighbourhoods, where a node’s neighbourhood was all nodes

on the graph within a specified distance. Dense regions of the graph therefore had

many nodes within a small distance of each other.

Falkowski et al. designed this approach with the analysis of graphs that evolve

incrementally (i.e., only a few nodes join or disappear from the network at a time)

in mind because the insertion (or deletion) of nodes was only considered to affect

the clustering in the neighbourhood of the inserted (deleted) nodes. Because of this

property, this method is potentially useful for uncovering the changes in communities

in networks constructed from generative models involving attachment mechanisms in

which new nodes are iteratively added to the network. Falkowski et al. applied this

technique to the Enron e-mail network and compared the communities with those

obtained using the edge betweenness method discussed in Section. 4.6.6. They found

that the density-based algorithm tended to detect small dense communities whereas

the edge betweenness method often merged small groups. This highlights that differ-

ent community detection methods often identify different communities. These differ-

ences are important because they can affect the conclusions regarding the properties of

dynamic communities. Given this, the most rigorous approach that is currently avail-

able to assess the reliability of the outputs of different dynamic community techniques

is only to consider features that are similar across multiple methods as meaningful.

In Ref. [126], Goldberg et al. proposed another density-based method and used it

to investigate the dynamics of a directed network of blogs from the Russian section

of LiveJournal. They first constructed networks of bloggers in which each node rep-

resented a blogger and there was a directed edge from the author of any comment to

the author of the blog where the comment was posted. They then investigated the

evolution of several microscopic (e.g., mean clustering coefficient) and macroscopic

(e.g., the fraction of nodes in the largest connected component) properties of the

network as well as the community dynamics.

Goldberg et al. defined a community C as a set of nodes C for which for every

node i ∈ C (resp. i /∈ C), removing i from C (resp. adding i to C) resulted in a
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community C with a smaller value of a “density function” Ψ(C) given by

Ψ(C) =
win

win + wout

+ µ
2win

|C|(|C| − 1)
, (4.8)

where win is the number of edges connecting two nodes in C, wout is the number of

edges with only one end connected to a node in C, and µ is a user-defined parameter.

Goldberg et al. then considered a community C(t + 1) to be the descendant of a

community C(t) if the similarity function

|C(t) ∩ C(t + 1)|
|C(t) ∪ C(t + 1)| (4.9)

exceeded a threshold αt, which they set to 1/3 because it was found to produce

meaningful results. They discovered that the number of blogger communities that

persisted for more than a few weeks was very small, which is unsurprising given that

they also observed that 25% of the nodes changed between some time steps. However,

the persistence of communities determined using this method is affected by the value

of the threshold αt, so the results might have been different for other values of this

parameter. The dependence of the results on αt highlights why it can be undesirable

for dynamic community detection methods to incorporate user-defined parameters.

4.6.8 Random walkers

In Section 4.6.4, we described a dynamic community detection algorithm that iden-

tifies communities using random walkers [154]; several other methods have been pro-

posed that investigate community dynamics using similar techniques.

In Ref. [22], Asur et al. investigated the evolving relationships between nodes

and communities. They detected communities at each time step using the Markov

cluster algorithm introduced by van Dongen [300] and defined five types of community

evolution events: continue (the community contained the same nodes at consecutive

time steps, but not necessarily the same edges), κ-merge (two communities merged if

a community existed at the next time step that included more than κ% of the nodes

belonging to the two communities), κ-split (a community split if more than κ% of

nodes were in different communities at the next time step), form (no pair of nodes in

a community C(t + 1) were in the same community at t), dissolve (no pair of nodes

in a community C(t) were in the same community at t + 1). The final two events are

equivalent to the emerge and dissolve events defined by Toyoda and Kitsuregawa in

Refs. [291, 292].
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Asur et al. also defined four types of events involving nodes: appear (a node joined

the network), disappear (a node left the network), join (a node joined a community),

and leave (a node left a community). Based on these events, they defined four indices

that measured the behaviour of the nodes in relation to the communities: the stability

index (the tendency of a node to interact with the same nodes over time), the socia-

bility index (the number of different interactions in which a node was involved), the

popularity index (the number of nodes attracted by a community in a time interval),

and the influence index (the number of nodes that left or joined a community at the

same time as a node).

Asur et al. used these measures to describe the community evolution of a co-

authorship network taken from DBLP database and a network of clinical drug trial

patients in which the weights of the edges were based on the correlation in patients’

liver toxicity levels during the trial. For the drug network, they identified several

patients with a low stability index and suggested that this implied that these patients

were suffering from side effects from the drugs. The reasoning behind this suggestion

was that patients with a low stability index regularly switched between communities

because of large variations in their response to the trial drugs, and these variations

implied that they were responding badly to the treatment. Asur et al. also used the

influence index to predict the appearance of links within clusters.

In another method utilizing random walkers, Lin et al. [190] proposed a technique

that identified communities by finding the partition of the network that minimized

the number of steps that the walkers needed to take to reach other nodes within

the same community and maximized the number of steps required to move between

communities. In contrast to many of the methods that we discuss, instead of mapping

communities between time steps based on node or edge overlap, Lin et al. compared

vectors representing the interactions between members of a community at different

time steps. They then defined five types of community evolution: one-to-one mapping,

merge, split, extinct, and emerge. Each of these events corresponds to one of the five

events defined in Ref. [22] by Asur et al.

Lin et al. tested their method on a blog network in which each node represented

a blogger and there was a directed edge from the author of any comment to the

author of the blog where the comment was posted. Based on this network, they then

constructed weighted networks for several different search queries in which the edge

weights in a network for a particular query were based on the relevancy of a post to

that query. For example, they studied the community evolution in a network based on

the query “London bombing” and found that there were initially two distinct political
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blog communities, with different political interests, which joined together when their

interests converged – in this case, when both communities began to discuss terrorist-

related issues, such as the investigation of terrorist suspects.

The major weakness of the method proposed by Lin et al. which is common to sev-

eral of the methods that we discuss, is that the user is required to input the number of

communities to identify at each time step. In almost all situations, it is desirable that

the appropriate number of communities is determined by the community-detection

algorithm from the structure of the data, rather than being specified by the user.

Random walkers have also been used to investigate communities in dynamic net-

works using methods based on modularity maximization (see Section 4.3.2). In

Ref. [177], Lambiotte et al. demonstrated the equivalence of modularity-like qual-

ity functions and Laplacian dynamics of populations of random walkers. Recently,

Mucha et al. extended this framework to study the community structure of multislice

networks, which are combinations of individual networks coupled through additional

links that connect each node in one network slice to itself in other slices [214].20

Their generalization includes an additional parameter that controls the strength of

the coupling between slices. The different connections between the network slices

are flexible and can represent connections between time slices, connections between

networks including different types of links, or connections across different resolutions.

The method allows one to simultaneously identify communities at different time steps

and to systematically track the development of communities through time.

Mucha et al. tested their method on an evolving roll call voting network for the

U.S. Senate over the period 1789–2008 (see Refs. [241, 306] and Chapter 6). They

uncovered details about the group voting dynamics of U.S. Senators that would not be

captured by simply considering the union of the partitions for the different networks.

In particular, their analysis identified several important changes in U.S. politics, such

as the formation of political parties and the beginning of the Civil War. The method

proposed by Mucha et al. is particularly appealing because it can simultaneously deal

with multiple time steps, multiple types of edge, and multiple resolutions. However,

the user is again required to make a parameter choice; in this case to choose an

appropriate value for the parameter controlling the coupling between different network

slices.

20This approach bears similarities to the method proposed by Jdidia et al. in Ref. [154] (see
Section 4.6.4).
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4.6.9 Graph colouring

The investigation of community dynamics has also been cast as a graph colouring

problem. In Ref. [286], Tantipathananandh et al. defined a method for investigating

community dynamics in which the colour of a node at a time step represented the

node’s community affiliation. To derive an optimization formulation for the commu-

nity detection problem, they made three explicit assumptions about the behaviour of

nodes: (1) a node tends not to change its community affiliation very frequently (i.e.,

a node does not change colour very often); (2) if a node does change its community

affiliation (colour), it will usually move between only a few communities; (3) nodes in

the same community interact more than nodes in different communities. They then

assigned costs to penalize deviations from each of these behaviours and defined an

optimization problem in which the community affiliation was determined by minimiz-

ing the sum of these costs; they also assigned parameters to each of these costs that

could be tuned by the user to adjust the relative importance of assumptions (1)–(3).

The resulting optimization problem is NP-hard, so in Ref. [286] Tantipathananandh

et al. proposed several computational heuristics to identify approximate solutions and

they presented further heuristics in Ref. [285].

Tantipathananandh et al. tested this framework on the southern women’s data

set [76] and on a social network of zebras [283] and found good agreement between the

communities they identified and the communities found in prior studies. However,

clearly the assumptions about node and community behaviour used to define the

graph colouring problem are very strong and in general they are not valid for other

networks.

4.6.10 Graph segmentation and change points

In several of the studies we have discussed, events have been defined to describe

changes in individual communities (e.g., merge and split events). In this section,

we describe two methods that identify time steps at which the overall community

partition of a network changed.

In Ref. [282], Sun et al. investigated dynamic communities in bipartite networks

using methods of information compression. Instead of identifying communities in the

network for each time step independently and then comparing communities across

time steps, Sun et al. separated the sequence of networks into segments such that

the optimal community partitions of the networks in each segment were similar. The

83



Chapter 4 | Community Structure in Networks

networks in a segment were then considered to represent the same stage of the evo-

lution of the network and were characterized by the same partition of the nodes into

communities. Furthermore, the boundaries between segments were considered to cor-

respond to “change points” in the evolution of the network. Sun et al. determined

the partitions of the sequence of networks into segments and of the segments into

communities using the minimum description length principle [136, 257], which is a

formalization of Occam’s Razor [80] in which the best description of a data set is the

one that results in the largest compression of the data. They calculated an encoding

cost for the description of the communities in each segment and summed this value

over all segments to give a total encoding cost for the sequence of networks. The

optimal partition of the sequence of networks into segments and of the segments into

communities was the partition that minimized the total encoding cost. Sun et al.

applied this technique to several data sets, including the Enron e-mail network, for

which they identified a change point at the time when the investigation into document

shredding at the company began and the CEO resigned.

Duan et al. used a different approach to partition evolving, directed, weighted

networks into segments in which all of the networks had similar optimal partitions

into communities [83]. They began by partitioning the first two instances G(t = 1) and

G(t = 2) of the network into community partitions P(1) and P(2), respectively, by

maximizing modularity for each network.21 They compared the two partitions P(1)

and P(2) using a similarity function based on the intersection of the communities at

the two time steps. They then proceeded in different ways depending on the value of

this similarity:

1. If the similarity exceeded a pre-defined threshold, the two networks were consid-

ered to belong to the same segment. Duan et al. then constructed an aggregate

network G(1, 2), containing all of the nodes and the total edge weight in G(1),

and G(2) and identified communities in this new network. They compared the

community partition P(3) of the third network G(3) with the partition for the

aggregate network G(1, 2) to determine if this network was sufficiently similar to

also join the segment. If it was, they integrated G(3) into the aggregate graph

G(1, 2); if it was not, there was a change point and G(3) began a new segment.

2. If the similarity of the first two partitions P(1) and P(2) did not exceed the

threshold, they were considered to belong to different segments, so there was a

21See Ref. [184] for details of the generalization of modularity to directed networks.
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change point between time steps 1 and 2 and the community partition P(3) of

the third network was then only compared to the second partition P(2).

They repeated this process for each of the time steps of the evolving network. Duan

et al. also applied their method to the Enron e-mail network and identified stable and

fluctuating periods during which there were few and many changes points, respec-

tively.

4.6.11 Node-centric methods

In Section 4.6.1, we highlighted problems with mapping communities between consec-

utive time steps following splits and mergers using methods based on node (or edge)

overlap. One approach to tackling this issue is to identify descendant communities

according to the community membership of particular nodes.

In Ref. [303], Wang et al. proposed a method for mapping communities between

time steps based on the community membership of core nodes. For each node, they

first summed the difference between the node’s degree and the degree of each of its

nearest neighbours. They then defined a core node as any node for which this sum

was greater than zero; this meant that a community could contain more than one core

node. They defined the descendants of a community C(t) as all communities at t + 1

that contained any of the core nodes in C(t) and identified four possible community

events: split, merge, birth, and death. All of these events are variants of the events

defined by other authors that we have already discussed.

Wang et al. applied this technique to several data sets, including three co-authorship

networks [216]; a network of mobile phone users in China; the Enron email network;

a collaboration network of film actors taken from IMDB; an internet network; a word

adjacency network of computer related vocabulary in which nodes represented words

and nodes were connected by edges if the words appeared in the same article on the

Engineering Village website; and three software networks in which nodes represented

classes and nodes were connected if an invoking relationship existed between the

classes. For each of these networks, Wang et al. uncovered dynamic communities and

calculated correlation coefficients between the size of each comunity and its age (they

called this correlation coefficient growth) and between the lifetime of each community

and its stability (they called this coefficient metabolism). They found positive growth

values for social networks and negative values for all other networks; they further

found negative values of the metabolism coefficient for social networks and positive

values for the other networks.
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The positive value of the growth coefficient for social networks is in agreement

with the findings of Palla et al. [233] (see Section 4.6.5). However, Palla et al. only

investigated social networks, so it would be interesting to test whether their methods

also find that the age of a community is negatively correlated with its size in other

types of network. If this difference between the two types of network is verified using

other methods, a further question of interest is what properties of the networks lead

to these differences?

There are, however, several problems with Wang et al.’s approach. For example,

it is possible that a community could split in half such that one half contains all of

the core nodes and the other none. In this case, although the two new communities

contain the same fraction of nodes of the original community, only one will be labelled

as a descendant. A second possibility is that a community C(t) with three core nodes

could split into three communities, two of which contain significantly fewer nodes than

the third community. In this case, all three new communities would be considered

to be descendants of the original community; however, it would perhaps be more

reasonable to only consider the largest community as the descendant of C(t).

In another node-centric approach, Asur and Parthasarthy [20, 21] tracked the

evolution of groups of nodes in the local neighbourhood of individual nodes. For each

node i, they defined a viewpoint neighbourhood as the network of nodes rooted at i

that contained only nodes (and their connections) with some degree of importance

to i. To identify the viewpoint neighbourhood of a node, Asur and Parthasarthy

proposed an activation spread model defined as follows. They began at a node i

with an amount M of some resource to allocate; they then distributed this resource

amongst the immediate neighbours of i, assigning the proportion of the resource to

each node based on an activation function. They described any node that received

some of the resource as activated. The activated nodes retained some amount of

the resource for themselves and assigned the rest to their neighbours. This activation

process proceeded with the amount of resource to be allocated decaying as the number

of steps from i increased until a minimum threshold was reached, at which point the

resource was considered indivisible and the activation ceased. Asur and Parthasarthy

defined the viewpoint neighbourhood of node i as the set of all activated nodes. They

considered three activation functions for determining the fraction of the resource

allocated to the nodes at each level: one based on the degree of a node, another

based on edge betweenness, and a third based on the semantic similarity of keywords

with which the nodes were annotated.
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Asur and Parthasarthy used this technique to investigate the dynamics of a DBLP

co-authorship network and a network of Wikipedia pages. They identified five evolu-

tion events for viewpoint neighbourhoods, which are similar to the events identified in

Ref. [22] by Asur et al. These events are growth, shrinkage, continuity (the nodes in

a viewpoint neighbourhood remained unchanged, but there were possibly changes in

the edges), mutate (a growth or shrinkage event in which more than half of the nodes

in a viewpoint neighbourhood changed between consecutive time steps), κ-attraction

(κ% of the nodes in a viewpoint neighbourhood moved closer), and κ-repulsion (κ%

of the nodes in a viewpoint neighbourhood moved further apart). These events are

not mutually exclusive so, for example, a viewpoint neighbourhood could grow and

attract at the same time. Asur and Parthasarthy found that, for both the DBLP and

Wikipedia networks, growth and shrinkage events were frequent, while continuity

events were rare in the DBLP network, but quite frequent in the Wikipedia network.

Asur and Parthasarthy also defined four indices (which are again similar to the

indices in Ref. [22]) for measuring the changes in a node’s viewpoint neighbourhood:

stability (how much a neighbourhood changed over time), sociability (how many dif-

ferent nodes were affected by a particular node over time), popularity (how many

nodes were attracted to a node’s neighbourhood), and impact (for identifying nodes

that had the highest impact on most viewpoint neighbourhoods). Perhaps unsurpris-

ingly, the authors in the DBLP network with the highest impact scores were those that

were regarded as most influential within their field. Finally, Asur and Parthasarthy

identified stable and short-lived subgraphs within viewpoint neighbourhoods.

Kampis et al. [162] also proposed a method for tracking communities from the

point of view of individual nodes. In Ref. [162], they suggested a community tracking

method based on identifier nodes, which they defined as the nodes within communities

with the highest betweenness centrality. A community was then considered to evolve

from another community if the communities shared the same identifier node. However,

Ref. [162] is a work in progress and Kampis et al. have not produced any results yet

using this framework.

A primary objective of node-centric techniques for investigating community dy-

namics is to make the mapping of communities between consecutive time steps un-

equivocal. However, as we highlighted at the beginning of this section when discussing

the method proposed by Wang et al. in Ref. [303], this mapping can still be ambiguous

for community mappings based on the properties of individual nodes. In Chapter 5,

we introduce an alternative node-centric method for tracking communities in dynam-

ical networks.
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4.6.12 Evolutionary clustering

Most of the methods described thus far are essentially two-step procedures in which

one first independently partitions the network into communities at each time step and

then uncovers community dynamics by comparing the partitions across time steps.

For noisy data, this can often result in significant variations in the communities

detected in consecutive partitions; however, the community changes can then simply

be an artefact of the data rather than the result of major changes in the underlying

community structure of the network.

To overcome this problem, Chakrabarti et al. introduced the idea of evolutionary

clustering [65], which seeks to simultaneously optimize two criteria: first, the clus-

tering obtained at any time step should closely reflect the data at that time step;

second, the clustering should not change drastically between consecutive time steps.

More formally, if we let P(t) denote the clustering at time step t and M(t) denote a

similarity matrix22 for the objects to be clustered, one can define a snapshot quality

function squality [P(t), M(t)] that gives the quality of the clustering P(t) at time t with

respect to M(t). One can then also define a history cost function hcost [P(t − 1),P(t)]

that gives the history cost of the clustering at time step t. Within this framework,

a good partition should have a high snapshot quality (i.e., the clusters at time step

t should closely reflect the data at this time step) and a low history cost (i.e., the

clustering at time step t should be similar to the clustering at t − 1).

Chakrabarti et al. identified optimal sequences of clusters by finding the partition

P(t) at each time step t that maximized the quality function

squality [P(t), M(t)] − νhcost [P(t − 1),P(t)] , (4.10)

where ν is a tunable parameter that adjusts the relative weights of the snapshot

quality and history cost. This framework is flexible and one can define quality func-

tions and history costs that are appropriate for a particular problem. In Ref. [65],

Chakrabarti et al. derived evolutionary versions of hierarchical clustering and k-means

clustering [84] and tested their algorithm under different parameter settings on a bi-

partite network of photos and photo-tags from the photo-sharing website flickr.com.

Using a similar approach, in Refs. [69] and [68], Chi et al. proposed two evolu-

tionary spectral algorithms. In both algorithms, the optimal clustering was identified

22Chakrabarti et al. defined the similarity of a pair of nodes in a bipartite network as a linear
combination of their cosine similarity and the correlation between time series associated with each
node. Their method, however, does not depend on this choice, so other similarity measures can be
used.
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by minimizing a cost function with both a snapshot and a history cost, similar to

Eq. 4.10.23 The two approaches proposed by Chi et al. differed in the data that was

used to minimize the history cost. In the first approach, the clustering P(t) was com-

pared to the similarity data at t − 1, whereas in the second approach the clustering

P(t) was compared to the clustering P(t − 1). Chi et al. tested their methods on an

evolving blog network and found that, for certain values of the parameter weighting

the snapshot and history costs, the clusters were stable in the short-term, but evolved

over longer time horizons.

The evolutionary spectral framework proposed by Chi et al. allowed for changing

numbers of clusters, but they also extended it to allow for changing numbers of

nodes. However, the number of clusters required at each time step is not determined

automatically in this method, but must be input by the user. This is also true of the

evolutionary k-means and hierarchical clustering algorithms proposed by Chakrabarti

et al. [65]. Another issue with these evolutionary clustering techniques is that they

do not include a method for automatically selecting the parameter weighting the

snapshot and history costs; instead, the value of this parameter again needs to be

chosen by the user.

In another paper on evolutionary clustering, Lin et al. [188] proposed an algo-

rithm called FacetNet, that produces a soft assignment of nodes to communities, i.e.,

instead of each node belonging to a single community at each time step, the algo-

rithm returns a probability that a node belongs to a community, so nodes can be

considered to belong to more than one community. Lin et al. defined the snapshot

cost as the Kullback-Leibler divergence24 [173] between the similarity matrix at time

t and the matrix describing the community structure of the network at t; they defined

the history cost as the Kullback-Leibler divergence between the matrices describing

the community structures at t and t − 1. They also extended the framework to deal

with the insertion and deletion of nodes and changing numbers of communities. To

determine the number of communities at each time step, they defined a soft mod-

ularity and selected the partition that maximized this function. However, the user

is still required to input an appropriate range of candidate values for the number of

23Note that Chi et al. [69] minimized a cost function whereas Chakrabarti et al. [65] maximized
a quality function. Of course, the two optimizations are closely related: the higher the quality, the
lower the cost.

24The Kullback-Leibler divergence is a non-symmetric measure of the distance between two proba-
bility distributions. For two matrices X and Y with elements xij and yij , respectively, the Kullback-
Leibler divergence is given by D(X ||Y ) =

∑

i,j(xij log
xij

yij
− xij + yij).
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communities because evaluating the modularity over all possible community numbers

is computationally expensive.

Lin et al. tested the method on a blog network and a DBLP co-authorship network

and concluded that the identified communities were robust with respect to data noise.

In Ref. [189], they extended this work and provided more detailed algorithms and

proofs. The main problems with FacetNet are that it is not able to deal with the

appearance and disintegration of communities and the computation time needed to

find communities does not scale well with network size. These issues were addressed

in a recent paper by Kim et al. [167].

Evolutionary clustering algorithms have also been developed for multipartite net-

works. In Ref. [284], Tang et al. developed an evolutionary spectral clustering algo-

rithm for multipartite networks and applied this technique to a tripartite represen-

tation of the Enron e-mail network (in which nodes corresponded to users, e-mails

and words, and edges connected users to e-mails and e-mails to words) and to a four-

mode DBLP co-authorship network (in which nodes corresponded to papers, authors,

words in the title, and conferences/journals). For the co-authorship network, they

found that the method was able to successfully detect community changes. For ex-

ample, it identified the shift in focus of the Neural Information Systems Processing

conference from neural networks to machine learning between 1995 and 2004. The

main shortcomings of this approach are that the user must provide weightings indi-

cating the relevant importance of each edge type in the community detection and the

number of communities to identify in each mode.

Finally, in Ref. [319], Zhou et al. proposed an evolutionary spectral clustering

algorithm for identifying dynamic communities in tripartite networks. The algorithm

allows the nodes in the network to change through time, but the user is required input

the number of communities to identify. They applied the method to a co-authorship

network derived from the CiteSeer website in which nodes represented authors, words,

and venues, and they successfully identified communities corresponding to scientific

disciplines.

4.6.13 Summary

Although the study of community dynamics is still in its infancy, many methods have

already been proposed for detecting and tracking communities in dynamic networks.

In this section, we have described several techniques and discussed their application

to different networks. We have also highlighted the problems with some of these

methods; in particular, the difficulty of mapping communities between different time
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steps. A problem that we have not discussed is the issue of using these methods to

provide insights into data. With a few notable exceptions, the studies that we have

described in this section present a method for detecting dynamic communities and

then validate the method by checking that the communities it identifies in a real-

world network are reasonable. However, many of the studies stop there. They do

not then go on to investigate the mechanisms driving the community evolution or

try to answer some of the fundamental questions that we posed at the beginning of

this section, such as what properties of a community lead to stability. For many of

the studies that we discussed, answering such question was probably not the authors’

objective, but it seems that this is where real insights into these evolving systems can

be gained and this is an obvious direction for future research.

In Chapter 5, we try to answer some of these questions for the FX market. We

begin by presenting a node-centric method for tracking dynamic communities which

side-steps the issue of mapping communities between different time steps. We then

investigate some of the properties of these evolving communities and use them to

provide insights into the changing structure of the FX market.
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Chapter 5

Dynamic Communities in the
Foreign Exchange Market

The work described in this chapter has been published in reference [P1] and a further

paper that extends this publication is under review [P3]. The techniques we present

are complementary to the methods described in Chapter 3 and provide an alternative

approach for investigating evolving correlation matrices. In this chapter, we consider

an FX market network in which each node represents an exchange rate and each

weighted edge represents a time-dependent correlation between the rates and we use

community detection to study the temporal evolution of these correlations.

5.1 Introduction

An investigation of a financial market can be formulated as a network problem. In

the most common network description of a market, each node represents an asset,

and each weighted link is a function (the same function for all links) of the pairwise

temporal correlations between the two assets it connects [198]. A wide range of

financial assets have been investigated using network techniques, including equities,

e.g., [197, 198, 229], currencies, e.g., [133, 204, 205], commodities, e.g., [272], bonds,

e.g., [41], and interest rates, e.g, [79]. However, because the network adjacency matrix

is a function of the correlation matrix, a network for N assets contains 1
2
N(N − 1)

links (i.e., the network is fully-connected) so, as with the correlation matrices we

analyzed in Chapter 3, simultaneous investigation of the interactions is difficult for

even moderate N and some simplification is necessary to attain an understanding of

the market system.

The most prevalent method for reducing the complexity of a financial network is

to construct a minimum spanning tree (MST), e.g., [53,197,198,229,231]. The MST
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is generated using a hierarchical clustering algorithm (see Section 4.3) and reduces

the network to N − 1 of its most important microscopic interactions. This approach

has resulted in many useful financial applications, including the construction of a

visualization tool for portfolio optimization [229] and a means for identifying the

effect of news and major events on market structure [205]. Nevertheless, the MST

approach has a number of limitations which we discuss in Section 5.6.

An alternative simplification method is to coarse-grain the network and consider

it at various mesoscopic scales. The properties of the market can then be understood

by considering the dynamics of small groups of similar nodes (communities). From a

financial perspective, communities correspond to groups of closely-related assets, so

this treatment has the potential to suggest possible formulations for coarse-grained

models of markets.

Most prior studies of financial networks find groups of closely-related assets using

traditional hierarchical clustering techniques, e.g., [198, 204, 229] or by thresholding

to create an unweighted network, e.g., [99]. In contrast, in this chapter, we identify

communities using the Potts method described in Section 4.3.3. To the best of my

knowledge, other studies that uses similar approaches to study financial networks have

not examined longitudinal networks or have considered networks of equities rather

than exchange rates, e.g., [148].

To provide insights into the clustering of the exchange rate time series, we intro-

duce a new approach for investigating dynamic communities in networks. Commu-

nity detection in fully-connected networks of the type studied is equivalent to the

problem of clustering multivariate time series [187]. We propose a method to track

communities from the perspective of individual nodes, which removes the undesirable

requirement of determining which community at each time step represents the de-

scendant of a community at the previous time step that we discussed in Section 4.6.

We demonstrate that exchange rate community dynamics provide insights into the

correlation structures within the FX market and uncover the most important ex-

change rate interactions. Although we focus on the FX market, the techniques that

we present in this chapter are general and can be applied to other systems for which

an evolving similarity between the constituent elements can be defined.

5.2 Data

The FX networks we construct have N = 110 nodes, each of which represents an ex-

change rate of the form XXX/YYY (with XXX6=YYY), where XXX, YYY∈{AUD,
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CAD, CHF, GBP, DEM, JPY, NOK, NZD, SEK, USD, XAU} and we note that

DEM→EUR after 1998. Other authors have recently studied the FX market by con-

structing networks in which all nodes represent exchange rates with the same base

currency, implying that each node can then be considered to represent a single cur-

rency [133]. Exchange rate networks formed with reference to a single base currency

are somewhat akin to ego-centred networks studied in the social networks litera-

ture [304]. Ego-centred networks include links between a number of nodes that all

have ties to an ego which is the focal node of the network. However, this approach has

two major problems for FX networks. First, it neglects a large number of exchange

rates that can be formed from the set of currencies studied and consequently also

ignores the interactions between these rates. Second, the network properties depend

strongly on the choice of base currency and this currency is, in effect, excluded from

the analysis. We therefore construct a network including all exchange rates that can

be formed from the studied set of currencies.

5.2.1 Returns

We take the price pi(t) at discrete time t as the mid-price of the bid and ask prices,

so that

pi(t) =
1

2

[

pbid
i (t) + pask

i (t)
]

. (5.1)

We define the logarithmic return of an exchange rate with price pi(t) as (see Eq. 3.3)

zi(t) = ln

[

pi(t)

pi(t − 1)

]

,

and we use the last posted price within an hour to represent the price for that hour.

To calculate a return at time t, one needs to know the price at both t and t − 1. To

minimize the possibility of a price not being posted in a given hour, we focus on the

FX market’s most liquid period: 07:00-18:00 U.K. time. Nevertheless, there are still

hours for which we do not have price data (this usually occurs as a result of problems

with the data feed). One can calculate a return for hours with missing price data by

assuming the last posted price or interpolating between prices at the previous and

next time step [73]. However, to ensure that all time steps included in the study are

ones at which a trade can actually be made, we take the stricter approach of omitting

all returns for which one of the prices is not known. In order to ensure that the time

series of exchange rates are directly comparable, we consequently remove a return

from all exchange rates if it is missing from any rate.
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For the period 1991–2003, we derive each exchange rate XXX/YYY with XXX,

YYY6=USD from two USD rates. For example, we find the CAD/CHF price at

each time step by dividing the USD/CHF price by the USD/CAD price. For the

period 2005–2008, we derive each exchange rate not included in the set {AUD/USD,

EUR/NOK, EUR/SEK, EUR/USD, GBP/USD, NZD/USD, USD/CAD, USD/CHF,

USD/JPY, USD/XAU} from pairs of exchange rates in this set. For example, we

find the USD/NOK price at each time step by dividing the EUR/NOK price by the

EUR/USD price. Although this approach appears somewhat artificial, it matches

the way in which many exchange rates are calculated in the actual FX market. For

example, a bank customer wishing to convert CAD to NZD (or vice versa) will need

to be quoted the CAD/NZD prices. Because this is not a standard conversion, the

bank will not be able to quote a direct market price but will instead calculate a price

using the more widely traded USD/NZD and USD/CAD exchange rates. Calculating

the exchange rates in this way implies that there is some intrinsic structure inherent

in the FX market. However, as shown in Ref. [204] and demonstrated further in

Sections 5.5.2 and 5.5.3 of this chapter, this “triangle effect” does not dominate the

results.

5.2.2 Adjacency matrix

We determine the weights of the edges connecting pairs of nodes in the network using

a function of the linear correlation coefficient r between the return time series for

the corresponding exchange rates. This is the same correlation coefficient defined in

Eq. 3.6, but we reproduce the definition here for clarity of exposition. The correlation

between the returns of exchange rates zi and zj over a time window of T returns is

given by

r(i, j) =
〈zizj〉 − 〈zi〉〈zj〉

σiσj

, (5.2)

where 〈· · · 〉 indicates a time-average over T returns and σi is the standard deviation of

zi over T . We use the linear coefficient r(i, j) to measure the correlation between pairs

of exchange rates because of its simplicity, but one could use alternative measures that

are capable of detecting more general dependencies [265]. The weighted adjacency

matrix A representing the network then has components

Aij =
1

2
[r(i, j) + 1] − δij , (5.3)

where the Kronecker delta δij removes self-edges. The matrix elements Aij (which

take values in the interval [0, 1]) quantify the similarity of each pair of exchange rates i
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and j. For example, two exchange rates i and j whose return time series are perfectly

correlated will be connected by a link of unit weight.

We exclude self-edges in order to deal with simple graphs. This approach was

also taken in a previous study of a stock network derived from a correlation matrix

[148]. We note that if we include self-edges, the node compositions of the identified

communities are identical if one makes a small parameter change in the community

detection algorithm. We discuss the the effect of including self-edges in Sections 5.4

and 5.2.2.

Similarly to Section 3.2.3, we create a longitudinal sequence of networks by consec-

utively displacing the time windows by ∆t = 20 hours (approximately 2 trading days)

and fix T = 200 hours (approximately 1 month of data). This choice of T , motivated

in part by the example data in Fig. 5.1, represents a trade-off between over-smoothing

for long time windows and overly-noisy correlation coefficients for small T [227,229].

Figure 5.2 demonstrates that the choice of ∆t has a similar, but less pronounced, ef-

fect on the standard deviation of the edge weights and we again select a compromise

value. The time windows we use to construct the networks overlap, so the single-time

networks are not independent but rather form an evolving sequence through time.
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Figure 5.1: The standard deviation of the edge weights Aij as a function of time
for the period 1991–1998. For each panel, ∆t = 20 (approximately 2 days), and (a)
T = 100 hours, (b) T = 200 hours, (c) T = 400 hours, and (d) T = 1200 hours
(approximately 0.5, 1, 2, and 6 months, respectively).
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Figure 5.2: The standard deviation of the edge weights Aij as a function of time for
the period 1991–1998. For each panel, T = 200 hours, and (a) ∆t = 10, (b) ∆t = 20,
(c) ∆t = 50, and (d) ∆t = 200 (approximately 1 day, 2 days, 5 days, and 2 weeks,
respectively).

5.3 Detecting communities

We detect communities using the Potts method described in Section 4.3.3. Recall

from Eq. 4.3 that the Hamiltonian of the N -state Potts spin glass is given by

H(λ) = −
∑

ij

Jijδ(Ci, Cj) ,

where Ci is the state of spin i and Jij is the interaction energy between spins i and j.

The coupling strength Jij is given by Jij = Aij −λPij , where Pij denotes the expected

weight of the link with which nodes i and j are connected in a null model and λ is a

resolution parameter. We employ the standard null model of random link assignment

Pij = kikj/2m, which preserves the degree distribution of the network.

We construct FX networks by calculating a correlation coefficient between every

pair of exchange rates, resulting in a weighted, fully-connected network. We include

each exchange rate XXX/YYY and its inverse rate YYY/XXX in the network, be-

cause one cannot infer a priori whether a rate XXX/YYY will form a community with

a rate WWW/ZZZ or its inverse ZZZ/WWW. However, the return of an exchange rate

XXX/YYY is related to the return of its inverse YYY/XXX by zXXX

YYY

= −zYYY

XXX

. This
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implies that the correlation coefficients between these rates and a rate WWW/ZZZ

are related by r
(

XXX
YYY

, WWW
ZZZ

)

= −r
(

YYY
XXX

, WWW
ZZZ

)

. Consequently, every node has the

same strength

ki =
∑

j

Aij =
1

2
(N − 2) , (5.4)

so the probability of connection in the standard null model Pij = kikj/2m is also

constant and is given by

Pij =
N − 2

2N
. (5.5)

In the case of the FX network, the standard null model Pij = kikj/2m and the uniform

null model are thus equivalent. However, the methods we present are general and can

be applied to networks with non-uniform strength distributions.

If we include self-edges in the network, the strength of each node increases by

one. This, in turn, leads to a constant increase in the expected edge weight in

the null model. For a network with self-edges, the expected edge weight is given by

P s
ij = N/[2(N+2)], a shift by a constant value of P s

ij−Pij = 2/[N(N+2)]
.
= 1.62×10−4

relative to the network in which self-edges are excluded. Self-edges always occur

within a community, so they will always contribute to the summation in Eq. 4.3

irrespective of exactly how the nodes are partitioned into communities. This implies

that self-edges play no role when determining the community partition that minimizes

the interaction energy at a particular resolution.

Additionally, every community has an equivalent inverse community. For ex-

ample, if there is a community consisting of the three exchange rates XXX/YYY,

XXX/WWW, and ZZZ/WWW in one half of the network, there must be an equiva-

lent community formed of YYY/XXX, WWW/XXX, and WWW/ZZZ in the other

half. The existence of an equivalent inverse community for each community means

that at each time step, the network is composed of two equivalent halves. However,

the exchange rates residing in each half change in time as the correlations evolve.

