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Networks are a powerful tool to investigate complex systems. In this work, we apply

network–theoretic tools to study criminal, educational, and ecological systems.

First, we propose two generative network models for recruitment and disruption in a

hierarchal organized crime network. Our network models alternate between recruitment and

disruption phases. In our first model, we simulate recruitment as Galton–Watson branching.

We simulate disruption with an agent that moves towards the root and arrests nodes in ac-

cordance with a stochastic process. We prove a lower bound on the probability that the agent

reaches the kingpin and verify this numerically. In our second model, we propose a network

attachment mechanism to simulate recruitment. We define an attachment probability based

on an existing node’s distance to the leaf set (terminal nodes), where this distance is a proxy

for how close a criminal is to visible illicit activity. Using numerical simulation, we study the

network structures such as the degree distribution and total attachment weight associated

with large networks that evolve according to this recruitment process. We then introduce a

disruptive agent that moves through the network according to a self-avoiding random walk

and can remove nodes (and an associated subtree) according to different disruption strate-

gies. We quantify basic law enforcement incentives with these different disruption strategies

and study costs and eradication probability within this model.
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In our next chapter, we adapt rank aggregation methods to study how Mathematics

students navigate their coursework. We first translate 15 years of grade data from the

UCLA Department of Mathematics into a network whose nodes are the various Mathematics

courses and whose edges encode the flow of students between these courses. Applying rank

aggregation on such networks, we extract a linear sequence of courses that reflects the order

students select courses. Using this methodology, we identify possible trends and hidden

course dependencies without investigating the entire space of possible schedules. Specifically,

we identify Mathematics courses that high–performing students take significantly earlier than

low–performing students in various Mathematics majors. We also compare the extracted

sequence of several rank aggregation methods on this data set and demonstrate that many

methods produce similar sequences.

In our last chapter, we review core–periphery structure and analyze this structure in mu-

tualistic (bipartite) fruigivore–seed networks. We first relate classical graph cut problems to

previous work on core–periphery structure to provide a general mathematical framework. We

also review how core–periphery structure is traditionally identified in mutualistic networks.

Next, using a method from Rombach et al., we analyze the core–periphery structure of 10

mutualistic fruigivore–seed networks that encode the interaction patterns between birds and

fruit–bearing plants. Our collaborators use our network analysis with other ecological data

to identify important species in the observed habitats. In particular, they identify certain

types of birds (mashers) that play crucial roles at a variety of sites, which are though to be

less important due to their feeding behaviors.
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CHAPTER 1

Introduction

Networks are a powerful mathematical object to help understand data in our digital age.

Networks represent a group of entities (humans, animals, servers, subway stops, politicians,

college courses, films, websites, etc.) and the connections between them. They can model air-

plane flyways [38,111], political collaboration [149,176], pixels in an image [22,138], neuronal

pathways [17], online social communities [132, 198], plant-animal interaction [136, 137, 167],

and the authority of webpages [89, 166] to name but a few. Network science has matured

in recent decades because of its varied contributions from mathematics [27], physics [154],

social statistics [203], and computer science [72]. Generally, networks are a set of nodes

and edges. Each node represents an entity and each edge a pairwise connections (e.g. a

friendship in a social network or a hyperlink on the WWW). Many networks are described

using the terminology of graph theory [27]. In addition to nodes and edges, networks often

encode heterogeneous edge traits to study varied, nuanced relationships between nodes in

empirical data sets. For example, not all connections are symmetric and one employs di-

rected edges to encode such connections, as in a citation network [58]. In addition, an edge

weight can quantify the strength of a particular connection, such as the distance between

two airports [38,111] or the frequency two politicians vote on the same bill [154,176]. More

recently, multilayer networks model relationships across networks [111], where nodes or edges

between different networks can also be connected (though with a different edge type). Mul-

tilayer networks can model the evolution of political bodies over time [149] or the different

types of interactions (trophic, mutualistic, or parasitic) in ecological systems [169]. This dis-

sertation discusses the application of network science to model recruitment and disruption

in organized crime networks (Chapter 2), to study course selection at the university level
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(Chapter 3), and to investigate core–periphery structure in ecological networks (Chapter 4).

We have organized this dissertation so that each of the chapters can be read independently.

Each chapter develops its own mathematical machinery and discusses the pertinent related

work.

In Chapter 2, we model the evolution and disruption of a hierarchal organized crime

network. We propose two models to analyze recruitment and disruption in a hierarchal

organized crime network. For both models, we represent an evolving hierarchal structure

using a rooted tree, in which the root node represents the kingpin. We alternate between

a recruitment phase, in which new criminals are added, and a disruption phase, in which

a single disruptor moves through the network stochastically towards the kingpin. In our

first model, we study a recruitment phase simulated using a dynamical process from pop-

ulation biology (Galton–Watson braching [85]). We then introduce a disruptive agent that

climbs the network and arrests nodes according to a stochastic process. We prove a lower

bound on the probability that the network is eradicated depending on the initial conditions

of the model. In our second model, we propose a general attachment mechanism to simulate

recruitment. Our attachment model adds new nodes at a constant rate. Each new node

has a single edge and attaches to an existing node in the network according to an evolving

probability distribution. For this recruitment process, we assume that nodes without any

criminal underlings (terminal nodes) are those most involved in visible illicit activity. We

then define the attachment probability in terms of a criminal’s distance to these nodes with-

out underlings. Specifically, those that are closer to visible illicit activity are more likely to

recruit. We then study statistics associated to large networks generated from this recruit-

ment mechanism. We then introduce a single disruptor that moves through the network

according to a self-avoiding random walk. This agent may select nodes to arrest according

to certain disruption strategies. We numerically analyze the eradication probability and

costs related to these disruption strategies. Although these models are far from explaining

empirical criminal behavior, they introduce a template to quantify basic criminal and law

enforcement incentives for future study.

In Chapter 3, we study how Mathematics students at University California–Los Angeles
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(UCLA) navigate their coursework. We build several weighted, directed networks to model

the varied way that hundreds of students select their Mathematics courses. We weight each

directed edge according to the frequency one course was taken in an earlier term. We use

these networks to aggregate course selection habits, rather than focusing on numerous pos-

sible schedules and orderings. We apply rank aggregation methods [53,71] to uncover course

sequences and investigate possible trends in course selection and hidden dependencies be-

tween courses. Rank aggregation has been used to rank athletes [37], sports teams [53],

movies [71], or webpages [166]. This application applies the same techniques to extract a

sequence of courses. Using this methodology, we explore how different Mathematics ma-

jors (there are seven different Mathematics majors in total at UCLA) navigate their courses

and compare differences in the course selection of high– and low–performing students. Our

preliminary research suggest that certain classes taken early in a student’s schedule are in-

dicative of strong performance, and in future work, we plan to investigate causal relationships

between our extracted sequence and performance.

In Chapter 4, we review core–periphery structure in networks and discuss an application

to ecological networks. Core–periphery structure represents a fundamental mesoscale struc-

ture. Core nodes are those well-connected to an entire network and periphery nodes are

those connected to a network’s core, but not with each other. However, this is not a mathe-

matically precise definition and there has been a great deal of work to identify this structure

in networks [54, 120, 167, 176, 216]. We originally became interested in quantifying core–

periphery structure with total variation minimization, which enjoys great computational

efficiency [34,99,138]. In the first part of this chapter, we relate core–periphery structure to

several classical combinatorial optimization problems as a first step towards this end. Then,

we analyze core–periphery in an empirical ecological network. Typically, ecologists study

core structure using nestedness [16, 167]. Due to the recent advances in core–periphery de-

tection [176], there is great interest understanding the relationship between nestedness and

other core–periphery methods [119]. We briefly discuss the relationship between these two

notions and related open questions. Then, we analyze the structure in an ecological data

set collected from 10 sites in northeastern Argentina that encodes birds (fruigivores) and
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seed interactions using a particular method from [176]. Using our network analysis, our

collaborators identify several species that are core within the context of the interactions of

each site. They discover that certain types of birds (mashers) typically ignored in ecological

analysis play crucial roles in these ecological networks.
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CHAPTER 2

Growth and Disruption of a Hierarchical Criminal

Network

This chapter explores two new models for the growth and disruption of hierarchal organized

crime networks. In this work, a hierarchal crime network is modeled with a rooted tree. Each

criminal is represented by a node, their criminal connections by edges, and the network’s

kingpin by the root. Both models follow the same general organization. We first introduce

a recruitment mechanism to add nodes to the criminal network. We then measure certain

network structures such as the height or degree distribution when a network grows under

this recruitment. After studying this growth, we introduce a disruptive agent and a pursuit

mechanism specifying how this agent can remove nodes. We then allow networks to evolve

alternating between recruitment and pursuit phases. We perform a sensitivity analysis on

parameters associated to this network process.

The rest of the chapter is organized as follows. In Section 2.1, we discuss related work

on criminal organization and behavior. In Section 2.2, we propose a model for recruitment

and disruption in a criminal network based on a classical generative processes. We provide

a bound on the probability of the network’s eradication for a certain class of examples.

In Section 2.3, we introduce another model for recruitment and disruption and study the

process numerically. For the recruitment, we propose a new attachment mechanism using

graph distance. This discussion elaborates on our work in [127].
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2.1 Related Models for Criminal Organization and Behavior

In recent years, researchers have applied statistical mechanics, network science, partial dif-

ferential equations, and game theory to model criminal organization and behavior [39,42,65].

This interdisciplinary effort has shed light onto crime hotspots [43,185,186], community polic-

ing [19,64], gang rivalries [192] and recidivism [20]. In this work, we propose two models for

the recruitment and disruption on hierarchal criminal networks.

Large organized crime networks are successful illicit business operations. To avoid gov-

ernment detection, these networks are extremely secretive about their operations and mem-

bership. Crime researchers refer to such secretive criminal networks as dark networks [209].

Dark networks are those with nodes and the edges hidden, or at least partially so, from

possible disruptors [209]. Criminals balance the threat of arrest with the profits of greater

criminal collaboration. In addition to organized crime networks, dark networks encompass

a wide range of criminal networks including terrorist networks [209], drug trafficking net-

works [67], and gang networks [145]. Each class of dark network has a different power and

organizational structure. For this work, we concentrate on hierarchal organized crime net-

works such that nodes represent criminals and edges represent their professional connections

within the criminal organization.

Broadly speaking, network disruption may represent the destabilization of communica-

tion, operations, or decision processes in a network [67]. In our models and those we review

below, disruption is the permanent removal of nodes and edges. There are other mechanisms

to simulate network disruption that we do not consider. For example, network disruption

may be modeled as the temporary removal of nodes and edges [147, 148]. In other models,

disruption is the weakening of edges of a network to minize the flow of illicit goods such as

drugs [94,207].