5.4 Robust community partitions

In many networks, the same community structure persists across a range of resolutions

[17, 107, 254]. As one increases the resolution parameter in the Potts method one is

providing an incentive for nodes to belong to smaller clusters; community partitions

that are robust across a range of resolutions are therefore significant because the

communities do not break up despite an increasing incentive to do so. Communities

in robust partitions have been found to correspond to the communities imposed by
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construction in simulated networks and to known groupings in real-world networks

[17, 107]. This suggests that the communities in partitions that persist over a large

range of resolutions potentially represent important substructures.1

We compare community partitions using the normalized variation of information

V̂ [207, 295]. The entropy of a partition P of the N nodes in A into η communities

Ck (k ∈ {1, . . . , η}) is

S(P) = −
η
∑

k=1

q(k) log q(k) , (5.6)

where q(k) = |Ck|/N is the probability that a randomly-selected node belongs to

community k and |Ck| is the size of communities.2 For a partition P, the entropy

therefore indicates the uncertainty in the community membership of a randomly-

chosen node. Given a second partition P ′ of the N nodes into η′ communities, the

mutual information I(C, C′) is given by

I(C, C′) =

η
∑

k=1

η′

∑

k′=1

q(k, k′) log
q(k, k′)

q(k)q(k′)
, (5.7)

where q(k, k′) = |Ck ∩ Ck′|/N . The mutual information is the amount by which

knowledge of a node’s community in P reduces the uncertainty about its community

membership in P ′ (averaged over all nodes). The normalized variation of information

V̂ between P and P ′ is then given by

V̂ (P,P ′) =
S(P) + S(P ′) − 2I(P,P ′)

log N
. (5.8)

The factor log N normalizes V̂ (P,P ′) to the interval [0, 1], with 0 indicating identi-

cal partitions and 1 indicating that all nodes are in individual communities in one

partition and in a single community in the other. We will use Eq. 5.8 to compare

partitions in networks with the same number of nodes and remark that one should

not normalize by log N when comparing the variation of information in data sets with

different sizes [207].

1In order to find equivalent communities in the network in which self-edges are included, it is nec-
essary to decrease the resolution parameter to compensate for the increase in the constant expected
edge weight in the null model. If we identify communities in the network in which self-edges are
excluded using the resolution parameter λ, then we find identical communities in the corresponding
network with self-edges using a resolution parameter λs = λPij/P s

ij = λ(N +2)(N − 2)/N2. For ex-
ample, if we identify communities in the network without self-edges using a resolution of λ = 1.4500,
then we identify equivalent communities in the network with self-edges with a resolution parameter
of λs = 1.4495.

2Recall that the quantity Ck represents the set of communities indexed by k but that Ci is the
set of nodes in the same community as node i.
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5.4 | Robust community partitions

The variation of information is a desirable measure for quantifying the difference

between partitions of a network because it satisfies the triangle inequality; therefore,

if two partitions are close to a third partition, they cannot differ too much from each

other. It is also a local measure, so the contribution to V̂ (P,P ′) from changes in a

single community does not depend on how the rest of the nodes are clustered [164,207].
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Figure 5.3: (a) The quantities η, S, Q, and dH/dλ (defined in the text), normalized
by their maximum values, versus the resolution parameter λ for a single time window
beginning on 17/03/1992. The shaded grey area highlights the main plateau. The
bottom curve gives the normalized variation of information between partitions at
resolutions separated by ∆λ = 0.015. (b) The position of the main plateau at each
time step for the full period 1991–2008. Main plateaus (blue) containing the fixed
resolution (set at λ = 1.41 for 1991–2003 and to λ = 1.45 for 2005–2008) and (red)
not containing the fixed resolution. The grey block corresponds to 2004, for which
we do not have data.

One can identify robust communities by detecting communities at multiple res-

olutions and calculating V̂ (P,P ′) between the community partitions for consecutive

values of the investigated resolutions. Robust communities are revealed by intervals

in which there are few spikes in V̂ (P,P ′). In Fig. 5.3(a) we show V̂ (P,P ′) between

community partitions at resolutions λ in the interval [0.6, 2.1]. We focus on this in-

terval in this example because at λ = 0.6 all of the nodes are assigned to the same

community and at λ = 2.1 all of the nodes are assigned to singleton communities. We

investigate 100 resolutions in this interval as a compromise between having too few

resolutions to make meaningful comparisons and the computational costs of investi-

gating more. The resolutions that we study are then separated by ∆λ = 0.015. One
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can also identify robust communities by examining summary statistics that describe

the community structure as a function of the resolution parameter. We consider the

number of communities η, the modularity Q (see Eq. 4.1), the entropy S (see Eq. 5.6),

and the rate of change of the energy with resolution dH/dλ. Robust communities

correspond to plateaus (constant values) in curves of any of these quantities as a

function of the resolution parameter. In Fig. 5.3(a), we plot curves for each of the

summary statistics as a function of λ.

Figure 5.3(a) contains four principal plateaus, corresponding to partitions of the

network into η = 1, 2, 20, and 110 communities. The first and last plateaus, re-

spectively, represent all nodes in a single community and all nodes in individual

communities. The second plateau represents one community of exchange rates and

a corresponding community of inverse rates. The η = 20 plateau occurs over the

interval λ = [1.34, 1.57], in which there is a single plateau in the η plot and a few

smaller plateaus in each of the other plots. In contrast to the other plateaus, this

one was not expected, so the robust communities over this interval can potentially

provide new insights into the correlation structure of the FX market. Although the

community configuration over this interval does not have maximal Q (i.e., it is not

the community configuration corresponding to the maximum value of the traditional

modularity, which is the scaled energy [see Eq. 4.4] with λ = 1.), it provides an ap-

propriate resolution at which to investigate community dynamics due to its resolution

robustness and the financially-interesting features of the detected communities. For

the remainder of this chapter, we will refer to this plateau as the “main” plateau.

5.5 Community detection in dynamic networks

5.5.1 Choosing a resolution

To investigate the community dynamics, we first choose a resolution parameter at

which to detect communities at each time step. One approach is to always select a

resolution λ in the main plateau; as shown in Figs. 5.3(b) and 5.4(a), this plateau

occurs over different λ intervals at different time steps and has different widths. These

intervals need not share common resolution values, so this method seems inappropri-

ate because one would then be comparing communities obtained from many different

resolutions. Therefore, we fix the resolution at the value that occurs within the largest

number of main plateaus. As shown in Fig. 5.4(a), this corresponds to λ = 1.41 for

the period 1991–2003 and λ = 1.45 for the period 2005–2008.
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In order to demonstrate the validity of this technique, we show in Fig. 5.4(b) the

distribution of the λ distance from the fixed resolution to the main plateau and in

Fig. 5.4(c) the distribution of the normalized variation of information between the

community configuration obtained at the fixed resolution and that corresponding to

the main plateau. Both distributions are peaked at zero. The fixed resolution is a

λ distance of less than 0.05 from the main plateau 91% of the time for the period

1991–1998, 93% of the time for 1999–2003, and 88% of the time for 2005–2008. The

community configurations of the main plateau and the fixed resolution differ in the

community assignments of fewer than five nodes in 78% of time steps for the period

1991–1998, in 83% of time steps for 1999–2003, and in 88% of time steps for 2005–2008.

For the majority of time steps, the community configuration at the fixed resolution is

hence identical or very similar to the configuration corresponding to the main plateau.

This supports the proposed method of investigating the community dynamics at a

fixed λ for each period.

5.5.2 Testing community significance

The scaled energy Qs (see Eq. 4.4) measures the strength of communities compared

with some null model, so large scaled energies indicate more significant communities.

To ensure that the identified communities are meaningful, we perform a permutation

test [129] and compare the scaled energies of the observed community partitions with

the scaled energies for community partitions derived from shuffled data. For the

period 1991–2003, we generate shuffled data for each of the USD exchange rates by

randomly reordering the returns of the corresponding time series. We create shuffled

data for each of the non-USD exchange rates using the shuffled USD time series and

the triangle relations described in Section 5.2. We then calculate new correlation

matrices for these shuffled time series, form new adjacency matrices and find the

communities and scaled energies for each of the new networks. Similarly for the period

2005–2008, we shuffle the returns for each of the exchange rates in the set {AUD/USD,

EUR/NOK, EUR/SEK, EUR/USD, GBP/USD, NZD/USD, USD/CAD, USD/CHF,

USD/JPY, USD/XAU} and calculate the return time series for each of the rates not in

this set by applying the triangle relations to these shuffled time series. This procedure

conserves the return distribution for each of the original USD exchange rates for the

period 1991–2003 and for each of the rates in the above set for 2005–2008. The

shuffling, however, destroys the temporal correlations; any structure in the shuffled

data therefore emerges as a result of the triangle relationships. The shuffled data thus
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Figure 5.4: (a) Observed fraction of time steps that the resolution λ lies on the main
plateau. The vertical lines indicate λ = 1.41, which lies in the highest number of main
plateaus for the period 1991–2003, and λ = 1.45, which lies in the highest number
of main plateaus for 2005–2008. These are the resolutions at which we investigate
the community dynamics over the two periods. For the full period 1991–2008, we
show in panel (b) the normalized sampled distribution of the main plateau width
(blue) and the normalized sampled distribution of the λ-distance between the main
plateau and the fixed resolution (red). The distance is exactly zero for 53% of the
time steps. Again for 1991-2008, we show in panel (c) the normalized variation of
information distribution between the community configuration at the fixed resolution
and the configuration corresponding to the main plateau (blue) and the normalized
variation of information distribution between consecutive time steps (red). The value
of V̂ is exactly zero for 64% of the time steps. The vertical lines give the mean V̂
when (left to right) 1, 2, 5, 10, 20, and 50 nodes are randomly reassigned to different
communities (averaged over 100 reassignments for each time step).
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provides some insights into the effects of the triangle relations on the properties of

the actual data.

By inspection, Fig. 5.5(b) shows that the communities identified for the actual

data are stronger than those generated using shuffled data. The sample mean scaled

energy for the actual data is 0.011 (with a standard deviation of 0.0061) and for

shuffled data the sample mean is 0.0039 (with a standard deviation of 0.0013). The

communities observed for the actual data are therefore stronger than the commu-

nities for randomized data in which the structure results from the triangle effect.

This provides strong evidence that the communities represent meaningful structures

within the FX market, so these communities can provide insights into the correlation

structure of the market. We now consider properties of these communities in detail.
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Figure 5.5: (a) The fraction of time steps at which a community of a given size
is observed for 1991–1998 (blue), 1999–2003 (red), 2005–2008 (green), and shuffled
data (grey). The shuffled data distribution combines the results for the period 1991–
2003 and for 2005–2008. The distributions were almost identical for the two periods.
The inset shows the fraction of time steps at which η communities are observed
for 1991–1998 (blue), 1999-2003 (red), and 2005–2008 (green). (b) Comparison of
the distribution of the scaled energy for 1991–2003 for market data (blue) and 100
realizations of shuffled data (red).

5.5.3 Community properties

The inset of Fig. 5.5(a) shows that the number of communities into which the net-

work is partitioned exhibits only small fluctuations from 1991–2008. Nevertheless,
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as shown in Fig. 5.4(c), there is a considerable variation in the extent of community

reorganization between consecutive time steps. No nodes change community between

some steps, whereas more than twenty nodes change communities between others.

Figure 5.5(a) shows that the community size distribution is bimodal for all three

periods, with a tail extending to large community sizes. There is therefore a large

variation in the sizes of the communities observed at each time step for all three

periods. However, the minimum between the two peaks is not as deep for the period

2005–2008 and has shifted from a community size of six nodes to a community size

of eight nodes.

The peak in the size distribution for communities with 10 members occurs as a

result of the the number of currencies in the network. For each of the eleven currencies

XXX∈{AUD, CAD, CHF, GBP, DEM, JPY, NOK, NZD, SEK, USD, XAU}, there

are ten exchange rates XXX/YYY with XXX as the base currency (and ten equivalent

inverse rates YYY/XXX). We derive most of the exchange rates in a set of rates with

the same base currency by applying the triangle relation (see Section 5.2) to pairs

of exchange rate time series; one of the rates is common across across all of the

exchange rates in the base currency set and the other rate is different for each rate in

the set. For example, for the period 1991–2003, we derive the CAD/DEM exchange

rate from the USD/CAD and USD/DEM rates while we derive the CAD/GBP rate

from the USD/CAD but with the USD/GBP. Exchange rates with the same base

currency are, therefore, often correlated and consequently they have a tendency to

form communities with ten members. If there is no additional structure beyond these

base-currency correlations that emerge as a result of the triangle relation, then one

would expect to observe communities with 1, 2, . . . , 10 members at each time step

(and equivalent communities of inverse rates). Figure 5.5(a) shows that this size

distribution is indeed observed for shuffled data. However, Fig. 5.5(a) also shows

that the community size distribution for market data is significantly different, so the

community detection techniques are uncovering additional structure in the FX market

correlations. This again demonstrates that the triangle effect is not dominating the

results.

The frequently-observed communities shown in Table 5.1 demonstrate the varia-

tion in community size. Some of the most common communities are single exchange

rates, such as USD/CAD, which are formed of two closely-related currencies. Table

5.1 also highlights that communities often consist of exchange rates with the same

base currency. In Ref. [205], McDonald et al. used the relative clustering strengths

of groups of exchange rates with the same base currency to provide insights into the
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effects of important news and events on individual currencies. The relative size of

different base-currency communities can provide similar information. For example, if

we observe a community of ten CHF/YYY exchange rates and a community of three

DEM/YYY, the larger size of the CHF/YYY community suggests that the CHF is

more dominant than the DEM in the market at this time.

It is also worth noting that the most frequently observed community of ten ex-

change rates with the same base currency is the gold (XAU) community. We include

gold because there are many similarities between it and a currency. However, gold

also tends to be more volatile than most currencies, so the gold exchange rates tend

to have relatively high correlations and strong links in the network. Given this, it is

unsurprising that the gold rates often form their own community; the absence of a

large gold community at a time step is often a good indication that another currency

is particularly influential.

Importantly, the identified communities do not always contain exchange rates with

the same base currency, providing insights into changes in the inherent values of differ-

ent currencies. For example, consider a community containing several exchange rates

with CHF as the base currency and several rates with DEM as the base currency. The

fact that the exchange rates are in the same community suggests that they are corre-

lated. The structure of this community also provides information about the inherent

values of the CHF and DEM. Exchange rates of the form XXX/YYY quote the value

of one currency in terms of another currency, so if the price of XXX/YYY increases it

is not clear whether this is because XXX has become more valuable or because YYY

has become less valuable. However, if one observes that the price of XXX increases

against a range of different YYY over the same period, then one expects that the

value of XXX has increased. Therefore, returning to the example, if one observes a

community of several CHF/YYY and DEM/YYY exchange rates for many different

YYY then this suggests that these rates are positively correlated. Because the values

of CHF and DEM have increased against a range of other currencies, we expect that

the inherent values of both CHF and DEM are increasing.

5.6 Minimum spanning trees

Perhaps the best-known approach for studying networks of financial assets is to con-

sider the minimum spanning tree (MST) of the network. MSTs have been used

regularly in studies of equity markets to identify clusters of stocks that belong to

the same market sector, e.g., [53, 197, 229, 231]. In this section, we briefly consider
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Table 5.1: Examples of frequently-observed communities for the pre-euro period 1991–
1998 and for the two post-euro periods (1999–2003 and 2005–2008). The quantity Fr
denotes the fraction of time steps at which each community is observed. The notation
XXX/{YYY,ZZZ} indicates the set of exchange rate {XXX/YYY,XXX/ZZZ}.

Period Community Fr

1991–1998

USD/CAD 0.62
DEM/CHF 0.45
NZD/{CAD,USD} 0.33
AUD/{CAD,NZD,USD} 0.32
XAU/{AUD,CAD,CHF,DEM,GBP,JPY,NOK,NZD,SEK,USD} 0.28
SEK/{AUD,CAD,CHF,DEM,GBP,JPY,NOK,NZD,USD,XAU} 0.17
DEM/NOK 0.16
AUD/{CAD,NZD,USD,XAU} 0.14
GBP/{CHF,DEM,NOK} 0.12

1999–2003

EUR/CHF 0.88
USD/CAD 0.67
XAU/{AUD,CAD,CHF,EUR,GBP,JPY,NOK,NZD,SEK,USD} 0.64
NOK/{CHF,EUR} 0.59
SEK/{CHF,EUR,NOK} 0.51
GBP/{CAD,USD} 0.24
NZD/{AUD,CAD,CHF,EUR,GBP,JPY,NOK,SEK,USD} 0.21
JPY/{CAD,GBP,USD} 0.17
AUD/{CAD,CHF,EUR,GBP,JPY,NOK,SEK,USD} 0.14

2005–2008

XAU/{AUD,CAD,CHF,EUR,GBP,JPY,NOK,NZD,SEK,USD} 0.91
EUR/CHF 0.65
AUD/NZD 0.39
CAD/{AUD,CHF,EUR,GBP,JPY,NOK,NZD,SEK,USD} 0.39
GBP/{CHF,EUR} 0.35
SEK/{CHF,EUR} 0.33
NZD/{AUD,CAD,CHF,EUR,GBP,JPY,NOK,SEK,USD} 0.26
NOK/{CHF,EUR,SEK} 0.21
GBP/{CHF,EUR,NOK,SEK} 0.20
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5.6 | Minimum spanning trees

the limitations of this approach for community detection and describe the additional

information that the Potts method can provide.

MSTs are constructed using the agglomerative hierarchical clustering technique

known as single-linkage clustering [84, 244]. Agglomerative methods start with N

singleton clusters and create a hierarchy by sequentially linking clusters based on

their similarity. At the first step, the two nodes separated by the smallest distance

are joined in a cluster. At each subsequent step, the distance between the new cluster

and each of the old clusters is recomputed and the two clusters again joined. This

can be repeated until all clusters are connected. The similarity of clusters C and

C ′ is usually expressed as a distance that is determined by considering the distance

dij between each node i ∈ C and each node j ∈ C′. In single-linkage clustering, the

distance between clusters is given by

dsing(C, C′) = min
i∈C
j∈C′

dij . (5.9)

Single-linkage clustering thus respresents an extreme because it joins clusters based

on the minimum distance between nodes in each cluster. An alternative is average-

linkage clustering, for which

dave(C, C′) =
1

|C||C′|
∑

i∈C

∑

j∈C′

dij . (5.10)

For financial networks, the standard measure used for dij is the nonlinear trans-

formation of the correlation coefficient r(i, j) given by [197,198]

dij =
√

2 [1 − ρ(i, j)]. (5.11)

The distance takes values dij in the interval [0, 2].

In constructing MSTs, the merging of clusters C and C ′ corresponds to adding

an edge between the closest nodes in C and C ′. The edges must always link clusters,

so that the network never has any closed loops. If the agglomeration is continued

until there is a path from every node to every other node, one obtains a spanning

tree. Because the clusters are joined using the minimum distance between pairs

of nodes, MSTs necessarily possess the minimum total edge length of any possible

spanning tree. A minimum spanning tree is, therefore, a simply connected, acyclic

graph that connects the N nodes in a network with N − 1 links, which is appealing

because its N − 1 links make it much simpler to analyze than the full network with
1
2
N(N − 1) links. An alternative representation of the output of a linkage clustering
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algorithm, which shows the full hierarchical structure, is a dendrogram (or hierarchical

tree) [84, 244]. At the first level of the dendrogram, there are N singleton clusters.

As one climbs the vertical distance scale of the dendrogram, clusters are combined

consecutively until all nodes are contained in a single community at the top of the

dendrogram.

Figure 5.6: The minimum spanning tree for the network formed from a time window
of returns beginning on 18/09/1991. The tree is split into two identical halves (in-
dicated by © and �), which are connected via the edge (shown in red) between the
XAU/USD and USD/AUD exchange rates. For each community of exchange rates,
there is an equivalent community of inverse rates in the other half of the tree. We
colour each node according to its community membership determined using the Potts
method with λ = 1.41, and we show each community of exchange rates in the same
colour as the corresponding community of inverse rates.

In earlier studies of equity markets, clusters of closely-related assets were identified

by their proximity on the branches of the MST, e.g., [197, 229, 231] and by finding

the disconnected groups of assets that remained when all tree links weaker than some

threshold were removed, e.g., [53]. Similar analyses have been performed that find

clusters of assets by considering the whole network and removing edges below some

threshold or alternatively by starting with a network with no links and iteratively

adding links above an increasing threshold, e.g., [118, 231]. In Fig. 5.6, we show an

example of an MST of exchange rates. We colour the nodes in this tree according
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5.6 | Minimum spanning trees

to their community membership as determined using the Potts method. The MST

is partitioned into two halves with communities of exchange rates in one half and

equivalent communities of inverse exchange rates in the other. In this example, nodes

belonging to the same community are always linked in the MST, but this is not always

the case.

The main problem with single-linkage clustering (and, as a consequence, with

MSTs) is that clusters can be joined as a result of single pairs of elements being close

to each other even though many of the elements in the two clusters have large separa-

tions. The MST then contains weak links that might be misinterpreted as being more

financially meaningful than they actually are [231]. It is also difficult to determine

where the community boundaries lie on the MST. For example, a branch of an MST

might include nodes belonging to a single community or the nodes might belong to

several communities. As an example of this phenomenon, and of the additional clus-

tering information provided by the Potts method, consider the branch at the far right

of the tree shown in Fig. 5.6. By simply considering the MST, one might have inferred

the existence of a cluster that includes all of the NOK/YYY rates and USD/CAD.

However, the Potts method highlights the fact that USD/CAD forms a singleton

community and that NOK/XAU belongs to a community with the XXX/XAU rates.

This observation might provide information as to the relative importance of NOK

and XAU in the market over this period.

In Fig. 5.7(a), we show the dendrogram generated using the same single-linkage

clustering algorithm used to produce the MST in Fig. 5.6. If the distances between

different dendrogram levels are reasonably uniform, then no clustering appears more

“natural” than any other [84]. However, large distances between levels (i.e., the same

clusters persist over a large range of distances) might indicate the most appropriate

level at which to view the clusters. This is analogous to investigating communities

that are robust over a range of resolutions. The clusterings observed at some levels of

Fig. 5.7(a) correspond quite closely with the communities identified using the Potts

method, but there is no level at which they correspond exactly. The levels are also rea-

sonably evenly distributed along the distance axis. In the dendrogram in Fig. 5.7(b),

which was generated using average-linkage clustering, there is a range of distances

over which the clustering does not change. The clustering observed over this interval

is identical to the community configuration corresponding to the main plateau found

using the Potts method. Therefore, in this case, average-linkage clustering and the

Potts method identify the same robust communities.
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5.7 | Exchange rate centralities and community persistence

5.7 Exchange rate centralities and community per-

sistence

Thus far, we have considered the properties of entire communities. We now investigate

the roles of nodes within communities.

5.7.1 Centrality measures

We describe the relationship between a node and its community using various cen-

trality measures. In the social networks literature, such measures are used to measure

the roles of nodes within the network and to identify which nodes are the most impor-

tant or most prominent [304]. Because there are many notions of importance, several

different centrality measures have been proposed [299]. In the present context, we

use centrality measures to identify exchange rates that occupy important positions

within the FX market.

The betweenness centrality of nodes is defined using the number of geodesic paths

between pairs of vertices in a network [110, 217]. We calculate node betweenness by

taking the distance between nodes i and j as

dij =

{

0 if i = j or Aij = 1 ,

1/Aij otherwise .
(5.12)

The betweenness centrality bi of node i is then given by

bi =
∑

s

∑

t

gi
st

Gst

, for s, t 6= i and s 6= t, (5.13)

where Gst is the total number of shortest paths from node s to node t and gi
st is the

number of shortest paths from s to t passing through i. Betweenness centrality is

widely used in social network analysis to quantify the extent to which people lie on

paths that connect others. Nodes with high betweenness can be considered to be im-

portant for facilitating communication between others in the network, so betweenness

is used to help measure the importance of nodes for the spread of information around

the network [299].

We also consider the community centrality of each node [220]. We employ the

scaled energy matrix J, with components Jij = Aij − λPij, where we again set Pij =

kikj/2m = (N − 2)/2N . Following the notation in Ref. [220], the energy matrix can

be expressed as J = UDUT , where U = (u1|u2| . . .) is the matrix of eigenvectors of
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Chapter 5 | Dynamic Communities in the FX Market

J and D is the diagonal matrix of eigenvalues βi. If D has q positive eigenvalues,

then one can define a set of node vectors {xi} of dimension q by

[xi]j =
√

βjUij, j ∈ {1, 2, . . . , q} , (5.14)

where [xi]j indicates the jth (j ∈ 1, . . . , q) element of the node vector of node i. The

magnitude |xi| is the community centrality. Nodes with high community centrality

play an important role in their local neighbourhood, irrespective of the community

boundaries.

One can also define a community vector

wk =
∑

i∈Ck

xi (5.15)

for each community k with members Ck. Nodes with high community centrality

are strongly attached to their community if their node vector is also aligned with

their community vector. Continuing to use the definitions in Ref. [220], a projected

community centrality yi is defined by

yi = xi · ŵk = |xi| cos θik (5.16)

and we refer to the quantity cos θik as the community alignment. The community

alignment is near 1 when a node is at the centre of its community and near 0 when

it is on the periphery. Nodes with high community alignment are located near the

centre of their community and have a high projected community centrality, so they are

strongly attached to their community and can be considered to be highly influential

within it. The number of positive eigenvalues of J can vary between time steps, so

we normalize |xi| and yi by their maximum value at each time step.

5.7.2 Community tracking

In Section 4.6, we reviewed the dynamic communities literature and discussed different

methods for tracking communities through time. Many methods identify descendant

communities based on maximum node or edge overlap; however, as we highlighted

in Section 4.6, this can lead to equivocal mappings following community splits and

mergers. In order to avoid these ambiguities, instead of tracking whole communities,

we identify communities from the perspective of individual nodes.

We investigate the persistence through time of nodes’ communities by defining

a community autocorrelation. For a node i with community Ci(t) at time t, the
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5.7 | Exchange rate centralities and community persistence

autocorrelation at
i(τ) of its community after τ time steps is defined by

at
i(τ) =

| Ci(t) ∩ Ci(t + τ) |
| Ci(t) ∪ Ci(t + τ) | . (5.17)

This is a node-centric version of a quantity considered in Ref. [233] and importantly

does not require one to determine which community at each time step represents the

descendant of a community at the previous time step.

5.7.3 Exchange rate roles

In Fig. 5.8(a), we show the mean normalized community centrality of exchange rates

as a function of community size (averaging over all nodes belonging to the same-size

community). The community centrality increases with community size up to sizes

of about 10 members. For larger communities, |xi| remains approximately constant.

Nodes with high |xi| therefore tend to belong to large communities, so exchange rates

with high community centrality tend to be closely linked with many other rates. Ta-

ble 5.2 shows the ten exchange rates that have the highest betweenness centrality,

community centrality, and projected community centrality. For all three periods,

CHF/NZD, CHF/XAU, and SEK/XAU have one of the ten highest community cen-

tralities, so they are closely tied to many other rates. For 1991–2003, exchange rates

formed from one of the major European currencies—DEM (and then EUR, after its

introduction) or CHF—and one of the commodity currencies3 also tend to have high

community centrality. For 2005–2008, however, XAU rates encompass nearly all of

the exchange rates with the highest |xi|.
Figure 5.8(b) shows the mean betweenness centrality versus the community align-

ment. We calculate the mean community alignment by splitting the range of b into

10 bins containing equal numbers of data points and then averaging over all commu-

nity alignments falling within these bins. (The observed relationships are robust with

respect to variations in the number of bins.) Nodes with high betweenness centrality

tend to have small values for their community alignment, implying that nodes that are

important for information transfer are usually located on the edges of communities.

Table 5.2 shows that for all three periods, NOK/SEK, AUD/NZD, and AUD/CAD

all tend to have high betweenness centrality on average. They are therefore located on

the edges of communities and are important for information transfer. Interestingly,

for the post-euro period (1999–2008), several USD exchange rates are also impor-

tant for information transfer, but no USD rates regularly have high betweenness for

3A country is said to have a “commodity currency” if its export income depends heavily on a
commodity. For example, AUD, NZD and CAD are all considered to be commodity currencies.

115



Chapter 5 | Dynamic Communities in the FX Market

0.4 0.5 0.6 0.7 0.8 0.9 1

0.4

0.5

0.6

0.7

0.8

0.9

1

y

a(
τ)

 

 

c)

τ=1
τ=2
τ=5
τ=10
τ=20
τ=50

0 5 10 15 20 25 30 35
0.75

0.8

0.85

0.9

0.95

1

community size

|x
|

a)

0 20 40 60 80 100 120 140

0.82

0.84

0.86

0.88

0.9

0.92

b

co
sθ

b)

Figure 5.8: (a) Mean community centrality versus the size of the community to which
the node belongs. (b) Mean community alignment versus the betweenness central-
ity of nodes. (c) Mean community autocorrelation versus the projected community
centrality. (All error bars indicate the standard error [42].)

the pre-euro period. In contrast, XAU exchange rates are important for information

transfer for the pre-euro period but not after the euro was introduced.

In Fig. 5.8(c), we show the mean community autocorrelation versus the projected

community centrality. We calculate the mean autocorrelation by splitting the range

of y into 15 bins containing equal numbers of data points and then averaging over

all autocorrelations falling within these bins. (Again, the observed relationships are

robust with respect to variations in the number of bins.) As one would expect, the

community autocorrelation for the projected community centrality of a given node is

smaller for larger τ . More interesting is that for all values of τ , the mean community

autocorrelation increases with y. This suggests that nodes that are strongly connected

to their community are likely to persistently share that community membership with

the same subset of nodes. In contrast, exchange rates with a low y experience regular

changes in the set of rates with which they are clustered. This result agrees with the

observation in Ref. [233] for social networks that nodes that are only loosely connected

to their community were more likely to leave that community than nodes with strong

intra-community connections (see Section 4.6.5).

Table 5.2 shows the exchange rates with the highest projected community central-

ity, which in turn reveals the most persistent communities. For 1991–2003, approxi-
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mately half of the ten exchange rates with the highest projected community centrality

also appear in the list of the ten rates with the highest community centrality. For

2005–2008, however, the lists of exchange rates with the highest community centrality

and projected community centrality are dominated by the same set of XAU exchange

rates (though the rankings differ). For 1991–2003, the exchange rates with the high-

est projected community centrality again includes rates formed of DEM (and EUR)

or CHF and one of the commodity currencies. However, there are also a number of

USD exchange rates with high projected community centrality that don’t have high

community centrality. This suggests that these USD rates do not have strong links

with a large number of other exchange rates, but that they strongly influence the

rates within their community.

5.8 Major community changes

We now investigate the insights that short-term community dynamics can provide

into changes in the FX market. Figure 5.9(a) shows a contour plot of the normalized

distribution of the link weights at each time step. The mean link strength remains

constant through time because of the inclusion in the network of each exchange rate

and its inverse but [as one can see in Figs. 5.9(a) and 5.9(b)] there is a large variation

in the standard deviation of the link strengths. The scaled energy and standard

deviation of link weights are closely related. This is expected because the standard

deviation increases as a result of the strengthening of strong ties and the weakening

of weak ties.

In Fig. 5.9(c), we also show V̂ between the community configurations at consec-

utive time steps. Large spikes in V̂ indicate significant changes in the community

configuration over a single time step and potentially also indicate important mar-

ket changes. The correlation coefficient between V̂ and the absolute change in Qs

between consecutive time steps is 0.39 over the period 1991–2003 and 0.47 over the

period 2005–2008. The correlation between V̂ and the absolute change in σ(Aij) is

0.28 over the period 1991–2003 and 0.27 from 2005–2008. Changes in Qs are thus a

better indicator than changes in σ(Aij) that there has been a change in the community

configuration of the network.

In Fig. 5.10, we show three example community reorganizations—two in which V̂

is more than four standard deviations larger than its mean and a third in which it is

over two standard deviations above the mean.
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1991–1998 1999–2003 2005–2008
b |x| y b |x| y b |x| y

1 NOK/SEK CHF/AUD USD/DEM AUD/NZD SEK/XAU USD/XAU USD/CAD JPY/XAU EUR/XAU
2 AUD/XAU CHF/NZD USD/CHF NZD/CAD CHF/CAD EUR/USD AUD/NZD USD/XAU GBP/XAU
3 AUD/NZD CHF/XAU USD/XAU AUD/CAD EUR/XAU EUR/XAU AUD/CAD NZD/XAU CHF/XAU
4 AUD/CAD CHF/CAD CHF/CAD JPY/CAD NOK/XAU GBP/XAU NOK/SEK CAD/XAU EUR/CAD
5 CHF/SEK DEM/AUD CHF/AUD NOK/SEK CHF/NZD EUR/CAD USD/GBP GBP/XAU SEK/XAU
6 NZD/XAU SEK/AUD CHF/NZD USD/AUD CHF/XAU USD/CHF NZD/CAD SEK/XAU USD/XAU
7 CAD/XAU DEM/XAU DEM/CAD USD/NZD EUR/CAD CHF/XAU USD/JPY CHF/XAU EUR/NZD
8 DEM/SEK SEK/XAU DEM/AUD USD/JPY EUR/NZD NOK/XAU USD/AUD NOK/XAU JPY/XAU
9 NZD/CAD NOK/AUD USD/AUD GBP/JPY SEK/NZD EUR/NZD CHF/NOK CHF/NZD AUD/XAU
10 DEM/NOK DEM/NZD DEM/NZD CHF/SEK NOK/NZD CHF/NZD GBP/AUD AUD/XAU NOK/XAU

Table 5.2: The ten exchange rates with the highest betweenness centrality b, community centrality |x|, and projected community
centrality y for each of the three periods. We rank the exchange rates for each centrality according to their average rank over
all time steps. For each exchange rate XXX/YYY the equivalent inverse rate YYY/XXX had the same betweenness centrality,
community centrality, and projected community centrality.
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Figure 5.9: (a) Normalized distribution of the link weights at each time step. (b)
Scaled energy Qs (black line) and standard deviation of the link weights (blue line).
(c) Normalized variation of information V̂ between the community configurations at
consecutive time steps. The horizontal lines show (from bottom to top) the mean of
V̂ and 1, 2, 3, 4, 5, and 6 standard deviations above the V̂ mean. The green vertical
line in panels (b) and (c) separates the pre- and post-euro periods. The red vertical
lines show the time steps when 22/12/94, 07/02/97, and 15/08/07 enter the rolling
time window. These dates correspond, respectively, to the devaluation of the Thai
baht during the Asian currency crisis, the flotation of the Mexican peso following its
sudden devaluation during the tequila crisis, and significant unwinding of the carry
trade during the 2007–2008 credit crisis. The grey blocks mark 2004 (for which we
have no data).
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Figure 5.10: Schematic representation of the change in the community structure in
one half of the FX market network for several events. (a) The Mexican tequila crisis:
the depicted reorganization followed 22/12/94, when the Mexican peso was allowed
to float after a sudden devaluation. (b) The Asian currency crisis: the depicted re-
organization followed 02/07/97, when Thailand devalued the baht. (c) Carry trade
unwinding: the depicted reorganization followed 15/08/07, when there was significant
unwinding of the carry trade during the 2007–2008 credit and liquidity crisis. The
node colours after the community reorganization correspond to their community be-
fore the change. If the parent community of a community after the reorganization is
obvious, we draw it using the same colour as its parent. The nodes drawn as triangles
resided in the opposite half of the network before the community reorganization.
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5.8 | Major community changes

5.8.1 Mexican peso crisis

Figure 5.10(a) shows the reorganization on 22/12/1994 when the Mexican peso was

floated following its sudden devaluation.4 This change is accompanied by an increase

in the scaled energy. Although we do not include the Mexican peso in the set of

investigated exchange rates, it appears that its devaluation was a sufficiently serious

event to cause major changes in the community relationships of the studied rates.

Before 22/12/1994, the largest community consisted of a group of exchange rates

constructed from currencies from the set {AUD, CAD, NZD, USD, XAU} versus

currencies from {CHF, DEM, GBP, JPY, NOK}. After the flotation, the largest

community consisted of a set of exchange rates formed from the major European

currencies (CHF, DEM, and GBP). It is also noteworthy that there is only a small

gold (XAU) community during this period which, as noted previously, often indicates

that another currency is particularly important in the market.

5.8.2 Asian currency crisis

Figure 5.10(b) shows the community changes following 02/07/1997 when the Thai

baht was devalued during the Asian currency crisis. As with the peso, although we

did not include the baht in the set of studied rates, its devaluation appears to have

had a significant effect on the whole market. There is a large stable gold cluster

during the whole period. Before 02/07/1997, there is also a large AUD cluster, but

after the devaluation, this cluster breaks up and the previously-small GBP cluster

increases in size. This suggests that the GBP is playing a more prominent market

role after the devaluation. Although the reasons for the changes in the sizes of the

AUD and GBP communities are not obvious, both adjustments suggest a sharp and

significant change in the correlation structure of the market.

5.8.3 Credit crisis

The final example in Fig. 5.10(c) shows the community changes following 15/08/07

when there was a significant community reorganization and reveals one of the major

effects on the FX network of the recent credit and liquidity crisis. This example also

demonstrates community changes that occurred as a result of a trading change that

affected the studied rates directly.

4For a floating exchange rate, the value of the currency is allowed to fluctuate according to the
FX market. Prior to its floatation the peso had been pegged to the US dollar, so the value of the
peso tracked the value of the dollar.
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Chapter 5 | Dynamic Communities in the FX Market

The most important effect of the credit crisis on the FX market during the period

2005–2008 was its impact on the carry trade. The carry trade consists of selling

low interest rate funding currencies such as the JPY and CHF and investing in high

interest rate investment currencies such as the AUD and NZD. It yields a profit if the

interest rate differential between the funding and investment currencies is not offset

by a commensurate depreciation of the investment currency [59]. The carry trade is

one of the most commonly used FX trading strategies and requires a strong appetite

for risk, so the trade tends to “unwind” during periods in which there is a decrease in

available credit. A trader unwinds a carry trade position by selling his/her holdings

in investment currencies and buying funding currencies.

One approach to quantifying carry trade activity is to consider the returns that

can be achieved using a carry trade strategy. In Fig. 5.11(b) we show the cumulative

return index Υ for a common carry trade strategy. We consider a strategy in which

one buys equal weights of the three major currencies with the highest interest rates

and sells equal weights of the three currencies with the lowest interest rates. This

is a dynamic trading strategy because the relative interest rates of currencies change

over time. For example, consider the situation in which the interest rate of currency

A (which initially has the third highest interest rate) decreases below the rate of

currency B (which initially has the fourth highest interest rate). In order to maintain

the strategy of only holding the three currencies with the highest interest rates at any

time, one would re-balance the carry portfolio by selling the holding of currency A

and buying currency B. The frequency at which such re-balances occur will depend

on the frequency at which the relative interest rates change. The returns from a carry

strategy like this are widely seen by market participants to provide a good gauge of

carry trade activity. Large negative returns result in large decreases in Υ which are

therefore likely to indicate significant unwinding of the carry trade.

In Fig. 5.11(a) we focus on the period 2005–2008 from Fig. 5.9(c). Again, large

spikes indicate significant changes in the community configuration over a single time

step. Figure 5.11(a) shows that a significant community reorganization occurred on

15/08/07 and in Fig. 5.10(c) we show the observed communities before and after this

date. This community change is a result of massive unwinding of the carry trade.

Figure 5.11(b) shows that leading up to 15/08/07 there was some unwinding of the

carry trade so the initial configuration includes a community containing exchange

rates of the form AUD/YYY, NZD/YYY, and XXX/JPY (which all involve one of

the key carry-trade currencies). In Fig. 5.11(b) it is also clear that following this

date there is a sharp increase in carry unwinding. The second community partition
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5.8 | Major community changes

in Fig. 5.10(c) highlights this increase as the carry community increases in size by

incorporating other XXX/JPY rates as well as some XXX/CHF and XXX/USD

rates. The presence of a large number of exchange rates involving one of the key

carry-trade currencies in a single community clearly demonstrates the significance of

the trade over this period. Importantly, some of the exchange rates included in the

carry community are also somewhat surprising and provide insights into the range of

currencies used in the carry trade over this period.
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Figure 5.11: (a) Normalized variation of information between the community con-
figuration at consecutive time steps for 2005–2008. The horizontal lines show (from
bottom to top) the mean of V̂ and 1, 2, 3, and 4 standard deviations above the mean.
The red vertical line in (a) shows the 15/08/07 when there was a marked increase in
unwinding of the carry trade. (b) Carry trade index Υ. The vertical line again shows
15/08/07 and the shaded blocks (from left to right) Q3 2007, Q4 2007, Q1 2008, and
Q4 2008.

The analysis above demonstrates that one can identify major changes in the cor-

relation structure of the FX market by finding large values of V̂ between time steps.

Having identified significant changes, one can gain a better understanding of the na-

ture of these changes and potentially also gain insights into trading changes taking

place in the market by investigating the adjustments in specific communities. We have

discussed three examples in which the observed changes are obviously attributable

to a major FX market event. However, there are also a number of time steps when

significant community reorganizations occur for which the cause is much less obvious,
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Chapter 5 | Dynamic Communities in the FX Market

and the analysis of dynamic communities might help shed light on related market

changes.

5.9 Visualizing changes in exchange rate roles

We now investigate changes in the relationships between specific exchange rates and

their communities. We begin by defining within-community z-scores, which directly

compare the relative importances of different nodes to their community [139]. We

describe the roles of individual nodes at each time step using the within-community

projected community centrality z-score κy and within-community betweenness cen-

trality z-score κb. If a node i belongs to community Ci and has projected community

centrality yi, then

κy
i =

yi − ȳCi

σy
Ci

, (5.18)

where ȳCi
is the mean of y over all nodes in Ci and σy

Ci
is the standard deviation of y

in Ci. The quantity κy
i measures how strongly connected node i is to its community

compared with other nodes in the same community. Similarly, if the same node has

betweenness centrality bi, then

κb
i =

bi − b̄Ci

σb
Ci

, (5.19)

where b̄Ci
is the average of b over all nodes in Ci and σb

Ci
is the standard deviation

of b in Ci. The quantity κb
i indicates the importance of node i to the spread of

information compared with other nodes in its community.5 The positions of nodes

in the (κb, κy) plane thereby illuminate the roles of the associated exchange rates in

the FX market and provide information that cannot be gained by simply considering

individual exchange rate time series.

We remark that the methods are robust with respect to the choice of measures used

to construct the parameter plane: we obtain similar results using other notions, such

as dynamical importance [256] instead of the betweenness centrality and the within-

community strength z-score [139] instead of the projected community centrality.

5.9.1 Average roles

In Fig. 5.12, we show the mean position of each exchange rate over the three periods

and highlight some rates that play particularly prominent roles. For example, the

5Note that in order for a within-community z-score to be well defined, a node must belong to a
community containing two or more nodes.
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5.9 | Visualizing changes in exchange rate roles

USD/DEM (and then EUR/USD after the introduction of the euro) regularly had

the strongest connection to its community from 1991-2003, but EUR/XAU was more

strongly connected to its community from 2005–2008. The importance of USD/DEM

and EUR/USD is unsurprising given that these rates had the highest daily trading

volume [117]. This provides a reality check that the methods uncover useful in-

formation about the roles of minor exchange rates. Other exchange rates, such as

NOK/SEK and AUD/NZD, were less influential within their communities but were

very important for the transfer of information around the network.

The (κb, κy) plots also highlight exchange rates that play similar roles in the

FX market. For example, exchange rates formed from one of the major European

currencies—DEM or CHF—and one of the commodity currencies—AUD, CAD, and

NZD (or the commodity XAU)—are located close together in the upper left quadrant

of the (κb, κy) plane for 1991–2003. This prominent similarity is not present for

2005–2008.

5.9.2 Annual roles

We can also gain insights into the time dynamics of exchange rate roles by examining

changes in the positions of the rates in the (κb, κy) plane over different time periods.

Changes in a node’s position in the (κb, κy) plane reflect changes in the membership of

a node’s community as well as changes in b and y. In Fig. 5.13, we show six example

annual role evolutions. We determine the annual roles by averaging κy and κb over

all time steps in each year. We see, for example, that the NZD/JPY exchange rate

maintained a consistently influential role within its community over the full period

and similarly the EUR/USD rate also maintained the same influential role played by

the USD/DEM rate before the introduction of the euro.

Other rates changed role over the studied period. The GBP/USD and GBP/CHF

exchange rates evolved in a similar manner, as they changed from being strongly

influential within their communities before 1994 to being less influential within their

communities but more important for information transfer after 1994. The role of both

GBP/AUD and USD/JPY varied significantly from 1991–2008: From 2001 onwards

the GBP/AUD became less influential within its community but more important for

information transfer. Interestingly, the USD/JPY had its highest within-community

influence in the late 1990s during a period of Japanese economic turmoil. One can

construct similar plots to study the change in the role of other exchange rates. These

role plots provide a useful tool for visualizing the changes in the exchange rate corre-

lations.
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Figure 5.12: Node positions in the (κb, κy) plane averaged over all time steps for the
periods (a) 1991–1998, (b) 1999–2003, and (c) 2005–2008. The radii of each elliptical
marker equal the standard deviations in the parameters for the corresponding node
scaled by a factor of 1/15 for visual clarity.
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Figure 5.13: Annual node role evolutions in the (κb, κy) plane for the full period
1991–2008.

5.9.3 Quarterly roles

We also investigate higher-frequency changes in exchange rate market role over shorter

time intervals. In Fig. 5.14 we show quarterly roles changes over the period 1995–1998

for six exchange rates including USD/DEM and GBP/USD for which we also show

the annual changes in Fig. 5.13. Both exchange rates show similar role variations

over both time-scales, with the USD/DEM always playing a relatively influential role

within its community and the GBP/USD role varying significantly. We also show

other examples for which we did not show annual changes. The role of DEM/JPY

varied considerably from 1995–1998: In particular, it was an important information

carrier for the last two quarters in 1996, but was influential within its community

throughout 1998. In contrast the AUD/JPY moves from being unimportant for in-

formation transfer to being an information carrier during 1998. In further contrast,

the AUD/NZD and AUD/XAU were both always information carriers to different ex-

tents, with AUD/NZD being particularly important for information transfer during

1998.

Finally, we consider some examples of quarterly role evolutions for the period

2005–2008. Figure 5.15, shows quarterly role changes for four exchange rates from

2005–2008. The USD/XAU rate provides an interesting example due to the per-

sistence of its community over this period. From 2005–2008, the USD/XAU node

shifted from being an important information carrier within the XAU community to
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being more central to this community. This period of higher influence coincides closely

with the period of financial turmoil during 2007–2008. The CHF is widely regarded as

a “safe haven” currency [248], so one might expect USD/CHF to behave in a similar

manner to USD/XAU. However, the CHF is also a key carry trade currency. Because

CHF is used both as a safe haven and as a carry trade currency, the USD/CHF node

does not move in the same direction as USD/XAU in the (κb, κy) plane. Instead, the

USD/CHF exchange rate is an important information carrier during the 2007–2008

credit crisis. Over the same period, the AUD/JPY and NZD/JPY exchange rates

change from being important for information transfer to being influential within their

communities. The AUD/JPY and NZD/JPY were most influential within their com-

munity during Q3 and Q4 2007 and during Q1 and Q4 2008. Figure 5.11(b) shows

that over all of these periods there was significant carry trade activity so it is unsur-

prising that two exchange rates that are widely used for this trade should increase in

importance. This, however, is a further demonstration that the positions of exchange

rates in the (κb, κy) parameter plane can provide important insights into the role of

exchange rates in the FX market.
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Figure 5.14: Quarterly node role evolutions in the (κb, κy) plane for the period 1995–
1998.
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Figure 5.15: Quarterly node role evolutions in the (κb, κy) plane for the period 2005–
2008.

5.10 Robustness of results: alternative computa-

tional heuristics

Thus far, we have detected all communities using a greedy algorithm [44]. However,

as we noted in Chapter 4, several alternative heuristics exist. In Ref. [128], Good et al.

demonstrated that there is extreme degeneracy in the energy function (Eq. 4.3), with

an exponential number of high-energy solutions. Given this, it is unsurprising that,

in some instances, different energy-optimization heuristics have been found to yield

very different partitions for the same network. Good et al. suggest that the reason

for this behaviour is that different heuristics sample different regions of the energy

landscape. Because of the potential sensitivity of results to the choice of heuristic,

one should treat individual partitions output by particular heuristics with caution.

However, one can have more confidence in the validity of the partitions if different

heuristics produce similar results.

With this in mind, we compared the results for the greedy algorithm [44] with those

for a spectral algorithm [221] and simulated annealing [141] for the 563 networks we

constructed for the period 2005–2008. We found that, although there are differences

in the communities identified using different optimization heuristics, the aggregate
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conclusions are the same. We identify the same changes taking place in the FX market

whether we use the greedy algorithm or simulated annealing to minimize energy. The

fact that we obtain very similar results using different optimization techniques, despite

these techniques sampling different regions of the energy landscape, gives confidence

that the effects that we uncover are genuine and that the results are robust. We

present the results of the comparison of the computational heuristics in detail in

Appendix B.

5.11 Summary

We have demonstrated that a network analysis of the FX market is useful for visualiz-

ing and providing insights into the correlation structure of the market. In particular,

we investigated community structure at different times to provide insights into the

clustering dynamics of exchange rate time series. We focused on a node-centric com-

munity analysis that allows one to follow the time dynamics of the functional role of

exchange rates within the market, demonstrating that there is a relationship between

an exchange rate’s functional role and its position within its community. We indi-

cated that exchange rates that are located on the edges of communities are important

for information transfer in the FX market, whereas exchange rates that are located

in the centre of their community have a strong influence on other rates within that

community. We also demonstrated that the community structure of the market can

be used to determine which exchange rates dominate the market at each time step

and identified exchange rates that experienced significant changes in market role.

Our analysis successfully uncovered significant structural changes that occurred in

the FX market, including ones that resulted from major market events that did not

impact the studied exchange rates directly. We further demonstrated that community

reorganizations at specific time steps can provide insights into changes in trading

behaviour and highlighted the prevalence of the carry trade during the 2007–2008

credit and liquidity crisis. Although we focused on networks of exchange rates, the

methodology should be similarly insightful for multivariate time series of other asset

classes. Importantly, the results are robust with respect to the choice of optimization

heuristic.
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Chapter 6

A Taxonomy of Networks

We now expand the scope of our analysis beyond financial markets and investigate

the community structure of networks from a wide variety of other fields. We have

submitted a paper based on this work for publication [P4].

6.1 Introduction

The study of networks is an interdisciplinary endeavour, with contributions from

researchers in the natural, social, and information sciences [9, 60, 217, 223]. Often

the questions asked by researchers in these different fields are quite similar; however,

techniques have sometimes had difficulty penetrating disciplinary boundaries, perhaps

because the relevance or applicability of the methods from other disciplines is not

always clear. In this chapter, we attempt to connect disciplines by introducing a

framework for clustering networks and using this technique to establish a network

taxonomy. The clustering scheme and taxonomy serve several purposes. First, if

networks from two different fields are close together in the taxonomy, this implies that

there are some similarities in their structure and that techniques from one field might

be insightful in the other field. Second, a taxonomy might help to determine how an

unstudied network might best be analyzed once its position within the taxonomy is

known. Third, the taxonomy can be used to highlight differences within disciplines.

For example, if a network that is expected to be similar to a group of networks based

on their origin is not clustered with those networks, this suggests that the network is

not typical of its family.

In aiming to cluster networks, it is necessary to consider a scale at which to

investigate their structure. Much prior research on networks has focused on micro-

scopic properties (such as the degree) or macroscopic properties (such as the average
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path length), typically finding that most empirically observed networks have heavy-

tailed degree distributions and possess the small-world property (see Section 1.1 and

Refs. [9, 60, 217, 223]). The interpretations of both approaches often implicitly as-

sume that networks are homogeneous and have no mesoscopic structure; however,

as discussed in detail in Chapter 4 and demonstrated in Chapter 5, many networks

possess community structures. The ubiquity of heavy-tailed degree distribution and

the small-world property across a wide variety of networks from different domains

suggests that mesoscopic heterogeneities should be exploited to differentiate effec-

tively between networks. This has led some researchers to try to cluster networks

based on mesoscopic structures, e.g., [142, 210]. In Ref. [142], Milo et al. compare

the statistics of a priori specified subgraphs in networks from different fields, while

in Ref. [142] Guimerà et al. investigate the relationships between individual nodes

and communities (see Section 4.5 for a detailed discussion of these methods). Both

approaches focus on a single mesoscopic scale.

In this chapter, we introduce a framework for clustering networks by identifying

communities at multiple mesoscopic scales and create a taxonomy of networks using

this approach. In addition to the fact that mesoscopic heterogeneities enable us to

differentiate between networks, we focus on mesoscopic scales because structures at

this scale have been shown to have a strong bearing on functional units in many

networks [105,244]. In contrast to Ref. [210], we do not specify the topology or sizes

of the structure that we investigate a priori. Networks from different domains can

possess very different sizes and connectivities, which makes comparison difficult [210].

The technique that we propose therefore involves a normalization that enables us

to compare networks of significantly different sizes and connectivities.1 Using this

approach, we create a taxonomy of 714 networks from a variety of disciplines including

sociology, biology, politics, technology, and finance, and include many synthetic model

and benchmark networks. As well as creating an aggregate taxonomy, we also create

taxonomies for sub-sets of networks that represent multiple realizations of the same

type of system and temporal snapshots of time-dependent systems. In the latter case,

we demonstrate that the framework we propose can detect changes in time-ordered

sequences of evolving networks.

1We study networks that range in size from 34 to over 40,000 nodes and possess from 0.1% to
100% of possible edges.
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6.2 Multi-resolution community detection

In order to compare networks, we create profiles that characterize each network’s

structures across multiple mesoscopic scales. The first step in constructing these

profiles is to select a community detection method. As in the earlier chapters in this

thesis, we detect communities using the the multi-resolution Potts method described

in Section 4.3.3. The Hamiltonian of the infinite-range N -state Potts spin glass is

given by

H(λ) = −
∑

i6=j

Jijδ(Ci, Cj) = −
∑

i6=j

(Aij − λPij) δ(Ci, Cj), (6.1)

where Ci indicates the state (community) of spin i, λ is a resolution parameter, and

we again use the standard random null model Pij = kikj/(2m), where ki denotes the

degree of node i for an unweighted network (the strength for a weighted network)

and m is the number of edges for an unweighted network (or the total edge weight

for weighted networks) [224].2 By tuning the resolution parameter λ, we detect com-

munities across multiple scales.

6.2.1 Resolution matrix

The second step is to determine the range of values of λ to investigate. We study a

wide variety of networks containing different numbers of nodes and edges; to ensure

that the profiles for different networks are comparable, we sweep λ from the minimum

value Λmin to the maximum value Λmax, so that the number of communities η into

which the network is partitioned varies from 1 to the number of nodes N in the

network.

More formally, we define a coupling matrix J(λ) with entries Jij(λ) that represent

the interaction strength between node i and j in the Potts Hamiltonian in Eq. 6.1.

For each pair of nodes i and j, we find the resolution λ = Λij at which the interaction

Jij between them becomes antiferromagnetic by writing Jij = Aij − ΛijPij = 0 and

solving to get Λij = Aij/Pij. We then define a matrix Λ with entries Λij and define

three resolutions:

Λmin = max
ij

{Λij |η(λ) = 1} , (6.2)

Λmax = max
ij

{Λij} + ǫ, (6.3)

Λ∗ = min
ij

{Λij |Aij > 0} , (6.4)

2In Chapter 5, we summed over all i and j in the Potts Hamiltonian (see Eq. 4.3). In contrast,
in this chapter, we only sum over all i 6= j. We explain the reason for this difference in Section D.1.
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where ǫ > 0 is a small number that ensures that all links are antiferromagnetic at

resolution λ = Λmax. In other words, Λmin is the largest value of the resolution

parameter λ for which the network still forms a single community. However, note

that this is not necessarily the minimum non-zero value of Λij. We do not simply

sweep over the interval [Λ∗, Λmax] because for some sparse networks η > 1 at Λ∗,

whereas for fully-connected networks η does not become greater than one until a

resolution λ ≫ Λ∗. By sweeping λ from Λmin to Λmax, and exploring the full range

of partitions from η = 1 to η = N , we ensure that the profiles are comparable for

different networks.

6.2.2 Problems with comparing networks using resolution

The most common method for studying network community structure across multiple

mesoscopic scales is to consider plots of networks summary statistics as a function

of the resolution parameter, e.g., [17, 105, 244, 254].3 However, there are problems

with this approach for some networks. Consider, Fig. 6.1(a), which shows the cu-

mulative distribution P (Λij ≤ x) for an (unweighted) network of Facebook users at

Caltech [295].4 The vast majority of Λij values are less than 100, but there are a few

interactions with Λij > 8000. The large Λij values are the result of two low degree

nodes being connected. Using the standard null model Pij = kikj/(2m), the inter-

action between two nodes i and j becomes antiferromagnetic when λ > Aij/Pij =

2mAij/(kikj). If there are a large number of edges in the network, but both i and j

have very low degrees, λ needs to be large to make the interaction antiferromagnetic.

Figure 6.1(b) demonstrates the effect of these interactions on a plot of the number of

communities η as a function of λ over the interval [Λmin, Λmax] for the Caltech net-

work. The network breaks up into just under N communities over a small range of λ,

but there is then a long plateau as a few interactions with large λ become antiferro-

magnetic and the remaining communities break up. These few interactions dominate

the figure and obscure the structure at small resolutions.

One way of avoiding this problem is only to sweep λ over a range such that the

number of communities varies between η ∈ [1, fN ], where fN is some fraction of the

total number of nodes in the network. Using this approach, it would not be necessary

to force the nodes with large Λij into individual communities, so the range of λ would

be significantly smaller. However, there are obvious problems with this method: first,

the choice of f is arbitrary; second, in general, the value of f that avoids the long

3In Chapter 5 we use this approach to study communities in FX market networks.
4We enumerate all of the networks that we study in Table C.1 in Appendix C.
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plateaus is different for different networks; if one wishes to use plots of summary

statistics versus resolution to compare networks, the value of f ought to be constant.

Therefore, this seems like an unsuitable solution.
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Figure 6.1: A demonstration using the Caltech Facebook network [295] of the prob-
lem of using the resolution parameter for networks with low-degree nodes that are
connected to each other. The left figure shows the cumulative distribution of Λij

values P (Λij ≤ x); the majority of Λij are less than 100, but there are a few nodes
with Λij > 8000. The right figure shows the number of communities as a function
of λ and demonstrates that the presence of low strength nodes that are connected to
each other results in a long plateau. Only a few interactions then dominate the plot
and obscure the structure at smaller λ.

Of course, the problem of having interactions that require large λ to become

antiferromagnetic stems initially from our choice of null model. An alternative choice

of null model that avoids this problem is one in which Pij is constant for all i and

j. In contrast to the standard null model Pij = kikj/(2m), however, this model does

not preserve the strength distribution of the original network. Given this appealing

property of the null model Pij = kikj/(2m) and its ubiquity within the literature, we

persevere with this model.

6.2.3 Effective fraction of antiferromagnetic links

To avoid the issues arising from a few interactions requiring large resolutions to be-

come antiferromagnetic, instead of considering network properties as a function of the

resolution parameter, we work in terms of the effective fraction of antiferromagnetic

links ξ. We define ξ as

ξ = ξ(λ) =
ℓA(λ) − ℓA(Λmin)

ℓA(Λmax) − ℓA(Λmin)
, (6.5)
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where ℓA(λ) is the total number of antiferromagnetic interactions (Jij < 0) in the

system for the given value of λ and ℓA(Λmin) is the largest number of antiferromag-

netic interactions for which the network still forms a single community. The effective

number of antiferromagnetic interactions ξ(λ) is therefore the number of antiferro-

magnetic interactions in excess of ℓA(Λmin) (normalized to the unit interval) and is a

monotonically increasing function of λ.

To simplify the discussion of the fraction of antiferromagnetic links, it is also

useful to divide the elements of the adjacency matrix A into links (Aij > 0) and non-

links (Aij = 0). Based on the values Λij, we further distinguish between two types

of links: links with 0 < Λij ≤ Λmin are called Λ−-links, and links with Λij > Λmin

are called Λ+-links. The sum of the number of Λ−-links and Λ+-links is then equal

to L, the number of links in the network.5 When λ = Λmin all of the Λ−-links are

antiferromagnetic, but the network nevertheless consists of a single community.

We illustrate the differences between the different types of links in Fig. 6.2 in which

we show examples of the cumulative distributions of links P (Λij ≤ x) for a fully-

connected, weighted network and for an unweighted network. For the unweighted

network, Λmin < Λ∗, so the network does not possess any Λ−-links. As one increases

the resolution parameter, the network begins to break up into communities before

any of the Λ+-links become antiferromagnetic. In contrast, for the fully-connected,

weighted network Λ∗ < Λmin.

6.2.3.1 Properties of the fraction of antiferromagnetic links

In the definition of ξ that we select, we sweep over the values λ ∈ [Λmin, Λmax], so that

the number of communities varies between 1 and N . Although the regime λ < Λmin

affects the energy H(λ) (see Eq. 6.1), there are no further changes in the partition into

communities and, consequently, only the region λ ∈ [Λmin, Λmax] is interesting. The

normalization in our definition of ξ accounts for the existence of antiferromagnetic

Λ−-links, which do not cause the network to break up into communities and ensures

that 0 ≤ ξ ≤ 1. Note that ξ is equal to the fraction of antiferromagnetic Λ+-links.

By working in terms of ξ rather than λ, we ensure that interactions that require

a large resolution to become antiferromagnetic do not dominate plots of community

summary statistics. The existence of such interactions also implies that we do not

necessarily sweep λ uniformly over the interval [Λmin, Λmax]. As demonstrated in

Fig. 6.1, some networks have several orders of magnitude between Λmin and Λmax and

most interactions become antiferromagnetic at λ ≈ Λmin. To ensure that ξ is sampled

5In an unweighted network L = m, the total link weight in the network.
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Figure 6.2: The cumulative distribution P (Λij ≤ x) for: (left) the 100th U.S. House
of Representatives roll-call voting network [203,241,306], (right) the dolphins network
[192]. We show the proportions of Λ+ and Λ− links in the distributions and highlight
the position of Λ∗, Λmin, and Λmax. For the House network, Λmin > Λ∗, so there are
both Λ+ and Λ− links. For the dolphins network, Λmin < Λ∗, so all links are Λ+ links
and the network begins to break up into communities at a resolution λ ≤ Λmin.

uniformally, we select the values of λ using the cumulative distribution of Λij for

Λ+-links, instead of simply sampling λ uniformally over the interval [Λmin, Λmax].
6

In Appendix D we provide further technical details of the Potts Hamiltonian and

of the structure of the networks that we study.

6.3 Mesoscopic response functions

The third step in creating multi-resolution profiles to characterize a network’s meso-

scopic structures is to select summary statistics to examine as a function of ξ. We

choose to investigate the number of communities η, the energy H (given by Eq. 6.1)

and the partition entropy S (given by Eq. 5.6).7 The values of these quantities vary

across networks; for example, as we show in Section D.1, the energy H is determined

6As we noted in Section 4.3.3, the number of possible community partitions grows rapidly with the
number of nodes [218], so finding communities in large networks is computationally intensive [55]. As
a result, one cannot find the optimal community configuration at every resolution and, accordingly,
the values of Λmin that we find are necessarily approximate.

7We focus on the energy, entropy and number of communities because, as we discuss later in
this section, each statistic provides information on a key property of the community structure of the
networks. One could examine other summary statistics as a function of ξ; however, in the interests
of parsimony, it is desirable to limit the number of summary statistics. In Section 6.4.1 we use PCA
to construct a single measure that summarize the three statistics.
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by the resolution λ, and Λmax depends strongly on the link structure of the network.

As a result, for it to be possible to compare networks using profiles of the summary

statistics versus ξ, we need to normalize H, S, and η. Therefore, we define an effective

energy as

Heff(λ) =
H(λ) −Hmin

Hmax −Hmin
= 1 − H(λ)

Hmin
, (6.6)

where Hmin = H(Λmin) and Hmax = H(Λmax). Similarly, we define an effective entropy

Seff(λ) =
S(λ) − Smin

Smax − Smin
=

S(λ)

log N
, (6.7)

where Smin = S(λmin) and Smax = S(λmax), and an effective number of communities

ηeff(λ) =
η(λ) − ηmin

ηmax − ηmin

=
η(λ) − 1

N − 1
, (6.8)

where ηmin = η(Λmin) and ηmax = η(Λmax). In sweeping ξ from 0 to 1, the number

of communities increases from η(ξ = 0) = 1 to η(ξ = 1) = N , producing a signature

that we call the mesoscopic response function (MRF). Because Heff ∈ [0, 1], Seff ∈
[0, 1], ηeff ∈ [0, 1], and ξ ∈ [0, 1] for any network, we can compare the response

functions across networks and use the MRFs to identify groups of networks with

similar mesoscopic structures.

For a given network, at each resolution, Heff, Seff, and ηeff respectively provide

a measure of the frustration level of the spin system, the disorder in the associated

community size distribution (whether most nodes are in a few large communities or

are spread across many small communities), and the number of communities. The

MRFs indicate the way in which these quantities change as the resolution parameter

is increased – at higher resolutions there is a larger incentive for nodes to belong to

smaller communities, so communities fragment. The shapes of the MRFs (gradient,

concavity/convexity, points of inflection etc.) are the non-trivial result of many fac-

tors, including the fraction of possible edges in the network; the relative weights of

inter- versus intra-community edges; the edge weights compared with the expected

edge weights in the random null model; the number of edges that need to become

antiferromagnetic for a community to fragment; and the way in which the commu-

nities fragment (e.g., whether a single node leaves a community if an edge becomes

antiferromagnetic or a community splits in half). The effects of some of these factors

on the shapes of the MRFs can be better understood by considering some examples.
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6.3.1 Example MRFs

Figure 6.3 shows the Zachary karate club network [315] for different values of the

effective fraction of antiferromagnetic links ξ and highlights that, as more links become

antiferromagnetic (as the resolution parameter λ is increased), the network fragments

into communities. The nature of this fragmentation process then determines the

shapes of the MRFs shown in the lower half of Fig. 6.3.

In Fig. 6.4, we show example MRFs for several other networks. Figure 6.4 demon-

strates that, although there are large variations in the shapes of the response func-

tions, there are also common features. Of particular interest are plateaus in the

ηeff and Seff curves that are accompanied by large increases in Heff. Some plateaus

in plots of network summary statistics as a function of ξ have a similar interpre-

tation to plateaus in plots of summary statistics as a function of resolution λ (see

Section 5.4). The NYSE: 1980–1999 network [229] provides an example of this be-

haviour [see Fig. 6.4(b)]. The plateaus imply that as the resolution λ is increased

(leading to an increase in Heff), the number of antiferromagnetic interactions also in-

creases even though the number of communities remains constant. As λ is increased,

and more interactions become antiferromagnetic, there is an increased energy in-

centive for communities to break up. The plateaus demonstrate that, despite this

incentive, the communities remain intact. Community partitions corresponding to

these plateaus are therefore very robust and potentially represent interesting struc-

tures [17, 105, 244, 254]. The large increase in Heff shows that such partitions are

robust over a large range of resolutions.

The MRF for the Fractal: (10,2,8) network [279] [Fig. 6.4(k)] also demonstrates

that there can be plateaus in the ηeff and Seff MRFs that are not accompanied by

significant changes in Heff. Such plateaus can be explained by considering the dis-

tribution of Λij. If several interactions have identical Λij, then the interactions all

become antiferromagnetic at exactly the same resolution. This leads to a significant

increase in ξ, but only a small change in Heff. If these interactions do not lead to

additional communities, there are plateaus in the ηeff and Seff curves.

Another common feature is a sharp increase in the Heff and Seff curves at ξ = 0.

Some networks initially break into two communities at a resolution Λmin < Λ∗. As

λ is increased, the communities then continue to split before Λ∗ is reached, at which

point another interaction becomes antiferromagnetic. In these networks, the number

of communities increases to η ≥ 2 at ξ = 0. This usually occurs in sparse networks in

which the non-links play a significant role in determining the community structure.
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Figure 6.3: The upper half of the figure shows the Zachary karate club network
[315] for different values of the effective fraction of antiferromagnetic links ξ. The
edges are coloured blue if the corresponding interaction is ferromagnetic or red if the
interaction is antiferromagnetic. The nodes are coloured according to their community
membership. In the lower half of the figure, we show the Heff, Seff, and ηeff MRFs
and the interaction matrix J for different values of ξ. We have coloured elements of
the interaction matrix corresponding to non-links white and elements corresponding
to ferromagnetic and antiferromagnetic links blue and red, respectively.
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The Biogrid D. melanogaster [280] and the Garfield Scientometrics citation [119]

MRFs demonstrate this effect [Fig. 6.4(e) and Fig. 6.4(m), respectively].

The MRFs for the voting network of the U.K. House of Commons over the period

2001–2005 [104] [Fig. 6.4(g)] and the roll-call voting network for the 108th U.S. House

of Representatives (2003–2004) [203, 241, 306] [Fig. 6.4(q)] also reveal that sharp in-

creases in Heff can be accompanied by small changes in ηeff and Seff. This observation

can also be explained by considering the distribution of Λij . If the Λij distribution

is multi-modal, there can be a large difference between consecutive Λij values. A

large increase in λ is then needed to increase ξ, which leads to a large change in Heff.

However, because this only results in a single additional antiferromagnetic interac-

tion, the change in ηeff is small. We discuss the distribution of Λij for U.S. House of

Representative roll-call voting networks in more detail in Section 6.9.1.3.
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Figure 6.4: Example MRFs. The curves show Heff (red), Seff (blue), and ηeff (green)
as a function of the effective fraction of antiferromagnetic links ξ for the following
networks: (a) DIP: C. elegans [262,310] (b) New York Stock Exchange (NYSE): 1980–
1999 [229] (c) STRING: C. elegans [155] (d) Barabási-Albert (BA): (500,1) [26] (e)
Biogrid: D. melanogaster [280] (f) Human brain cortex: participant C [144] (g) U.K.
House of Commons Voting: 2001–2005 [104] (h) Dolphins [192] (i) Erdős-Rényi (ER):
(500,75) [86] (j) LF benchmark: (1000,15,50,05,01,2,2,2) [180] (k) Fractal: (10,2,8)
[279] (l) Fungal: (17,8) [33, 113, 114,288] (m) Garfield: Scientometrics citations [119]
(n) Zachary karate club [315] (o) Metabolic: DR [156] (p) U.S. airlines [29, 77] (q)
Roll call: U.S. House 108 [203, 241, 306] (r) Watts-Strogatz (WS): (100,4,10) [305].
See Table C.1 for more details on the networks.

.
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6.3.2 MRFs for Erdős-Rényi networks

We can gain further understanding of the shapes of the MRFs by comparing multiple

realizations of synthetic networks with different parameter values. In this section, we

consider the Heff, Seff, and ηeff curves for Erdős-Rényi (ER) networks with different

numbers of nodes N and fractions fe of possible edges.8 In Fig. 6.5, we show MRFs

for N = 50, 100, 500 and 1000 and fe = 0.25, 0.5 and 0.75; although the shapes of the

MRFs for the different ER networks are similar, important differences result from the

different values of N and fe.

6.3.2.1 Varying the fraction of possible edges

Figure 6.5 shows that for a fixed number of nodes N , as the fraction of possible

edges fe is increased, the maximum value of ηeff at ξ = 0 decreases. This can be

explained by considering the number of non-links for each network (i.e., the number

of elements of the adjacency matrix for which Aij = 0). For any resolution λ > 0,

the interaction strength Jij between pairs of spins joined by non-links is less than

zero, so the spins seek to align in different spin-states (join different communities).

For some networks, as the resolution λ is increased, the negative interaction strength

between nodes joined by non-links can become so strong that the network breaks up

into communities before any of the links (Aij > 0) become antiferromagnetic (i.e., for

some networks η(ξ = 0) ≥ 2). This effects explains the different levels of ηeff(ξ = 0)

for different values of fe. For a set of ER networks with the same number of nodes

N , networks with smaller fractions of possible edges fe possess more non-links than

networks with higher fe; this results in more negative elements in the interaction

matrix J for λ > 0, which in turn causes networks with lower fe to break up into

more communities at ξ = 0 than networks with higher fe. Hence, ηeff(ξ = 0) reaches

a higher level for networks with smaller fractions of possible edges. For example, in

Fig. 6.5, for networks with N = 50 nodes, when fe = 0.25 the maximum value of

η(ξ = 0) is 15, and when fe = 0.75 the maximum value is 4; similarly, for networks

with N = 1000 nodes, when fe = 0.25 the maximum value of η(ξ = 0) is 176, and

when fe = 0.75 the maximum value is 48.

The number of communities at ξ = 0 also affects the energy and entropy MRFs:

for larger values of fe, because there are fewer communities at ξ = 0, the Seff and Heff

MRFs reach lower levels.