There are three important parts of the disruption models we consider. First, a model

must specify the information available to this disruptive agent. For clarity of our discussion,

we assume that a single disruptive agent orchestrates all disruption. This information must

specify which nodes and edges the agent is allowed to remove. We refer to this as the
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disruption mechanism. Second, the model specifies one or more disruption strategies that

a disruptive agent follows in removing nodes and edges. Third, a model must specify a

disruption measure to evaluate the impact of a given disruptive act. In some models, the

agent uses this numerical quantity to inform their disruption strategy. Each of the models

we review and the new models that we propose in Section 2.2 and Section 2.3 specify these

three parts.

In [29], the authors proposed a disruption model in which the disruptor has complete

information of a network’s structure. The agent selects a node to remove according to

the measure of network fragmentation. Suppose a network has n nodes and k connected

components each of size si for i = 1, . . . , k. The fragmentation f of a network is

f = 1−
∑k

i=1 si(si − 1)

n(n− 1)
.

The fragmentation varies on a scale from 0 to 1, in which a network without any edges

has f = 1 and a connected network has f = 0. Using this measure, the agent selects a

node along with its incident edges to remove to maximize f for the resulting network. To

effectively compute f in these different scenarios, the disruptor must have full information

about a network’s structure. To address this shortcoming, the models of McBride et al.

studied disruption when only a portion of a network’s structure is known to the disruptive

agent [133, 134]. In their work, a disruptive agent can see all the nodes but only a portion

of the edges. This agent then removes a node and its incident edges using this limited

information. The agent’s goal is to minimize a measure of criminal activity that is determined

using the entire criminal network. The criminal activity of a network is given by

A =
n∑

j=1

cjdj,

where dj is the degree of each node j and cj are fixed positive scalars associated to each node

j. The degree of a node is the number of edges connected to this node. If the full network

structure is known and cj = 1 for all j, then removing the node with the largest degree

maximizes the decrease in A. However, the disruptor has only partial information about

a network’s edges–this information is determined as follows. The disruptor chooses some

7



subset of nodes uniformly at random to monitor. The edges that are visible to the disruptor

are those incident to at least one monitored criminal. In [134], the authors showed for this

model that, when cj = 1 for all j, a disruptor removing a node with highest monitored

degree maximizes the expected decrease in A for Erdős-Rényi random graphs [75]. Erdős-

Rényi graphs are a class of artificial networks that consider n nodes such that an edge

between any pair of nodes occurs with probability p ∈ (0, 1).

The above two models do not directly employ any criminal data. In [67], however, the

authors reconstructed a drug trafficking network using several years of Dutch police data

and designed a disruption model on top of this network. Their disruption model considers

an additional categorical variable called the role of a criminal–a role determines a criminal’s

contribution to drug production and distribution. These roles include the sale of drugs at

local coffee shops or the disposal of wastes during the care of illicit crops. Using these roles,

Duijn et al. defined a new network in which each node represents a different role. This

network is called the value-chain network. Edges between distinct roles in the value-chain

network are weighted by the number of times an edge connects two criminals with the same

roles in the original drug trafficking network. Duijn et al. studied several disruption mech-

anisms including the random removal of nodes or removal of all nodes whose role had the

highest degree in the value-chain network. Their model also considered several different

recovery mechanisms, in which, once nodes and edges are removed due to disruption, new

edges are created according to these mechanisms. Duijn et al. evaluated the disruption

mechanisms according to measures of efficiency and density. These measures were defined

using the structures associated to the drug trafficking network and the value-chain network.

For the several disruption strategies and recovery mechanisms they investigated, they con-

cluded that disruption become less effective over time as each recovery resulted in greater

decentralization (low density) and efficiency. In [209], Xu and Chen investigated a disruption

model both on artificial networks and several well-known terrorist networks. The agent’s dis-

ruption strategy is to first order the nodes from highest to lowest according to a particular

node centrality and then remove some proportion of nodes with highest centrality. Xu and

Chen investigated two centralities: degree and betweenness. Roughly speaking, the between-
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ness measures the proportion of shortest paths that a particular node i lies on between all

nodes. We define the betweenness gi as

g̃i =
∑

j 6=k
j 6=i;k 6=i

σjk(i)

σjk

where σjk(i) are the total number of shortest paths between j and k that pass through i, while

σjk are the total number of shortest paths from j to k. The model assumes that a disruptive

agent knows the full network structure and can thus compute these node centralities to

select those nodes to remove. They compared the efficacy of these two disruptions according

to the size decrease of the largest connected component. Measuring this size decrease, the

authors found that removing nodes with high betweenness was more effective than removing

nodes with high degree on the several terrorist networks they investigated. However, the two

strategies were comparable for a class of artificial networks similar to the Barabási–Albert

model [14]. The model we propose will simultaneously introduce new nodes (recruitment)

while a disruptive agent removes nodes and edges in search of a kingpin (pursuit). To our

knowledge, this alternation between two competing processes is a new way to organize and

understand criminal network disruption.

In the remainder of the chapter, we describe two growth disruption models. We focus

on hierarchal crime networks, commonly present in vertically-organized criminal networks

such as the Central and South American drug cartels [12, 13, 121, 131]. Both models are

organized so that they alternate between a recruitment phase and disruption phase. In the

recruitment phase, a recruitment mechanism specifies how new nodes enter a network. In the

disruption phase, a disruption mechanism specifies how a disruptive agent moves through

a network, remove nodes and can capture the kingpin. We henceforth label the disruption

mechanism as the pursuit mechanism as the disruptors primary objective is to capture the

kingpin. The two mechanisms lead to interesting dynamics and implications for criminal

network eradication.

9



This model Network theory

Criminal network Rooted directed tree

Kingpin Root

Criminal j Node j

Direct underlings of criminal j Children of node j

Underlings of criminal j Subtree under node j

Criminal superior of node j Parent of node j

Table 2.1: A table comparing the terminology used for our recruitment and disruption

model and that of standard network theory.

2.2 Criminal Recruitment and Disruption Model I

In this section, we propose our first model for criminal recruitment and disruption. This

section is organized as follows. In Section 2.2.1, we discuss the recruitment mechanism,

which is the Galton–Watson process. We provide numerical experiments to approximate

the height of such networks when the process terminates. In Section 2.2.2, we introduce the

pursuit mechanism. We specify how the agent investigates criminals and pursues the kingpin.

We provide a lower bound on the probability the kingpin is removed by the disruptive agent.

2.2.1 Recruitment Mechanism

Since its 1874 publication [85], the Galton–Watson process has become a powerful appara-

tus in population biology [62, 100] and random graph theory [7, 26, 125]. There are many

important variations of this process that model social phenomena [36,106]. In this work, we

use the Galton–Watson process to model criminal recruitment.

We now discuss the classical Galton–Watson setup, though we use the terminology of

criminal recruitment. All the material here is well-known and a rigorous treatment can be

found in [68]. Our discussion is heuristic.

The recruitment process is a generative network model. A network evolves according to
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this process. Networks we consider are rooted trees, in which the root represents a network’s

kingpin. Nodes represent criminals and edges are the professional ties between them. We

view such a network as representing a criminal hierarchy in which the orientation of edges

away from the kingpin determines relative seniority. We also refer to the node’s children as

the criminal’s direct underlings. We say the node’s underlings are the subtree consisting of

the node itself, the node’s children, their children, and so on. We also call a node’s parent

their superior. We summarize this terminology and relate it to standard network theory

in Table 2.1. In our model, only those recruited in the previous time step are eligible to

recruit. For clarity, we often assume that leaf nodes are initially the only nodes eligible to

recruit unless we state otherwise. Let the number of new criminals recruited by each eligible

criminal be independent and identically distributed as a nonnegative random variable ξ. Let

N0 be the initial network. We denote the recruitment process as R(ξ,N0). We write R(ξ)

when the initial network is the kingpin alone. In Figure 2.1, a network evolves according

to R(ξ) with ξ ∼ Pois(1.3). Each level indicates the order the nodes were added with the

kingpin at the top. The yellow nodes at the bottom of the figure are those who can recruit

during the next time step. Let the random variable Ct be the number of new criminals

recruited at time step t. For R(ξ), there is only one new criminal, the kingpin, and C0 = 1.

Additionally, for t > 0, we have

Ct =




ξt1 + ξt2 + . . .+ ξtCt−1

if Ct−1 > 0

0 if Ct−1 = 0,

(2.1)

where ξti for 1 ≤ i ≤ Ct−1 denotes the number of criminals recruited by the ith criminal at the

bottom of the network hierarchy during the time step t. All ξti are independent and identically

distributed with ξti ∼ ξ. Figure 2.1 shows the values of these random variables for the

particular example. At t = 1, the kingpin recruits two new criminals, so ξ1
1 = 2 and C1 = 2.

At t = 2, the left criminal recruits 1 new criminal into the network and the right criminal

recruits 2. Therefore, ξ2
1 = 1, ξ2

2 = 2, and C2 = 3. We say that criminal network process

terminates if Ct = 0 for some t > 0. Let pk := P (ξ = k) and ϕ(s) := E(sξ) =
∑∞

k=0 pks
k be

the probability generating function.
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Kingpin ξ1
1 = 2 C0 = 1

ξ2
1 = 1

ξ3
1 = 1

ξ2
2 = 2 C1 = 2

ξ3
2 = 0 ξ3

3 = 1 C2 = 3

C3 = 3

Figure 2.1: The recruitment process at t = 3 with ξ ∼ Pois(1.3). The darkest node

at the top is the kingpin. The yellow nodes at the bottom are those recruited at t = 3.

These yellow nodes are the only nodes eligible to recruit during t = 4. The variable ξti

indicates the number of criminals recruited at time t by the ith criminal previously added

during t − 1. We have enumerated criminals recruited at time t from left to right. The

variable Ct indicates the total number of criminals added at time t.
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Proposition 2.2.1. [107]. Consider a recruitment process R(ξ). Let r be the probability

the process terminates. The termination probability r is the smallest nonnegative solution to

the fixed-point equation

s = ϕ(s). (2.2)

We verify that r solves the fixed-point equation (Eq. (2.2)). If the kingpin recruits k

criminals, then the probability that a network terminates is rk. From this and the law of

total probability, we see that

r =
∞∑

k=0

P (ξ = k)rk =
∞∑

k=0

pkr
k = ϕ(r). (2.3)

The next proposition shows that such networks grow rapidly or terminate quickly.

Proposition 2.2.2. [68] Consider the recruitment process R(ξ) and let Ct be be the number

of new criminals recruited at time t. If λ = E(ξ), then E(Ct) = λt.

A proof is found in [68]. In summary, when λ > 1, the expected growth of a network is

exponential in time t. Moreover, the rate is E(ξ), the expected number of criminals recruited

per eligible criminal. When λ < 1, the expected number of criminals decreases exponentially,

implying that termination occurs quickly.

We now use these propositions to approximate expected height of a network. The height

of our network, a rooted tree, is the maximum distance from the root to another node in the

network. Let ht denote the height of a network at time t. For R(ξ), ht is equal to t as long

as a network has not terminated.

For the remainder of this section, consider R(ξ) with Poisson distributed ξ and E(ξ) = λ.

The probability generating function of the Poisson distribution is ϕ(s) = eλ(s−1) [68]. From

Proposotion 2.2.1, the smallest nonnegative solution to the equation s = eλ(s−1) determines

termination probability r. We know that s = 1 is a solution to the fixed-point equation Eq.

(2.2) for all possible λ. When λ ≤ 1, this is the only solution by the intermediate value

theorem. When λ > 1 there is a unique solution in (0, 1).
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For the remainder of Section 2.2.1, we consider processes of the form R(ξ) with ξ ∼
Pois(λ). We make the following assumptions to relate the expected height at which the

recruitment process terminates and the termination probability r.

Assumption 1. If a network reaches a large enough height m, then the recruitment process

does not terminate.

We give a heuristic justification of this assumption. By Proposition 2.2.2, the expected

number Ct of recruits at time t is λt. Because ht = t for R(ξ), it follows that E(Ct) = λht .

Moreover, the probability of termination becomes negligible as the number of criminals

eligible to recruit increases because the probability that the process terminates at t+ 1 is

P (ξt+1
1 = 0) · · ·P (ξt+1

Ct
= 0) = P (ξ = 0)Ct .

We see that P (ξ = 0)Ct → 0 as Ct →∞. We assume a stronger version of the contrapositive

of Assumption 1. Specifically, termination is completely characterized by the recruitment of

the kingpin.

Assumption 2. If a network terminates, the height is 0.

In the case when λ� 1, the above assumption can be justified similarly to Assumption

1. Specifically, P (ξ = 0) → 0 as λ → ∞. However, when λ ≈ 1, the assumption becomes

poorer as termination becomes more likely, so termination may occur at nontrivial heights.

Indeed our numerics confirm this. When λ→ 1− (λ approaches 1 from the left), the height

at termination is as large as 42, though averages never exceeded 8 when m = 100 for 10,000

simulations. For λ between 4 and 6, any terminating tree never grew past height 3.

We can now use these assumptions to investigate the mean height of these networks. Let

m be the height for which Assumption 1 holds. Let H be the random variable denoting the

height of R(ξ) after it terminates or reaches height m. Let the termination probability r

be as in Proposition 2.2.1. If Assumptions 1 and 2 hold, then the following approximation

holds

E(H) ≈ m(1− r). (2.4)
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We can also average the heights of several networks that follow R(ξ) to approximate E(H).

We call this average the experimental mean Ĥ. In Figure 2.2, we show the expected height

E(H) approximated as Ĥ and m(1 − r). Again, we note that the height for the process

R(ξ) with λ ≤ 1 may terminate with height larger than 0, contrary to Assumption 2. For

λ ≤ 1, the approximation m(1− r) is strictly smaller than E(H). In our numerics of Figure

2.2, the difference was no more than 8 in the regime λ ≤ 1. The approximation gets better

as λ increases past 1 as apparent from Figure 2.2. In particular, the experimental mean is

within one decimal place of the approximation m(1− r) for 10,000 simulations for λ ∈ [5, 6]

(not shown). We note that the approximation in Eq. (2.4) (when viewed as a function of λ)

has a discontinuous derivative with respect to λ at λ = 1 (confirmed in Figure 2.2), which

contrasts with the experimental mean Ĥ over 10,000 simulations. We expect that E(H) is

smooth with respect to λ as this is approximately a mean over several simulations and a

small change in λ should not impact the terminating height. However, the approximation

m(1− r) is proportional to the probability of the process not terminating. This must have

a derivative change change at λ = 1 between those process with r = 1 for λ < 1 and those

with r < 1 for λ > 1. This change in qualitative behavior at λ = 1 is referred to as a

phase-transition or critical-branching process [68]. In Section 2.2.2, we introduce the pursuit

mechanism. We then study the termination probability of this new process using the same

assumptions we discussed in this section.

2.2.2 Pursuit Mechanism

In this section, we introduce the pursuit mechanism of this model. The agent has an op-

portunity between each recruitment to investigate and arrest criminals in a network. The

agent’s primary objective is to reach the kingpin during one of these pursuit phases. The

recruitment here is identical to the mechanism associated to R(ξ,N0) discussed in Section

2.2.1. We assume that ξ is Poisson-distributed or constant. The initial rooted tree N0 must

have nonzero height otherwise the disruptor always captures the kingpin. The agent selects,

uniformly at random, one of the nodes eligible to recruit and then investigates this node.

The agent then moves up a network by one edge to the node’s superior with some probabil-
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Figure 2.2: We estimate the expected height E(H) in two different ways for varying

λ for R(ξ) and ξ Poisson-distributed with mean λ. First, we estimate E(H) using the

experimental mean Ĥ over 10,000 simulations. We set the height threshold m = 250

and stop the recruitment process when this height is reached. Alternatively, we inspect

m(1− r), numerically solving for r using Eq. (2.2) with ϕ(s) = eλ(s−1).
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ity z. Each upward movement indicates a successful investigation by the agent. This might

reflect successful surveillance or a criminal informing on their superior. A successful inves-

tigation permits the agent to continue their pursuit of the kingpin. When the agent reaches

the kingpin, the agent captures the kingpin, and eradicates the criminal network. Once the

agent fails to move upward in a network, the agent arrests the criminal under investigation

and all of their underlings. The probability of a failed investigation is 1 − z. Removal of

the subtree of a network slows the growth of a network because it removes several nodes

eligible to recruit. After making an arrest, the agent has to wait until the next time step,

after another recruitment occurs. To reach and capture the kingpin, the agent must make

consecutive investigation successfully. In certain instances, the agent effectively eradicates a

network even when this agent does not reach the kingpin. This occurs when the subtree that

the agent removes includes all nodes eligible to recruit. In this situation, the recruitment

process does not move forward. The agent is then able to eradicate a network in some finite

time. The longer the kingpin is not captured and a network grows, the harder for the agent

to reach the kingpin. A network terminates when either the agent reaches the kingpin or

removes all nodes that are eligible to recruit. We use the notation P(ξ,N0, z) to refer to

the alternating recruitment process with the parameters ξ, N0, and z. In Figure 2.3, we

illustrate the first pursuit process of P(ξ,N0, z) with ξ ∼ Pois(1.3), z ∈ [0, 1] and N0 as in

Figure 2.1. The agent begins their pursuit at v1, moves to v2 and ends at v3. Two successful

investigations up the network occur with probability z2. Their failure to move up once more

results in an arrest of the node v3 and all of their underlings. The arrested criminals are

indicated in blue with a thick boundary. The network is not eradicated because there is still

a yellow node eligible to recruit at the bottom right labeled l.

For the process P(ξ,N0, z) with ξ = c and c > 0, we can bound the probability of

termination r from below. For clarity, we will consider initial networks that are perfect trees.

A perfect b-ary tree of height h is a tree such that all internal nodes have exactly b children

and leaf nodes have distance h from the root. We call b the branching factor of such a

network.

Proposition 2.2.3. Let P(ξ,N0, z) be an alternating recruitment and pursuit process with
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v3

v2

v1 l

Figure 2.3: An example of a P(ξ,N0, z) during the first time step. Let N0 be the

network found in Figure 2.1. Let z ∈ [0, 1] and ξ ∼ Pois(1.3). The agent uniformly at

random selects a node eligible to recruit; these are the yellow nodes in Figure 2.1. The

agent begins their investigation at v1, moves to v2, and then ends at v3. At v3, the agent is

unable to move upwards once more and removes the subtree below their current position.

The arrested criminals are in blue with thick boundary. The yellow node at the bottom

right, labeled with an l, is still able to recruit, and the network has not been terminated.
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ξ = c > 0 and c ∈ Z. Let the probability of a successful investigation be z. Let N0 be a perfect

tree of height 2 in which only leaves are eligible to recruit . If rk denotes the probability the

agent reaches the kingpin while there are still nodes eligible to recruit, then:

rk =
z2

1 + (z2 − 1)z
.

In particular, the termination probability r is bounded below by rk, that is r ≥ rk.

For the proof, see Section 2.2.2.1. We note that the argument in the proof can be adapted

for an initial perfect tree of any height and any branching factor as long as only leaf nodes

are eligible to recruit. The proof assumes the agent does not remove all criminals who are

eligible to recruit, a valid method for terminating the process P(ξ,N0, z). When ξ = 1, a

single arrest guarantees all criminals eligible to recruit have been removed and termination

probability r is 1. However, for ξ = c > 1, a more rigorous treatment of this stochastic

network process would be required and is beyond the scope of this work.

Proposition 2.2.2 also provides an upper bound for the expected height of a network.

We use Assumptions 1 and 2 again for the process P(ξ,N0). Assumption 2 now holds

because the termination of a network occurs precisely when the agent reaches the kingpin

and then arrests all criminals. In other words, the height is 0. However, Assumption 1 may

not lead to appropriate approximations of E(H). As z increases, the agent has a higher

probability of reaching the kingpin even for networks with large height. In particular, as the

height reaches m, there is a nontrivial chance of termination. In our numerics, we observed

that the maximum height over terminating networks did not reach a height of m = 100

for z ∈ [.9, 1]. In other words, as z gets very close to 1, networks terminate quickly, so

Assumption 1 is acceptable in this regime. For z ≤ .9, we observed in our numerics (not

shown) an increase in m from 100 to 200 also increased the probability of termination, though

the probabilities of termination only changed in their second decimal. We conjecture that

the probabilities of termination converge for large enough m and that indeed Assumption 1

is acceptable. Precisely, if rm is the approximation of the termination probability r when we

stop a network once it reaches height m (Assumption 1), then we conjecture that rm → r as
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Figure 2.4: The experimental mean Ĥ and the upper bound from Eq. (2.5) for various

z. We use 10,000 simulations to compute Ĥ and initialize a network to be a perfect binary

tree of height 2. We set the height threshold m to be 250.

m→∞. We approximate the mean height and determine an upper bound:

E(H) ≈ (1− r)(m− 2) + 2 ≤ (1− rk)(m− 2) (2.5)

where we have assumed the height of N0 is 2. In Figure 2.4, we compare the bound of Eq.