8Strictly, we generate ER networks with different probabilities for connecting each pair of nodes,
but this probability is generally equal (or almost equal) to the fraction of possible edges present.
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Figure 6.5: A comparison of the Heff, Seff, and ηeff MRFs for Erdős-Rényi networks
with different numbers of nodes N and fractions of possible edges fe.

6.3.2.2 Varying the number of nodes

Figure 6.5 also shows that as the number of nodes increases, for the same fraction of

possible edges, the maximum value of ηeff at ξ = 0 decreases. For larger values of N ,

the network breaks up into more communities at ξ = 0 than for smaller N ; however,

the number of communities as a fraction of the number of nodes in the network is

lower, hence ηeff(ξ = 0) is lower. For example, for networks with fe = 0.25, when

N = 50 the maximum value of η(ξ = 0) is 15, which corresponds to η/N = 0.3, and

when N = 1000 the maximum value is 176, which corresponds to η/N = 0.18.

In contrast to the ηeff MRFs, for larger values of N at the same value of fe Seff

reaches a higher value at ξ = 0. The entropy can be considered as the uncertainty in

the community membership of a particular node. For a larger number of communities

there is generally greater uncertainty in the community membership of a randonly

chosen node, which results in a higher entropy and is consistent with the observation

that Seff(ξ = 0) is higher for larger N . However, because we normalize the entropy

using the transformation Seff = (S − Smin)/(Smax − Smin) = S/ log N (see Eq. 6.7),

more precisely, the higher value of Seff at ξ = 0 for higher N indicates that there is

greater uncertainty in the community membership of a node relative to the maximum

possible uncertainty (which occurs when all nodes are in singleton communities and

is given by Smax = log N).
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Finally, Fig. 6.5 shows that for larger N the maximum value of Heff at ξ = 0

is higher. This is again explained in part by the fact that networks with larger

numbers of nodes fragment into more communities at ξ = 0 than smaller net-

works. Recall from Eq. 4.3 that the Hamiltonian of the Potts spin glass is given

by H =
∑

i6=j Jijδ(Ci, Cj) = −∑i6=j (Aij − λPij) δ(Ci, Cj). The Kronecker delta

δ(Ci, Cj) means that the interaction energies Jij = (Aij − λPij) are only summed

over nodes that belong to the same community. Therefore, as the networks fragment,

the summation includes fewer terms so H becomes progressively less negative and

Heff increases. The higher values Heff at ξ = 0 for networks with more nodes can be

further explained by considering the distribution of Λij for the different networks. In

Fig. 6.6, we show that for larger N the distribution of Λij values is concentrated in a

sharper peak, which means that the resolution λ only needs to be swept over a small

range of values for all of the links to become antiferromagnetic. The small range of λ

also means that there is a relatively small change in energy as the network breaks up

into N communities, which explains the small difference in energy that we observe

between ξ = 0 and ξ = 1 in the Heff MRFs for larger networks in Fig. 6.5.
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Figure 6.6: A comparison of the distribution of Λij values for Erdős-Rényi networks
with different numbers of nodes N and fractions of possible edges fe.
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6.3 | Mesoscopic response functions

6.3.3 Synthetic MRFs

The shapes of the MRFs reflect the manner in which the network splits into commu-

nities as the resolution is increased. To provide further insights into the mesoscopic

heterogeneities leading to different MRFs it is therefore instructive to consider the ef-

fect of different community fragmentation mechanisms on the MRFs. In this section,

we do not assume any network structure or detect communities; instead, we create

synthetic ηeff and Seff MRFs by considering different rates of community fragmenta-

tion as a function of ξ and different community size distributions.

We begin by assuming a fixed shape for the ηeff response function. Figure 6.4

suggests that most of the ηeff curves are either approximately linear or some convex

function so, as a first approximation, we assume that the ηeff MRFs are either linear,

quadratic, or cubic.9 We create synthetic ηeff MRFs for each of these cases as follows.

We assume that as the resolution λ is increased, the number of communities increases

as

η(i) =

⌈

ik

Nk−1

⌉

, (6.9)

where ⌈x⌉ = min{j ∈ Z|j ≥ x}, with j denoting an integer, is the ceiling function, i ∈
{1, . . . , N}, N is the number of nodes in the network and we investigate k ∈ {1, 2, 3}.
The normalization Nk−1 ensures that the number of communities does not exceed N

and the ceiling function ensures that we have only integer numbers of communities.

We normalize these values to effective numbers of communities ηeff lying in the unit

interval through the transformation

ηeff(i) =
η(i) − ηmin

ηmax − ηmin
=

η(i) − 1

N − 1
. (6.10)

We then construct synthetic Seff MRFs based on the number of communities η at

each value of i in the ηeff MRFs. We investigate two extreme cases for the community

fragmentation process:

1. We consider the case in which each increase in the number of communities

η results from a single node leaving the largest community. For example, at

η = 2 we assume that one community contains a single node and the other

community contains N − 1 nodes; at η = 3, we assume that there are two

communities containing single nodes and a third community containing N − 2

nodes; and so on.

9Although this assumption is not strictly true for most networks, it is nevertheless a reasonable
starting point.
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2. We examine the case in which each increase in η results from the largest com-

munity splitting in half. For example, at η = 2 we assume that each community

contains N/2 nodes; at η = 3, we assume that there are two communities con-

taining N/4 nodes and a third community containing N/2 nodes; at η = 4, we

assume that each community contains N/4 nodes; and so on.10

To plot the MRFs we assume that the ξ are uniformly distributed over the interval

[0, 1] such that the ith value is given by

ξ(i) =
i − 1

N − 1
, (6.11)

where i = 1, . . . , N . We show in Section 6.3.1 that the number of communities

increases to η > 1 at ξ = 0 for many networks, so for each splitting regime we

examine two behaviours for the MRFs at ξ = 0:

1. The number of communities does not exceed η = 1 at ξ = 0. (See columns A

and C in Fig. 6.7.)

2. The number of communities initially increases without an increase in the ef-

fective fraction of antiferromagnetic interactions ξ , i.e., η > 1 at ξ = 0. (See

columns B and D in Fig. 6.7.)

We create MRFs that represent the second type of behaviour by setting the first ι

elements of the ξ vector to zero; increasing ι results in the MRFs reaching a higher

values at ξ = 0.

In Fig. 6.7, we show synthetic MRFs for networks with N = 500 nodes and

ι = 20.11 For all of the curves where we assume that each increase in η results

from a single node leaving the largest community, the Seff MRF closely tracks the ηeff

MRF. For each example in which increases in η result from the largest community

splitting in half, the entropy increases faster than in the equivalent MRF for single

nodes splitting from the largest community. This is because in the former case there

is greater uncertainty in the community membership of individual nodes. Figure 6.7

also demonstrates that for the fragmentation mechanism in which communities split in

10When splitting the kth community into two, if nk/2 is not an integer (where nk is the number
of nodes in the kth community), we assume that one of the communities contains ⌊nk/2⌋ nodes and
that the other community contains ⌈nk/2⌉ nodes. If two communities contain the same number of
nodes, we choose one at random to split – this choice has no effect on the resulting MRF.

11We have also investigated networks with different numbers of nodes N and observe similar
differences in the MRFs for different sized networks to those described in Section 6.3.2 for ER
networks.
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6.3 | Mesoscopic response functions

half the MRFs have very different shapes for the different assumptions. For example,

there is a plateau in some, but not all, of the Seff MRFs and there is a large variation

in the amount by which the Seff MRFs increase at ξ = 0.

This is just a simple demonstration of how different fragmentation processes lead

to different shaped MRFs. For real-world networks, the community splitting mech-

anism is likely to be somewhere between these two extreme cases, with single nodes

leaving communities for some changes in ξ and communities splitting more equally

at other values.
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Figure 6.7: Synthetic MRFs for ηeff and Seff. We assume that the ηeff response
functions are either linear, quadratic, or cubic. We also consider that: (A) Each
increase in the number of communities η results from a single node leaving the largest
community. (B) Again, each increase in η results from a single node leaving the
largest community, but we make the additional assumption that, as the resolution is
increased, η initially increases without there being an increase in the effective number
of antiferromagnetic interactions ξ. (C) Each increase in the number of communities η
results from the largest community splitting in half. (D) Each increase in the number
of communities η results from the largest community splitting in half and there is
an initial increase in η without an increase in ξ. We assume that each network has
N = 500 nodes.
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6.4 Distance measures

In Section 6.3, we demonstrated that there are significant variations in the shapes of

the MRFs for different networks. This variety reflects the diverse range of possible

mesoscopic network structures; if two networks have similar MRFs, this suggests that

the networks have similar mesoscopic properties. We now define a distance measure

that quantifies the differences in the behaviours of the MRFs.

There are several plausible choices of distance measure, but we add the constraint

that the measure should compare MRFs across all network scales (i.e., for all values of

ξ). With this in mind, we define the pairwise distance between networks with respect

to one of the investigated properties as the area between the corresponding MRFs.

For example, the distance between two networks i and j with respect to the effective

energy MRF Heff is given by

dH
ij =

∫ 1

0

|Hi
eff −Hj

eff|dξ. (6.12)

Similarly, for the effective entropy and effective number of communities, the distances

are given by

dS
ij =

∫ 1

0

|Si
eff − Sj

eff|dξ (6.13)

and

dη
ij =

∫ 1

0

|ηi
eff − ηj

eff|dξ. (6.14)

We represent the three distances in matrix form as DH, DS, and Dη. This definition

of distance between MRFs has several desirable properties. First, as required, it

compares MRFs across all network scales (i.e., for all values of ξ); second, the measure

is bounded between 0 and 1; third, it is simple and transparent, in that the distances

correspond to the geometric area between a pair of MRFs; finally, we find a posteriori

that it seems to cluster networks accurately. We illustrate the distance measures in

Fig. 6.8 using the NYSE: 1984–1987 [229] and Fungal: (4,8) networks [33,113,114,288].

We analyze MRFs for the energy H, entropy S, and number of communities η, but

the techniques that we present work similarly for other summary statistics. However,

if two statistics provide very similar information, then one of them can be excluded

without a significant loss of information. We check whether the summary statistics

that we investigate are sufficiently different for it to be worthwhile to include all

of them in our analysis by calculating the correlation between their distance mea-

sures. In Fig. 6.9, we show scatter density plots for each pairwise combination of the
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6.4 | Distance measures

Figure 6.8: A comparison of the MRFs for the NYSE (1984–1987) [229] and fun-
gal (4,8) networks. For each figure, the shaded area between the curves equals the
distance between the networks for the corresponding measure. In this example, the
distance are: dH .

= 0.1594, dS .
= 0.5496, and dη .

= 0.4524.

distances dH
ij , dS

ij , and dη
ij . From these plots, it is clear that the most significant cor-

relation is between dS
ij and dη

ij and the linear correlation between these two measures

is only r(dS
ij, d

η
ij)

.
= 0.58. The correlations between the other pairs of distances are

r(dH
ij , d

S
ij)

.
= 0.36 and r(dH

ij , d
η
ij)

.
= 0.24. None of these correlations are sufficiently

high to justify excluding one of the summary statistics, so we use all three.

6.4.1 PCA distance

We have defined three response functions and have shown that each MRF contains

different information; in the interests of parsimony, we now reduce the number of

distance measures using PCA [159]. As described in Chapter 3, PCA is a standard

dimensionality-reduction technique that transforms multiple correlated variables into

uncorrelated variables in which the first component accounts for as much of the vari-

ance in the original data as possible. Subsequent components then account for as

much of the remaining variance as possible. We create an 1
2
N(N − 1) × 3 matrix in

which each column corresponds to the vector representation of the upper triangle of

one of the distance matrices DH, DS, Dη and we perform a PCA on this matrix. We

then define a distance matrix Dp with elements dp
ij = wHdH

ij + wSdS
ij + wηd

η
ij , where

the weights are the PC coefficients for the first component, and we normalize the dp
ij
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Figure 6.9: Scatter density plots showing the correlation between the distances
measures dH

ij , dS
ij, and dη

ij. The linear correlations r between the distances are:
r(dH

ij , d
S
ij)

.
= 0.36, r(dS

ij, d
η
ij)

.
= 0.58, and r(dH

ij , d
η
ij)

.
= 0.24.

to the unit interval. The PC coefficients are wH
.
= 0.24, wS

.
= 0.79, and wη

.
= 0.57.

The first component accounts for 69% of the variance of the system, so the distances

Dp provide a reasonable single-variable representation of the distances DH, DS, and

Dη.

6.4.2 Distance matrices

In Fig. 6.10, we show the distribution of distances for all of the 714 networks studied

(see Table C.1 for the full list of networks). The distribution dS
ij for the entropy

MRF has more weight at larger distances than the dH
ij and dη

ij distributions, which

suggests that the entropy MRFs distinguish the networks slightly better then the

other response functions. This is reflected in the fact that the weight wS is larger

than wH and wη.

In Fig. 6.11, we show the distance matrices DH, DS, Dη, and Dp. We have

block-diagonalized the distance matrices by reordering the nodes to maximize the

cost function

Φ =
1

N

N
∑

i,j=1

Xij |i − j|, (6.15)

which weights each matrix element with its distance to the diagonal (X ∈ {dH, dS, dη, dp}).
Figure 6.11 also suggests that the distance dS

ij better separates the networks than the

distances dH
ij and dη

ij and it appears from this figure that dS
ij might separate the net-

works better than the PCA distance dp
ij. However, we demonstrate in Section 6.5.4

that this is not the case: the PCA distance dp
ij provides the best measure that we

have investigated for separating the networks into categories.
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Figure 6.10: Distributions of the distances dH
ij , dS

ij , dη
ij, and dp

ij.

The block structure of the distance matrices in Fig. 6.11 suggests the existence

of different clusters of networks. However, for these clusters to be meaningful it is

important that the distance measures we define for comparing networks are robust

to small perturbations in network structure. Because many networks are obtained

empirically, it is expected that the network data will contain false positive and nega-

tive links; that is, there will be links erroneously included in the network that do not

exist, and links that do actually exist will be erroneously omitted from the network.

To test the robustness of our distance measures with respect to such false posi-

tive and negatives, we recalculate the MRFs for a subset of unweighted networks in

which some percentage of the links have been rewired. We investigate two rewiring

mechanisms: one in which the degree distribution and connectivity of each network

is maintained and another in which only the connectivity is maintained. We provide

details of the analysis of the sensitivity of the distance measures to false positive and

negative links in Appendix E. We find in both cases that the block structure in the

distance matrices is robust to random perturbations of the networks. This implies

that the MRF distance measures we define in Section 6.4 are robust and can be used

to identify networks with similar mesoscopic structures across multiple scales.

6.5 Clustering networks

We now use the distance matrices DH, DS, Dη, and Dp to cluster networks. Before

presenting network taxonomies, we provide some additional details that we use to
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Figure 6.11: Block-diagonalized distance matrices DH, DS, Dη, and Dp.
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study the clusters.

6.5.1 Network categories

We assign each of the networks to a family group that describes the type of network

(see Table 6.1). One of the primary reasons for assigning each network to a category

is to use this external categorization to help assess the quality of the taxonomy that is

produced by the unsupervised MRF clustering. The assignment of the networks to one

of these groups is subjective because several of the networks could belong to more than

one category. For example, one could categorize the network of hyperlinks between

blogs on U.S. politics [3] as a WWW network or a citation network, and one could

categorize the network of jazz musicians [125] as a collaboration network or a social

network. The initial selection of network categories is of course then also subjective.

One could argue that if one has a social network category, then it is not necessary

to have a collaboration network category as well because collaboration networks are

merely a subset of social networks. However, in choosing the network categories, we

have attempted to maintain a balance between having enough categories to make

it possible to understand the differences that lead to the network clusters without

having so many categories that it is impossible to discern the essential differences.

6.5.2 Selecting a subset of networks

We analyze a total of 714 networks (see Table C.1 for the full list); because of the

data that is available, the networks are not evenly distributed across categories (see

Table 6.1). Many of these networks are either different time-snapshots of the same net-

work or different realizations of the same type of network.12 For example, we include

110 roll-call voting networks for different sessions of the U.S. House of Representa-

tives [203,241,306] and 100 Facebook networks for different U.S. universities [295]. In

some of the analysis we present, we only study a subset of networks to have a more

balanced set across different categories. One of the primary reasons for doing this is

to keep the dendrograms readable. However, it is also true that to understand where

a particular type of networks lies in the taxonomy it is often necessary only to include

a representative subset of networks of that type. Therefore, for some of the analysis,

we focus on a subset of 270 networks (which we highlight in Table C.1).

12We analyze intra-category taxonomies in Section 6.9.
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Table 6.1: Network categories and the number of networks assigned to each category.
See Table C.1 for the identities of the networks.

Category No. of networks

Synthetic 64
Social 26
Facebook 100
Political: voting 285
Political: cosponsorship 26
Political: committee 16
Protein interaction 22
Metabolic 43
Brain 12
Fungal 12
Financial 69
Language 8
Collaboration 8
WWW 3
Electronic circuit 3
Citation 3
Trade 3
Other 11

154



6.5 | Clustering networks

6.5.3 Choosing a linkage clustering algorithm

For each distance measure, we construct a dendrogram for the subset of networks used

in Section 6.5.2 using linkage clustering. As described in Sections 4.3 and 5.6, linkage

clustering is an agglomerative hierarchical clustering technique [84, 244]. The three

most common linkage clustering algorithms are single, average, and complete linkage

clustering, which join clusters of objects based on the smallest, average, and largest

distance between objects in the clusters, respectively. We compare dendrograms con-

structed with the different linkage clustering algorithms using the cophenetic correla-

tion coefficient ζ . We define tij as the distance in the dendrogram between networks

i and j. For example, for a dendrogram constructed from the PCA-distance matrix

Dp with elements dp
ij using single-linkage clustering, the distance tij between a node

i in cluster C and a node j in cluster C′ is given by (see Eq. 5.9)

tij = dsing(C, C′) = min
i∈C
j∈C′

dp
ij . (6.16)

Similarly, for a dendrogram constructed using average-linkage clustering the distance

tij is given by (see Eq. 5.10)

tij = dave(C, C′) =
1

|C||C′|
∑

i∈C

∑

j∈C′

dp
ij, (6.17)

and for complete-linkage clustering by

tij = dcomp(C, C′) = max
i∈C
j∈C′

dp
ij . (6.18)

The cophenetic correlation, which measures how well each dendrogram preserves the

pairwise distances between the networks, is defined as [276]

ζ =

∑

i<j

(

dp
ij − d̄p

)(

tij − t̄
)

√

[

∑

i<j

(

dp
ij − d̄p

)2
][

∑

i<j

(

tij − t̄
)2
]

, (6.19)

where d̄p is the mean of the distances dp
ij and t̄ the mean value of the tij .

The cophenetic correlations for the different linkage clustering algorithms are:

ζsing
.
= 0.65, ζave

.
= 0.78, and ζcomp

.
= 0.62. This implies that dendrograms con-

structed using average linkage clustering preserve the distances in Dp better than

those constructed using the other clustering techniques, so we use average linkage

clustering to construct all dendrograms in the remainder of this chapter.
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6.5.4 Comparison of clusterings for different distances

We defined the PCA-distance Dp as a parsimonious representation of the three dis-

tance matrices DH, DS, Dη. In this section, we justify using the distance Dp instead

of one of the alternative distances by demonstrating that it is the most effective mea-

sure for clustering networks of the same type. To ensure that the dendrograms we

construct are readable, we analyze the subset of networks described in Section 6.5.2.

6.5.4.1 Visual comparison

In Figs. 6.12–6.15, we show dendrograms that we obtained from the distance-matrices

DH, DS, Dη, and Dp. The coloured rectangle underneath each leaf indicates the net-

work category. Contiguous blocks of colour demonstrate that networks from the same

category have been grouped together using the MRF clustering method and the pres-

ence of such contiguous colour blocks is a good indication of the success of the MRF

clustering scheme. One would not always expect networks in the same category to be

clustered together (especially given the subjective nature of the categories described

in Section 6.5.1) and, in fact, it can sometimes be more insightful to understand why

superficially similar networks are not clustered together. However, in many cases, it

is reasonable to assume that closely related networks should be clustered together. A

visual comparison of the dendrogram leaf colours therefore provides an indication of

the effectiveness of different distance measures at clustering the networks.

An inspection of the dendrograms in Figs. 6.12–6.14 reveals that for DH all of the

networks are clustered at a smaller distance than for DS and Dη. By examining the

dendrogram leaf colours, it appears that each measure clusters some of the categories

better than the other measures. For example, DH groups the synthetic networks

and fungal networks well, DS groups the brain and metabolic networks well, and Dη

groups the political voting and fungal networks well.

In Fig. 6.15, we show the dendrogram for the distance Dp. An examination of the

leaf colours in this figure demonstrates that this distance groups together networks

from a variety of categories, including political voting networks, political committee

networks, Facebook networks, metabolic networks, and fungal networks. Using the

simple visual criterion that a reasonable distance measure is one that leads to large

blocks of contiguous colour in the dendrogram, it appears that the PCA distance Dp

provides the best measure for separating the networks into known clusters.
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Figure 6.12: Dendrogram for the 270 networks constructed using the distance DH

and average linkage clustering. We order the leaves of the dendrogram to minimize the
distance between adjacent nodes and colour the leaves to indicate the type of network.
The vertical scale in the dendrogram is set to the interval [0, 0.55] to facilitate a visual
comparison with the DS and Dη dendrograms in Figs. 6.13 and 6.14. The distance
dH

ave at which clusters combine is given by Eq. 6.17.
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Figure 6.13: Dendrogram for the 270 networks constructed using the distance DS and
average linkage clustering. We order the leaves of the dendrogram to minimize the
distance between adjacent nodes and colour the leaves to indicate the type of network.
The vertical scale in the dendrogram is set to the interval [0, 0.55] to facilitate a visual
comparison with the DH and Dη dendrograms in Figs. 6.12 and 6.14. The distance
dS

ave at which clusters combine is given by Eq. 6.17.
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Figure 6.14: Dendrogram for the 270 networks constructed using the distance Dη and
average linkage clustering. We order the leaves of the dendrogram to minimize the
distance between adjacent nodes and colour the leaves to indicate the type of network.
The vertical scale in the dendrogram is set to the interval [0, 0.55] to facilitate a visual
comparison with the DH and DS dendrograms in Figs. 6.12 and 6.13. The distance
dη

ave at which clusters combine is given by Eq. 6.17.

6.5.4.2 Metric comparison

A visual comparison is a good starting point for assessing the effectiveness of differ-

ent distance measures at clustering networks, but it is a subjective assessment. We

therefore introduce a metric to quantify how effectively each distance measure clusters

networks of the same type.

The assignment of networks to family categories is also subjective and some of

the categories include networks of very different types (see Section 6.5.1), so it is

inappropriate to assess the effectiveness of a distance measure based on how well it

clusters all types of networks. Instead, we focus only on groups of networks that are

clustered together in any one of the dendrograms in Figs. 6.12–6.15. This includes

the following 8 categories: Facebook, metabolic, political co-sponsorship, political

committee, political voting, financial, brain, and fungal networks.

For each distance measure, we construct a dendrogram and for each level of the

dendrogram we calculate the maximum fraction of networks of a particular type that

appear in the same cluster. That is, for a particular level of the dendrogram, we

take a network category and find all clusters that contain at least one network from

that category. We then calculate the fraction of networks from that category in each
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Figure 6.15: Dendrogram for the 270 networks constructed using the distance Dp and average linkage clustering. We order
the leaves of the dendrogram to minimize the distance between adjacent nodes and colour the leaves to indicate the type of
network. A visual comparison with the DH, DS, and Dη dendrograms in Figs. 6.12, 6.13, and 6.14 shows that the distance
matrix Dp provides a better separation of the networks into their groups. The distance dp

ave at which clusters combine is given
by Eq. 6.17.
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of the identified clusters and find the cluster that contains the maximum fraction of

networks of that type. We repeat this calculation for each network category and sum

the maximum fraction over all categories. We perform similar calculations for each

level of the dendrogram and use the value of the summation at each level to assess

the effectiveness of the different distance measures at clustering the networks. For

example, at the root of the dendrogram all of the networks are in a single cluster,

so for every type of network the maximum fraction of networks in the same cluster

is 1 and the value of the metric is 8 (the number of categories). However, as one

moves to lower levels of the dendrogram (i.e., towards the leaves of the dendrogram)

the clusters break up, so the maximum fraction of networks of each type in the same

cluster decreases. If one compares the same level for dendrograms constructed using

different distance measures, the sum of the maximum fraction of networks of each

type in the same cluster will be larger for the more effective distance measure.
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Figure 6.16: Comparison of the effectiveness of each distance measure at clustering
networks of the same type. For each level of the dendrograms shown in Figs. 6.12–
6.15, we calculate the maximum fraction of networks of a certain type that appear in a
single cluster and we sum this fraction for networks from the following groups: Face-
book, Metabolic, Political: co-sponsorship, Political: committee, Political: voting,
Financial, Brain, and Fungal.

In Fig. 6.16, we compare the total fraction of networks clustered together at each

level of the dendrogram for DH, DS, Dη, and Dp. Over most of the dendrogram levels,

the PCA-distance Dp is the most effective at clustering networks of the same type,
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which agrees with our visual assessment of the different distances in Section 6.5.4.1.13

We therefore focus on PCA-distance dendrograms for the remainder of this chapter.

6.6 Network taxonomies

6.6.1 Taxonomy of all networks

As we noted in Section 6.5.1, there is some subjectivity in selecting categories of

networks and assigning networks to these categories. However, for many of the studied

networks the category assignment is unequivocal, so it is insightful to consider how

networks within categories are distributed across the branches of the dendrogram.

In Fig. 6.17 we show a dendrogram containing leaves for all of the 714 networks

studied. In this dendrogram, there are several large contiguous blocks of leaves that

correspond to networks belonging to the same category. For example, there are

large contiguous blocks of fungal, Facebook, metabolic, political committee, political

voting, and financial networks. These blocks do not always include all of the networks

within a category; when there are separate contiguous blocks for the same category,

the blocks sometimes correspond to different types of networks within a category. For

example, there are separate blocks of FX networks and New York Stock Exchange

networks for the financial networks category. However, because of the number of

networks that we include in the study and the imbalance in the spread of networks

across categories, Fig. 6.17 is quite difficult to interpret and the smaller categories are

obfuscated by the larger categories. Therefore, for a clearer view of the relationships

between the different categories of networks, we return to considering the dendrogram

in Fig. 6.15 for the subset of 270 networks.

6.6.2 Taxonomy of a sub-set of networks

In the dendrogram in Fig. 6.15 all of the networks in some categories appear in

blocks of adjacent leaves. For example, there is a cluster of political voting networks

at the far left of the dendrogram. This cluster includes voting networks from the U.S.

Senate, the U.S. House of Representatives, the U.K. House of Commons, and the

13Figure 6.16 shows that at the highest and lowest levels of the dendrogram the PCA distance
does not have the largest value of the metric used to assess the effectiveness of the different distances.
These extreme levels correspond to most nodes in individual clusters and most nodes in the same
cluster, respectively, and are not particularly insightful. The clusters that we observe over the
intermediate levels of the dendrogram provide more insights into the relationships between the
different types of networks; over these intermediate dendrogram levels the PCA distance is the most
effective at clustering the networks.
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Figure 6.17: Dendrogram for the 714 networks constructed using the distance Dp and average linkage clustering. We order
the leaves of the dendrogram to minimize the distance between adjacent nodes and colour the leaves to indicate the type of
network.
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United Nations General Assembly. The clustering of these voting networks suggests

that there are some common features in the MRFs that represent universal properties

of the different parliaments and legislatures. We also obtain single blocks that consist

of all political committee networks and all metabolic networks.

The political cosponsorship networks are split into two blocks that are separated by

a cluster of financial and trade networks. The leftmost block of political cosponsorship

networks consists of all of the House of Representatives cosponsorship networks, and

the rightmost cluster consists of all of the Senate cosponsorship networks. There are

also several categories for which all except one or two networks are clustered together

in a contiguous block. For example, all but two of the fungal networks appear in the

same block and all but one of the Facebook networks are clustered together. The

isolated Facebook network is the Caltech network (which is the smallest network of

this type), and it appears in a cluster next to the cluster containing all of the other

Facebook networks.

There are other categories of network that do not appear in near-contiguous blocks.

For example, protein interaction networks appear in several clusters. These networks

represent interactions within several different organisms, so one might not expect

all of them to be clustered together. However, there are also examples of protein

interaction networks for the same organism in which the interactions were identified

using different experimental techniques that are not clustered together. This supports

previous work that suggests that the properties of protein interaction networks are

extremely sensitive to the experimental procedure used to identify the interactions,

e.g., [145, 313].

Social networks are also distributed throughout the dendrogram. This is unsur-

prising given the extremely broad nature of the category: the social network category

includes networks of very different sizes with links representing a rather diverse range

of social interactions (see Table C.1 for details of the different networks). The leftmost

outlying social network is the network of Marvel comic book characters, which is ar-

guably not a typical social network. Finally, the synthetic networks appear in clusters

in different regions of the dendrogram, which is again unsurprising given that many

of these graphs were developed to model systems with very different characteristics.

It is also worth highlighting the initial split of the dendrogram into two clusters.

One of the clusters contains only three networks, whereas the other cluster contains

all of the other networks. This suggests that the three networks in the smaller cluster

possess unusual mesoscopic structures. The three networks are the NCAA football
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schedule network [61] and two fractal networks [279]. The key feature that distin-

guishes these networks from most of the other networks are their degree distributions.

For each of the networks in the small cluster all of the nodes have one of a limited

number of possible degrees; for example, in the NCAA football networks, all but one

of the nodes have a degree of 12 or 13. Such degree distributions result in MRFs that

contain several plateaus (see Section 6.3.1) and lead to large distances between these

networks and the other networks in the taxonomy.

The observations in this section demonstrate that the MRF framework is able to

cluster categories of networks that are known to have similar structures, which verifies

the effectiveness of this technique. However, sometimes networks that one might

expect to be similar are not clustered together. These outliers might correspond to

anomalous members of a class of networks, so understanding the differences in their

structure is potentially insightful.

6.6.3 Taxonomy of network categories

In the previous sections, we applied the MRF clustering framework to individual net-

works. We now establish a taxonomy of network categories. We consider all empirical

network categories for which we have 8 or more networks.14 In Fig. 6.18, we show

the range of the Heff, Seff, and ηeff MRF curves for each category. Figure 6.18 demon-

strates that the MRFs for some classes of networks (such as political co-sponsorship

and metabolic networks) are very similar, whereas there are large variations in the

MRFs for other categories (such as social and protein interaction networks). The

range of different MRFs for the social and protein interactions explains why these

networks are scattered throughout the dendrogram in Fig. 6.15. Despite these differ-

ences, it instructive to create a taxonomy of network categories.

We compute average intra-class MRFs for each category by calculating the mean

of Heff, Seff, and ηeff over all networks within the category, and create a PCA-distance

matrix and taxonomy using the MRFs. At the highest level, the dendrogram in

Fig. 6.19 is split into two clear clusters. The lower of the two clusters contains finan-

cial, political voting, and political cosponsorship networks. All of these networks are

constructed from measures that characterize the similarity of nodes in the networks;

as this measure can be computed between any two nodes, these networks are typically

weighted and fully connected. The upper cluster contain all of the other categories.

The clear outlier in this cluster is the fungal networks, which are not closely related

14We do not consider synthetic networks because these networks are designed to model networks
with very different characteristics, so do not form a coherent category.
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to any of the other categories. This observation is unsurprising given the tree-like

structure of fungal networks [33]. The other categories of networks within this cluster

appear to be more closely related. For example, protein interaction networks cluster

with collaboration networks, Facebook networks cluster with language networks, and

metabolic networks cluster with social networks.

It is tempting to speculate on the reasons for these similarities, but the taxonomy

needs to be treated with some caution because of the differences in the intra-class

MRFs highlighted in Fig. 6.18. Nonetheless, Fig. 6.19 does suggest that networks

that are clustered together have some similarities in their mesoscopic structures; con-

sequently, a detailed comparison of the properties of networks from related categories

might help to identify common structures that support the functions of the differ-

ent types of networks. In addition, the taxonomy in Fig. 6.19 might also help to

identify network analysis techniques that might fruitfully be applied to a particular

network. For example, if biologists have developed techniques that provide insights

into protein interactions networks, the same techniques might successfully be applied

to collaboration networks.

Figure 6.18: MRFs for all of the network categories containing 8 or more networks
(see Table 6.1). At each value of ξ, the upper curve shows the maximum value of
Heff, Seff, or ηeff for all networks in the category, the dashed curve shows the mean,
and the lower curve shows the minimum value.
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Figure 6.19: Taxonomy of network categories based on the average intra-class MRFs.
The dendrogram is constructed using the distance Dp and average linkage clustering.
We order the leaves of the dendrogram to minimize the distance between adjacent
nodes

6.6.4 Comparison with prior clusterings

It is also worthwhile to compare the clusters that we identify with those found in the

prior studies of Milo et al. [210] and Guimerà et al. [142] discussed in Section 4.5.

Such a comparison is difficult because, although we study many more networks, we

do not include all of the networks used in the other studies because they are not all

publicly available. Nevertheless, we can make some comparisons of the clusterings.

We cluster all but one of the language networks studied by Milo et al. in the same

cluster, but we study the undirected versions of these networks whereas Milo et al.

studied the directed networks.15 These networks are not clustered with other networks

in the language category, which are distributed throughout the dendrogram. However,

scrutiny of the language category in Table C.1 shows that the language networks

are constructed from very different sources, so it is unsurprising that they are not

clustered. We only include a single airline network but, in contrast to the study of

Guimerà et al., this network is not clustered with the metabolic networks. In further

contrast to the work of Guimerà et al., the MRF framework does not cluster all protein

interaction networks in the same cluster. Importantly, as stated above, we include

protein networks that have been derived using different experimental techniques, so

15The network that appears in a different cluster is the English word adjacency network [210].
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their appearance in different clusters is unsurprising.

We are only able to make a few comparisons of the different clustering frameworks

because of the differences in the networks used in each study. To perform a more

meaningful comparison it would be necessary to repeat the analyses of Refs. [210]

and [142] using a larger set of networks.

6.6.5 Synthetic networks

It is also insightful to consider the cluster membership of the synthetic networks.

The set of synthetic networks we study includes a wide range of networks models

and benchmark networks introduced to test community detection algorithms (see

Appendix C for a detailed description of the networks). An understanding of the

similarities between the MRFs for real and synthetic networks is important because

if a synthetic network has a similar MRF to a real-world network, the generative

mechanism used to produce the synthetic network might help in understanding the

structure of the real-world network.

In Fig. 6.20, we redraw the dendrogram in Fig. 6.15 with two colour bars under

each leaf: the upper bar indicates the network category and the lower bar indicates

the type of synthetic network. Figure 6.20 shows that the fractal networks are dis-

tributed throughout the dendrogram, whereas the other synthetic networks tend to

be localized in particular clusters. There is only one synthetic network in the left-

most cluster of the dendrogram, which contains weighted, fully-connected networks

constructed from similarity measures. We include random fully-connected networks

in the study but, despite having similar fractions of edges present, the MRFs of these

networks are not similar to those for real-world fully-connected networks. Many of

the synthetic networks lie in similar regions of the dendrogram. For example, there is

a group including LF benchmark, LFR benchmark, KOSKK model, ER, and H13-4

benchmark networks near the centre of the dendrogram. We study a wide range of

synthetic networks (and many of the most widely studied models), but we have not

included an exhaustive set and consequently we need to be careful not to make any

too strong statements based on the synthetic networks16. However, the absence of

any synthetic networks in many regions of the dendrograms suggests that, in terms

of mesoscopic structure, current network models are not representative of the full set

of real-world networks.

16Of course, this is also true of the real-world networks.
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Figure 6.20: Dendrogram for the 270 networks constructed using the distance dp
ij and

average linkage clustering. We order the leaves of the dendrogram to minimize the
distance between adjacent nodes. The upper colour bar indicates the type of network
and the lower colour bar shows all non-synthetic networks in grey and highlights the
position in the dendrogram of different types of synthetic network (see Appendix C
for a description of the networks).

6.7 Clustering networks using other properties

Having established that the MRF framework produces a sensible clustering of net-

works, we now check that the observed taxonomy cannot be explained using simpler

summary statistics.

6.7.1 Simple network statistics

Perhaps the three simplest properties of an undirected network are whether it has

weighted or unweighted links, the number of nodes N , and the fraction of possible

edges that are present (which is given by 2L/[N(N − 1)]). In Fig. 6.21, we again

reproduce the dendrogram in Fig. 6.15 but now include a coloured bar under the

leaves for each of these properties. The top coloured row in Fig. 6.21 indicates that

many of the weighted networks are clustered together at the far left of the dendrogram.