(2.5) to Ĥ. Observe that the discrepancy between our bound and Ĥ grows as z increases

away from 0 and then decreases for z close to 1. We expect that as z increases there are

more instances in which a network is eradicated due to the removal of all nodes eligible to

recruit. However, as z approaches 1, we expect the agent to reach the kingpin while the

network is still growing and rk ≈ r.

2.2.2.1 Proof of Proposition 2.2.2

In this section, we prove Proposition 2.2.2.

Proof of Proposition 2.2.2. Let rk be the probability the agent reaches the kingpin while a
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network has criminals eligible to recruit. There are two cases to consider. The first case is

when the agent reaches the kingpin at t = 0. This requires two successful investigations and

has probability z2. The second case is when t > 1. Because we assume a network still has

criminals eligible to recruit, the height of this network increases by 1. Reaching the kingpin

now requires an extra successful investigation and the probability is zrk. By the law of total

probability, rk = z2 + (1 − z2)zrk. Solving this equation for rk determines the bound. As

noted in the hypothesis regarding the existence of criminals eligible to recruit, rk does not

consider termination when the agent’s arrests removes all criminals eligible to recruit.

2.2.3 Conclusions from Model

In this section, we introduced a model for the recruitment and disruption of a hierarchal

organized crime network. The recruitment mechanism adapts a well-known tree model from

population biology known as the Galton–Watson process [85]. The disruption mechanism

introduces an agent that removes nodes from a network after each recruitment. The agent

moves up through a network beginning at those nodes eligible to recruit. Each movement

upwards is a successful investigation. When the investigations fail and the agent does not

move upwards, the agent arrests the criminal under investigation and all of their underlings.

If the agent reaches the kingpin, the entire process terminates. The model alternates between

these recruitment and pursuit phases.

We briefly explored the disruption process numerically and theoretically. We measured

the likelihood an agent terminates the network process (i.e. reaches the kingpin) and the

expected height of such networks. We also related these quantities to model’s parameters

and initial conditions. To do so, we recalled a fixed-point equation (Eq. (2.2)) to determine

the termination probability for the Galton–Watson process. Using this formula, we approx-

imate the expected height of networks that grow according to ξ ∼ Pois(λ) and do not grow

past some fixed height m. In Figure 2.2, we showed numerically that our approximation is

reasonable comparing this approximation to the experimental mean Ĥ. We observed some

discrepancies in our approximation, particularly for λ near 1. In this regime, the expected
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height E(H) has smooth derivative, whereas our approximation does not. However, the

method for obtaining the approximation exploits the recursive nature of the recruitment

process and can be adapted for the full disruption model. Using the same setup, we inves-

tigate the termination probability and expected height of networks for the full disruption

model. We provide a lower bound on the probability of termination for a special class of

networks in Proposition 2.2.2. We again numerically approximate the expected height of

networks using this proposition and investigate the bound for various z ∈ [0, 1]. We did not

give precise analytic formulas for the termination probabilities nor the heights of terminating

networks, even in the special case ξ = c > 0. These questions we hope to answer in future

work, though we will require a more rigorous framework.

Unfortunately, this model in its current form is far from explaining the complex formation

and disruption of real-world criminal networks. Ultimately, we hope this work provides

researchers with new tools for modeling the recruitment and disruption on a criminal network.

2.3 Criminal Recruitment and Disruption Model II

In this section, we describe a different model for recruitment and disruption on an organized

crime network [127]. Our recruitment mechanism introduces a model for attachment. We

then propose a disruptive mechanism and examine various disruption strategies for a disrup-

tive agent. The rest of the section is outlined as follows. We first provide a general overview

in Section 2.3.1 of the recruitment and pursuit model. We then elaborate on the specific

construction of the recruitment mechanism and its numerics in Section 2.3.2. In Section

2.3.3, we propose a disruptive mechanism and various disruption strategies for the agent

to follow. We propose measures to study the effectiveness of these disruption and briefly

explore them numerically. Finally, in Section 2.3.4, we evaluate the disruption strategies and

discuss future work.
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2.3.1 Model Overview and Related Network Processes

In this section, we overview the recruitment and pursuit mechanisms of this model. Our

model alternates between two phases: the recruitment of criminals into the network and

the subsequent disruption by law enforcement. We define the processes precisely in Section

2.3.2 after providing this high level overview of our model and review of related processes

on networks.

To recruit new criminals into a network, we propose a new attachment mechanism, a

schematic of which we show in Figure 2.5. An attachment model refers to a diverse class

of generative network models in which nodes are added to a network and attach to existing

nodes according to an evolving probability distribution [154]. An attachment model begins

as an initial network at t = 0 and then new nodes are added during each subsequent discrete

time step t (t = 1, 2, . . .). Each incoming node has a positive number of edges and each edge

attaches to an existing node according to a probability distribution that evolves with t. The

number of incoming nodes and the number of edges per incoming node can change from time

step to time step [58, 154]. Such attachment models considers either directed networks [58]

or undirected networks [14]. The evolving probability distribution is determined according

to a non-negative quantity called the attachment weight w(j; t) that depends on the existing

node j and the time step t. These attachment weights are often a function of node centrality

(e.g. degree). If an incoming node i has m edges and each edge attaches to the network

independently, then each edge attaches to an existing node j at time t with probability:

p(i, j; t) =
w(j; t)∑

i′∈V(t) w(i′; t)
,

where V(t) are the nodes in the network at time t. Certain models specify that edges from

an incoming node are not permitted to the same node in the network [154]. For such models,

each edge’s probability of attachment is no longer independent and the probability p(i, j; t)

that an incoming node i attaches to node j for a particular edge changes as each of i’s

edges attach to the network. Some attachment models also introduce mechanisms for the

stochastic removal and addition of nodes and edges [47, 50, 142]. In [47, 50], nodes follow

a normal attachment mechanism with probability α1, delete nodes uniformly at random
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with probability α2, delete edges uniformly at random with probability α3, and add edges

between existing nodes are added with probability α4. In addition to the constraint that

α1+α2+α3+α4 = 1, the parameters α1, α2, α3, and α4 are chosen to ensure that the expected

number of nodes and edges in a network at time t are both monotonically increasing (i.e.

the expected size of the network grows over time, which is normally the case for attachment

models).

We presented a definition of attachment weight is non-standard, and we now relate our

notion of attachment weight to standard attachment model constructions. The most studied

attachment models are those in which the degree determines the attachment weight w(j; t).

That is,

w(j; t) = ηjf(dtj),

where f : R≥0 → R≥0, ηj is a non-negative parameter depending on the node j, and dtj is

the degree of node j at time t. When ηj = 1, f is known as the attachment kernel [101,113].

When f(dtj) = dtj and ηj is some positive parameter depending on each j, then ηj is known

as the fitness of a node [24]. When f is monotonically increasing, such models are known

as preferential attachment models [14, 21, 58]. Preferential attachment models capture the

heuristic that the “rich get richer” [14] or “cumulative advantage” [187] with respect to

degree, meaning that nodes with the greatest degree are the most likely to increase their

degree in future time steps. Udny Yule used a stochastic mechanism, which has since been

shown to be equivalent to a particular preferential attachment model [21], to describe the

distribution of species in genera over time [215]. Herbert Simon generalized this model

to discuss the distribution of words in prose and the distribution of wealth [187]. More

generally, the stochastic process known as the Polya urn model is equivalent to a large class

of preferential attachment models [21, 46]. Although the preferential attachment models

of Yule, Simon, and Pólya do not explicitly consider networks, the analysis has proven

crucial for the mathematical investigation of preferential attachment [21,68]. Derek de Solla

Price used a preferential attachment model to describe the directed network of academic

citations [58]. Barabási and Albert proposed an undirected preferential attachment model
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to study the growth of the World Wide Web (WWW) [14, 102]. Although the Barabási–

Albert model renewed interest in the preferential attachment models, there is significant

doubt as to their claim that preferential attachment describes the creation of webpages and

links on the WWW [2,205].

An important feature of networks that grow according to preferential attachment is their

degree distributions. Let P (d; t) be the probability a node chosen uniformly at random on a

network has degree d. We refer to P (d; t) as the degree distribution at time t. Because we

are interested in the degree distribution for large t, we consider the formal distribution as

t→∞. Assuming this distribution is well defined [68], we denote this limiting distribution

as P (d; t→∞) or P∞(d). To investigate this limiting distribution, one usually measures the

degree distribution for sufficiently large t. For a wide class of attachment models, Chayes

et al. showed that as t → ∞, the degree distribution P∞(d) ≈ Cd−α for suitable positive

constants C and α. The degree distributions of the form Cd−α obey a power law. More

generally, the degree distributions of attachment models are heavy-tailed if

lim
d→∞

e−d

P∞(d)
= 0.

In [14], a large subset of the WWW was measured to have degree distribution approximately

Cd−3. Measuring a heavy tail distribution on a network does not imply that a preferential

attachment mechanism accurately describes the method of attachment [2, 205]. For exam-

ple, for certain large subsets of the WWW, there was no correlation between the number of

links on a webpage and the time it was created as the Barabási–Albert preferential attach-

ment model suggests [2]. Additionally, measuring the link structure of webpages is quite

complicated, and can erroneously detect high degree nodes [205]. There are several more

statistical challenges to validating a power-law distribution on real-world degree distribu-

tions [88, 122, 194] In light of these challenges, it has been reported that scientific citation

networks is governed by some preferential attachment mechanism [153]. Generally speaking,

validating any attachment mechanism (preferential or otherwise) requires careful statistical

analysis beyond the simple measurement of a network’s degree distribution.

There are some attachment models that consider quantities other than degree. For ex-
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ample, in [25, 40], each node has an associated feature vector xi of dimension N encoding

some node metadata. In [25], the attachment weight depends only on these feature vectors

and is independent of the time step t. The attachment weight was defined as

w(i, j) =
N∑

k=1

ωk
1 + νk · dk(xki ,xkj )ζk

, (2.6)

where ωk, νk and ζk are positive constants; xki aren xkj are the kth feature of xi and xj

respectively; dk(·, ·) is a distance function in which two nodes with relatively high similarity

with respect to their features xki and xkj have relatively small distance with respect to dk.

The authors claimed that their generative model shared similar statistics with the Pretty

Good Privacy (PGP) network such as the distribution of the local clustering coefficient. The

local clustering coefficient of a node j is the proportion of pairs of nodes adjacent to j that

are themselves connected. If a node j has nj neighbors, then the local clustering coefficient

cj of a node j is

cj =
|{est | s and t are adjacent to j}|(

nj
2

) ,

where est denotes the edge between nodes s and t. The authors then studied the mean

of the local clustering coefficient of nodes with degree k both in their attachment model

as well as the PGP network. Because the similarity considered in [25] is transitive (two

nodes that are similar to a third node are similar to each other), the attachment model

produces networks with high local clustering coefficient relative to those generative models

in which edges are assigned uniformly at random such as the Erdős-Rényi model [75,154]. In

particular, the local clustering coefficient can be used to differentiate this generative process

from the Erdős-Rényi model [154]. However, the several parameters and inputs such as

xi, dk, ωk, ζk, and νk makes validating this generative mechanism in real-world networks

extraordinarily challenging.

We now propose a new attachment mechanism for our recruitment phase. In our model,

incoming nodes have attachment weight negatively correlated with the distance from the leaf

set. This distance between a criminal and the leaf set represents the criminals distance to

visible illicit activity. We refer to this visible illicit activity as street activity. Therefore, our
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model specifies that leaf nodes are the closest to street activity with distance 0. We refer

to leaf nodes as street criminals. The closer a criminal is to visible street activity the more

vulnerable they are to detection and arrest [1]. Indeed, in organized crime networks, senior

criminals maintain a buffer between themselves and any direct illicit activity [51, 109, 143].

Our model introduces new nodes at constant rate and they attach to one existing node of

the network preserving the hierarchal structure. The attachment weights reflect that street

criminals have the greatest visibility to new recruits due to their visible street activity [61].

The constant rate mechanism assumes that a criminal network can continue to recruit from a

large pool of criminals. For large Central and South American drug cartels, this is often the

case as their substantial revenue streams provide incentive to poor populations to join their

ranks [66, 121]. In fact, such cartels can even lure middle-class, highly-trained soldiers and

military personal away from their government jobs due to the promise of higher pay and a

more lavish lifestyle [66]. We provide a precise mathematical formulation of this recruitment

in Section 2.3.2.

Now we turn to the pursuit phase of the model. Our pursuit mechanism simulates an

agent’s whose primary target is the kingpin of a criminal network. When a criminal enter-

prise is large, arresting low-level criminals may not be effective as such criminals are usually

the most easily replaced [1, 12]. Law enforcement thus pursue the so-called “kingpin strat-

egy” targeting the highest ranking criminals for arrest [108]. For instance, the Colombian

government in collaboration with the Drug Enforcement Administration (DEA) successfully

employed this strategy against the Medelĺın cartel targeting Pablo Escobar and his inner

circle [108]. The Mexican government is pursuing the same strategy in its current war on

drugs [165], although with mixed results.

In a pursuit phase, the agent begins their pursuit from visible street criminals, pro-

gressively moving to more nested criminals. Each node encountered by law enforcement

represents an investigation, and their path is determined using a self-avoiding random walk.

Because the agent’s information about the criminal network is incomplete or inaccurate,

their movements may appear random to a neutral observer with perfect information. At any

point during the pursuit, the criminal under investigation can be arrested with all of the
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This model Network theory

C(t): Criminals (including kingpin) at time

t

Nodes (including root) at time t

S(t): Set of criminals without underlings

(street criminals) at time t

Set of leaves at time t, (nodes of out-degree

0)

C(t)\S(t): Set of criminals with at least one

underling at time t

Internal nodes (nodes with out-degree at

least 1) at time t

Table 2.2: A table comparing the terminology used in this paper and that of standard

network theory.

node’s associated underlings. Although we refer to node removal as “arrest”, the removal

can also represent exile, extradition, or assassination [31,196]. Because the overall structure

of a network is unknown to the agent, the random walk may also lead to another street

criminal with no further investigation possible. In this case, the pursuit is terminated and

deemed unsuccessful. If instead the kingpin is reached, the kingpin is captured and the crim-

inal network is eradicated. We remark this fundamental assumption that kingpin capture is

equivalent to the network’s eradication underlying this disruption mechanism is invalid for

decentralized networks such as terrorist networks and gang networks [114,144].

We employ the same criminal terminology for network structures as in Section 2.2. A

summary of this terminology is found in Table 2.1. In Table 2.2, we list additional terminol-

ogy we require along with the corresponding network theory terms. As mentioned before,

our criminal network is a tree with criminals as nodes and the kingpin as the root. The edges

are directed away from the kingpin, from superior to underling in the power structure. The

street criminals are leaf nodes while the nodes above the leaves are internal nodes. Internal

nodes are those nodes that are not leaf nodes, or equivalently, those nodes that have out-

degree at least 1. We use the criminal terminology interchangeably with those from network

science.
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Figure 2.5: A simulated recruitment process for t = 0, 1, 2, 3. The network starts with

a single criminal (the kingpin) and then evolves according to the proposed attachment

mechanism. Here the number of new criminals introduced into the network is given by

the recruitment index k = 5. The leaf nodes (light yellow) represent criminals without

underlings. In our model, these leaf nodes are called street criminals. Of these, the nodes

with the darker boundary are those freshly recruited at a given time step. For example,

the number of street criminals when t = 3 is 8, of which 5 are new recruits.
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2.3.2 Recruitment Mechanism

We now precisely define the recruitment process. We start with an initial tree. We often

assume the network begins as a the kingpin alone for clarity. The network recursively evolves

so that with each new time step, new criminals and edges are added to the existing network.

Let C(t) denote the set of criminals at time t. Let S(t) be the set of leaf nodes, also referred

to as the set of street criminals. Let dist(j; t) denote the graph distance separating node j

from S(t) at time t. Recall the distance between a node j and a leaf node is the shortest

path between them. The distance from a node j to the set S(t) is the minimum of all such

distances. From t to t+ 1, we add k new recruits to the network according to an attachment

mechanism. Every node j is assigned a attachment weights w(j; t). We define w(j; t) to be

w(j; t) =
1

dist(j; t) + a
, (2.7)

where a is a positive parameter. Roughly speaking, w(j; t) determines the proximity of

criminal j to visible street activity on a scale from 0 to 1. If node j is a street criminal and

a = 1, then dist(j; t) = 0 and w(j; t) = 1/a = 1, the maximum possible value. However,

as the network keeps growing, internal nodes j that have been in the network for large t

can become progressively more detached from street activity with d(j; t) becoming large for

such nodes j. Before adding criminals, we first evaluate w(j; t) for all existing nodes in the

network. We then introduce k new criminals and link them to a single existing criminals with

probability proportional to w(j; t). Specifically, this probability p(i, j; t) that an incoming

node i attaches to node j is

p(i, j; t) =
w(j; t)∑

i′∈C(t) w(i′; t)
. (2.8)

Note that each existing node can recruit multiple nodes within a single time step, though

each new recruit is connected to a single node. We call k the recruitment index. In Figure 2.6

we show a particular network configuration, including the explicit weights w(j; t) assigned to

each criminal j. Note that as the weight parameter a approaches ∞, the attachment weight

w(j; t) becomes identical for all nodes j. In this instance, the recruitment process reduces

to the recursive tree model [126, 189]. If the parameter approaches 0, then recruitment is
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Figure 2.6: The criminal network at t = 3 with the values of w(j; t) shown. Here, the

recruitment index k = 5 and the initial configuration consists of a single kingpin. All

criminals j in S(t) have attachment weight w(j; t) = 1.

limited to street criminals and the model reduces to the model from Section 2.2 with ξ = k.

We set a = 1 so that the model balances the two different attachment weights that govern

these other models.

2.3.2.1 Out-degree Distribution

We numerically examine the statistics associated network properties associated with the

recruitment process. We first study the degree distribution (specifically, the out-degree). The

out-degree represents number of direct underlings of a criminal. For example, in Figure 2.6

the out-degree of the kingpin is 5. Of these five, the upper left two have out-degree 1

and the other three have out-degree 2. Let P (d; t) equal the probability a node selected

uniformly at random has out-degree d at time t. At the beginning of network growth, when

the only criminal present is the kingpin, P (0; 0) = 1. As the number n of nodes increases,

we conjecture that for d ≥ 1, P (d; t→∞) can be approximated as

P∞(d) ≡ P (d; t→∞) = c1e
−c2d, (2.9)
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Figure 2.7: The out-degree distribution P∞(d) of nodes on a criminal network deter-

mined from numerical simulations for t → ∞. The three curves correspond to recruit-

ment indices k = 1, 10, 20. We terminate a simulation when the total number of criminals

reaches or exceeds 5× 103. Each curve for P∞(d) represents 100 simulations. The tail of

the degree distribution is noisier as high degree nodes are rarer than low degree nodes.

As discussed in the text, we fit the distribution to a decaying exponential distribution.

The numerics indicate that P∞(d = 0) ≈ 0.39 for all the values of k we considered.
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Parameter Description

t Time

k
Recruitment index: number of new criminals added to the net-

work at each time step

a attachment weight parameter in w(j; t); often set to 1

n
Number of criminals on network at time t; when network begins

as kingpin alone obeys n = kt+ 1

Table 2.3: The parameters of the recruitment mechanism.

for constants c1, c2. In Figure 2.7, we plot the conjectured distribution of Eq. (2.9) versus the

degree distribution averaged over 100 different network realizations. In these computations,

we grow a network until there are 5 × 103 total criminals. We expect that as t→∞ most of

the new criminals connect to existing street criminals, resulting in P∞(d = 0) ≈ P∞(d = 1).

Using this approximation and Eq. (2.9) for d ≥ 1, we expect c1, c2, P∞(d = 0) to be related

by

c1 ≈ [1− P∞(d = 0)](ec2 − 1). (2.10)

We observe that when c1 and c2 are numerically fit with Eq. (2.9), then the relationship

between c1 and c2 specified with Eq. (2.10) is valid to 1 decimal place. In Figure 2.7, we

vary the recruitment index k between 1 and 20 and do not notice substantial variations in

c1 and c2. We also examine networks with 500 criminals (not shown) and find that their

degree distributions are well approximated with the exponential form of Eq. (2.9). These

results suggest that, as t→∞, the degree distributions converge P (d; t)→ P∞(d) and this

distribution P∞(d) is independent of k. In Section 2.3.2.3, we give further evidence that

P∞(d = 0) is independent of k. Using this degree distribution, we see that the expected

out-degree d is given by

〈d〉 ≈ c1

∞∑

d=1

de−c2d =
1− P∞(d = 0)

1− e−c2 ≈ 1. (2.11)
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For any large rooted tree, the mean out-degree approaches 1 because

〈d〉 =
|E|
|V | =

n− 1

n
→ 1

as n → ∞, where n is the number of nodes and we recall that a tree has precisely n − 1

edges. As in other attachment models in which all incoming nodes have the same number

of edges [68], we expect as t→∞ that the mean out-degree 〈d〉 to approach the number of

new edges per incoming node, which in our model is 1.