However, there are also weighted networks scattered throughout the dendrogram, so

whether a network is weighted or unweighted does not explain the observed clustering.

The third coloured row provides a clearer explanation for the leftmost cluster: these

are not simply weighted networks, they are in fact weighted networks that contain all
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Figure 6.21: Dendrogram for the 270 networks constructed using the distance dp
ij and

average linkage clustering. We order the leaves of the dendrogram to minimize the
distance between adjacent nodes. The three colour bars below the dendrogram indi-
cate (top): whether the network corresponding to each leaf is weighted or unweighted,
(middle) the number of nodes in the networks, and (bottom) the fraction of possible
edges that are present. These colour bars clearly demonstrate that although some
of the clustering in the dendrogram is attributable to these simple properties, they
cannot explain much of the observed structure.
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(or nearly all) possible edges17. Again, however, this property alone cannot explain

the observed clusters, as several of the weighted networks that possess nearly all

possible links do not appear in the leftmost cluster of the dendrogram. In fact,

there are many clusters in the dendrogram that contain networks with very different

fractions of possible edges. The third property we consider, the number of nodes,

again explains some of the clustering as networks with similar numbers of nodes

are clustered together in some regions of the dendrogram; however, there are also

numerous examples in which networks with the same number of nodes appear in

different clusters. Therefore, none of these simple network metrics can explain the

observed clustering.

6.7.2 Strength distribution

We also consider whether we can obtain a better taxonomy using microscopic network

properties. Of course, our original objective was to cluster networks based on their

mesoscopic structure, but it is nonetheless informative to compare the MRF clustering

with a clustering obtained using microscopic properties. The most widely studied

microscopic property is the vertex degree which has been found to follow a heavy-

tailed distribution in many empirically observed networks [9, 217]. Here we use the

strength distribution (i.e., the generalization of the degree distribution to weighted

networks) to compare networks. We denote the cumulative strength distribution of

the network i as Fi(k), which is the probability that the strength of a randomly

sampled node is greater than or equal to k. We then define the distance dd
ij between

the strength distributions of networks i and j as the Kolmogorov-Smirnov statistic [42]

dd
ij = sup

k

|Fi(k) − Fj(k)|, (6.20)

where sup denotes the supremum, and we represent these distances in matrix form

as Dd.

In Fig. 6.22, we show the dendrogram constructed using Dd. In Fig. 6.23, we use

the metric described in Section 6.5.4.2 to compare the effectiveness of Dd and the

PCA-distance Dp at clustering groups of networks belonging to the same category

(see Section 6.5.4.2). Figure 6.23 demonstrates that the PCA-distance performs better

than the strength distribution distance. In addition, the wealth of similar heights of

the branches in the dendrogram in Fig. 6.22 indicates that the strength distribution

17This cluster contains the networks constructed from similarity measures that we discussed in
Sections 6.6.5 and 6.6.3.
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clustering is not very robust because very slight methodological differences might lead

to large differences in the clusters.
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Figure 6.22: Dendrogram for the 270 networks constructed using the distance be-
tween the strength distributions of the networks and average-linkage clustering. We
order the leaves of the dendrogram to minimize the distance between adjacent nodes
and colour them to indicate the type of network. The dendrogram demonstrates that
clustering using the strength distribution does not separate the networks into their
groups as effectively as the distance matrix Dp that we obtained using MRFs. The
distance dd

ave at which clusters combine is given by Eq. 6.17.

6.8 Robustness of MRFs for different heuristics

In this chapter we have detected all communities by minimizing the Hamiltonian in

Eq. 6.1 using a greedy algorithm [44]. However, as we noted in Sections 4.3.3 and

5.10, several alternative computational heuristics exist, so it is important to check

that the MRFs and taxonomies that we produce are robust with respect to the choice

of heuristic. In Appendix F, we provide a detailed analysis of the effects on the MRFs

and taxonomies of using spectral [221] and simulated annealing algorithms [141] to

minimize Eq. 6.1. We find small variations in the MRFs generated for the different

algorithms, but these differences have very little effect on the resulting dendrograms.

The taxonomies that we observe are therefore robust with respect to the choice of

optimization heuristic.
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Figure 6.23: Comparison of the effectiveness of the PCA-distance Dp and the strength
distribution distance Dd at clustering networks of the same type. For each level of
the dendrograms shown in Figs. 6.15 and 6.22, we calculate the maximum fraction of
networks of a certain type that appear in a single cluster and we sum this fraction for
networks from the following groups: Facebook, Metabolic, Political: co-sponsorship,
Political: committee, Political: voting, Financial, Brain, and Fungal.

6.9 Case studies

Thus far, we have used the MRF framework to create taxonomies of large sets of

networks of different types. We now cluster individual families of networks in order

to demonstrate that our method can generate meaningful intra-class taxonomies.

We present a number of case studies in which we cluster groups of networks that

represent different time snapshots of the same system and groups of network that

represent multiple realizations of the same system. Networks in each of these families

could be studied using field-specific methods, but this approach would not make it

possible to relate different families to each other. By comparing the results of the

MRF framework with those obtained using methods specific to the relevant field we

can further verify that the MRF approach produces meaningful results.

6.9.1 U.S. Congressional roll-call voting

We first consider roll-call voting in the U.S. Congress, which is the legislative branch

of the U.S. federal government. Congress is formed of two chambers: the Senate

and the House of Representatives. The current Congress consists of 100 senators and
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435 members of the House. We analyze roll-call voting for the 1st–110th Congresses,

covering the period 1789–2008. We construct networks from the roll call data [241] for

each two-year Congress as follows [306]. The roll calls for each chamber are encoded

in an N × b matrix M, in which each element Mik equals 1 if legislator i voted

yea on bill k, −1 if the legislator voted nay, and 0 otherwise. We are interested in

characterizing the similarities between legislators, so we transform M into an N ×N

adjacency matrix A with elements

Aij =
1

bij

∑

k

αijk, (6.21)

where αijk = 1 if legislators i and j voted the same on bill k and 0 otherwise, and bij is

the total number of bills on which i and j both voted [243,306]. The elements Aii all

equal 1, indicating the perfect similarity between each legislator’s voting record with

himself/herself. We set all Aii = 0 to remove self-edges. The matrix A, with elements

Aij in the interval [0, 1], then represents a network of weighted ties between legislators,

where the weights are determined by the similarity of their roll-call voting over a single

two-year Congress. Following Ref. [241], we only consider “non-unanimous” roll call

votes, where a roll call vote is considered “non-unanimous” if more than 3% of the

legislators are in the minority.

6.9.1.1 Party polarization

For each Congress, we calculate MRFs for both the House and Senate and cluster

the Congresses for each chamber by comparing the MRFs. In Figs. 6.24(a) and

6.24(b), we show dendrograms for the House of Representatives and Senate, respec-

tively. Much work on the U.S. Congress has been devoted to the extent of partisan

polarization, the influence of party on roll-call voting, and the degree to which this

has varied over time (see Refs. [203, 306] and references therein). In highly-polarized

legislatures, representatives tend to vote along party lines, so there are strong simi-

larities in the voting patterns of members of the same party, and strong differences

between members of different parties. In contrast, during periods of low polarization,

the party lines become blurred and there are greater similarities in the voting patterns

of members of different parties.

We use the notion of party polarization to understand the taxonomy of Con-

gresses shown in Figs. 6.24(a) and 6.24(b). We consider two measures of polarization.

The first uses DW-Nominate scores, a multi-dimensional scaling technique that is

very popular among political scientists [203, 241]. The DW-Nominate polarization is
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given by the absolute value of the difference between the mean first-dimension DW-

Nominate scores for members of one party and the same mean for members of the

other party (see Refs. [203, 241] for a detailed description of DW-Nominate scores).

The problem with the DW-Nominate polarization is that it assumes a competitive

two-party system and therefore cannot be calculated prior to the 46th Congress. The

second measure we consider is the modularity Q, which was recently shown to be a

good measure of polarization [306], even for Congresses without a clear division into

parties. Modularity is given, in terms of the energy H in Eq. 6.1 as

Q = −H(λ = 1)

2m
. (6.22)

The two measures agree fairly closely on the level of polarization of each Congress for

which they can both be calculated, although there are some differences [306].

In Figs. 6.24(a) and 6.24(b), we include bars under the dendrograms that represent

these polarization measures (we have normalized both measures to the interval [0, 1]).

The bars demonstrate that (for both the House and Senate) Congresses with similar

levels of polarization, as measured using both modularity and DW-Nominate, usually

appear in the same cluster. This suggests that our MRF clustering technique groups

Congresses based on the polarization of roll call votes. We have also coloured branches

in the same cluster in the dendrogram according to the level of polarization of the

corresponding Congresses, where brown indicates highly-polarized Congresses and

blue less polarized Congresses.

6.9.1.2 Using MRFs to identify periods of polarization

We now consider in more detail, the Congresses lying within each cluster. In Figs. 6.25(a)

and 6.25(b), we show the variation in the polarization measured using both DW-

Nominate scores and modularity as a function of time. For each Congress, the height

of each stem indicates the level of polarization measured using modularity. The colour

of each stem indicates the cluster membership of each Congress in the dendrograms.

The black curve, running from the 46th Congress onwards, shows the DW-Nominate

polarization. The DW-Nominate and modularity curves suggest that the periods of

maximal polarization in the House and Senate do not correspond exactly. In both

chambers, the 104th − 110th Congresses are highly polarized (the 104th immediately

followed the 1994 “Republican Revolution” in which the Republicans earned major-

ity status in the House for the first time in more than 40 years [203]). However, the

House has a second polarization peak from the 55th−58th Congresses, and the Senate

has a high polarization for the 46th − 51st Congresses. The MRF clustering scheme is
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Figure 6.24: Dendrograms for (a) House of Representatives and (b) Senate roll-call
voting networks for the 1st–110th Congresses (covering the period 1789–2008). Each
leaf in the dendrograms represents a single Congress. The upper colour bar below the
dendrograms show the polarization of the Congresses measured using modularity. The
lower colour bar shows the polarization measured using DW-Nominate scores. The
DW-Nominate polarization assumes a competitive two-party system and therefore
cannot be calculated prior to the 46th Congress. We do not include rectangles at the
leaf nodes corresponding to these earlier Congresses in the DW-Nominate colour bar.
We also colour groups of branches in the dendrogram that correspond to periods of
similar polarization (see the discussion in the text).
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able to detect these differences. In Figs. 6.25(a) and 6.25(b), the brown stems high-

light a group of Congresses that lie within the same cluster in the dendrogram. The

clusters for both the House and Senate closely match the periods of high polarization

identified using modularity and DW-Nominate.

For both the House and Senate, the 104th − 110th and 55th Congresses are iden-

tified in the high-polarization cluster. As mentioned above, this first set corresponds

to a period of high polarization following the 1994 elections. The 55th Congress cor-

responds to a period when a third party known as the Populist Party was strong.

There are also several other Congressional sessions that are part of the highly po-

larized cluster for the House but not the Senate (and vice versa). For example, the

House was also highly polarized for the 5th − 7th Congresses, which is a period fol-

lowing George Washington’s resignation during which John Adams headed a divided

Federalist Party. The same cluster includes the 38th Congress, which occurred during

the Civil War, and the 56th − 58th Congresses, when the Populist party was again

strong. The highly-polarized cluster for the Senate includes the 26th−29th Congresses.

The 25th Congress saw the emergence of the Whigs and the Democratic Party and

during this period, the abolitionist movement was also prevalent, with the Amistad

seizure occurring in 1839 during the 26th Congress. The cluster also includes the

46th − 51st Congresses (1879-1891), which occurred during the period immediately

following Reconstruction.

The MRF clustering also identifies periods during which polarization was low. We

highlight these periods in green in Figs. 6.24(a)–6.25(b). The 75th − 95th Congresses

are recognized as a period of party decline, during which fractionalization decreased

[71]. For the House, we find that the 77th − 97th Congresses are all grouped within

the same cluster. For the Senate, there is a cluster that includes the 68th − 102nd

Congresses. Although this includes all of the Congresses during the period of party

decline, interestingly, the cluster spans a much longer period. The House cluster also

includes most of the 15th − 21st Congresses, which corresponds to the period 1817–

1825 and is known as the “Era of Good Feeling” because of the decline of partisan

politics. One can make similar observations for each of the other clusters identified

in the dendrogram.

For each legislative chamber, it is also worth commenting on the Congresses that

are not assigned to a cluster. For the House, the 17th Congress forms an isolated

cluster. Using modularity, this House, which occurred during the Era of Good Feel-

ing, seems to have an extremely low polarization. For the Senate, the 2nd and 20th

Congresses form isolated clusters. The 20th Congress took place from 1827–1829 and
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Figure 6.25: Variation in the polarization of (a) the U.S. House of Representatives
(b) the Senate as a function of time. The height of each stem indicates the level of
polarization measured using modularity. The colour of each stem indicates the cluster
membership of each Congress in the dendrograms in Fig. 6.24(a) and 6.24(b). The
black curve shows the DW-Nominate polarization. We have rescaled the modularity
and the DW-Nominate polarization to the interval [0, 1].
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included the election of 1828, which was a significant benchmark in the trend towards

broader voter participation.

6.9.1.3 Effect of polarization on the MRFs

The Congresses are assigned to clusters in the dendrograms based on a comparison

of their MRFs. In Figs. 6.26(a) and 6.26(b), we show the Heff, Seff, and ηeff response

functions for the main clusters identified in the dendrograms in Figs. 6.24(a) and

6.24(b). The MRFs are assigned the same colours as the clusters in the dendrograms.

For each group of Congresses, the MRFs for the House have similar shapes to the

corresponding MRFs for the Senate. Figures 6.26(a) and 6.26(b) demonstrate that

the main differences between clusters occur for the Heff response functions. For the

most polarized Congresses, there is a sharp shoulder in the Heff MRF, which becomes

less pronounced as the polarization decreases.

Figure 6.27 helps to explain this behaviour. We compare the Heff MRFs for the

85th and 108th Houses, which have very low and very high polarization, respectively.

The shoulder in the Heff curve for the highly polarized 108th House is very pronounced,

which can be explained by considering the distribution of Λij values. Figure 6.27

shows that for the highly polarized 108th House, the Λij distribution is bimodal, with

the trough between the peaks occurring at Λij = 1. Recall that Λij = Aij/Pij, so Λij

compares the observed voting similarity Aij of legislators i and j with the similarity

Pij = kikj/(2m) expected from random voting. Any Λij < 1 then correspond to

legislators i and j that vote differently a large fraction of the time, and any Λij > 1

to legislators that vote the same a large fraction of the time. The two peaks in the

Λij distribution above and below 1 therefore correspond, respectively, to intra-party

and inter-party voting similarities. For a Congress with low polarization, legislators

from different parties often vote in the same manner, so there is no separation of the

distribution on either side of Λij = 1. These differences in the Λij distributions are

reflected in different Heff curves, which can then be used to cluster the Congresses.

6.9.2 United Nations General Assembly voting

In this section, we consider voting on resolutions in the United Nations General

Assembly (U.N.G.A.) [194, 302]. The U.N.G.A. is one of the five principal organs

of the United Nation (U.N.) and the only one in which all member nations have

equal representation. Most General Assembly (G.A.) resolutions are not legally or

practically enforceable because the G.A. lacks enforcement powers on most issues, so
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Figure 6.26: (a) MRFs for all Houses lying in each of the main clusters in the dendrogram in Fig. 6.24(a) (b) MRFs for all
Senates lying in each of the main clusters in the dendrogram in Fig. 6.24(b). The colour of each set of MRFs indicates the
cluster membership of each House or Senate in the corresponding dendrogram. At each value of ξ, the upper curve shows the
maximum value of Heff, Seff, or ηeff for all Houses/Senates in the cluster and the lower curve shows the minimum value.
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Figure 6.27: Comparison of the 85th (low polarization) and 108th (high polarization)
House of Representatives. The upper curves show the H MRFs, and the lower curves
show the cumulative distribution of Λij values P (Λij ≤ x).

voting in the U.N.G.A. is considered by some to be merely symbolic. Nevertheless,

it is the only forum in which a large number of states meet and vote regularly on

international issues.

We analyze voting for the 1st–63rd sessions, covering the period 1946–2008, where

each session corresponds to a year.18 For each session, we then define an adjacency

matrix A with elements Aij giving the number of times countries i and j cast the

same vote in a session (i.e., the sum of the number of times both countries voted

yea on the same resolution, both countries voted nay on the same resolution, or

both countries abstained from voting on the same resolution), normalized by the

total number of times a country could have voted in a session. The matrix A, with

elements Aij ∈ [0, 1], then represents a network of weighted ties between countries,

with weights determined by the similarity of their voting over a single G.A. session.

We cluster U.N.G.A. sessions by comparing MRFs for the corresponding voting

networks. In Fig. 6.28, we plot a dendrogram of the U.N.G.A. sessions and highlight

some of the clusters. The red cluster in the middle of the dendrogram consists of all

post Cold War assemblies (1992–2008) except 1995. This group forms a larger cluster

18We exclude the 19th session from our analysis because there was only one resolution voted on
by the U.N.G.A.
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Figure 6.28: Dendrogram for the United Nations General Assembly roll-call voting
for the 1st-63rd sessions, covering the period 1946–2008 (excluding the 19th session).
Each leaf in the dendrogram represents a single session. We colour groups of branches
in the dendrogram (see the discussion in the text).

with some assemblies from the 1970s and a cluster consisting of 1946, 1948, and 1950,

which we highlight in magenta. These assemblies are all noteworthy: 1946 was the

first assembly; during the 1948 assembly, the universal declaration of human rights

was introduced; and in 1950, the “Uniting for Peace” resolution was passed. At the

right of the dendrogram, we highlight in black a group consisting of all assemblies

from 1979–1991 (excluding 1980). The end of this period marks the end of the Cold

War; the beginning marks the end of the period of Détente between the Soviet Union

and the U.S. following the former’s invasion of Afghanistan at the end of 1979. The

large blue cluster at the left of the dendrogram consists primarily of sessions from

before 1971, but also includes the sessions in 1977 and 1995.

6.9.3 Facebook

We now consider networks of the online social networking site Facebook for 100 U.S.

universities [295]. The nodes in the network represent users of the site, and the

links represent reciprocated “friendships” between users at a single-time snapshot in

September 2005. We consider only links between students at the same university,

which allows us to compare the structure of the networks at the different institutions.

These networks represent complete data sets that we obtained from Facebook. We
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provide details of these networks in Table C.1. In contrast to the previous examples,

we are not comparing snapshots of the same network at different times but rather

are comparing multiple realizations of the same type of network that have evolved

independently.
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Figure 6.29: Dendrogram for 100 Facebook networks of U.S. universities at a single-
time snapshot in September 2005. We order the leaves of the dendrogram to minimize
the distance between adjacent nodes. The colour bars below the dendrogram indicate:
(top) the number of nodes in the networks and (bottom) the fraction of possible edges
that are present.

In Fig. 6.29, we show the dendrogram for Facebook networks that we produced by

comparing MRFs. The two colour bars below the dendrogram indicate the number

of nodes in each network and the fraction of possible edges that are present. It

is clear that, in this case, these two simple network properties explain most of the

observed cluster structure. In Fig. 6.30, we show the distribution of MRFs for all

of the networks. For each of the properties Heff, Seff, and ηeff, the MRFs are very

similar in shape and lie within a narrow range. If we consider that the Facebook

networks range in size from 762 to 41,536 nodes and that the fraction of possible

edges present varies from 0.2% to 6%, this similarity is surprising and implies that all

of the networks have very similar mesoscopic features. However, it is quite possible

that there are heterogeneities in the mesoscopic structures of the Facebook networks

that we do not uncover using the MRF framework. Equally, there might be other

differences in these networks at the microscopic and macroscopic scales that we do

not detect.
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Figure 6.30: Distribution of MRFs for 100 Facebook networks of U.S. universities at
a single-time snapshot in September 2005. At each value of ξ, the upper curve shows
the maximum value of Heff, Seff, or ηeff for all of the networks, the lower curve shows
the minimum value, and the dashed line shows the mean.

6.9.4 New York Stock Exchange

We now return to financial networks and begin by studying a set of correlation net-

works for the New York Stock Exchange (NYSE) [1], which is the largest stock ex-

change in the world in terms of the U.S. dollar value of the securities listed on it.

We construct networks of N nodes for the NYSE in which each node represents a

stock [229]. We define the strength of the link connecting stocks i and j using the

time series of daily exchange rate returns zi(t) (i = 1, 2, . . . , N) over the period 1985–

2008. Recall from Section 3.2.2 that the return of an exchange rate with price pi(t) at

discrete time t is given by zi(t) = ln[pi(t)/pi(t − 1)]. We then represent the resulting

fully-connected, weighted networks by an adjacency matrix A with components

Aij =
[r(i, j) − minij r(i, j)]

[maxij r(i, j) − minij r(i, j)]
− δ(i, j), (6.23)

where r(i, j) = [〈zizj〉 − 〈zi〉〈zj〉]/σiσj is the linear correlation coefficient (see Chap-

ters 3 and 5) between exchange rates i and j over a window of T returns, the Kronecker

delta δ(i, j) removes self-edges, 〈·〉 indicates a time-average over T , and σi is the stan-

dard deviation of zi over T . The matrix elements Aij ∈ [0, 1] thereby quantify the

similarity of two stocks.

As we discussed in Sections 3.2.3 and 5.2.2, the choice of T is a compromise

between overly noisy and overly smoothed correlation coefficients [227, 229]: if T is
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too small the correlation coefficients can be noisy; on the other hand, large values

of T can mask interesting market changes. For example, a value of T = 250 days

corresponds to one year, but a single year might include a market crash followed by a

period of recovery. We set N = 100 and construct networks for each half year period

over 1985–2008. This corresponds to time windows of T ≃ 125 returns, yielding

Θ = T/N
.
= 1.25.19 In contrast to the U.S. Congress and U.N. voting networks, the

evolving NYSE network always has the same number of nodes, which always represent

the same stocks.
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Figure 6.31: Dendrogram for 48 networks of the NYSE over the period 1985–2008.
Each network represents the correlations between the returns of 100 stocks over each
half year during this period. We order the leaves of the dendrogram to minimize the
distance between adjacent nodes. The dendrogram is clearly split into two clusters
(see the discussion in the text).

6.9.4.1 NYSE composite index

In Fig. 6.31, we show a dendrogram for the NYSE networks constructed using the

MRF method. There are two clear clusters (which we highlight in red and blue).

Networks in the red cluster appear to correspond to periods of market turmoil. For

example, the cluster contains the networks for the second half of 1987 (July–December

19We note that we have return data for 235 stocks over this period, but we select 100 stocks at
random for our analysis so that Θ > 1. This ensures that the correlation coefficients are not overly
noisy (see Section 3.2.3 and 5.2.2). We have reproduced the analysis that we present in this section
using 10 other random stock selections and find similar results for the different selections.
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1987), which includes the Black Monday stock market crash of October 1987; all of

2000–2002, following the bursting of the dot-com bubble; and the second half of 2007

and all of 2008, which includes the recent credit and liquidity crisis.

We provide support for the hypothesis that the constituents of the red cluster

are networks for periods of market turmoil by considering the NYSE composite index

(NYSECI). The NYSECI measures the performance of all common stocks listed on the

NYSE by calculating the changes in their aggregate market value adjusted to eliminate

the effects of capitalization changes, new listings, and delistings. In Fig. 6.32, we

show the NYSECI as a function of time over the period 1985–2008 and highlight the

time periods that correspond to networks in the red cluster in the dendrogram in

Fig. 6.31. In Fig. 6.33, we show the volatility of the NYSECI over each half year

period. Volatility is usually high during periods of market turmoil. If we let χ(t)

represent the value of the index at time t, we can define a log-return zχ for the index

as zχ(t) = ln[χ(t)/χ(t − 1)]. We then define the volatility νχ of the NYSECI over a

window of T returns as [73]

νχ =
1

T

T
∑

t=1

| zχ(t) | . (6.24)

Figure 6.33 demonstrates that the networks assigned to the red cluster in Fig. 6.31

correspond (with one or two exceptions) to the periods of highest volatility. As we

noted above, the time window for a single network might include periods of both high

and low volatility, so it is unsurprising that the networks assigned to the red cluster

do not correspond exactly to the half year periods with the highest volatilities. This

remains true for all choices of T .

Although we study the same stocks over the full period 1985–2008, it is worth not-

ing that many of the companies might have changed significantly during these years.

For example, some of the companies might have expanded through acquisitions, while

others might have grown organically (i.e., through increased output, sales, or both).

Both of these processes could have altered the industries in which these companies

operate and led to significant changes in the nature of the stocks that we investigate.

The fact that we uncover a cluster corresponding to periods of market turmoil (and

do not simply uncover clusters corresponding to similar time periods) despite such

non-stationarities in the data is a testament to the effectiveness of the MRF clustering

framework.
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Figure 6.32: The NYSE composite index over the period 1985–2008. The grey
blocks indicate the time periods corresponding to networks in the red cluster in the
dendrogram in Fig. 6.31.
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Figure 6.33: The average daily volatility of the NYSE composite index over each half
year period from 1985–2008. We have coloured each stem according to the cluster
membership of the corresponding network in the dendrogram in Fig. 6.31.
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6.9.5 Foreign exchange market

Our final example is a set of foreign exchange market networks. We use the data

described in Chapter 5 and define each network using Eq. 5 from Chapter 5. Each

network represents the correlations between the returns of 110 exchange rates over

each year during the period 1992–2008.20

In Fig. 6.34, we show the dendrogram of annual FX networks, which is clearly

split into two clusters. We highlight in green a sub-cluster within one of these clusters

for which the networks are particularly closely related. The years within this green

cluster are all years during which there was a major financial crisis: the Mexican

tequila crisis in 1994; the Asian crisis in 1997; the beginning of the Argentine crisis

and the devaluation of the Brazilian real in 1999; and the credit and liquidity crisis in

2007/2008. As a result, one could argue that this cluster represents years of financial

crisis. However, there are years during which there were major crises that are not

included in this cluster. For example, the withdrawl of the UK pound from the

European exchange rate mechanism in 1992 and the Russian rouble crisis in 1998.

There therefore seems to be an additional reason for the grouping of the networks in

the green cluster beyond the fact that they are all crisis years.

To further explain the clusters in the dendrogram, we consider the carry trade

return index Υ described in Section 5.8.3. We let Υ(t) represent the value of the

index at time t and define a log-return zΥ for the index as zΥ(t) = ln[Υ(t)/Υ(t− 1)].

We then define the volatility νΥ of the carry trade return index over a window of T

returns as

νΥ =
1

T

T
∑

t=1

| zΥ(t) | . (6.25)

In Fig. 6.34, we add a coloured bar under each leaf indicating the volatility νΥ of

the carry return index each year. For all of the years in the rightmost cluster (which

we highlight in red), the volatility of carry returns was low. Although other clusters

contain years during which the carry trade return volatility was low, the fact that all

years in the red cluster all have low volatility suggests that the carry trade explains

some of the observed structure in the dendrogram. Given the prevalence and impor-

tance of the carry trade in the FX market, this observation is perhaps unsurprising.

20We exclude 2003 and 2004 because we do not have data for these years.
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Figure 6.34: Dendrogram for 15 foreign exchange market networks over the period
1992–2008. Each network represents the correlations between the returns of 110 ex-
change rates over each year during this period. We order the leaves of the dendrogram
to minimize the distance between adjacent nodes. The dendrogram is split into two
clusters. We highlight one of these clusters in red and we highlight in green a sub-
cluster within one of these clusters for which the networks are particularly closely
related. The colour bar under the dendrogram shows the volatility in the carry trade
return index νΥ.
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6.9.6 Case studies summary

In this section, we have considered four case studies to demonstrate that the MRF

clustering scheme is able to produce meaningful taxonomies for a diverse range of

networks. In these examples, we can explain many of the observed clusters by prop-

erties that are unique to each type of network, but the MRF method can be applied

successfully in all of these cases. The wide range of areas for which the MRF cluster-

ing is successful thereby provides supporting evidence that the clusters that we see

in the aggregate taxonomy are meaningful.

6.10 Summary

We have developed a framework based on MRFs for comparing and clustering net-

works using their mesoscopic structures. We used this framework to create a taxon-

omy of networks and to identify groups of closely related networks and anomalous

networks that were not grouped with members of their class. In addition to clustering

networks of different types, we also created taxonomies for sub-sets of networks that

represent multiple realizations of the same type of system (Facebook networks) and

temporal snapshots of time-dependent systems (Congressional roll-call voting, U.N.

resolution, NYSE, and FX networks). For each example of time-ordered sequences of

networks, we identified periods during which there were significant changes in meso-

scopic structure.
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Chapter 7

Conclusions

We began this thesis by investigating triangular arbitrage in the spot foreign exchange

market in Chapter 2. The aim of Chapter 2 was twofold: first, to answer a question of

interest to market practitioners, namely whether triangular arbitrage opportunities

exist; second, to demonstrate that when investigating financial markets it is essential

to ensure that one is using data that is appropriate to the question being posed. Using

executable price data, we demonstrated that although triangular arbitrage opportu-

nities appear to exist in the foreign exchange market, most of these opportunities

are very short in duration and represent very small profit opportunities. We further

showed that, when one also considers the strong competition for each arbitrage and

trading and technology costs, a trader would need to beat other market participants

to an unfeasibly large proportion of arbitrage opportunities for triangular arbitrage

to remain profitable in the long-term. These results provide a limited verification of

foreign exchange market efficiency.

In Chapter 3, we extended our analysis of financial markets beyond the foreign

exchange market and considered a variety of other markets, including equities, bonds,

and commodities. We investigated these markets by constructing correlation matri-

ces for the time series of asset returns and analyzed the temporal changes in the

structure of these correlations. The number of correlations scales as the square of the

number of assets N , so some simplification was necessary to identify the key relation-

ships. We coarse-grained the correlation matrix using principal component analysis

to identify the important relationships and analyzed the evolution of the system by

considering the changes in the principal components. We found that the percentage

of the variance in market returns accounted for by the first principal component rose

steadily between 1999 and 2008 but then increased sharply following the 2008 collapse

of Lehman Brothers. We further found that during this period the number of signifi-

cant components decreased and the number of assets making significant contributions
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to the first principal component increased. To gain some insights into the relation-

ships between the different assets, we considered the correlations between the asset

return time series and the principal components. Initially, the first few components

appeared to represent different asset classes. For example, the first component corre-

sponded to bonds, the second to equities, and the third to currencies. However, later

in the studied period these relationships began to break down. In fact, by January

2010 nearly all of the studied assets were significantly correlated with the first prin-

cipal component and relatively few assets were significantly correlated with the other

components. This suggests that there are more common features across markets in

2010 than there were in 1999.

In Chapter 4, we described some of the most widely used methods for detecting

communities in networks and presented a relatively comprehensive review of the liter-

ature on communities in dynamic networks. In Chapter 5, we presented an alternative

method for investigating evolving correlation matrices in which we represented the

correlation matrices as time-dependent networks and investigated the dynamics of

network communities. We proposed a method for tracking communities through time

from the perspective of individual nodes, which removes the undesirable requirement

of determining which community at each time step represents the descendant of a

community at the previous time step. We applied this technique to foreign exchange

market networks in which each node represents an exchange rate and each edge rep-

resents a time-dependent correlation between the rates. Our analysis successfully

uncovered significant structural changes that occurred in the foreign exchange mar-

ket, including ones that resulted from major market events, and we demonstrated that

community reorganizations at specific time steps can provide insights into changes in

trading behaviour. We also considered the evolving relationship between individual

nodes and their community and demonstrated that an exchanges rate’s functional

role is related to its position within its community, with exchange rates that are im-

portant for information transfer located on the edges of communities and exchange

rate that have a strong influence on other rates within that community located at the

centre of their community.

Finally, in Chapter 6, we introduced mesoscopic response functions to characterize

the community structures of networks. Importantly, the response functions are nor-

malized so that it is possible to compare networks of significantly different sizes and

connectivities. We used the response functions to compare and cluster networks and

created a taxonomy of networks from a wide variety of different fields. The taxon-

omy contained many clusters that included networks from the same family, but there
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were also examples of networks not clustered with networks that were nominally of

the same type. In this way, the framework that we propose can be used to identify

anomalous members of a family of networks.

As well as creating a taxonomy of networks from different fields, we also created

taxonomies for subsets of networks that represent multiple realizations of the same

type of system and temporal snapshots of time-dependent systems. For example, we

created a taxonomy for a time-sequence of New York Stock Exchange networks which

was split into two clusters based on the volatility of the market over the corresponding

period. We also created taxonomies of roll-call voting in the U.S. Senate and House

of Representatives in which the cluster membership of the different Congressional

sessions was determined by the levels of party polarization. Although we can explain

many of the observed clusters by properties that are unique to each type of network

in the intra-family taxonomies, the mesoscopic response function framework provides

insights in all of the different case studies.

7.1 Outlook

For much of this thesis we focused on financial networks and network communities, so

we conclude with some comments on the current state of both fields and we discuss

potential directions for future research.

In Chapter 5, we studied communites in foreign exchange market networks, but

the techniques that we presented are general and can be applied to networks for other

asset classes. In fact, the Potts methods has already been used to study communities

in a network of equities [148]. However, in Ref. [148] Heimo et al. only examine com-

munities in a static network of stocks traded on the New York Stock Exchange and do

not study longitudinal networks. A potential area for future research is, therefore, to

investigate community dynamics in evolving networks of equities. In equity markets,

stocks are usually assigned to industry sectors based on the business activities of the

companies; these sectors provide a useful tool for sorting and comparing different

companies. For example, it is often insightful to compare the performance of stocks

within the same sector to find out if any are under-performing (or over-performing)

compared with the rest of the sector. An interesting avenue for future research would

be to compare the communities identified using the Potts method with the sector

classifications to see if they line up well or if there are periods during which there are

significant differences in the classifications.
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One issue with using the Potts method to investigate communities in longitudinal

equity networks is that in previous work [148] plateaus have not been observed in plots

of the number of communities as a function of the resolution parameter (see Section

5.4).1 The absence of a plateau means that it is not possible to use the approach

described in Section 5.4 to select the resolution at which to investigate community

dynamic, so other methods will need to be developed.

We have focused on financial networks constructed from correlation matrices of

asset price time series, but other types of financial networks have also been studied

(see Ref. [11] for an overview of the applications of networks in finance). For example,

networks have been used to analyze the trade relationships between nations, e.g.,

[266,275], and the credit relationships between financial institutions, e.g., [31,52,116].

The latter subject has received particular attention in the last few years as a result

of the 2007–2008 credit and liquidity crisis. During the credit crisis, difficulties in

the U.S. subprime mortgage market soon spread to debt markets all over the world,

and eventually resulted in credit drying up as banks became unwilling to lend as

freely [11]. The market turmoil clearly demonstrated the interconnectedness of the

global financial system and how this connectivity can lead to outcomes that are

difficult to forecast. As a consequence, the study of credit networks is currently one

of the most active areas of research in financial networks and is an important direction

for future research.

In the standard representation of a credit network, the nodes represent financial

institutions and the edges represent credit relationships. A key concern in the study

of such networks is how the insolvency of particular institutions affects the network;

in particular, whether the failure of individual banks is “contagious” and leads to

a systemic crisis in which a large fraction of the firms in the system fail at the

same time [31]. One of the most important questions for understanding this risk is

how connectivity affects network robustness [31, 116, 202], which is closely related to

questions asked in ecology [202]. In Ref. [12], Allen and Gale studied how the banking

system responds to contagion when banks are connected under different network

structures. They found that networks with higher connectivities are more resilient

and have a lower likelihood of widespread default because the losses sustained by one

bank are transferred to more banks through interbank agreements. However, Gai and

Kapadia [116] reached a different conclusion. They agreed that greater connectivity

1Recall that community partitions that are robust across a range of resolutions are significant
because the communities do not break up despite an increasing incentive to do so. Communities
that persist over a large range of resolutions thus potentially represent important substructures.
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reduces the likelihood of contagion, but it also means that if a problem does occur

the shocks could be on a significantly larger scale. Battiston et al. [31] make similar

observations. They found that although increased connectivity can reduce the risk

of the collapse of an individual node through risk sharing, it can also result in crises

being more severe and more frequent.