2.3.2.2 Criminal Density and Position

We now focus on the distribution of distances from the kingpin–the distances from the

root node. In Figure 2.8, we stop the process at a fixed time t, and then we measure the

distribution ρ(y), which is the fraction of criminals at a distance y from the kingpin. We fit

ρ(y) to a shifted gamma probability density [21]

ρα,β,s(y) =
βα

Γ(α)
(y − s)α−1e−β(y−s) (2.12)

for y > s and α > 1. Our choice is motivated by the fact that this distribution is supported

on the positive y-axis. Using the fitted values of ρα,β,s(y) the probability that a criminal is

a distance y from the kingpin can be estimated by

∫ y

s

ρα,β,s(y
′) dy′. (2.13)

Figure 2.8 shows that as t increases, the expected distance from the kingpin increases. Ad-

ditionally, examining different initial conditions, we see that the shifted gamma probability

density appears to be a good approximation for ρ(y). We expect the parameters associated

to the distribution to depend on k, the initial configuration of the network, and the time t

which ρ(y) is measured.

2.3.2.3 Street Criminals

We now study the population of street criminals over time. Recall the street criminals are

the leaf nodes of a network. By our construction of the recruitment process, street criminals
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Figure 2.8: We show the distribution of distances from the kingpin. These distributions

are the average over 100 runs, stopping each simulation at t = 100, 200, or 300. We set

the recruitment index k = 10 and the initial configuration to be the kingpin alone. We

then fit the measured distributions using a shifted gamma density ρα,β,s(y) (Eq. (2.12)).

We label this fit γ-distribution as γ(α, β, s).
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Figure 2.9: (Top) The number s(t) of street criminals as a function of time t for

recruitment rates k = 10, 50, 100. In each simulation, we terminate the recruitment

process when the total number of criminals exceeded 5 × 103. Each data point is the

average of 250 simulations. We fit the data to s(t) = rst+1 and expect rs ≈ P∞(d = 0)k,

where P∞(d = 0) ≈ 0.39. This scaling is confirmed with the fit values of rs in the legend.

(Bottom) The slope values rs as a function of k with the rs values from the top display

shown in dark symbols with corresponding shapes. We then fit the data with a line as

indicated in the bottom legend, providing evidence of our conjecture rs ≈ P∞(d = 0)k.
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Figure 2.10: Schematic of the addition of new nodes from time t to time t+ 1. Here,

the recruitment index k is 3. We depict the leaf nodes in yellow and those nodes added

from t to t + 1 with thick boundary. We indicate the attachment of a new leaf node to

an internal node with a solid gray halo seen on the lower left hand side of the image. We

also indicate the attachment of new leaf nodes to previously leaf nodes with a the dashed

ring. In this recruitment phase, the total number of street criminals at time t+1 increase

by 1 from time t. In other words, this recruitment phase dictates s(t+ 1) = s(t) + 1.

are those most likely to recruit new members into an organization. Let s(t) be the number

of street criminals in a network at time t. Because a network grows linearly in time t, we

might expect s(t) to increase linearly as well. Recall from our numerics in Section 2.3.2.1,

we found that P∞(d = 0) ≈ 0.39 for large t. This also implies that leaves grow linearly in t

because for fixed k we have

s(t) ≈ P∞(d = 0)n = P∞(d = 0)(kt+ 1),

when the initial configuration of the network is the kingpin alone. In Figure 2.9, we plot

s(t) and fit the data to a linear form s(t) = rst + 1. Note we enforce s(0) = 1 as all of

our simulations start as a single node (i.e. the kingpin). Indeed, the fit slope rs satisfies

rs ≈ P∞(d = 0)k as verified in the lower panel of Figure 2.9.

Recall the attachment weight that we define in Eq. (2.7). We now relate the total

attachment weight for all nodes in a network at time t to s(t). We first write an iterative

equation for s(t) [68, 154]. At time t, the likelihood of increasing the total number of street
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criminals to the network is approximately the probability that an internal node recruits.

We observe that the number of leaf nodes does not change if a leaf node recruits a single

new node. However, if a leaf node recruits multiple new nodes into the network, then the

total number of leaf nodes increases. We assume for large networks that each street criminal

recruits at most one new criminal. We justify this assumption as follows. If we assume that

each of the k incoming nodes attach to one of the n existing nodes uniformly at random and

k � n, then the probability that no two nodes attach to the same existing node approaches

1 because

lim
n→∞

n!

(n− k)!
· 1

nk
= 1.

If we condition that the k new nodes each connect to leaf nodes, the same argument implies

that, as long as k � s(t), the probability that no two new nodes attach the same leaf

node approaches 1 as well. Indeed, we have found the leaf nodes grows linearly in time,

and therefore, for large enough t, we must have k � s(t) and the assumption should be

reasonable. With this assumption, we conclude the only observed increase to s(t) occurs

when internal nodes recruit. We illustrate how s(t) increases for k = 3 in Figure 2.10. First,

we compute the total attachment weight of internal nodes as the difference between the total

attachment weight and the attachment weight of leaf nodes; explicitly, this is

∑

j∈C(t)\S(t)

w(j; t) =
∑

j∈C(t)

w(j; t)− s(t). (2.14)

In Eq. (2.14) above, we use that the attachment weight of leaf nodes are 1 implying that

the total attachment weight of all leaf nodes is s(t). The probability of adding a criminal

to an internal node can be found with Eq. (2.14) after it is normalized with respect to the

total attachment weight
∑

j∈C(t) w(j; t). We now write our iterative equation for s(t) as

s(t+ 1) ≈ s(t) +

∑
j∈C(t) w(j; t)− s(t)
∑

j∈C(t) w(j; t)
k. (2.15)

We use the approximation in Eq. (2.15) to determine the attachment weight of the entire

tree
∑

j∈C(t) w(j; t) in terms of the constant P∞(d = 0). To do so, we assume that the

total attachment weight scales linearly when t is large which is confirmed by the numerics
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displayed in Figure 2.11. Let W be the constant such that
∑

j∈C(t) w(j; t) ≈ Wt for large t.

We now substitute that s(t) ≈ rst into Eq. (2.15) and obtain

rs ≈
W − rs
W k. (2.16)

Now, Eq. (2.16) yeilds

W ≈ krs
k − rs

(2.17)

≈ kP∞(d = 0)

1− P∞(d = 0)
, (2.18)

where the the approximation in Eq. (2.18) follows from rs ≈ kP∞(d = 0). In Figure 2.11 we

plot the total attachment weight of the network as a function of time for k = 10, 20, 30, 40

and find that it scales linearly, as we had assumed. We also find that the corresponding

numerical estimation of W agrees with the estimates from Eq. (2.18) within two decimal

places.

2.3.3 Pursuit Mechanism

In this section, we introduce the mechanism for pursuit and subsequent disruption by law

enforcement. For this model, the primary objective of law enforcement is to find and arrest

the kingpin. We represent law enforcement as a single disruptive agent. We equate the

dismantling of the network with this agent’s capture of the kingpin. With this pursuit

mechanism, we then define a network evolving in time t, in which a single time step consists

of a recruitment phase and a pursuit phase. The recruitment phase is described in Section

2.3.2. We now define the pursuit mechanism for the pursuit phase.

During the pursuit phase, the agent moves through the network according to a self-

avoiding random walk. A self-avoiding walk ensures that each new investigation leads to

a criminal that has not previously been investigated. This self-avoiding mechanism may

reflect a negative cost associated to the agent’s reinvestigation of a criminal within a pursuit

phase. However, we select this mechanism primarily for its simplicity and computational

considerations. Indeed, a random walk with repetitions or a biased random walk are viable

alternatives to a self-avoiding walk. In the case of a random walk with repetitions, the pursuit
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Figure 2.11: Total attachment weight
∑

j∈C(t)w(j; t) of the network as a function

of time averaged over 100 runs for k = 10, 20, 30, 40. We initialized the network as

the kingpin alone. We terminate each simulation when the number of criminals reaches

5× 103. We fit the data to a linear form Wt+ w0 and find that the extrapolated values

of W in the figure legend are in excellent agreement with the ones predicted from Eq.

(2.18), given by W = 6.39, 12.79, 19.18, 25.57 for k = 10, 20, 30, 40, respectively.

phases may become arbitrarily long and make our simulations significantly slower. This is

an important consideration because our numerical experiments require a large number of

simulations and each test an array of parameters and initial conditions. We note that since

the average degree in a criminal network is 1 (Section 2.3.2.1), the self-avoiding random walk

exhibits qualitatively different behavior than a random walk with repetitions. As a result,

this selection impacts our numerical experiments. We did not select the biased random walk

in order to avoid the introduction of a new parameter. The self-avoiding mechanism implies

that if the agent does not reach the kingpin, then the agent eventually ends the pursuit
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phase at a different leaf node. We refer to the latter situation as the agent reaching a dead

end. The agent’s current position in a network indicates the criminal under investigation.

We allow the agent to investigate only one criminal at a time. This agent begins their

investigations with a street criminal (leaf node) as these criminals are assumed to be the

most visible in the network. Before moving to an adjacent node, the agent is given the

opportunity to make an arrest. When the agent arrests a criminal under investigation, the

agent also arrests all of this criminal’s underlings. Because a node at which the arrest takes

place can be a few edges removed from the original leaf node, an arrest does not necessarily

imply that the first criminal investigated is removed. The removal of criminals may decrease

the the distance between the kingpin and street criminals, therefore increasing the likelihood

the agent reaches the kingpin in subsequent pursuit phases. In Section 2.3.3.1, we propose

some arrest criteria for the agent and study their efficacies. The arrest criteria represent

high-level strategies of law enforcement. The pursuit phase stops when the agent reaches the

kingpin, makes an arrest, or reaches a dead end. If the agent reaches the kingpin during a

pursuit phase, then the entire network process ends because the agent effectively dismantles

the network. In this case, we say the network is eradicated. In the second scenario, the agent

arrests the criminal and their underlings, and resumes their investigations during the next

time step. Once the pursuit phase at time t is completed and assuming the kingpin has not

been reached, we proceed to the next time step. During the next time step, the criminal

network grows according to the recruitment process discussed in Section 2.3.2 followed by

another pursuit phase. This proceeds until the network reaches or exceeds a given size n∗,

with the network evolving dynamically in time. We note this pursuit mechanism implicitly

assumes the agent does not retain information from previous pursuit phases. This assumption

is for simplicity. Precisely defining how information is transmitted from pursuit phase to

pursuit phase and specifying how the agent processes this information is beyond the scope

of this work. To ensure that the kingpin is not inevitably captured, we assume there is

some nontrivial number of edges between the kingpin and the street criminals. Many of our

simulations initialize our network as in Figure 2.12 with a perfect ternary tree of height three

with forty criminals. In some instances, we initialize networks as complete b-ary trees of

41



height h. These are trees such that all leaf nodes have distance h or h− 1 from the root and

all nodes have b children except for nodes a distance h and possibly those h − 1 from the

root. Again, we call b the branching factor of the network just as we did for perfect trees.

All perfect trees are complete trees, but not conversely. In the next section, we describe

three arrest criteria for the pursuit process we have defined.

2.3.3.1 Disruption Strategies

We now consider some disruption strategies for arrest that the agent may employ within a

pursuit phase. As discussed at the beginning of Section 2.3.3, we assume the agent only

has knowledge of the criminals that they investigate during the current time step. From

the agent’s viewpoint, the decision to continue investigating could lead to a dead end or the

kingpin.

The first arrest criterion we consider is the fixed-investigation-number strategy. For this

strategy, the disruptor investigates p successive nodes before making an arrest, assuming

they have not reached a dead end in that time. As usual, reaching a dead end halts the

process for a given time step. We denote this strategy by QA(p). In Figure 2.12, we show a

disruptor pursuing strategy QA(q = 3) on an initial perfect ternary tree of height three.

The second arrest criterion is the degree strategy, where the agent arrests a node if the

out-degree is at least q. Again, if the agent does not reach a node of out-degree q before

a dead end, the pursuit stops for a given time step. In this case, the agent uses degree

as a proxy for a criminal’s influence in the network and this strategy selects criminals to

arrest that possess a certain amount of influence. The agent may make a different number

investigations within each pursuit phase, but the agent arrests a criminal with at least q

direct underlings and likely many more total underlings. We denote this strategy by QD(q).

Finally, we consider the persistent-investigative strategy, where the pursuit is stopped

only upon reaching the kingpin or a dead end. We denote this strategy by QI .

The above pursuit strategies are meant to reflect real-world objectives of law enforcement.

StrategyQA(p) represents those law enforcement agencies that must regularly make arrests to
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Figure 2.12: The pursuit phase as we describe in Section 2.3.3. We initialize the

network as a perfect ternary tree of height three. The network consists of the light and

dark colored nodes. The light nodes are those nodes invisible to our agent during the

pursuit phase. The dark nodes are those nodes that have been investigated or arrested.

(Left) At time t = 1 the agent begins their pursuit from the yellow criminal and without

having perfect knowledge of the network. He investigates three other nodes, highlighted in

red marked by a solid dark line. The last node, surrounded by a dark ring, is the criminal

that is currently under investigation. (Right) The criminal that is under investigation

is arrested. Once a criminal is arrested, they are removed from the network along with

all of their direct underlings, their direct underlings, and so on. The arrested nodes are

depicted in blue and have a darker boundary. Note that not all criminals arrested are

investigated and vice versa.
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demonstrate incremental success to the government or other regulating bodies [10]. One may

also view this arrest criterion as the analogy of a so-called “broken windows policy” [78],

in which regular arrests are a proxy for securing public confidence and deterring future

offenses. Strategy QD(q) reflects a disruption strategy that undermines the operations of

a network’s hierarchy removing nodes with many professional connections [1, 206]. Lastly,

strategy QI represents law enforcement’s choice to minimize violence and act covertly only

arresting when the kingpin is reached [1]. In some cases, an arrest at any level may lead to

deadly confrontation or violent reorganization. Keeping the pursuit covert until the kingpin

is reached may generate less violence [13, 196]. We say two strategies are equal when the

agent adhering to the two strategies is indistinguishable to an outside observer. The above

strategies are related by the following equalities

lim
p→∞

QA(p) = lim
q→∞

QD(q) = QI , (2.19)

QA(1) = QD(1). (2.20)

Note that as the parameters p or q increase, the movements of agents adhering to QA(p)

or QD(q) become indistinguishable from the agent adhering to QI . Additionally, note that

under strategy QA(1) law enforcement removes the node directly above the street criminal

initially investigated. This is the same result that would arise from strategy QD(1), because

all nodes above street criminals have at least one direct underling.

We evaluate each strategy’s performance versus the recruitment index k using numerical

simulations. We continue simulations until either the kingpin is arrested or the network

reaches or exceeds a population size n∗. In the former case, the network is eradicated. The

latter case represents a failure of the agent to disrupt the network. We can thus compute the

the eradication probability as the total number of successful runs divided by the total number

of simulations run. In Figure 2.13 we plot the eradication probability forQA(p), QD(q) andQI

as a function of the recruitment index k for various choices of p, q and n∗. For all strategies,

as can be expected, the probability of eradication decreases with k. In other words, the

faster criminals are added to a network, the less likely the agent reaches the kingpin. We

also define Beat(Q), the beat number of strategy Q, as the maximum recruitment index k
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Figure 2.13: Network eradication probability as a function of the recruitment index

k, obtained by averaging over 10,000 simulations for different strategies. We consider a

total population of n∗ = 500, 1000, 2000 individuals and halt our simulations when the

criminal network reaches this size. For each strategy, the Beat(Q) denotes the maximum

recruitment index k for which the network is eradicated with probability 1, over all

simulations.
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Figure 2.14: Varying initial conditions prior to law enforcement intervention. (Left)

Eradication probabilities on a complete initial tree with b branches and forty criminals

for k = 30 and law enforcement strategy QD(q = 3). When a graph consists of a single

path (b = 1), the eradication probability is 1, because dead ends cannot be reached.

Increasing b allows more dead ends to be encountered, so that the eradication probability

decreases until b = 3 and plateaus until b = 6. After b = 6, the height of the network

becomes small enough to allow for easier access to the kingpin. (Center and Right)

Eradication probabilities using perfect initial trees with branching factor b and height h

as initial conditions and using strategy QD(q = 3). The initial number of criminals is

(bh+1 − 1)/(b− 1).
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of the network such that the agent reaches the kingpin with probability 1. The eradication

probabilities and Beat(Q) depend on the total size n∗ of the network. For instance, from

the rightmost column of Figure 2.13, the beat number Beat(QD(q = 3)) of strategy QD(q)

increases with n∗ = 500, 1000, 2000 as 12, 16, 20, respectively. This comes as no surprise

as larger values for n∗ imply that there are more opportunities for the agent to capture the

kingpin.

Fixing n∗, we can compare different strategies using the curves in Figure 2.13. The left-

most column of panels of Figure 2.13 illustrates results for strategy QA(p). The simulations

in Figure 2.13 are initialized as perfect ternary trees of height 3 (40 initial criminals). When

k ≥ 30 and n∗ = 2000 are fixed, the eradication probability increases with the parameter p.

In other words, for recruitment index k in this regime, increasing p provides more opportunity

to reach the kingpin. For these recruitment indices, the growth is so rapid that arresting

a smaller number of criminals than the number of new criminals added in the next time

step is not advantageous for eradication. For fixed k < 30 and n∗ = 2000, strategy QA(p)

requires different considerations. Specifically, the growth of a network is now slow enough

that the arrest of a small number of criminals during a pursuit phase can compete with the

addition of newly recruited criminals and improve the likelihood of eradication. Smaller p

(for p = 1, 2, 3, 4) implies that the agent is more likely to arrest criminals during a pursuit

phase, reduce the number of total nodes in a network, and eventually capture the kingpin.

For example, QA(p = 6) and QA(p = 8) have smaller eradication probability than QA(p = 1)

and QA(p = 2) in this regime of k. Similar analysis is true for lower values of total network

size n∗. We also analyze QD(q), whose eradication probabilities are shown in the rightmost

column of Figure 2.13. For fixed n∗ = 2000 and k > 50, a large degree threshold q increases

the eradication probability. Therefore, for k in this regime, it is advantageous to allow the

agent more investigations to reach the kingpin just as with QA(p). However, for fixed k ≤ 50

and n∗ = 2000, a moderate degree threshold q (q = 2, 3, 4) has the highest eradication prob-

ability. Here, regular arrests of nodes with sufficiently high out-degree is more valuable for

eradication than just searching for the kingpin. For k ≤ 50, we see that q = 4 eradicates

the network with highest probability of those considered. Again, similar analysis can be
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made for n∗ = 500 or 1000. Lastly, the middle column of panels in Figure 2.13 shows results

stemming from the persistent-investigative strategy QI . Comparing the the many panels of

Figure 2.13 shows that the selection of an optimal disruption strategy depends on k. We see

as p or q increase in the leftmost column or rightmost column of Figure 2.13 respectively,

the eradication probabilities resemble those of QI due to Eqn. 2.19. Often, regular arrests

must be balanced with supplying sufficient investigations to reach the kingpin. The local

arrest criterion of QD(q = 3, 4) is particularly effective for k ≤ 50 as indicated in Figure

2.13.

Now we turn to the effect of the initial configurations on the eradication probability.

Let an initial network be perfect or complete b-ary trees. If k and n∗ are fixed, we expect

that, as the number of initial nodes increases, so too does the eradication probability. The

symmetry of perfect networks implies that the success of the agent’s first pursuit does not

depend on which leaf node the agent selects to investigate first. In other words, the agent

is equally likely to reach the kingpin from any street criminal when the initial network is a

perfect tree. With these initial configurations in mind, we examine the effect of the number

b of branches and the height h on the eradication probability. Note that perfect trees have

a total of (bh+1 − 1)/(b− 1) criminals.

We first investigate the eradication probability as b and h vary for complete trees of fixed

size. We note that as b increases, h decreases and vice versa. In particular, if we fix the

number of criminals and maximize b, then h = 1 and the agent always reaches the kingpin.

However, the choice of b = 1 turns the network into a line graph and the agent always

reaches the kingpin given enough investigations. We now examine all possible b which the

eradication probabilities are smallest. In the left hand panel of Figure 2.14, we show the

eradication probability for QD(q = 3) on an initial network of 40 criminals with varying b

and a fixed value of k = 30. We see from this panel that the smallest eradication probabilities

occur when b for an initial network is lies in the range 3 to 6. Similar trends related to the b

of initial complete trees also arise for strategy QA(p) and QI (not shown) although the sharp

decrease for small b is less pronounced.

We next consider initial networks made of perfect trees with fixed b and variable h and
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vice versa without limits on a network’s size (middle and right panels of Figure 2.14). We

expect increases in b or h to lead to lower eradication probabilities, because the number of

initial criminals is larger and there are more chances the investigation leads to a dead end.