The lack of a consensus on the most robust structure for banking networks means

that this is a particularly crucial area for future research. One of the major questions

in this context is whether networks organized into communities have lower systemic

risk [31]. Ecologists have suggested that decoupling a system into relatively discrete

components can promote robustness [202]; however, this is not a simple question

because some partitions of financial networks into communities could potentially pre-

clude stabilizing effects such as mechanisms for maintaining liquidity [161]. Some

steps have been taken to investigate communities in credit networks, e.g., [195], but

there are still many unanswered questions. An interesting direction for future re-

search would be to apply the methods that we presented in Chapter 5 to directed

networks representing the evolving credit relationships between financial institutions

during the 2007–2008 credit crisis.2

In the wider study of community structure in networks, significant technical

advances have been made in recent years, and it remains a thriving area of re-

search [105,244]. Typically, the first stage of community analysis is the identification

of the communities; indeed, this is the subject of many of the papers in the literature

and a wealth of different techniques have been proposed for the algorithmic detec-

tion of communities. However, researchers have not yet agreed on which methods

are most appropriate or reliable or when particular methods should be adopted or

avoided. The problem of assessing the reliability of the output of different algorithms

is exacerbated by the fact that there is no rigorous definition of a community. The

most rigorous approach that is currently available is to identify communities using

different detection algorithms and only to consider structures that are similar across

multiple methods as meaningful [244, 289]. In this way, one can be more sure that

the identified structures are genuine features of the data and not simply byproducts

of the detection algorithm.

Even with the focus on developing community detection algorithms, very little

attention has been paid to validating the output of the detection algorithms and

trying to understand what the communities mean, what they actually look like or

2Although we focused on undirected networks in Chapters 5 and 6, the techniques that we
introduced in these chapters can easily be extended to directed networks.
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how they can be used [105, 181, 222, 244]. Some steps have now been taken towards

answering some of these questions. For example, in Ref. [295] the composition of

communities is related to the demographic characteristics of nodes and in Ref. [181]

the structure and properties of communities in a range of different networks, including

biological, social, and communication networks, have been studied and compared. In

this thesis, we have also contributed to this endeavour. For example, in Chapter 5

we used the composition of different communities to uncover changes taking place

in trading behaviour within the foreign exchange market and in Chapter 6 we used

communities to create a taxonomy of networks. However, much still remains to be

done in this direction and this is arguably the most pressing area of research if we

are to gain real insights from studies of network community structures.

There are similar open questions in the study of dynamic communities (see Sec-

tion 4.6.13). With a few exceptions, the studies of dynamic communities present a

method for detecting communities, check that the identified communities make sense,

and then stop. There are very few studies that investigate the mechanisms that drive

the community evolution or try to answer some of the fundamental questions relating

to dynamic communities, such as what community properties result in stable commu-

nities and what features of a community determine whether an individual will join (or

leave) that community. In Chapter 5, we attempted to answer some of these questions

for the foreign exchange market. For example, we demonstrated that nodes that have

strong connections with their communities tend to have more stable community rela-

tionships than nodes with weak connections. The limited progress in the study of the

properties of dynamic communities is perhaps unsurprising given the relative infancy

of the field; hence, it represents an important direction for future research [318].

Another direction for future research is the development of algorithms that can

identify overlapping communities. Most existing community detection algorithms

generate partitions in which each node is assigned to exactly one community. How-

ever, this does not reflect the structure of many real-world systems. For example,

in social networks people can belong to communities of friends, communities of work

colleagues, and family communities. Some methods have been developed that can

identify overlapping communities, e.g., [32, 234]. Perhaps the most widely used is

the clique percolation method [234] that we described in Section 4.3.1; however, as

we highlighted, this approach has limitations, so alternative techniques need to be

developed.

The methods in Refs. [32,234] allow nodes to belong to more than one community,

but do not give any indication of the community with which a node is most closely
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associated. Therefore, another possibility is algorithms that do not assign nodes to

one or to multiple communities, but instead assign each node a weight indicating the

strength of its attachment to each community [215, 317]. By normalizing the sum

of each node’s community affiliation to unity, this measure can be interpreted as the

probability that a node belongs to a particular community. Along similar lines, models

have been proposed in the dynamic communities literature that give a probability that

each node belongs to each community at different time steps, e.g., [186].

All of the community detection methods that we have discussed so far have focused

on partitioning the entire network into communities, i.e., all of the methods associate

every node in the network with at least one community. However, many real-world

network contain nodes that do not fit into any community particularly well. With this

in mind, a recent paper [318] has proposed a method that broadens the community

detection framework by allowing a network to contain not only communities but also

background nodes that are not associated with any community.

Finally, the typical motivation for studies of communities is that the community

structure of a network has some bearing on its function. Most studies then use struc-

tural communities as proxies for functional communities. However, the functional

and structural properties of a system sometimes do not map onto each other, so it is

likely that structural communities do not always correspond to functional communi-

ties [271]. For example, studies of neural networks have shown that it is fairly common

for central pattern generators3 to change their functional organization, depending on

the pattern that they are generating, while maintaining a constant anatomical struc-

ture [268]. Consequently, an important avenue for future research is the development

of techniques that detect communities using both functional and structural informa-

tion.

This represents just a small sample of open questions relating to networks com-

munities, which is itself just a sub-area of the field of networks, and many other open

questions exist in the wider field. It will be interesting to see how the analysis of

communities and the field of networks matures over the next few years and whether

it can maintain the current rate of development.

3Central pattern generators are the neuronal circuits that give rise to repetitive or oscillatory
patterns of muscle activity that produce rhythmic movements, such as locomotion, breathing, and
chewing [54].
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Details of Financial Assets

Table A.1: Details of all of the financial assets studied in Chapter 3. The data that we
use in this chapter was downloaded from Bloomberg. See http://www.bloomberg.

com/ for more information on the different financial instruments.

Ticker Sector Description

AEX Equities AEX Index (Netherlands)
AS30 Equities Australian All Ordinaries Index
ASE Equities Athens Stock Exchange General Index
ATX Equities Austrian Traded Index
BEL20 Equities BEL 20 Index (Belgium)
BVLX Equities PSI General Index (Portugal)
CAC Equities CAC 40 Index (France)
DAX Equities DAX Index (Germany)
FTSEMIB Equities FTSE MIB Index (Italy)
HEX Equities Helsinki Stock Exchange General Index
HSI Equities Hang Seng Index (Hong Kong)
IBEX Equities IBEX 35 Index (Spain)
INDU Equities Dow Jones Industrial Average Index (U.S.)
ISEQ Equities Irish Overall Index
KFX Equities OMX Copenhagen 20 Index
NDX Equities NASDAQ 100 Index (U.S.)
NKY Equities Nikkei 225 Index (Japan)
NZSE Equities New Zealand All Ordinaries Index
OBX Equities OBX Stock Index (Norway)
OMX Equities OMX Stockholm 30 Index
RTY Equities Russell 2000 Index (U.S.)
SMI Equities Swiss Market Index
SPTSX Equities S&P/Toronto Stock Exchange Index
SPX Equities Standard and Poor’s 500 (U.S.)
UKX Equities FTSE 100 Index (U.K.)
GDDUEMEA Equities Emerging markets: Europe, Middle East, Africa
GDUEEGFA Equities Emerging markets: Asia
GDUEEGFL Equities Emerging markets: Latin America

continued on next page
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Ticker Sector Description

ATGATR Government bonds Austrian government bonds
AUGATR Government bonds Australian government bonds
BEGATR Government bonds Belgian government bonds
CAGATR Government bonds Canadian government bonds
DEGATR Government bonds Danish government bonds
FIGATR Government bonds Finnish government bonds
FRGATR Government bonds French government bonds
GRGATR Government bonds German government bonds
IEGATR Government bonds Irish government bonds
ITGATR Government bonds Italian government bonds
JNGATR Government bonds Japanese government bonds
NEGATR Government bonds Netherlands government bonds
NOGATR Government bonds Norwegian government bonds
NZGATR Government bonds New Zealand government bonds
PTGATR Government bonds Portuguese government bonds
SPGATR Government bonds Spanish government bonds
SWGATR Government bonds Swedish government bonds
SZGATR Government bonds Swiss government bonds
UKGATR Government bonds U.K. government bonds
USGATR Government bonds U.S. government bonds
AUDUSD Currencies Australian dollar
CADUSD Currencies Canadian dollar
CHFUSD Currencies Swiss franc
CZKUSD Currencies Czech koruna
EURUSD Currencies Euro
GBPUSD Currencies Pounds sterling
IDRUSD Currencies Indonesian rupiah
JPYUSD Currencies Japanese yen
KRWUSD Currencies Korean won
MXNUSD Currencies Mexican peso
NOKUSD Currencies Norwegian krone
NZDUSD Currencies New Zealand dollar
PHPUSD Currencies Philippines peso
SEKUSD Currencies Swedish krona
ZARUSD Currencies South African rand
HG1 Metals Copper
LA1 Metals Aluminium
LL1 Metals Lead
LN1 Metals Nickel
LT1 Metals Tin
XAG Metals Silver
XAU Metals Gold
XPD Metals Palladium
XPT Metals Platinum
CL1 Fuels Crude oil, WTI

continued on next page
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Ticker Sector Description

CO1 Fuels Crude oil, brent
HO1 Fuels Heating oil
NG1 Fuels Natural gas
BO1 Commodities Soybean oil
C 1 Commodities Corn
CC1 Commodities Cocoa
CT1 Commodities Cotton
FC1 Commodities Coffee
JN1 Commodities Feeder cattle
JO1 Commodities Orange juice
KC1 Commodities Coffee
LB1 Commodities Lumber
LC1 Commodities Live cattle
LH1 Commodities Lean hogs
O 1 Commodities Oats
PB1 Commodities Frozen pork bellies
QW1 Commodities Sugar
RR1 Commodities Rough rice
S 1 Commodities Soybean
SM1 Commodities Soybean meal
W 1 Commodities Wheat
MOODCAAA Corporate bonds Moody’s AAA corporate bonds
MOODCAA Corporate bonds Moody’s AA corporate bonds
MOODCA Corporate bonds Moody’s A corporate bonds
MOODCBAA Corporate bonds Moody’s BAA corporate bonds
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Robustness of FX Communities to
Alternative Heuristics

In this section, we demonstrate that the results described in Chapter 5 are robust with

respect to the choice of computational heuristic used to minimize the Hamiltonian in

Eq. 4.3.

B.1 Comparison of partition energies

We begin by comparing the energy H (see Eq. 4.3) of the optimal partitions at

the studied resolution λ = 1.45. Figure B.1 shows the distribution of energies for

the different algorithms and demonstrates that the greedy algorithm and simulated

annealing find better partitions than the spectral algorithm. The spectral algorithm

begins by splitting the network into two components, choosing the split that minimizes

the energy, and then recursively partitions the smaller networks into two groups

until no decrease in energy can be obtained through partitioning. At each step,

the algorithm only finds the optimal partition of each community into two smaller

communities, even though a split into more communities might yield a lower energy.

Given this, it is unsurprising that the spectral algorithm identifies partitions further

from the optimum than the other heuristics. For the remainder of this section, we

will only compare the greedy and simulated annealing algorithms because of the lower

quality of the spectral partitions.

B.2 Temporal changes in communities

First, we compare the community partitions identified by the two heuristics for each

network. In Fig. B.2, we show the distribution of the variation of information be-
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Figure B.1: Distribution of the energy H of the optimal partition for networks over
the period 2005–2008 for different optimization algorithms.

tween the community partitions identified using the greedy and simulated annealing

algorithms. The two methods identify identical partitions for 19% of the networks;

for 83% of the networks, the partitions differ in their assignment of nodes to com-

munities by fewer than 10 nodes. Therefore, there is strong agreement between the

partitions obtained by the two heuristics, but there are also differences that warrant

further investigation.

In Section 5.8, we identified significant changes in the community configuration

by comparing changes in the scaled energy Qs (see Eq. 4.4) between consecutive time

steps and by calculating the variation of information between community partitions

at consecutive time steps (see Fig. 5.9). The correlation between Qs as a function

of time for the two heuristics is 0.99 and the correlation between the changes in Qs

is 0.93. The correlation between the variation of information between partitions at

consecutive time steps is 0.36. The scaled energy correlations are clearly extremely

high. However, there are differences in the timings of some major reorganizations

identified by the variation of information. To compare the timings of major events,

we identify time steps at which the variation of information between consecutive

partitions is more than a certain number of standard deviations larger the mean

variation of information between consecutive partitions. We find that the algorithms

identify 40% of one standard deviation events at the same time steps and 33% of

2.5 standard deviation events. The methods therefore agree reasonably well, with

one in three 2.5 standard deviation events identified at exactly the same time step.

However, the differences also suggest that one should be cautious using variation of

information to identify major community reorganizations.
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Figure B.2: The distribution of the variation of information between community
partitions identified using the greedy algorithm and simulated annealing for networks
over the period 2005–2008.

B.3 Example community comparison

One time step at which both heuristics identify a large community change is 15/08/07

which, as described in Section 5.8.3, was a day when there was a significant increase

in carry trade unwinding. It is worth considering the communities at this time step in

detail to help assess the similarity of the results for the two heuristics. In Fig. B.3(a),

we show the communities that we identified using a greedy algorithm [44] immediately

before and after 15/08/07; in Fig. B.3(b) we show communities that we identified

using simulated annealing [141] for the same time steps. Figure B.3(a) shows that,

leading up to 15/08/07, there was some unwinding of the carry trade, so the initial

configuration includes a community containing exchange rates of the form AUD/YYY,

NZD/YYY, and XXX/JPY (which all involve one of the key carry-trade currencies).

After 15/08/07, as the volume of carry trade unwinding increases, this community

incorporates other XXX/JPY rates as well as some XXX/CHF and XXX/USD rates.

Although, the communities in Fig. B.3(b) for the simulated annealing algorithm are

not identical to those in Fig. B.3(a), they are very similar. The main difference is that

for the simulated annealing algorithm, there are two carry trade communities before

15/08/07: one community of exchange rates of the form AUD/YYY, NZD/YYY

(which are all exchange rates that include a carry trade investment currency) and

another community containing exchange rates of the form XXX/CHF and XXX/JPY

(which are all exchange rates that include a carry trade funding currency). After

15/08/07, as carry trade unwinding increases, these two communities combine and
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two other exchange rates also join the community. The resulting merged community

is very similar to the largest community identified at the same time step using the

greedy algorithm.

Figure B.3 therefore illustrates that there are only small differences in the com-

munity configurations that are identified by the two heuristics. In fact, as Fig. B.2

shows, the two algorithms agree in the assignment of all but about ten nodes approx-

imately 80% of the time. Importantly, Fig. B.3 highlights that, even when there are

differences in the exact community configurations, the communities that are identi-

fied by the two heuristics nonetheless indicate the same changes taking place in the

FX market.

Figure B.3: Comparison of the change in community structure in one half of the
FX market network over the same period for different optimization heuristics. We
show a schematic of the communities for the period following 15/08/07, when there
was significant unwinding of the carry trade during the 2007–2008 credit and liquidity
crisis. We identified communities using (a) a greedy algorithm [44] and (b) a simulated
annealing algorithm [141]. The node colours after the community reorganization
correspond to their community before the change. If the parent community of a
community after the reorganization is obvious, we draw it using the same colour as
its parent. The nodes drawn as triangles resided in the opposite half of the network
before the community reorganization.
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B.4 Node role comparison

As a further comparison, we investigate the effect of different heuristics on exchange

rate roles (see Section 5.9). In Fig. B.4, we compare quarterly role evolutions over the

period 2005–2008 for the same exchanges rate shown in Fig. 5.15. Although there are

slight differences in the positions of the exchange rates in the (κb, κy) plane for some

periods, we obtain the same aggregate conclusions. For example, for both heuristics,

AUD/JPY is most influential within its community (high κb) during Q3 and Q4 2007

and during Q1 and Q4 2008; however, it is less influential, but more important for

information transfer, during 2005 and 2006.

The positions in the (κb, κy) plane are similarly close for all of the other exchange

rates. We quantify the differences in the positions for the two heuristics by calculating

the mean and standard deviation of the change in position over all exchange rates

and over all time periods. That is, we average the change in position of every node

in the (κb, κy) plane over every quarter. The mean change in position in both the

κb and κy directions is less than 10−4; the standard deviations are 0.15 and 0.17,

respectively. However, because the changes in position are likely to cancel out (i.e.,

an increase in κb for one exchange rate is likely to be offset by a decrease in κb for

another exchange rate), it is more informative to calculate the mean and standard

deviation of the absolute changes in position in the κb and κy directions. In the κb

direction, the mean absolute change in position is 0.08, with a standard deviation

of 0.13; in the κy direction, the mean change is 0.09, with a standard deviation of

0.15. The mean differences in positions in the (κb, κy) are therefore very small for the

two heuristics and, as Fig. B.4 demonstrates, both algorithms uncover the same role

changes in the FX market for the different exchange rates.

Finally, we also checked the relationships shown in Fig. 5.8 between the community

centrality and community size, between the community alignment and betweenness

centrality, and between the community autocorrelation and projected community cen-

trality. Using simulated annealing, we find the same relationships that we uncovered

with the greedy algorithm.

The results of this section demonstrate that, although there are differences in the

communities identified using different optimization heuristics, the aggregate conclu-

sions are the same. We identify the same changes taking place in the FX market

whether we use the greedy algorithm or simulated annealing to minimize energy.

The fact that we obtain very similar results using different optimization techniques,
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Figure B.4: Comparison of the quarterly node role evolutions in the (κb, κy) plane for
the period 2005–2008 for communities identified using a greedy algorithm [44] and
simulated annealing [141]. The white/grey shading plots show results for the greedy
algorithm and the pink/dark pink plots show results for simulated annealing.

despite these techniques sampling different regions of the energy landscape, gives con-

fidence that the effects that we uncover are genuine and that the results are robust.

In practice, the greedy algorithm is preferable to simulated annealing because of the

computational cost of the latter.
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Appendix C

Network Details

In Table C.1, we provide details of the networks studied in Chapter 6. We include

several synthetic network families and benchmark networks that were introduced

to test community detection algorithms. For many of these, we include multiple

realizations that we obtained using different parameter values. We briefly describe

these networks and explain the notation we use to label them in Table C.1.

Erdős-Rényi (ER): In an ER network of N nodes, each pair of nodes is connected

by an unweighted edge with probability p and not connected with probability

1 − p [86]. The degree of each node is distributed according to a binomial

distribution. We label the ER networks using the notation “ER: (N ,p)”.

Watts-Strogatz (WS): We consider the small-world network of Watts and Stro-

gatz [305] for a one-dimensional lattice of N nodes with periodic boundary

conditions. The network consists of a ring in which each node is connected with

an unweighted edge to all of its neighbours that are k or fewer lattice spacings

away. Each edge is then visited in turn and one end is rewired with probability

p to a different node selected uniformly at random, subject to the constraint

that there can be no self-edges or double-edges. We label each Watts-Strogatz

network as “WS: (N ,k,p)”.

Barabási-Albert (BA): BA networks [26] are obtained using a network growth

mechanism in which nodes with degree m are added to the network and the

other end of each edge attaches to another node with a probability proportional

to the degree of that node. We label each BA network “BA: (N ,m)”.

Fractal: We generate fractal networks using the method described in Ref. [279]. We

begin by generating an isolated group of 2m fully-connected nodes, where m is
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the size of the clusters. These groups correspond to the hierarchical level h = 0.

We then create a second identical group and we link the two groups with a link

density of E−h (h = 1), where the link density is the number of links out of all

possible links between the groups and E gives the connection density fall-off per

hierarchical level. We then duplicate this network and connect the two dupli-

cates at the level h = 2 with a link density E−2. We repeat this until we reach

the desired network size N = 2n, where n is the number of hierarchical lev-

els. At each step the connection density is decreased, resulting in progressively

sparser interconnectivity at higher hierarchical levels. The resulting network

exhibits self-similar properties. We label each network “Fractal: (n, m, E)”.

Random fully-connected: We produce random, fully connected networks of N

nodes by linking every node to every other node with an edge whose weight is

chosen uniformly at random on the unit interval. The networks have N(N−1)/2

edges. We label each network “Random fully-connected: (N)”.

Kumpula-Onnela-Saramäki-Kaski-Kertész (KOSKK) model: We generate

weighted networks containing communities using the model described in [174].

We create links through two mechanisms: First, at each time step, each node

i selects a neighbour j with probability wij/si, where wij is the weight of of

the link connecting i and j and si =
∑

j wij is the strength of i. If j has

other neighbours in addition to i, then one of them is selected with probability

wjk/(sj −wij). If i and k are not connected, then a new link of weight wik = w0

is created with probability pn. If the link already exists, its weight is increased

by an amount δ. In both cases, wij and wjk are also increased by δ. This pro-

cess is termed local attachment. Second, if a node has no links, with probability

pr, it creates a link of weight w0 to a randomly selected node, which is termed

global attachment. A node can be deleted with probability pd, in which case all

of its links are also removed and it is replaced by a new node, so that the total

number of nodes N remains constant. The mechanism begins with an empty

network, and links are added by running the local and global attachment mech-

anisms in parallel. We label each network “Weighted: (N, w0, δ, pn, pr, pd, t)”,

where t is the total number of simulation time steps.

Lancichinetti-Fortunato-Radicchi (LFR) benchmark: The LFR benchmarks,

introduced in Ref. [180], are unweighted networks with non-overlapping com-

munities. The networks are constructed by assigning each node a degree from a
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power law distribution with exponent γ, where the extremes of the distribution

kmin and kmax are chosen such that the mean degree is 〈k〉, and the nodes are

connected using the configuration model [212] to maintain their degree distribu-

tion. Each node shares a fraction µ of its links with nodes in other communities

and 1 − µ with nodes in its own community. The community sizes are taken

from a power law distribution with exponent β, subject to the constraint that

the sum of all of the community sizes equals the number of nodes N in the net-

work. The minimum and maximum community sizes (qmin and qmax) are then

chosen to satisfy the additional constraint that qmin > kmin and qmax > kmax,

which ensures that each node is included in at least one community. We label

each network “LFR: (N, 〈k〉, kmax, γ, β, µ, qmin, qmax)”.

Lancichinetti-Fortunato (LF) benchmark: The LF benchmarks introduced in

Ref. [178] are weighted networks that can contain overlapping communities, al-

though we only consider non-overlapping communities. The node degrees are

again taken from a power law degree distribution, but this time we label the

exponent τ1, and the community sizes are taken from a power law degree distri-

bution with exponent τ2. The strength si of each node is chosen so that si = kβ
i ,

where ki again gives the degree of node i. There are also two mixing parame-

ters: a topological mixing parameter µt, which measures the proportion of links

outside a node’s community, and a mixing parameter µw, which measures the

weight of a node’s links outside its community. We label each network “LF:

(N, 〈k〉, kmax, µt, µw, β, τ1, τ2)”. For all of the LF networks, we set N = 1000.

One can alternatively set the minimum and maximum community sizes qmin

and qmax. We always use qmin = 20 and qmax = 50, so we do not include these

parameters when we label the networks.

LFR-Newman-Girvan benchmark: We also include a network with parameters

N = 128, 〈k〉 = 16, kmax = 16, γ = 1, β = 1, µ = 0.2, qmin = 32, and qmax = 32,

which is similar to the NG benchmark [178,224].1

1In this case, all of the nodes have the same degree and each community is constrained to contain
the same number of nodes so the values of the exponent γ of the degree distribution and the exponent
β of the community size distribution are unimportant.
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Table C.1: Network summary statistics. We symmetrize all networks, remove self-edges, and only consider the largest connected
component. We give the network category, whether it is weighted or unweighted, the number of nodes N in the largest connected
component, the number of edges L, the fraction of possible edges present fe = 2L/[N(N − 1)], and a reference providing details
of the data source. We highlight in bold all of the networks included in the subset of 25 networks described in Appendix E
and we colour red all of the networks included in the subset of 270 networks used to produce the results described in several
sections in Chapter 6. We indicate with an asterisk ∗ all networks used in Appendix F to test the robustness of the taxonomy
to different optimization heuristics.

ID Name Category Weighted N L fe References

1 Human brain cortex: participant A1 Brain Y 994 13,520 0.0274 [144]
2 Human brain cortex: participant A2 Brain Y 987 14,865 0.0305 [144]
3 Human brain cortex: participant B Brain Y 980 14,222 0.0296 [144]
4 Human brain cortex: participant D Brain Y 996 14,851 0.0300 [144]
5 Human brain cortex: participant E Brain Y 992 14,372 0.0292 [144]
6 Human brain cortex: participant C Brain Y 996 14,933 0.0301 [144]
7 Cat brain: cortical∗ Brain Y 52 515 0.3884 [264]
8 Cat brain: cortical/thalmic∗ Brain Y 95 1,170 0.2620 [264]
9 Macaque brain: cortical∗ Brain N 47 313 0.2895 [102]
10 Macaque brain: visual/sensory cortex∗ Brain N 71 438 0.1763 [102]
11 Macaque brain: visual cortex 1∗ Brain N 30 190 0.4368 [312]
12 Macaque brain: visual cortex 2∗ Brain N 32 194 0.3911 [312]
13 Garfield: scientometrics citations Citation Y 2,678 10,368 0.0029 [119]
14 Garfield: Small and Griffith citations Citation Y 1,024 4,916 0.0094 [119]
15 Garfield: small-world citations Citation N 233 994 0.0368 [119]
16 Co-authorship: astrophysics Collaboration Y 14,845 119,652 0.0011 [216]
17 Co-authorship: comp. geometry Collaboration Y 3,621 9,461 0.0014 [34, 77]
18 Co-authorship: condensed matter Collaboration Y 13,861 44,619 0.0005 [216]
19 Co-authorship: Erdős Collaboration N 6,927 11,850 0.0005 [29]
20 Co-authorship: high energy theory Collaboration Y 5,835 13,815 0.0008 [216]
21 Co-authorship: network science Collaboration Y 379 914 0.0128 [220]
22 Hollywood film music∗ Collaboration Y 39 219 0.2955 [100]
23 Jazz collaboration Collaboration N 198 2,742 0.1406 [125]
24 Electronic circuit (s208)∗ Electronic circuit N 122 189 0.0256 [210]
25 Electronic circuit (s420) Electronic circuit N 252 399 0.0126 [210]
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ID Name Category Weighted N L fe References

26 Electronic circuit (s838) Electronic circuit N 512 819 0.0063 [210]
27 Facebook: American Facebook N 6,370 217,654 0.0107 [295]
28 Facebook: Amherst Facebook N 2,235 90,954 0.0364 [295]
29 Facebook: Auburn Facebook N 18,448 973,918 0.0057 [295]
30 Facebook: Baylor Facebook N 12,799 679,815 0.0083 [295]
31 Facebook: BC Facebook N 11,498 486,961 0.0074 [295]
32 Facebook: Berkeley Facebook N 22,900 852,419 0.0033 [295]
33 Facebook: Bingham Facebook N 10,001 362,892 0.0073 [295]
34 Facebook: Bowdoin Facebook N 2,250 84,386 0.0334 [295]
35 Facebook: Brandeis Facebook N 3,887 137,561 0.0182 [295]
36 Facebook: Brown Facebook N 8,586 384,519 0.0104 [295]
37 Facebook: BU Facebook N 19,666 637,509 0.0033 [295]
38 Facebook: Bucknell Facebook N 3,824 158,863 0.0217 [295]
39 Facebook: Cal Facebook N 11,243 351,356 0.0056 [295]
40 Facebook: Caltech Facebook N 762 16,651 0.0574 [295]
41 Facebook: Carnegie Facebook N 6,621 249,959 0.0114 [295]
42 Facebook: Colgate Facebook N 3,482 155,043 0.0256 [295]
43 Facebook: Columbia Facebook N 11,706 444,295 0.0065 [295]
44 Facebook: Cornell Facebook N 18,621 790,753 0.0046 [295]
45 Facebook: Dartmouth Facebook N 7,677 304,065 0.0103 [295]
46 Facebook: Duke Facebook N 9,885 506,437 0.0104 [295]
47 Facebook: Emory Facebook N 7,449 330,008 0.0119 [295]
48 Facebook: FSU Facebook N 27,731 1,034,799 0.0027 [295]
49 Facebook: Georgetown Facebook N 9,388 425,619 0.0097 [295]
50 Facebook: GWU Facebook N 12,164 469,511 0.0063 [295]
51 Facebook: Hamilton Facebook N 2,312 96,393 0.0361 [295]
52 Facebook: Harvard Facebook N 15,086 824,595 0.0072 [295]
53 Facebook: Haverford Facebook N 1,446 59,589 0.0570 [295]
54 Facebook: Howard Facebook N 4,047 204,850 0.0250 [295]
55 Facebook: Indiana Facebook N 29,732 1,305,757 0.0030 [295]
56 Facebook: JMU Facebook N 14,070 485,564 0.0049 [295]
57 Facebook: Johns Hopkins Facebook N 5,157 186,572 0.0140 [295]
58 Facebook: Lehigh Facebook N 5,073 198,346 0.0154 [295]
59 Facebook: Maine Facebook N 9,065 243,245 0.0059 [295]
60 Facebook: Maryland Facebook N 20,829 744,832 0.0034 [295]
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61 Facebook: Mich Facebook N 3,745 81,901 0.0117 [295]
62 Facebook: Michigan Facebook N 30,106 1,176,489 0.0026 [295]
63 Facebook: Middlebury Facebook N 3,069 124,607 0.0265 [295]
64 Facebook: Mississippi Facebook N 10,519 610,910 0.0110 [295]
65 Facebook: MIT Facebook N 6,402 251,230 0.0123 [295]
66 Facebook: MSU Facebook N 32,361 1,118,767 0.0021 [295]
67 Facebook: MU Facebook N 15,425 649,441 0.0055 [295]
68 Facebook: Northeastern Facebook N 13,868 381,919 0.0040 [295]
69 Facebook: Northwestern Facebook N 10,537 488,318 0.0088 [295]
70 Facebook: Notre Dame Facebook N 12,149 541,336 0.0073 [295]
71 Facebook: NYU Facebook Y 21,623 715,673 0.0031 [295]
72 Facebook: Oberlin Facebook N 2,920 89,912 0.0211 [295]
73 Facebook: Oklahoma Facebook N 17,420 892,524 0.0059 [295]
74 Facebook: Penn Facebook N 41,536 1,362,220 0.0016 [295]
75 Facebook: Pepperdine Facebook N 3,440 152,003 0.0257 [295]
76 Facebook: Princeton Facebook N 6,575 293,307 0.0136 [295]
77 Facebook: Reed Facebook N 962 18,812 0.0407 [295]
78 Facebook: Rice Facebook N 4,083 184,826 0.0222 [295]
79 Facebook: Rochester Facebook N 4,561 161,403 0.0155 [295]
80 Facebook: Rutgers Facebook N 24,568 784,596 0.0026 [295]
81 Facebook: Santa Facebook N 3,578 151,747 0.0237 [295]
82 Facebook: Simmons Facebook N 1,510 32,984 0.0290 [295]
83 Facebook: Smith Facebook N 2,970 97,133 0.0220 [295]
84 Facebook: Stanford Facebook N 11,586 568,309 0.0085 [295]
85 Facebook: Swarthmore Facebook N 1,657 61,049 0.0445 [295]
86 Facebook: Syracuse Facebook N 13,640 543,975 0.0058 [295]
87 Facebook: Temple Facebook N 13,653 360,774 0.0039 [295]
88 Facebook: Tennessee Facebook N 16,977 770,658 0.0053 [295]
89 Facebook: Texas80 Facebook N 31,538 1,219,639 0.0025 [295]
90 Facebook: Texas84 Facebook N 36,364 1,590,651 0.0024 [295]
91 Facebook: Trinity Facebook N 2,613 111,996 0.0328 [295]
92 Facebook: Tufts Facebook N 6,672 249,722 0.0112 [295]
93 Facebook: Tulane Facebook N 7,740 283,912 0.0095 [295]
94 Facebook: U. Chicago Facebook N 6,561 208,088 0.0097 [295]
95 Facebook: U. Conn. Facebook N 17,206 604,867 0.0041 [295]
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96 Facebook: U. Illinois Facebook N 30,795 1,264,421 0.0027 [295]
97 Facebook: U. Mass. Facebook N 16,502 519,376 0.0038 [295]
98 Facebook: U. Penn. Facebook N 14,888 686,485 0.0062 [295]
99 Facebook: UC33 Facebook N 16,800 522,141 0.0037 [295]
100 Facebook: UC61 Facebook N 13,736 442,169 0.0047 [295]
101 Facebook: UC64 Facebook N 6,810 155,320 0.0067 [295]
102 Facebook: UCF Facebook N 14,936 428,987 0.0038 [295]
103 Facebook: UCLA Facebook N 20,453 747,604 0.0036 [295]
104 Facebook: UCSB Facebook N 14,917 482,215 0.0043 [295]
105 Facebook: UCSC Facebook N 8,979 224,578 0.0056 [295]
106 Facebook: UCSD Facebook N 14,936 443,215 0.0040 [295]
107 Facebook: UF Facebook N 35,111 1,465,654 0.0024 [295]
108 Facebook: UGA Facebook N 24,380 1,174,051 0.0040 [295]
109 Facebook: UNC Facebook N 18,158 766,796 0.0047 [295]
110 Facebook: USC Facebook N 17,440 801,851 0.0053 [295]
111 Facebook: USF Facebook N 13,367 321,209 0.0036 [295]
112 Facebook: USFCA Facebook N 2,672 65,244 0.0183 [295]
113 Facebook: UVA Facebook N 17,178 789,308 0.0054 [295]
114 Facebook: Vanderbilt Facebook N 8,063 427,829 0.0132 [295]
115 Facebook: Vassar Facebook N 3,068 119,161 0.0253 [295]
116 Facebook: Vermont Facebook N 7,322 191,220 0.0071 [295]
117 Facebook: Villanova Facebook N 7,755 314,980 0.0105 [295]
118 Facebook: Virginia Facebook N 21,319 698,175 0.0031 [295]
119 Facebook: Wake Facebook N 5,366 279,186 0.0194 [295]
120 Facebook: Wash. U. Facebook N 7,730 367,526 0.0123 [295]
121 Facebook: Wellesley Facebook N 2,970 94,899 0.0215 [295]
122 Facebook: Wesleyan Facebook N 3,591 138,034 0.0214 [295]
123 Facebook: William Facebook N 6,472 266,378 0.0127 [295]
124 Facebook: Williams Facebook N 2,788 112,985 0.0291 [295]
125 Facebook: Wisconsin Facebook N 23,831 835,946 0.0029 [295]
126 Facebook: Yale Facebook N 8,561 405,440 0.0111 [295]
127 NYSE: 1980-1999 Financial Y 477 113,526 1.0000 [229]
128 NYSE: 1980-1983 Financial Y 477 113,526 1.0000 [229]
129 NYSE: 1984-1987 Financial Y 477 113,526 1.0000 [229]
130 NYSE: 1988-1991 Financial Y 477 113,526 1.0000 [229]
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131 NYSE: 1992-1995 Financial Y 477 113,526 1.0000 [229]
132 NYSE: 1996-1999 Financial Y 477 113,526 1.0000 [229]
133 NYSE: H1 1985 Financial Y 100 4,950 1.0000 [1]
134 NYSE: H2 1985 Financial Y 100 4,950 1.0000 [1]
135 NYSE: H1 1986 Financial Y 100 4,950 1.0000 [1]
136 NYSE: H2 1986 Financial Y 100 4,950 1.0000 [1]
137 NYSE: H1 1987 Financial Y 100 4,950 1.0000 [1]
138 NYSE: H2 1987 Financial Y 100 4,950 1.0000 [1]
139 NYSE: H1 1988 Financial Y 100 4,950 1.0000 [1]
140 NYSE: H2 1988 Financial Y 100 4,950 1.0000 [1]
141 NYSE: H1 1989 Financial Y 100 4,950 1.0000 [1]
142 NYSE: H2 1989 Financial Y 100 4,950 1.0000 [1]
143 NYSE: H1 1990 Financial Y 100 4,950 1.0000 [1]
144 NYSE: H2 1990 Financial Y 100 4,950 1.0000 [1]
145 NYSE: H1 1991 Financial Y 100 4,950 1.0000 [1]
146 NYSE: H2 1991 Financial Y 100 4,950 1.0000 [1]
147 NYSE: H1 1992 Financial Y 100 4,950 1.0000 [1]
148 NYSE: H2 1992 Financial Y 100 4,950 1.0000 [1]
149 NYSE: H1 1993 Financial Y 100 4,950 1.0000 [1]
150 NYSE: H2 1993 Financial Y 100 4,950 1.0000 [1]
151 NYSE: H1 1994 Financial Y 100 4,950 1.0000 [1]
152 NYSE: H2 1994 Financial Y 100 4,950 1.0000 [1]
153 NYSE: H1 1995 Financial Y 100 4,950 1.0000 [1]
154 NYSE: H2 1995 Financial Y 100 4,950 1.0000 [1]
155 NYSE: H1 1996 Financial Y 100 4,950 1.0000 [1]
156 NYSE: H2 1996 Financial Y 100 4,950 1.0000 [1]
157 NYSE: H1 1997 Financial Y 100 4,950 1.0000 [1]
158 NYSE: H2 1997 Financial Y 100 4,950 1.0000 [1]
159 NYSE: H1 1998 Financial Y 100 4,950 1.0000 [1]
160 NYSE: H2 1998 Financial Y 100 4,950 1.0000 [1]
161 NYSE: H1 1999 Financial Y 100 4,950 1.0000 [1]
162 NYSE: H2 1999 Financial Y 100 4,950 1.0000 [1]
163 NYSE: H1 2000 Financial Y 100 4,950 1.0000 [1]
164 NYSE: H2 2000 Financial Y 100 4,950 1.0000 [1]
165 NYSE: H1 2001 Financial Y 100 4,950 1.0000 [1]
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166 NYSE: H2 2001 Financial Y 100 4,950 1.0000 [1]
167 NYSE: H1 2002 Financial Y 100 4,950 1.0000 [1]
168 NYSE: H2 2002 Financial Y 100 4,950 1.0000 [1]
169 NYSE: H1 2003 Financial Y 100 4,950 1.0000 [1]
170 NYSE: H2 2003 Financial Y 100 4,950 1.0000 [1]
171 NYSE: H1 2004 Financial Y 100 4,950 1.0000 [1]
172 NYSE: H2 2004 Financial Y 100 4,950 1.0000 [1]
173 NYSE: H1 2005 Financial Y 100 4,950 1.0000 [1]
174 NYSE: H2 2005 Financial Y 100 4,950 1.0000 [1]
175 NYSE: H1 2006 Financial Y 100 4,950 1.0000 [1]
176 NYSE: H2 2006 Financial Y 100 4,950 1.0000 [1]
177 NYSE: H1 2007 Financial Y 100 4,950 1.0000 [1]
178 NYSE: H2 2008 Financial Y 100 4,950 1.0000 [1]
179 NYSE: H1 2008 Financial Y 100 4,950 1.0000 [1]
180 NYSE: H2 2000 Financial Y 100 4,950 1.0000 [1]
181 FX: 1992 Financial Y 110 5,995 1.0000 [204,205]
182 FX: 1993 Financial Y 110 5,995 1.0000 [204,205]
183 FX: 1994 Financial Y 110 5,995 1.0000 [204,205]
184 FX: 1995 Financial Y 110 5,995 1.0000 [204,205]
185 FX: 1996 Financial Y 110 5,995 1.0000 [204,205]
186 FX: 1997 Financial Y 110 5,995 1.0000 [204,205]
187 FX: 1998 Financial Y 110 5,995 1.0000 [204,205]
188 FX: 1999 Financial Y 110 5,995 1.0000 [204,205]
189 FX: 2000 Financial Y 110 5,995 1.0000 [204,205]
190 FX: 2001 Financial Y 110 5,995 1.0000 [204,205]
191 FX: 2002 Financial Y 110 5,995 1.0000 [204,205]
192 FX: 2005 Financial Y 110 5,995 1.0000 [204,205]
193 FX: 2006 Financial Y 110 5,995 1.0000 [204,205]
194 FX: 2007 Financial Y 110 5,995 1.0000 [204,205]
195 FX: 2008 Financial Y 110 5,995 1.0000 [204,205]
196 Fungal: (11,11)∗ Fungal Y 823 954 0.0028 [33, 113,114,288]
197 Fungal: (11,2) Fungal Y 117 136 0.0200 [33, 113,114,288]
198 Fungal: (11,5) Fungal Y 526 588 0.0043 [33, 113,114,288]
199 Fungal: (11,8) Fungal Y 721 821 0.0032 [33, 113,114,288]
200 Fungal: (17,11) Fungal Y 1,205 1,469 0.0020 [33, 113,114,288]
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201 Fungal: (17,2) Fungal Y 232 240 0.0090 [33, 113,114,288]
202 Fungal: (17,5) Fungal Y 816 874 0.0026 [33, 113,114,288]
203 Fungal: (17,8) Fungal Y 1,113 1,303 0.0021 [33, 113,114,288]
204 Fungal: (4,11) Fungal Y 2,190 2,431 0.0010 [33, 113,114,288]
205 Fungal: (4,2) Fungal Y 461 490 0.0046 [33, 113,114,288]
206 Fungal: (4,5) Fungal Y 1,380 1,476 0.0016 [33, 113,114,288]
207 Fungal: (4,8) Fungal Y 1,869 2,061 0.0012 [33, 113,114,288]
208 AIDS blogs∗ WWW N 146 180 0.0170 [132]
209 Political blogs WWW Y 1,222 16,714 0.0224 [3]
210 WWW (Stanford) WWW N 8,929 26,320 0.0007 [124]
211 Online Dictionary of Computing Language Y 13,356 91,471 0.0010 [30]
212 Online Dictionary Of Information Science Language Y 2,898 16,376 0.0039 [77, 255]
213 Reuters 9/11 news Language Y 13,308 148,035 0.0017 [158]
214 Roget’s thesaurus Language N 994 3,640 0.0074 [77, 168]
215 Word adjacency: English Language N 7,377 44,205 0.0016 [210]
216 Word adjacency: French Language N 8,308 23,832 0.0007 [210]
217 Word adjacency: Japanese Language N 2,698 7,995 0.0022 [210]
218 Word adjacency: Spanish Language N 11,558 43,050 0.0006 [210]
219 Metabolic: AA Metabolic N 411 1,818 0.0216 [156]
220 Metabolic: AB Metabolic N 386 1,691 0.0228 [156]
221 Metabolic: AG Metabolic N 494 2,173 0.0178 [156]
222 Metabolic: AP Metabolic N 201 857 0.0426 [156]
223 Metabolic: AT Metabolic N 296 1,231 0.0282 [156]
224 Metabolic: BB Metabolic N 175 628 0.0412 [156]
225 Metabolic: BS Metabolic N 772 3,611 0.0121 [156]
226 Metabolic: CA Metabolic N 483 2,274 0.0195 [156]
227 Metabolic: CE Metabolic N 453 2,025 0.0198 [156]
228 Metabolic: CJ Metabolic N 370 1,631 0.0239 [156]
229 Metabolic: CL Metabolic N 382 1,646 0.0226 [156]
230 Metabolic: CQ Metabolic N 187 663 0.0381 [156]
231 Metabolic: CT Metabolic N 211 772 0.0348 [156]
232 Metabolic: CY Metabolic N 537 2,503 0.0174 [156]
233 Metabolic: DR Metabolic N 800 3,789 0.0119 [156]
234 Metabolic: EC Metabolic N 762 3,683 0.0127 [156]
235 Metabolic: EF Metabolic N 375 1,721 0.0245 [156]
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236 Metabolic: EN Metabolic N 374 1,617 0.0232 [156]
237 Metabolic: HI Metabolic N 505 2,325 0.0183 [156]
238 Metabolic: HP Metabolic N 365 1,703 0.0256 [156]
239 Metabolic: MB Metabolic N 418 1,850 0.0212 [156]
240 Metabolic: MG Metabolic N 199 783 0.0397 [156]
241 Metabolic: MJ Metabolic N 422 1,874 0.0211 [156]
242 Metabolic: ML Metabolic N 414 1,862 0.0218 [156]
243 Metabolic: MP Metabolic N 171 685 0.0471 [156]
244 Metabolic: MT Metabolic N 577 2,653 0.0160 [156]
245 Metabolic: NG Metabolic N 394 1,824 0.0236 [156]
246 Metabolic: NM Metabolic N 369 1,708 0.0252 [156]
247 Metabolic: OS Metabolic N 285 1,168 0.0289 [156]
248 Metabolic: PA Metabolic N 720 3,429 0.0132 [156]
249 Metabolic: PF Metabolic N 310 1,379 0.0288 [156]
250 Metabolic: PG Metabolic N 412 1,772 0.0209 [156]
251 Metabolic: PH Metabolic N 318 1,394 0.0277 [156]
252 Metabolic: PN Metabolic N 405 1,829 0.0224 [156]
253 Metabolic: RC Metabolic N 663 3,111 0.0142 [156]
254 Metabolic: RP Metabolic N 203 775 0.0378 [156]
255 Metabolic: SC Metabolic N 552 2,595 0.0171 [156]
256 Metabolic: ST Metabolic N 391 1,756 0.0230 [156]
257 Metabolic: TH Metabolic N 427 1,955 0.0215 [156]
258 Metabolic: TM Metabolic N 328 1,452 0.0271 [156]
259 Metabolic: TP Metabolic N 194 788 0.0421 [156]
260 Metabolic: TY Metabolic N 803 3,863 0.0120 [156]
261 Metabolic: YP Metabolic N 552 2,471 0.0162 [156]
262 U.S. political books co-purchase∗ Other N 105 441 0.0808 [171]
263 Power grid Other N 4,941 6,594 0.0005 [305]
264 Slovenian magazine co-purchase Other Y 124 5,972 0.7831 [28]
265 Transcription: E. coli Other N 328 456 0.0085 [196]
266 Transcription: Yeast Other N 662 1,062 0.0049 [211]
267 U.S. airlines Other Y 324 2,081 0.0398 [29, 77]
268 2008 NCAA football schedule∗ Other Y 121 764 0.1052 [61]
269 Internet: autonomous systems Other N 22,963 48,436 0.0002 [219]
270 Protein: serine protease inhibitor (1EAW)∗ Other N 53 123 0.0893 [210]
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271 Protein: immunoglobulin (1A4J)∗ Other N 95 213 0.0477 [210]
272 Protein: oxidoreductase (1AOR)∗ Other N 97 212 0.0455 [210]
273 Bill cosponsorship: U.S. House 96 Political: cosponsorship Y 438 95,529 0.9982 [108,109]
274 Bill cosponsorship: U.S. House 97 Political: cosponsorship Y 435 94,374 0.9998 [108,109]
275 Bill cosponsorship: U.S. House 98 Political: cosponsorship Y 437 95,256 0.9999 [108,109]
276 Bill cosponsorship: U.S. House 99 Political: cosponsorship Y 437 94,999 0.9972 [108,109]
277 Bill cosponsorship: U.S. House 100 Political: cosponsorship Y 439 96,125 0.9998 [108,109]
278 Bill cosponsorship: U.S. House 101 Political: cosponsorship Y 437 95,263 1.0000 [108,109]
279 Bill cosponsorship: U.S. House 102 Political: cosponsorship Y 437 95,051 0.9977 [108,109]
280 Bill cosponsorship: U.S. House 103 Political: cosponsorship Y 437 95,028 0.9975 [108,109]
281 Bill cosponsorship: U.S. House 104 Political: cosponsorship Y 439 95,925 0.9978 [108,109]
282 Bill cosponsorship: U.S. House 105 Political: cosponsorship Y 442 97,373 0.9991 [108,109]
283 Bill cosponsorship: U.S. House 106 Political: cosponsorship Y 436 94,820 0.9999 [108,109]
284 Bill cosponsorship: U.S. House 107 Political: cosponsorship Y 442 97,233 0.9977 [108,109]
285 Bill cosponsorship: U.S. House 108 Political: cosponsorship Y 439 96,104 0.9996 [108,109]
286 Bill cosponsorship: U.S. Senate 96 Political: cosponsorship Y 101 5,050 1.0000 [108,109]
287 Bill cosponsorship: U.S. Senate 97 Political: cosponsorship Y 101 5,050 1.0000 [108,109]
288 Bill cosponsorship: U.S. Senate 98 Political: cosponsorship Y 101 5,050 1.0000 [108,109]
289 Bill cosponsorship: U.S. Senate 99 Political: cosponsorship Y 101 5,049 0.9998 [108,109]
290 Bill cosponsorship: U.S. Senate 100 Political: cosponsorship Y 101 5,050 1.0000 [108,109]
291 Bill cosponsorship: U.S. Senate 101 Political: cosponsorship Y 100 4,950 1.0000 [108,109]
292 Bill cosponsorship: U.S. Senate 102 Political: cosponsorship Y 102 5,142 0.9983 [108,109]
293 Bill cosponsorship: U.S. Senate 103 Political: cosponsorship Y 101 5,050 1.0000 [108,109]
294 Bill cosponsorship: U.S. Senate 104 Political: cosponsorship Y 102 5,151 1.0000 [108,109]
295 Bill cosponsorship: U.S. Senate 105 Political: cosponsorship Y 100 4,950 1.0000 [108,109]
296 Bill cosponsorship: U.S. Senate 106 Political: cosponsorship Y 102 5,151 1.0000 [108,109]
297 Bill cosponsorship: U.S. Senate 107 Political: cosponsorship Y 101 5,049 0.9998 [108,109]
298 Bill cosponsorship: U.S. Senate 108 Political: cosponsorship Y 100 4,950 1.0000 [108,109]
299 Committees: U.S. House 101, comms. Political: committee N 159 3,610 0.2874 [242,243]
300 Committees: U.S. House 102, comms. Political: committee N 163 4,093 0.3100 [242,243]
301 Committees: U.S. House 103, comms. Political: committee N 141 2,983 0.3022 [242,243]
302 Committees: U.S. House 104, comms. Political: committee N 106 1,839 0.3305 [242,243]
303 Committees: U.S. House 105, comms. Political: committee N 108 1,997 0.3456 [242,243]
304 Committees: U.S. House 106, comms. Political: committee N 107 2,031 0.3581 [242,243]
305 Committees: U.S. House 107, comms. Political: committee N 113 2,429 0.3838 [242,243]
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306 Committees: U.S. House 108, comms. Political: committee N 118 2,905 0.4208 [242,243]
307 Committees: U.S. House 101, Reps. Political: committee N 434 18,714 0.1992 [242,243]
308 Committees: U.S. House 102, Reps. Political: committee N 436 20,134 0.2123 [242,243]
309 Committees: U.S. House 103, Reps. Political: committee N 437 18,212 0.1912 [242,243]
310 Committees: U.S. House 104, Reps. Political: committee N 432 17,130 0.1840 [242,243]
311 Committees: U.S. House 105, Reps. Political: committee N 435 18,297 0.1938 [242,243]
312 Committees: U.S. House 106, Reps. Political: committee N 435 18,832 0.1995 [242,243]
313 Committees: U.S. House 107, Reps. Political: committee N 434 19,824 0.2110 [242,243]
314 Committees: U.S. House 108, Reps. Political: committee N 437 21,214 0.2227 [242,243]
315 Roll call: U.S. House 1 Political: voting Y 66 2,122 0.9893 [203,241,306]
316 Roll call: U.S. House 2 Political: voting Y 71 2,428 0.9771 [203,241,306]
317 Roll call: U.S. House 3 Political: voting Y 108 5,669 0.9811 [203,241,306]
318 Roll call: U.S. House 4 Political: voting Y 114 6,342 0.9846 [203,241,306]
319 Roll call: U.S. House 5 Political: voting Y 117 6,600 0.9726 [203,241,306]
320 Roll call: U.S. House 6 Political: voting Y 113 6,222 0.9832 [203,241,306]
321 Roll call: U.S. House 7 Political: voting Y 110 5,921 0.9877 [203,241,306]
322 Roll call: U.S. House 8 Political: voting Y 149 10,888 0.9875 [203,241,306]
323 Roll call: U.S. House 9 Political: voting Y 147 10,582 0.9861 [203,241,306]
324 Roll call: U.S. House 10 Political: voting Y 149 10,857 0.9847 [203,241,306]
325 Roll call: U.S. House 11 Political: voting Y 153 11,482 0.9874 [203,241,306]
326 Roll call: U.S. House 12 Political: voting Y 146 10,535 0.9953 [203,241,306]
327 Roll call: U.S. House 13 Political: voting Y 195 18,723 0.9898 [203,241,306]
328 Roll call: U.S. House 14 Political: voting Y 195 18,540 0.9802 [203,241,306]
329 Roll call: U.S. House 15 Political: voting Y 195 18,666 0.9868 [203,241,306]
330 Roll call: U.S. House 16 Political: voting Y 197 19,118 0.9903 [203,241,306]
331 Roll call: U.S. House 17 Political: voting Y 199 19,429 0.9862 [203,241,306]
332 Roll call: U.S. House 18 Political: voting Y 221 23,812 0.9795 [203,241,306]
333 Roll call: U.S. House 19 Political: voting Y 220 23,993 0.9960 [203,241,306]
334 Roll call: U.S. House 20 Political: voting Y 219 23,666 0.9914 [203,241,306]
335 Roll call: U.S. House 21 Political: voting Y 220 23,985 0.9956 [203,241,306]
336 Roll call: U.S. House 22 Political: voting Y 217 23,404 0.9986 [203,241,306]
337 Roll call: U.S. House 23 Political: voting Y 257 32,502 0.9880 [203,241,306]
338 Roll call: U.S. House 24 Political: voting Y 255 32,062 0.9900 [203,241,306]
339 Roll call: U.S. House 25 Political: voting Y 256 32,366 0.9916 [203,241,306]
340 Roll call: U.S. House 26 Political: voting Y 255 32,067 0.9902 [203,241,306]
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341 Roll call: U.S. House 27 Political: voting Y 257 32,743 0.9953 [203,241,306]
342 Roll call: U.S. House 28 Political: voting Y 234 26,788 0.9826 [203,241,306]
343 Roll call: U.S. House 29 Political: voting Y 236 27,562 0.9939 [203,241,306]
344 Roll call: U.S. House 30 Political: voting Y 236 27,669 0.9978 [203,241,306]
345 Roll call: U.S. House 31 Political: voting Y 241 28,804 0.9960 [203,241,306]
346 Roll call: U.S. House 32 Political: voting Y 239 28,318 0.9957 [203,241,306]
347 Roll call: U.S. House 33 Political: voting Y 240 28,570 0.9962 [203,241,306]
348 Roll call: U.S. House 34 Political: voting Y 236 27,545 0.9933 [203,241,306]
349 Roll call: U.S. House 35 Political: voting Y 245 29,630 0.9913 [203,241,306]
350 Roll call: U.S. House 36 Political: voting Y 243 29,312 0.9969 [203,241,306]
351 Roll call: U.S. House 37 Political: voting Y 197 18,735 0.9704 [203,241,306]
352 Roll call: U.S. House 38 Political: voting Y 187 17,326 0.9963 [203,241,306]
353 Roll call: U.S. House 39 Political: voting Y 199 19,593 0.9945 [203,241,306]
354 Roll call: U.S. House 40 Political: voting Y 233 26,605 0.9843 [203,241,306]
355 Roll call: U.S. House 41 Political: voting Y 256 32,109 0.9837 [203,241,306]
356 Roll call: U.S. House 42 Political: voting Y 253 31,626 0.9921 [203,241,306]
357 Roll call: U.S. House 43 Political: voting Y 302 45,151 0.9934 [203,241,306]
358 Roll call: U.S. House 44 Political: voting Y 308 46,723 0.9883 [203,241,306]
359 Roll call: U.S. House 45 Political: voting Y 302 45,315 0.9970 [203,241,306]
360 Roll call: U.S. House 46 Political: voting Y 301 44,987 0.9964 [203,241,306]
361 Roll call: U.S. House 47 Political: voting Y 306 46,214 0.9903 [203,241,306]
362 Roll call: U.S. House 48 Political: voting Y 338 56,484 0.9918 [203,241,306]
363 Roll call: U.S. House 49 Political: voting Y 330 54,160 0.9977 [203,241,306]
364 Roll call: U.S. House 50 Political: voting Y 326 52,907 0.9987 [203,241,306]
365 Roll call: U.S. House 51 Political: voting Y 347 59,303 0.9879 [203,241,306]
366 Roll call: U.S. House 52 Political: voting Y 340 57,285 0.9940 [203,241,306]
367 Roll call: U.S. House 53 Political: voting Y 376 69,943 0.9921 [203,241,306]
368 Roll call: U.S. House 54 Political: voting Y 368 67,085 0.9934 [203,241,306]
369 Roll call: U.S. House 55 Political: voting Y 371 68,270 0.9947 [203,241,306]
370 Roll call: U.S. House 56 Political: voting Y 369 67,059 0.9877 [203,241,306]
371 Roll call: U.S. House 57 Political: voting Y 371 67,383 0.9818 [203,241,306]
372 Roll call: U.S. House 58 Political: voting Y 397 75,891 0.9655 [203,241,306]
373 Roll call: U.S. House 59 Political: voting Y 397 76,299 0.9707 [203,241,306]
374 Roll call: U.S. House 60 Political: voting Y 398 77,921 0.9863 [203,241,306]
375 Roll call: U.S. House 61 Political: voting Y 402 80,174 0.9947 [203,241,306]
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376 Roll call: U.S. House 62 Political: voting Y 408 82,442 0.9929 [203,241,306]
377 Roll call: U.S. House 63 Political: voting Y 452 101,498 0.9958 [203,241,306]
378 Roll call: U.S. House 64 Political: voting Y 441 96,780 0.9975 [203,241,306]
379 Roll call: U.S. House 65 Political: voting Y 454 102,108 0.9930 [203,241,306]
380 Roll call: U.S. House 66 Political: voting Y 453 101,199 0.9885 [203,241,306]
381 Roll call: U.S. House 67 Political: voting Y 452 101,482 0.9956 [203,241,306]
382 Roll call: U.S. House 68 Political: voting Y 442 96,885 0.9941 [203,241,306]
383 Roll call: U.S. House 69 Political: voting Y 437 95,226 0.9996 [203,241,306]
384 Roll call: U.S. House 70 Political: voting Y 443 97,497 0.9959 [203,241,306]
385 Roll call: U.S. House 71 Political: voting Y 455 102,502 0.9924 [203,241,306]
386 Roll call: U.S. House 72 Political: voting Y 447 99,028 0.9934 [203,241,306]
387 Roll call: U.S. House 73 Political: voting Y 445 98,647 0.9986 [203,241,306]
388 Roll call: U.S. House 74 Political: voting Y 440 96,170 0.9958 [203,241,306]
389 Roll call: U.S. House 75 Political: voting Y 445 98,474 0.9968 [203,241,306]
390 Roll call: U.S. House 76 Political: voting Y 456 102,495 0.9880 [203,241,306]
391 Roll call: U.S. House 77 Political: voting Y 450 99,956 0.9894 [203,241,306]
392 Roll call: U.S. House 78 Political: voting Y 450 100,513 0.9949 [203,241,306]
393 Roll call: U.S. House 79 Political: voting Y 448 99,246 0.9912 [203,241,306]
394 Roll call: U.S. House 80 Political: voting Y 448 99,902 0.9977 [203,241,306]
395 Roll call: U.S. House 81 Political: voting Y 444 98,054 0.9970 [203,241,306]
396 Roll call: U.S. House 82 Political: voting Y 447 99,281 0.9960 [203,241,306]
397 Roll call: U.S. House 83 Political: voting Y 440 96,506 0.9992 [203,241,306]
398 Roll call: U.S. House 84 Political: voting Y 437 95,253 0.9999 [203,241,306]
399 Roll call: U.S. House 85 Political: voting Y 444 97,955 0.9960 [203,241,306]
400 Roll call: U.S. House 86 Political: voting Y 443 97,377 0.9946 [203,241,306]
401 Roll call: U.S. House 87 Political: voting Y 449 99,774 0.9920 [203,241,306]
401 Roll call: U.S. House 88 Political: voting Y 443 97,842 0.9994 [203,241,306]
403 Roll call: U.S. House 89 Political: voting Y 442 97,139 0.9967 [203,241,306]
404 Roll call: U.S. House 90 Political: voting Y 437 95,251 0.9998 [203,241,306]
405 Roll call: U.S. House 91 Political: voting Y 448 99,815 0.9969 [203,241,306]
406 Roll call: U.S. House 92 Political: voting Y 443 97,579 0.9967 [203,241,306]
407 Roll call: U.S. House 93 Political: voting Y 443 97,848 0.9994 [203,241,306]
408 Roll call: U.S. House 94 Political: voting Y 441 96,837 0.9981 [203,241,306]
409 Roll call: U.S. House 95 Political: voting Y 441 96,493 0.9946 [203,241,306]
410 Roll call: U.S. House 96 Political: voting Y 440 96,379 0.9979 [203,241,306]
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411 Roll call: U.S. House 97 Political: voting Y 442 96,761 0.9928 [203,241,306]
412 Roll call: U.S. House 98 Political: voting Y 439 95,922 0.9977 [203,241,306]
413 Roll call: U.S. House 99 Political: voting Y 439 95,875 0.9972 [203,241,306]
414 Roll call: U.S. House 100 Political: voting Y 440 96,544 0.9996 [203,241,306]
415 Roll call: U.S. House 101 Political: voting Y 440 96,505 0.9992 [203,241,306]
416 Roll call: U.S. House 102 Political: voting Y 441 96,811 0.9978 [203,241,306]
417 Roll call: U.S. House 103 Political: voting Y 441 96,348 0.9931 [203,241,306]
418 Roll call: U.S. House 104 Political: voting Y 445 98,720 0.9993 [203,241,306]
419 Roll call: U.S. House 105 Political: voting Y 443 97,841 0.9994 [203,241,306]
420 Roll call: U.S. House 106 Political: voting Y 440 96,557 0.9998 [203,241,306]
421 Roll call: U.S. House 107 Political: voting Y 443 97,816 0.9991 [203,241,306]
422 Roll call: U.S. House 108 Political: voting Y 440 96,561 0.9998 [203,241,306]
423 Roll call: U.S. House 109 Political: voting Y 440 96,549 0.9997 [203,241,306]
424 Roll call: U.S. House 110 Political: voting Y 448 99,603 0.9948 [203,241,306]
425 Roll call: U.S. Senate 1 Political: voting Y 29 393 0.9680 [203,241,306]
426 Roll call: U.S. Senate 2 Political: voting Y 31 449 0.9656 [203,241,306]
427 Roll call: U.S. Senate 3 Political: voting Y 32 472 0.9516 [203,241,306]
428 Roll call: U.S. Senate 4 Political: voting Y 43 760 0.8416 [203,241,306]
429 Roll call: U.S. Senate 5 Political: voting Y 44 808 0.8541 [203,241,306]
430 Roll call: U.S. Senate 6 Political: voting Y 37 644 0.9670 [203,241,306]
431 Roll call: U.S. Senate 7 Political: voting Y 35 537 0.9025 [203,241,306]
432 Roll call: U.S. Senate 8 Political: voting Y 44 864 0.9133 [203,241,306]
433 Roll call: U.S. Senate 9 Political: voting Y 37 645 0.9685 [203,241,306]
434 Roll call: U.S. Senate 10 Political: voting Y 37 660 0.9910 [203,241,306]
435 Roll call: U.S. Senate 11 Political: voting Y 44 855 0.9038 [203,241,306]
436 Roll call: U.S. Senate 12 Political: voting Y 37 663 0.9955 [203,241,306]
437 Roll call: U.S. Senate 13 Political: voting Y 46 947 0.9150 [203,241,306]
438 Roll call: U.S. Senate 14 Political: voting Y 44 898 0.9493 [203,241,306]
439 Roll call: U.S. Senate 15 Political: voting Y 46 977 0.9440 [203,241,306]
440 Roll call: U.S. Senate 16 Political: voting Y 51 1,249 0.9796 [203,241,306]
441 Roll call: U.S. Senate 17 Political: voting Y 52 1,294 0.9759 [203,241,306]
442 Roll call: U.S. Senate 18 Political: voting Y 52 1,304 0.9834 [203,241,306]
443 Roll call: U.S. Senate 19 Political: voting Y 59 1,589 0.9287 [203,241,306]
444 Roll call: U.S. Senate 20 Political: voting Y 53 1,343 0.9746 [203,241,306]
445 Roll call: U.S. Senate 21 Political: voting Y 54 1,339 0.9357 [203,241,306]
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446 Roll call: U.S. Senate 22 Political: voting Y 53 1,348 0.9782 [203,241,306]
447 Roll call: U.S. Senate 23 Political: voting Y 54 1,378 0.9630 [203,241,306]
448 Roll call: U.S. Senate 24 Political: voting Y 61 1,732 0.9464 [203,241,306]
449 Roll call: U.S. Senate 25 Political: voting Y 58 1,627 0.9843 [203,241,306]
440 Roll call: U.S. Senate 26 Political: voting Y 60 1,689 0.9542 [203,241,306]
451 Roll call: U.S. Senate 27 Political: voting Y 59 1,662 0.9714 [203,241,306]
452 Roll call: U.S. Senate 28 Political: voting Y 57 1,575 0.9868 [203,241,306]
453 Roll call: U.S. Senate 29 Political: voting Y 63 1,895 0.9703 [203,241,306]
454 Roll call: U.S. Senate 30 Political: voting Y 72 2,320 0.9077 [203,241,306]
455 Roll call: U.S. Senate 31 Political: voting Y 70 2,341 0.9694 [203,241,306]
456 Roll call: U.S. Senate 32 Political: voting Y 73 2,511 0.9555 [203,241,306]
457 Roll call: U.S. Senate 33 Political: voting Y 70 2,308 0.9557 [203,241,306]
458 Roll call: U.S. Senate 34 Political: voting Y 64 2,002 0.9931 [203,241,306]
459 Roll call: U.S. Senate 35 Political: voting Y 73 2,542 0.9673 [203,241,306]
460 Roll call: U.S. Senate 36 Political: voting Y 70 2,370 0.9814 [203,241,306]
461 Roll call: U.S. Senate 37 Political: voting Y 70 2,051 0.8493 [203,241,306]
462 Roll call: U.S. Senate 38 Political: voting Y 54 1,402 0.9797 [203,241,306]
463 Roll call: U.S. Senate 39 Political: voting Y 59 1,610 0.9410 [203,241,306]
464 Roll call: U.S. Senate 40 Political: voting Y 69 2,274 0.9693 [203,241,306]
465 Roll call: U.S. Senate 41 Political: voting Y 80 3,084 0.9759 [203,241,306]
466 Roll call: U.S. Senate 42 Political: voting Y 75 2,773 0.9993 [203,241,306]
467 Roll call: U.S. Senate 43 Political: voting Y 79 3,041 0.9870 [203,241,306]
468 Roll call: U.S. Senate 44 Political: voting Y 82 3,261 0.9819 [203,241,306]
469 Roll call: U.S. Senate 45 Political: voting Y 82 3,265 0.9831 [203,241,306]
470 Roll call: U.S. Senate 46 Political: voting Y 81 3,219 0.9935 [203,241,306]
471 Roll call: U.S. Senate 47 Political: voting Y 83 3,362 0.9880 [203,241,306]
472 Roll call: U.S. Senate 48 Political: voting Y 78 2,998 0.9983 [203,241,306]
473 Roll call: U.S. Senate 49 Political: voting Y 81 3,210 0.9907 [203,241,306]
474 Roll call: U.S. Senate 50 Political: voting Y 76 2,850 1.0000 [203,241,306]
475 Roll call: U.S. Senate 51 Political: voting Y 91 3,998 0.9763 [203,241,306]
476 Roll call: U.S. Senate 52 Political: voting Y 93 4,249 0.9932 [203,241,306]
477 Roll call: U.S. Senate 53 Political: voting Y 95 4,413 0.9884 [203,241,306]
478 Roll call: U.S. Senate 54 Political: voting Y 90 4,000 0.9988 [203,241,306]
479 Roll call: U.S. Senate 55 Political: voting Y 96 4,445 0.9748 [203,241,306]
480 Roll call: U.S. Senate 56 Political: voting Y 93 4,201 0.9820 [203,241,306]
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481 Roll call: U.S. Senate 57 Political: voting Y 90 3,939 0.9835 [203,241,306]
482 Roll call: U.S. Senate 58 Political: voting Y 93 4,174 0.9757 [203,241,306]
483 Roll call: U.S. Senate 59 Political: voting Y 93 4,251 0.9937 [203,241,306]
484 Roll call: U.S. Senate 60 Political: voting Y 95 4,382 0.9814 [203,241,306]
485 Roll call: U.S. Senate 61 Political: voting Y 102 5,033 0.9771 [203,241,306]
486 Roll call: U.S. Senate 62 Political: voting Y 109 5,719 0.9716 [203,241,306]
487 Roll call: U.S. Senate 63 Political: voting Y 101 5,029 0.9958 [203,241,306]
488 Roll call: U.S. Senate 64 Political: voting Y 100 4,931 0.9962 [203,241,306]
489 Roll call: U.S. Senate 65 Political: voting Y 111 5,899 0.9663 [203,241,306]
490 Roll call: U.S. Senate 66 Political: voting Y 101 5,005 0.9911 [203,241,306]
491 Roll call: U.S. Senate 67 Political: voting Y 105 5,413 0.9914 [203,241,306]
492 Roll call: U.S. Senate 68 Political: voting Y 102 5,081 0.9864 [203,241,306]
493 Roll call: U.S. Senate 69 Political: voting Y 105 5,353 0.9804 [203,241,306]
494 Roll call: U.S. Senate 70 Political: voting Y 102 5,082 0.9866 [203,241,306]
495 Roll call: U.S. Senate 71 Political: voting Y 109 5,779 0.9818 [203,241,306]
496 Roll call: U.S. Senate 72 Political: voting Y 103 5,220 0.9937 [203,241,306]
497 Roll call: U.S. Senate 73 Political: voting Y 100 4,879 0.9857 [203,241,306]
498 Roll call: U.S. Senate 74 Political: voting Y 100 4,933 0.9966 [203,241,306]
499 Roll call: U.S. Senate 75 Political: voting Y 102 5,126 0.9951 [203,241,306]
500 Roll call: U.S. Senate 76 Political: voting Y 104 5,106 0.9533 [203,241,306]
501 Roll call: U.S. Senate 77 Political: voting Y 108 5,575 0.9649 [203,241,306]
502 Roll call: U.S. Senate 78 Political: voting Y 104 5,304 0.9903 [203,241,306]
503 Roll call: U.S. Senate 79 Political: voting Y 107 5,466 0.9639 [203,241,306]
504 Roll call: U.S. Senate 80 Political: voting Y 97 4,655 0.9998 [203,241,306]
505 Roll call: U.S. Senate 81 Political: voting Y 108 5,646 0.9772 [203,241,306]
506 Roll call: U.S. Senate 82 Political: voting Y 98 4,748 0.9989 [203,241,306]
507 Roll call: U.S. Senate 83 Political: voting Y 110 5,724 0.9548 [203,241,306]
508 Roll call: U.S. Senate 84 Political: voting Y 99 4,845 0.9988 [203,241,306]
509 Roll call: U.S. Senate 85 Political: voting Y 101 5,014 0.9929 [203,241,306]
510 Roll call: U.S. Senate 86 Political: voting Y 103 5,246 0.9987 [203,241,306]
511 Roll call: U.S. Senate 87 Political: voting Y 105 5,444 0.9971 [203,241,306]
512 Roll call: U.S. Senate 88 Political: voting Y 103 5,249 0.9992 [203,241,306]
513 Roll call: U.S. Senate 89 Political: voting Y 103 5,247 0.9989 [203,241,306]
514 Roll call: U.S. Senate 90 Political: voting Y 101 5,048 0.9996 [203,241,306]
515 Roll call: U.S. Senate 91 Political: voting Y 102 5,148 0.9994 [203,241,306]
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516 Roll call: U.S. Senate 92 Political: voting Y 102 5,147 0.9992 [203,241,306]
517 Roll call: U.S. Senate 93 Political: voting Y 103 5,246 0.9987 [203,241,306]
518 Roll call: U.S. Senate 94 Political: voting Y 101 5,049 0.9998 [203,241,306]
519 Roll call: U.S. Senate 95 Political: voting Y 104 5,345 0.9979 [203,241,306]
520 Roll call: U.S. Senate 96 Political: voting Y 101 5,049 0.9998 [203,241,306]
521 Roll call: U.S. Senate 97 Political: voting Y 101 5,049 0.9998 [203,241,306]
522 Roll call: U.S. Senate 98 Political: voting Y 101 5,049 0.9998 [203,241,306]
523 Roll call: U.S. Senate 99 Political: voting Y 101 5,049 0.9998 [203,241,306]
524 Roll call: U.S. Senate 100 Political: voting Y 101 5,049 0.9998 [203,241,306]
525 Roll call: U.S. Senate 101 Political: voting Y 100 4,950 1.0000 [203,241,306]
526 Roll call: U.S. Senate 102 Political: voting Y 102 5,148 0.9994 [203,241,306]
527 Roll call: U.S. Senate 103 Political: voting Y 102 5,080 0.9862 [203,241,306]
528 Roll call: U.S. Senate 104 Political: voting Y 103 5,247 0.9989 [203,241,306]
529 Roll call: U.S. Senate 105 Political: voting Y 100 4,950 1.0000 [203,241,306]
530 Roll call: U.S. Senate 106 Political: voting Y 102 5,148 0.9994 [203,241,306]
531 Roll call: U.S. Senate 107 Political: voting Y 102 5,148 0.9994 [203,241,306]
532 Roll call: U.S. Senate 108 Political: voting Y 100 4,950 1.0000 [203,241,306]
533 Roll call: U.S. Senate 109 Political: voting Y 101 5,049 0.9998 [203,241,306]
534 Roll call: U.S. Senate 110 Political: voting Y 102 5,147 0.9992 [203,241,306]
535 U.K. House of Commons voting: 1992-1997 Political: voting Y 668 220,761 0.9909 [104]
536 U.K. House of Commons voting: 1997-2001 Political: voting Y 671 223,092 0.9925 [104]
537 U.K. House of Commons voting: 2001-2005 Political: voting Y 657 215,246 0.9988 [104]
538 U.N. resolutions 1 Political: voting Y 54 1,431 1.0000 [302]
539 U.N. resolutions 2 Political: voting Y 57 1,594 0.9987 [302]
540 U.N. resolutions 3 Political: voting Y 59 1,711 1.0000 [302]
541 U.N. resolutions 4 Political: voting Y 59 1,711 1.0000 [302]
542 U.N. resolutions 5 Political: voting Y 60 1,770 1.0000 [302]
543 U.N. resolutions 6 Political: voting Y 60 1,768 0.9989 [302]
544 U.N. resolutions 7 Political: voting Y 60 1,770 1.0000 [302]
545 U.N. resolutions 8 Political: voting Y 60 1,770 1.0000 [302]
546 U.N. resolutions 9 Political: voting Y 60 1,770 1.0000 [302]
547 U.N. resolutions 10 Political: voting Y 65 2,037 0.9793 [302]
548 U.N. resolutions 11 Political: voting Y 81 3,239 0.9997 [302]
549 U.N. resolutions 12 Political: voting Y 82 3,317 0.9988 [302]
550 U.N. resolutions 13 Political: voting Y 82 3,294 0.9919 [302]
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551 U.N. resolutions 14 Political: voting Y 82 3,321 1.0000 [302]
552 U.N. resolutions 15 Political: voting Y 99 4,851 1.0000 [302]
553 U.N. resolutions 16 Political: voting Y 104 5,356 1.0000 [302]
554 U.N. resolutions 17 Political: voting Y 110 5,995 1.0000 [302]
555 U.N. resolutions 18 Political: voting Y 113 6,246 0.9870 [302]
556 U.N. resolutions 20 Political: voting Y 117 6,672 0.9832 [302]
557 U.N. resolutions 21 Political: voting Y 122 7,333 0.9935 [302]
558 U.N. resolutions 22 Political: voting Y 124 7,616 0.9987 [302]
559 U.N. resolutions 23 Political: voting Y 126 7,855 0.9975 [302]
560 U.N. resolutions 24 Political: voting Y 126 7,851 0.9970 [302]
561 U.N. resolutions 25 Political: voting Y 126 7,868 0.9991 [302]
562 U.N. resolutions 26 Political: voting Y 132 8,641 0.9994 [302]
563 U.N. resolutions 27 Political: voting Y 132 8,646 1.0000 [302]
564 U.N. resolutions 28 Political: voting Y 134 8,905 0.9993 [302]
565 U.N. resolutions 29 Political: voting Y 137 9,202 0.9878 [302]
566 U.N. resolutions 30 Political: voting Y 143 10,117 0.9965 [302]
567 U.N. resolutions 31 Political: voting Y 144 10,291 0.9995 [302]
568 U.N. resolutions 32 Political: voting Y 146 10,585 1.0000 [302]
569 U.N. resolutions 33 Political: voting Y 148 10,878 1.0000 [302]
570 U.N. resolutions 34 Political: voting Y 150 11,173 0.9998 [302]
571 U.N. resolutions 35 Political: voting Y 151 11,287 0.9966 [302]
572 U.N. resolutions 36 Political: voting Y 155 11,935 1.0000 [302]
573 U.N. resolutions 37 Political: voting Y 156 12,090 1.0000 [302]
574 U.N. resolutions 38 Political: voting Y 157 12,243 0.9998 [302]
575 U.N. resolutions 39 Political: voting Y 158 12,403 1.0000 [302]
576 U.N. resolutions 40 Political: voting Y 158 12,403 1.0000 [302]
577 U.N. resolutions 41 Political: voting Y 158 12,403 1.0000 [302]
578 U.N. resolutions 42 Political: voting Y 158 12,402 0.9999 [302]
579 U.N. resolutions 43 Political: voting Y 158 12,403 1.0000 [302]
580 U.N. resolutions 44 Political: voting Y 158 12,403 1.0000 [302]
581 U.N. resolutions 45 Political: voting Y 154 11,781 1.0000 [302]
582 U.N. resolutions 46 Political: voting Y 168 13,872 0.9889 [302]
583 U.N. resolutions 47 Political: voting Y 174 14,944 0.9929 [302]
584 U.N. resolutions 48 Political: voting Y 178 15,606 0.9907 [302]
585 U.N. resolutions 49 Political: voting Y 174 14,913 0.9908 [302]
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586 U.N. resolutions 50 Political: voting Y 179 15,826 0.9934 [302]
587 U.N. resolutions 51 Political: voting Y 180 16,096 0.9991 [302]
588 U.N. resolutions 52 Political: voting Y 176 15,349 0.9967 [302]
589 U.N. resolutions 53 Political: voting Y 177 15,500 0.9951 [302]
590 U.N. resolutions 54 Political: voting Y 174 14,970 0.9946 [302]
591 U.N. resolutions 55 Political: voting Y 182 16,333 0.9916 [302]
592 U.N. resolutions 56 Political: voting Y 179 15,812 0.9925 [302]
593 U.N. resolutions 57 Political: voting Y 187 17,373 0.9990 [302]
594 U.N. resolutions 58 Political: voting Y 189 17,735 0.9983 [302]
595 U.N. resolutions 59 Political: voting Y 191 18,140 0.9997 [302]
596 U.N. resolutions 60 Political: voting Y 191 18,110 0.9981 [302]
597 U.N. resolutions 61 Political: voting Y 192 18,331 0.9997 [302]
598 U.N. resolutions 62 Political: voting Y 192 18,331 0.9997 [302]
599 U.N. resolutions 63 Political: voting Y 192 18,328 0.9996 [302]
600 Biogrid: A. thaliana Protein interaction N 406 625 0.0076 [280]
601 Biogrid: C. elegans Protein interaction N 3,353 6,449 0.0011 [280]
602 Biogrid: D. melanogaster Protein interaction N 7,174 24,897 0.0010 [280]
603 Biogrid: H. sapien Protein interaction N 8,205 25,699 0.0008 [280]
604 Biogrid: M. musculus Protein interaction N 710 1,003 0.0040 [280]
605 Biogrid: R. norvegicus∗ Protein interaction N 121 135 0.0186 [280]
606 Biogrid: S. cerevisiae Protein interaction N 1,753 4,811 0.0031 [280]
607 Biogrid: S. pombe Protein interaction N 1,477 11,404 0.0105 [280]
608 DIP: H. pylori Protein interaction N 686 1,351 0.0058 [262,310]
609 DIP: H. sapien Protein interaction N 639 982 0.0048 [262,310]
610 DIP: M. musculus Protein interaction N 50 55 0.0449 [262,310]
611 DIP: C. elegans Protein interaction N 2,386 3,825 0.0013 [262,310]
612 Human: Ccsb Protein interaction N 1,307 2,483 0.0029 [261]
613 Human: Ophid Protein interaction N 5,464 23,238 0.0016 [57, 58]
614 STRING: C. elegans Protein interaction N 1,762 95,227 0.0614 [155]
615 STRING: S. cerevisiae Protein interaction N 534 57,672 0.4053 [155]
616 Yeast: Oxford Statistics Protein interaction N 2,224 6,609 0.0027 [67]
617 Yeast: DIP Protein interaction N 4,906 17,218 0.0014 [4, 262,310]
618 Yeast: DIPC Protein interaction N 2,587 6,094 0.0018 [4, 262,310]
619 Yeast: FHC Protein interaction N 2,233 5,750 0.0023 [4, 43]
620 Yeast: FYI Protein interaction N 778 1,798 0.0059 [4, 146]
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621 Yeast: PCA Protein interaction N 889 2,407 0.0061 [4, 287]
622 Corporate directors in Scotland (1904-1905)∗ Social Y 131 676 0.0794 [77, 267]
623 Corporate ownership (EVA) Social N 4,475 4,652 0.0005 [226]
624 Dolphins∗ Social N 62 159 0.0841 [192]
625 Family planning in Korea Social N 33 68 0.1288 [259]
626 Unionization in a hi-tech firm∗ Social N 33 91 0.1723 [170]
627 Communication within a sawmill on strike∗ Social N 36 62 0.0984 [208]
628 Leadership course Social N 32 80 0.1613 [210]
629 Les Miserables∗ Social Y 77 254 0.0868 [168]
630 Marvel comics Social Y 6,449 168,211 0.0081 [8]
631 Mexican political elite Social N 35 117 0.1966 [120]
632 Pretty-good-privacy algorithm users Social N 10,680 24,316 0.0004 [48]
633 Prisoners Social N 67 142 0.0642 [210]
634 Bernard and Killworth fraternity: observed Social Y 58 967 0.5850 [39, 40, 260]
635 Bernard and Killworth fraternity: recalled Social Y 58 1,653 1.0000 [39, 40, 260]
636 Bernard and Killworth HAM radio: observed Social Y 41 153 0.1866 [37, 38, 165]
637 Bernard and Killworth HAM radio: recalled Social Y 44 442 0.4672 [37, 38, 165]
638 Bernard and Killworth office: observed Social Y 40 238 0.3051 [37, 38, 165]
639 Bernard and Killworth office: recalled Social Y 40 779 0.9987 [37, 38, 165]
640 Bernard and Killworth technical: observed Social Y 34 175 0.3119 [37, 38, 165]
641 Bernard and Killworth technical: recalled Social Y 34 561 1.0000 [37, 38, 165]
642 Kapferer tailor shop: instrumental (t1) Social N 35 76 0.1277 [163]
643 Kapferer tailor shop: instrumental (t2) Social N 34 93 0.1658 [163]
644 Kapferer tailor shop: associational (t1) Social N 39 158 0.2132 [163]
645 Kapferer tailor shop: associational (t2) Social N 39 223 0.3009 [163]
646 University Rovira i Virgili (Tarragona) e-mail Social N 1,133 5,451 0.0085 [140]
647 Zachary karate club∗ Social N 34 78 0.1390 [315]
648 BA: (100,1)∗ Synthetic N 100 99 0.0200 [26]
649 BA: (100,2)∗ Synthetic N 100 197 0.0398 [26]
650 BA: (1000,1) Synthetic N 1,000 999 0.0020 [26]
651 BA: (1000,2) Synthetic N 1,000 1,997 0.0040 [26]
652 BA: (500,1) Synthetic N 500 499 0.0040 [26]
653 BA: (500,2) Synthetic N 500 997 0.0080 [26]
654 ER: (100,25)∗ Synthetic N 100 1,264 0.2554 [86]
655 ER: (100,50) Synthetic N 100 2,436 0.4921 [86]
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656 ER: (100,75) Synthetic N 100 3,697 0.7469 [86]
657 ER: (1000,25) Synthetic N 1,000 124,455 0.2492 [86]
658 ER: (1000,50) Synthetic N 1,000 249,512 0.4995 [86]
659 ER: (1000,75) Synthetic N 1,000 374,846 0.7504 [86]
660 ER: (50,25) Synthetic N 50 287 0.2343 [86]
661 ER: (50,50) Synthetic N 50 589 0.4808 [86]
662 ER: (50,75) Synthetic N 50 936 0.7641 [86]
663 ER: (500,25) Synthetic N 500 31,148 0.2497 [86]
664 ER: (500,50) Synthetic N 500 62,301 0.4994 [86]
665 ER: (500,75) Synthetic N 500 93,780 0.7517 [86]
666 Fractal: (10,2,1) Synthetic N 1,024 9,256 0.0177 [279]
667 Fractal: (10,2,2) Synthetic N 1,024 16,875 0.0322 [279]
668 Fractal: (10,2,3) Synthetic N 1,024 30,344 0.0579 [279]
669 Fractal: (10,2,4) Synthetic N 1,024 53,009 0.1012 [279]
670 Fractal: (10,2,5) Synthetic N 1,024 89,812 0.1715 [279]
671 Fractal: (10,2,6) Synthetic N 1,024 147,784 0.2822 [279]
672 Fractal: (10,2,7) Synthetic N 1,024 232,794 0.4445 [279]
673 Fractal: (10,2,8) Synthetic N 1,024 343,563 0.6559 [279]
674 H13-4 benchmark Synthetic N 256 2,311 0.0708 [16]
675 LF benchmark: (1000,15,50,0.1,2,2) Synthetic N 1,000 7,573 0.0152 [180]
676 LF benchmark: (1000,15,50,0.1,3,1) Synthetic N 1,000 7,447 0.0149 [180]
677 LFR benchmark: (1000,15,50,0.5,2,2) Synthetic N 1,000 7,624 0.0153 [180]
678 LFR benchmark: (1000,15,50,0.5,3,1) Synthetic N 1,000 7,177 0.0144 [180]
679 LFR benchmark: (1000,25,50,0.1,2,2) Synthetic N 1,000 12,739 0.0255 [180]
680 LFR benchmark: (1000,25,50,0.1,3,1) Synthetic N 1,000 12,523 0.0251 [180]
681 LFR benchmark: (1000,25,50,0.5,2,2) Synthetic N 1,000 12,744 0.0255 [180]
682 LFR benchmark: (1000,25,50,0.5,3,1) Synthetic N 1,000 12,662 0.0253 [180]
683 LF benchmark: (1000,15,50,0.1,0.1,1,2,1) Synthetic Y 1,000 7,680 0.0154 [178]
684 LF benchmark: (1000,15,50,0.1,0.1,1,2,2) Synthetic Y 1,000 7,791 0.0156 [178]
685 LF benchmark: (1000,15,50,0.5,0.1,1,2,1) Synthetic Y 1,000 7,657 0.0153 [178]
686 LF benchmark: (1000,15,50,0.5,0.1,2,2,2) Synthetic Y 1,000 7,912 0.0158 [178]
687 LF benchmark: (1000,15,50,0.5,0.5,1,2,1) Synthetic Y 1,000 7,693 0.0154 [178]
688 LF benchmark: (1000,15,50,0.5,0.5,1,2,2) Synthetic Y 1,000 7,906 0.0158 [178]
689 LF benchmark: (1000,25,50,0.1,0.1,1,2,1) Synthetic Y 1,000 12,660 0.0253 [178]
690 LF benchmark: (1000,25,50,0.1,0.1,2,2,2) Synthetic Y 1,000 12,641 0.0253 [178]

231



A
p
p
e
n
d
ix

C
ID Name Category Weighted N L fe References

691 LF benchmark: (1000,25,50,0.5,0.1,1,2,1) Synthetic Y 1,000 12,771 0.0256 [178]
692 LF benchmark: (1000,25,50,0.5,0.1,2,2,2) Synthetic Y 1,000 12,772 0.0256 [178]
693 LF benchmark: (1000,25,50,0.5,0.5,1,2,1) Synthetic Y 1,000 12,962 0.0259 [178]
694 LF benchmark: (1000,25,50,0.5,0.5,2,2,2) Synthetic Y 1,000 12,881 0.0258 [178]
695 LF-NG benchmark Synthetic Y 128 1,024 0.1260 [178,224]
696 Random fully-connected: (100) Synthetic Y 100 4,950 1.0000 [†]
697 Random fully-connected: (500) Synthetic Y 500 124,750 1.0000 [†]
698 WS: (100,1,0.1) Synthetic N 100 100 0.0202 [305]
699 WS: (100,1,0.5) Synthetic N 73 73 0.0278 [305]
700 WS: (100,4,0.1) Synthetic N 100 407 0.0822 [305]
701 WS: (100,4,0.5) Synthetic N 100 522 0.1055 [305]
702 WS: (1000,1,0.1) Synthetic N 850 850 0.0024 [305]
703 WS: (1000,1,0.5) Synthetic N 877 877 0.0023 [305]
704 WS: (1000,4,0.1) Synthetic N 1,000 4,053 0.0081 [305]
705 WS: (1000,4,0.5) Synthetic N 1,000 5,138 0.0103 [305]
706 KOSKK:(1000,1,10,10,5× 10−5,1 × 10−3,100) Synthetic Y 519 2,096 0.0156 [174]
707 KOSKK:(1000,1,10,10,5× 10−5,1 × 10−3,1000) Synthetic Y 895 7,682 0.0192 [174]
708 KOSKK:(1000,1,100,10,5× 10−5,1 × 10−3,1000) Synthetic Y 870 4,725 0.0125 [174]
709 KOSKK:(1000,1,100,105× 10−5,1 × 10−3,100) Synthetic Y 652 2,125 0.0100 [174]
710 KOSKK:(1000,1,50,10,5× 10−5,1 × 10−3,100) Synthetic Y 459 1,554 0.0148 [174]
711 KOSKK:(1000,1,50,10,5× 10−5,1 × 10−3,1000) Synthetic Y 851 4,960 0.0137 [174]
712 Trade product proximity Trade Y 775 283,094 0.9439 [150]
713 World trade in metal (1994): Net Trade Y 80 875 0.2769 [77, 275]
714 World trade in metal (1994): Total Trade Y 80 875 0.2769 [77, 275]

†See the description at the beginning of this appendix for details of this network.
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Hamiltonian and Network Details

In this appendix we provide additional technical details of the Potts Hamiltonian and

the networks that we study in Chapter 6.

D.1 Potts Hamiltonian summation

We sum over i 6= j in the Hamiltonian in Eq. 6.1 because of the existence of inter-

actions that become antiferromagnetic at a resolution λ that is orders of magnitude

larger than nearly all of the other Λij . If we sum over all i and j, the maximum

energy of the system is given by

H(Λmax) = Hmax = −
∑

i

Jii. (D.1)

In some networks Λmax is several orders of magnitude larger than nearly all of the

other Λij values and consequently H(Λmax) is several orders of magnitude larger than

the energies at most of of the other sampled resolutions. For these networks, Heff is

then very small over much of the range of ξ.1 This effect is demonstrated in Fig. D.1

for the Caltech Facebook network [295].

D.2 Removing self-edges

In all of the networks that we consider, we have removed self-edges. However, the

standard null model Pij = kikj/(2m) includes some probability that a self-edge exists

(i.e., Pii = k2
i /(2m) 6= 0). By not including the diagonals in the Hamiltonian, we

neglect the possible existence of these self-edges and the equality
∑

ij Pij = 2m no

longer holds. For most networks, the contributions Pii are typically small if m is

1See Section 6.3 for the definition of Heff.
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Figure D.1: A comparison of the Heff curves for the Caltech Facebook network [295]
when H(ξ) is calculated by only summing over all i 6= j (solid line) and summing
over all i, j (dashed line).

large2, so this is not a significant problem [220]. In addition, as we noted in Sec-

tion 5.2.2, self-edges always occur within a community, so they will always contribute

to the summation in Eq. 6.1 irrespective of exactly how the nodes are partitioned into

communities. This implies that self-edges play no role when selecting the community

partition that minimizes the interaction energy at a particular resolution.

2For example, self-edges in the Caltech Facebook network account for 0.45% of the total edge
weight.

234



Appendix E

Robustness of MRFs to Network
Perturbations

In this appendix we perform tests to check that the distance measures that we define in

Section 6.4 are robust to perturbations of the network. Many networks are obtained

empirically, so it is expected that there will be links erroneously included in the

network that do not exist, and links that do actually exist will be erroneously omitted

from the network. For any taxonomies derived using the MRF framework to be

meaningful it is essential that the distance measures are robust to such false positive

and negative links. We check the robustness of the distance measures by investigating

the effect of rewiring some fraction of network links on the distances between the

networks.

E.1 Rewiring mechanisms

We consider two rewiring mechanisms. First, we randomly rewire some percentage

of the links in the network subject to the constraints that we maintain the degree

distribution of the original network as well as the network connectivity (i.e., the

rewired network forms a single connected component).1 Second, we randomly rewire

some percentage of the links subject only to the constraint that we maintain the

network connectivity.

1We use the procedure described in Ref. [201] to create randomized networks with the same
degree distribution as the original network; but we add the constraint that the randomized networks
must form a single connected component.
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E.1.1 Partial rewiring

Because we are perturbing the original network, we focus on the distance matrices

DH, DS, and Dη, which can be calculated directly for each network. We consider 25 of

the original networks of varying sizes and edge densities, which we highlight in bold in

Table C.1.2 In Fig. E.1, we show the distance matrices for this subset of networks when

various numbers of links have been rewired and the strength distribution maintained.

The first column shows the matrices for the original networks block-diagonalized using

the cost function in Eq. 6.15.3 The subsequent columns show the distance matrices as

increasingly larger numbers of edges are rewired. The node ordering in each of these

distance matrices is the same as the ordering for the matrix in the first column of

the corresponding row. Unsurprisingly, as the number of rewirings is increased, the

blocks in the matrices are gradually destroyed. However, the matrices for the first

few columns still appear similar to the original distance matrices. This suggests that

our distance measures are robust to networks containing false positive and negative

links.

In the final column of Fig. E.1, we see that for L rewirings (where L is the num-

ber of links in a network), much of the original block structure has been destroyed,

although some structure is still visible. The distance matrices in this figure were

produced using random rewirings in which the strength distribution and connectiv-

ity of the networks were maintained. Randomizations under these constraints only

destroy the community structure in the networks, so some of the network properties

remain unchanged. The persistence of some block structure even after L rewiring

suggests that our technique is able to identify this remaining structure. However, the

block-structure in the final column is clearly not as good as in the first column so, as

expected, the distances are less effective at clustering networks after their mesoscopic

structure is destroyed.

E.1.2 Complete rewiring

To ensure a more complete randomization of the networks, we now perform 10L

rewirings. If there were an equal probability of rewiring each edge then, on average,

every edge would be rewired 10 times. However, because we impose the constraints

2We study only 25 networks because of the computational costs of rewiring a large number of
networks multiple times; however, we have performed the same analysis for 5 different subsets of 25
networks and obtained similar results.

3Note that the node orderings for DH, DS , and Dη are not necessarily the same.
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Figure E.1: Block-diagonalized distance matrices DH (top row), DS (middle row),
and Dη (bottom row) for the 25 networks in bold in Table C.1. The columns show
the distance matrices following randomizations of the original network in which some
percentage of links are rewired and the degree distribution and connectivity of the
networks are maintained; the first column shows the distance matrix for the origi-
nal networks. The distance matrices for the randomizations are the mean pairwise
distances between networks, where the mean is calculated over all possible distances
between 10 random realizations of each network. The ordering of the nodes in each
of the distance matrices for randomized networks is the same as the ordering in the
matrices of the original networks.
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that the connectivity and the degree distribution must be maintained, this restricts

which edges can be rewired and results in a non-uniform rewiring probability.

To provide some insight into the fraction of edges that get rewired, we perform

1,000 randomizations of 10L rewirings for the Zachary Karate Club network [315]. For

each simulation, we find the number of different edges that exist at any stage during

the rewiring process as a fraction of the total number of possible edges [the number

of possible edges is given by 1
2
N(N − 1)]. For the case where the only constraint is

that the connectivity is maintained, on average 83% of the possible edges exist at

some stage of the rewiring process. The minimum fraction of edges that are visited

during any of the 1,000 randomizations is 79% and the maximum is 86%. For the

case where we add the additional constraint that the degree distribution must be

maintained, on average 61% of edges exist at some stage during the rewiring process,

with a minimum of 57% and a maximum of 66% during a single simulation.

We also calculate the number of times that edges that exist at any stage of the

rewiring process are themselves rewired. In Fig. E.2, we show the distribution of the

number of times any edge is rewired. Over 1,000 simulations, when we only maintain

network connectivity 96% of edges are rewired and when we also maintain the degree

distribution 98% are rewired. In the former case, each edge is rewired on average 1.7

times and in the latter case each edge is rewired on average 2.3 times. The average

number of rewirings is higher in the case in which we maintain the degree distribution

because there are fewer edges that allow the additional constraint to be satisfied and

consequently these edges exist and get rewired more frequently.

Figure E.3 shows the DH, DS, and Dη distance matrices for 10L rewirings.

The first column again shows the distance matrices for the original networks block-

diagonalized using the cost function in Eq. 6.15. The second and third columns then

show the distance matrices for randomizations in which the degree distribution is

preserved and destroyed, respectively. The node orderings of the matrices in the

second and third columns are again the same as the orderings for the matrix of the

first column of the corresponding row. The second column in Fig. E.3 demonstrates

that, when the degree distribution is maintained (even for “completely” randomized

networks), some block structure remains in the distance matrices. The third column

shows that when the degree distribution is not maintained, much of this structure

is destroyed, but that some block structure is still visible. When the networks are

“completely” randomized, with the only constraint being that the connectivity is

maintained, then one is in effect producing random graphs. These random graphs

might, however, have some common properties, such as the number of nodes and the
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Figure E.2: Distribution of the number of times each edge is rewired when we perform
10L rewirings on the Zachary Karate Club network [315]. We show the distribution
when (left) only the connectivity is maintained and (right) the connectivity and the
degree distribution are maintained. The results are aggregated over 1,000 simulations.

fraction of possible edges present (see Section 6.3.2). The presence of, albeit weak,

block structure in the final column of Fig. E.3 suggests that the MRF method is able

to identify some of these fundamental network properties.

The block-diagonalized distance matrices in Fig. E.3 suggest that the MRF dis-

tance measures we propose are robust and that our approach provides a good method

for identifying networks with similar mesoscopic structure across multiple scales.

They also suggest that our technique can still identify similar networks even when

the community structure has been destroyed, although the block-structure is not as

well-defined. The MRF method also seems able to identify similar networks once the

strength distribution has been destroyed, although the block-structure in the distance

matrices is then poorly defined.
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D
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original networks maintaining degree fully randomized

D
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D
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Figure E.3: Block-diagonalized distance matrices DH (top row), DS (middle row),
and Dη (bottom row) for the 25 networks in bold in Table C.1. The first column
shows the distance matrices for the original networks. The second column shows
the distance matrices following randomizations of the original network in which 10
times the number of links in the network have been rewired but under the constraints
that the degree distribution and connectivity of the networks are maintained. The
third column shows the distance matrices following randomizations of the original
network in which 10 times the number of links in the network have been rewired
but only the connectivity of the networks is maintained (i.e., the degree distribution
is destroyed). The distance matrices for the randomizations are composed of the
mean pairwise distances between the networks, where the mean is calculated over all
possible distances between 10 random realizations of each network. The ordering of
the nodes in each of the distance matrices for the randomized networks is the same
as the ordering in the matrices of the original networks.
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Robustness of MRFs and
Taxonomies to Alternative
Heuristics

In this section, we check that the MRFs and taxonomies described in Chapter 6 are

robust with respect to the choice of computational heuristic used to minimize the

Hamiltonian in Eq. 6.1.

F.1 Robustness of MRFs

In Fig. F.1, we show MRFs for three networks calculated using greedy [44], spectral

[221] and simulated annealing algorithms [141]. The three algorithms agree very

closely on the shapes of the H, S and η MRFs for all three networks. The MRFs

are most similar for the Roll call: U.S. Senate 102 network [203,241,306] with the H
MRF almost identical for the three heuristics. In general, the largest differences in the

shapes of the MRFs occur for the spectral algorithm, which is unsurprising given the

structure of the algorithm described in Section 5.10. However, these differences are

still small. Because we know that the spectral algorithm tends to find lower quality

partitions (see Fig. B.1), for the remainder of this section we will focus on the greedy

and simulated annealing algorithms.1

1If the spectral algorithm performed significantly faster than the other algorithms then it would
be worth investigating the effect of the lower quality partitions on the MRFs. If the MRFs were
similar despite the lower quality of the partitions then the increased speed might justify using the
spectral algorithm. In practice, however, the spectral algorithm converges on an optimal partition
slightly slower than the greedy algorithm. The greedy algorithm is therefore better both in terms of
computational costs and the quality of the partitions that it finds.
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Figure F.1: Comparison of the MRFs produced using greedy, spectral and simulated
annealing optimization heuristics. We show the MRFs for the (a) Zachary Karate
Club network [315] (b) Garfield: Small-world citations network [119] (c) Roll call:
U.S. Senate 102 network [203,241,306].
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F.2 Robustness of taxonomies

Although Fig. F.1 shows good agreement between the shape of the MRFs for the

different algorithms, we check nevertheless that the small differences that do occur do

not have a significant effect on the network taxonomy. Because of the computational

cost of detecting communities using simulated annealing, we investigate the effect on

the taxonomy using a subset of small networks (i.e., networks with up to a few hundred

nodes). The MRFs for small networks tend to be much noisier than the MRFs for large

networks (see, for example, Fig. F.1(a) showing the MRFs for the Zachary Karate

Club network which has only 34 nodes), so any differences between algorithms are

likely to be more pronounced for small networks than for larger networks. Therefore,

if the taxonomy is robust for a subset of small networks, we can be confident that it

will also be robust if we include larger networks.
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Figure F.2: Comparison of the dendrograms produced using a greedy algorithm and
simulated annealing for a subset of 15 networks.

F.2.1 Dendrogram correlations

In Fig. F.2, we show dendrograms for the greedy algorithm and simulated annealing

for a subset of 15 networks. On visual inspection the dendrograms apppear very

similar, with only a few small differences in the heights at which leaves and clusters

combine. To quantify the similarity between a pair of dendrograms, we define a

dendrogram correlation coefficient ϕ. Recall from Eq. 6.17 that for a dendrogram
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constructed from the PCA-distance matrix Dp with elements dp
ij using average-linkage

clustering, the distance tij between a node i in cluster C and a node j in cluster C′ is

given by

tij = dave(C, C′) =
1

|C||C′|
∑

i∈C

∑

j∈C′

dp
ij.

To compare dendrograms constructed using the greedy algorithm and simulated an-

nealing, with distances tij and sij between pairs of networks, respectively, we define

a dendrogram correlation coefficient ϕ as

ϕ =

∑

i<j

(

sij − s̄
)(

tij − t̄
)

√

[

∑

i<j

(

sij − s̄
)2
][

∑

i<j

(

tij − t̄
)2
]

, (F.1)

where s̄ is the mean of the distances sij and t̄ the mean value of the tij .
2 Dendrograms

with identical distances between clusters will have a dendrogram correlation ϕ = 1.

The dendrogram correlation for the example dendrograms shown in Fig. F.2 is 0.997.

This is clearly very high, but to judge exactly how high the dendrogram correlation

is we compare the observed correlations with those for random dendrograms.

F.2.2 Dendrogram randomizations

We first produce a distribution of dendrogram correlation coefficients for a larger

number of dendrograms. To produce the distribution of dendrogram correlations,

we calculate the MRFs for a subset of 25 networks using both algorithms.3 We

then randomly select 15 networks from this subset 10,000 times and for each selec-

tion generate the dendrogram distance matrix with elements tij for both algorithms

and calculate the dendrogram correlation coefficient. Using this procedure, we can

compare many different dendrograms, but we limit the computational cost by only

calculating the simulated annealing MRFs for 25 networks. However, we note that

even this is computationally quite intensive using the simulated annealing algorithm

because, to produce the MRF for each network, one still needs to detect communities

2The dendrogram correlation is similar to the cophenetic correlation given in Eq. 6.19. The
difference is that the dendrogram correlation compares the distances in two dendrograms whereas
the cophenetic correlation compares the distances between objects in a dendrogram with distances
in the underlying distance matrix.

3We mark the 25 networks with an asterisk ∗ in Table C.1.
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at many different resolutions.4 We compare the observed distribution of dendro-

gram correlation coefficients with the distribution for randomized dendrograms. For

each of the 10,000 subsets of networks, we create 100 randomizations of the simu-

lated annealing dendrogram and calculate the dendrogram correlation between each

of these randomized dendrograms and the corresponding unrandomized dendrogram

produced using the greedy algorithm. To produce random dendrograms, we use the

double-permutation procedure described in Refs. [182,183]. The randomization takes

place in two steps: First, we randomize the distances at which the different clusters

join together. For example, consider an unrandomized dendrogram in which clusters

A and B join together at a distance of 0.45 and clusters C and D join at a distance

of 0.65. After the randomization, A and B might join at at a distance of 0.65 and

C and D at a distance of 0.45. Second, we randomize the networks corresponding to

each leaf in the dendrogram. This randomization procedure maintains the distances

and the shape of the dendrogram.

In Fig. F.3 we compare the distributions of dendrogram correlation coefficients

between the greedy algorithm dendrograms and the unrandomized and randomized

simulated annealing dendrograms. The dendrogram correlation is clearly significantly

higher for the unrandomized case, with only a small overlap in the tails of the two

distributions. In fact, the dendrogram correlation between the greedy and simulated

annealing dendrograms is greater than 0.99 for 63% of the studied dendrograms.

To summarize this section, Figure F.1 shows that that there are small differences

in the MRFs generated for the different algorithms, but Fig. F.3 highlights that these

differences have very little effect on the resulting dendrograms. The results of this

section therefore demonstrate that the taxonomies that we create in Chapter 6 are

robust with respect to the choice of optimization heuristic.

4We detect communities at 150 resolutions for each network because this seems like a reason-
able compromise between the computational cost of detecting communities at a larger number of
resolutions and the noisy MRFs that result when we find communities at only a small number of
resolutions.
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Figure F.3: Distribution of the dendrogram correlation between dendrograms gener-
ated using the greedy algorithm and simulated annealing. To produce the distribution
of dendrogram correlations, we calculate the MRFs for a subset of 25 networks using
both algorithms. We then randomly select 15 networks from this subset 10,000 times
and for each selection generate the distance matrix corresponding to the dendro-
gram for both algorithms and calculate the dendrogram correlation coefficient. We
also show the distribution of dendrogram correlation coefficients for randomized data.
For each of the 10,000 subsets of 15 networks, we generated 100 randomizations of the
simulated annealing dendrogram and calculated the dendrogram correlations between
each of these random dendrograms and the corresponding unrandomized dendrogram
produced using the greedy algorithm. We describe the dendrogram randomization
procedure in more detail in the main text.
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[99] I. J. Farkas, D. Ábel, G. Palla, and T. Vicsek, Weighted network

modules, New Journal of Physics, 9 (2007), p. 180.

255



References

[100] R. R. Faulkner, Music on Demand. Composers and Careers in the Hollywood

Film Industry, Transaction Books, New Brunswick, NJ, USA, 1983.

[101] G. Feeney and D. Hester, Stock market indices: A principal component

analysis, Cowles Foundation, Monograph, 19 (1967), pp. 110–138.

[102] D. J. Felleman and D. C. van Essen, Distributed Hierarchical Processing

in the Primate Cerebral Cortex, Cerebral Cortex, 1 (1991), pp. 1–47.

[103] E. Ferguson and T. Cox, Exploratory Factor Analysis: A Users’ Guide,

International Journal of Selection and Assessment, 1 (1993), pp. 84–94.

[104] D. Firth and A. Spirling, Divisions of the United Kingdom

House of Commons, from 1992 to 2003 and Beyond, Working paper,

(2003). Available at http://www2.warwick.ac.uk/fac/sci/statistics/

staff/academic/firth/software/tapir/firth-spirling.pdf.

[105] S. Fortunato, Community detection in graphs, Physics Reports, 486 (2010),

pp. 75–174.
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currency exchange network, European Physical Journal B, 66 (2008), pp. 91–

96.

[134] C. W. J. Granger and P. Newbold, Spurious regressions in econometrics,

Journal of Econometrics, 2 (1974), pp. 111–120.

258



References

[135] M. S. Granovetter, The Strength of Weak Ties, American Journal of Soci-

ology, 78 (1973), pp. 1360–1380.

[136] P. D. Grünwald, I. J. Myung, and M. A. Pitt, Advances in Minimum

Description Length: Theory and Applications, MIT Press, Cambridge, MA,

USA, 2005.

[137] T. Guhr, A. Müller-Groeling, and H. A. Weidenmüller, Random-

matrix theories in quantum physics: common concepts, Physics Reports, 299

(1998), pp. 189–425.

[138] D. M. Guillaume, M. M. Dacorogna, R. R. Davé, U. A. Müller,
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