In the middle panel of Figure 2.14 we examined an initial network of height h = 4 for various

b. In this panel, we see that when b = 1, the agent always reaches the kingpin for QD(3).

When b increases to 2 and then 4, the eradication probability decreases as we expect. In

the right panel of Figure 2.14 we find similar results for an initial perfect binary tree with

b = 2 and heights h = 2, 4, 6. Qualitatively similar results arise for other strategies QD(q)

and QA(p) as those results as those in Figure 2.14.

2.3.3.2 Strategic Costs and Time to Eradication

In this section, we introduce two measures for costs associated to a pursuit, and we evaluate

each strategy according to these measures. First, we associate a cost to investigations and

arrests during a pursuit. We assume that the public and the government are the primary

levers for replenishing law enforcement resources. For example, in the United States, each

fiscal year Congressional representatives must negotiate and approve a detailed budget for all

law enforcement agencies [158]. When the government assesses the cost of law enforcement

actions, certain actions such as investigations are difficult to quantify while others such as

arrest and seizures are more easily quantifiable and can help ensure future funding [140,174].

Moreover, arrests visibly reduce criminal activity, while investigations do not [174]. Addi-

tionally, the United States Justice Department program of asset forfeiture–the confiscation

of criminal assets after an arrest–fund future criminal investigations [140]. We now define

the cost associated to the pursuit mechanism of Section 2.3.3. We define the cost during a

single pursuit phase as the number of investigations minus the number of criminals removed,

if this difference is positive. In the event that the kingpin is reached, the cost is the number

of investigations made minus the criminals in the network. In both cases, if this difference

is negative, the cost is set to 0. The higher the numerical cost of a pursuit, the harder

for law enforcement to replenish their resources. Our definition of cost implies that pursuit

phases that reach a dead end occur at high cost. However, a pursuit phase that ends with
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an arrest may occur at low cost depending on the number of investigations and total number

of investigations. We compute the cost of the pursuit phase shown in Figure 2.12. In the

left diagram, four nodes are investigated: the street criminal (depicted in yellow) and three

other criminals (depicted in green connected by a dark line). During the arrest phase, in the

right panel of Figure 2.12, four criminals (depicted in red) are eliminated. Thus, the costs

associated with this iteration is 0. We calculate the total cost as the cumulative cost over

all time steps.

We study the costs associated to each strategy. There are two cases: when the network

is eradicated and when it is not. We study the cost versus the recruitment index k for each

case. We initialize the network as a perfect tree with b = h = 3. We first discuss the

cost when the network is eradicated. The top row of Figure 2.15 shows the total cost of

eradication with n∗ = 1000. We average the total cost over 10000 simulations. We inspect

strategies QA(p) and QD(q) starting on an initial perfect ternary tree. We also depict the

probability of kingpin capture and criminal network eradication as shades in the data points.

Costs are identically 0 for QA(p = 1) and QD(q = 1) because, in these cases, there are two

investigations and at least two criminals removed at every time step. Similarly, costs stay

relatively low for p = 2, 3 and q = 2, 3. For example, the total cost of eradication for QD(q =

3) is nearly 0, indicating that the number of investigations is comparable to the number of

arrests on average. For sufficiently large k, the cost of eradication decreases monotonically

in k for QA(p = 2, 3, 4, 5) and QA(p = 3, 4, 5, 6) because we stop network growth at n∗. As

k increases, the network reaches n∗ more quickly and the agent must eradicate a network in

less time with fewer investigations. In fact, strategies QA(p = 3), QA(p = 4) and QD(q = 4),

the cost curves are monotonically decreasing for all k . As p and q increase further for

strategies QA(p) and QD(q), the agent arrests less frequently and reaches more dead ends,

increasing the costs particularly for fixed k < 10 (Figure 2.15). Moreover, the equivalence

of strategies QA(p→∞) = QD(p→∞) = QI is apparent in cost curves as the parameters

p and q increase.

We now transition to the costs associated to networks that are not eradicated. For

networks not eradicated, our numerics (not shown) indicate that cost monotonically decreases
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with k for all strategies. In this case, the cost of a strategy can only be studied for k that

exceed this strategy’s beat number Beat(Q). Moreover, if we wish to compare two strategies,

then we can only compare them for k that exceed both their beat numbers (otherwise,

one strategy will not have a well-defined cost because all of the networks simulated were

eradicated). As k increases past the beat number of a strategy, the number of pursuit phases

decreases and so too does the cost. For networks that are not eradicated, arrests actually

increase costs because arresting criminals increases the number of pursuit phases before the

network reaches a size n∗. Our numerics (not shown) show that QI is the least expensive

strategy. Strategy QI ensures that the network grows without arrests, and thus requires the

least number of pursuit phases until n∗ is reached.

We now examine the time until a network is eradicated or reaches total size n∗. We

record the number T of time steps required for each case. For the former case, the lower

panel of Figure 2.15 shows time versus recruitment index k. Unlike cost, the time of first

eradication is always nonmonotonic: it increases in k before decreasing again. Here, as k

increases initially, the network grows more rapidly requiring more time on average to reach

the kingpin. However, for sufficiently large k, we see that T decreases in k. We can explain

T ’s decrease as follows. Because the maximum network size n∗ is fixed, if the network is

eradicated, T must decrease in k. In particular, the larger k becomes, the fewer pursuit

phases are possible. Additionally, peaks in the curves in Figure 2.15 are close to the beat

numbers and correspond to drops in the eradication probability. For networks that are not

eradicated, the time T is monotonically decreasing in k (not shown), identical to the cost

scenario discussed in the previous paragraph. Moreover, the total time T is smallest for QI

just as was the case with cost.

It is important to note that the exact cost curves depend significantly on the initial

network configuration: different initial conditions yield different eradication probabilities,

costs and eradication times. However, our comparison of strategies made in this section

remain valid for many different initializations that are perfect tree. For networks that were

initialized as perfect trees (all possible initializations with b = 2, 3, 4 and h = 2, 3, 4; numerics

not shown), the cost comparisons we made remain valid. For instance, although the exact
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cost curve changes for an initial perfect tree with b = 2 and h = 4, strategy QI still has

the lowest cost when compared to other strategies for networks not eradicated. We expect

the cost comparisons to be valid for complete tree initializations, though future work will

consider the precise dependence of eradication probability and costs associated to different

initial conditions.

2.3.3.3 Evaluation of Disruption Strategies

In this section, we evaluate each disruption strategy with respect to the associated eradica-

tion probability (Section 2.3.3.1), pursuit cost (Section 2.3.3.2), and the total pursuit time

(Section 2.3.3.2). For each measure of disruption, we studied the measure versus the recruit-

ment index k. For this numerical analysis, we assume that an agent cannot influence the

recruitment index k and we view this rate k as an intrinsic property of the network. This

assumption is done for simplicity because we do not wish to introduce a new mechanism

that influences k, though this is certainly an avenue for future research. We also assume

the agent selects the parameter p or q associated to the appropriate strategy and never

changes them during the process. Again, this assumption is made for simplicity and may

be altered in future work. We use the numerical experiments performed in the previous

sections. Figure 2.13 shows that for small values of k eradication probabilities were all 1 or

close to it. As k increases and we move past the beat number of a strategy, we see some

strategies (QA(p = 2) and QD(q = 2)) have sharp decrease whereas others decrease more

gradually (QA(p = 6) and QD(q = 8)). For intermediate values of k (10 ≤ k ≤ 30), the

degree strategy QD(q) is associated with the highest eradication probabilities particularly

when q = 3 compared to any QD(q) or QA(p). We also note that Beat(QD(p = 3, 4)) >

Beat(QA(q = 3, 4)) for all values of n∗. However, as k increases past these intermediate

values, QI becomes the most effective. Moreover, as the parameters p and q increase, QA(p)

and QD(q) become indistinguishable to QI .

In our model, the agent’s optimal strategy–in the sense of ensuring the highest likelihood

of eradication–is to employ QD(q) and select q based on an estimation of k. If the agent is
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interested in lowering costs–for instance, when the criminal organization is not engaged in

activities that are deemed to be especially dangerous for the community–that agent should

lower the parameter q to ensure regular arrests. From Figure 2.15, we see that QD(q) costs are

lower than those for QA(p) costs for comparable eradication probabilities when the network

is eradicated. Similarly, if the agent is concerned in reducing eradication time, the degree

strategy also QD(q) usually yields better results than QA(p). Moreover, selecting q large

enough makes the strategy indistinguishable from QI , which is best for large k.

2.3.4 Conclusions from Model

The recruitment and disruption model introduced in Section 2.3 provides a template for

the formation and disruption of growing criminal networks. Although this model is far from

providing an explanation of criminal network data, this generative network process may help

future research into criminal organizations and their disruption. We focused on organized,

hierarchical networks motivated by the vertical structure of the Medelĺın and Sinaloa drug

cartels [1,4,12,13,79,121,131,196]. There are other smaller hierarchal criminal organizations

for which this work may be applicable such as the American and Sicilian Cosa Nostra mafia

networks [57,128,129] and the Hells Angels biker gang [145].

In this model, we first proposed new attachment model for criminal recruitment. We

first studied how a network evolved with respect to this mechanism. There is an important

distinction between this model and preferential attachment, including the model of Barabási–

Albert. The resulting degree distribution is not heavy tailed [15, 193]. Additionally, we

examined the statistics of several network structures for large networks. We found the

distribution of criminal position relative to the kingpin to be well approximated by a shifted

gamma distribution. Our model also yields a linear relationship between the number of street

criminals and the recruitment rate k. Moreover, we found the total attachment weight of

the network scaled linearly in t for large t. We also conjecture the degree distribution to be

independent of the recruitment index k. All these claims are supported by careful numerical

simulations although rigorous analysis is still required.
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We then introduced a pursuit mechanism into our model. The pursuit mechanism de-

termines the movement and arrest patterns of a disruptive agent. During a time step of an

evolving network process, a recruitment phase is followed by a pursuit phase. The network

then evolves according this alternation between these recruitment and pursuit phases. We

then analyzed the efficacy of three disruption strategies: QD(p) with a preset number of

investigations p before an arrest is made; QA(q) in which the agent arrests only when a crim-

inal with at least q underlings; and QI in which no arrests are made save for the kingpin. We

used numerical simulation to examine the strategies in terms of their eradication probability,

measured costs, and total time. We found QD(q) to be effective from all these standpoints

though selecting q depends on the recruitment index k. For example, from Figure 2.13 it

appears that QD(q = 8) is more effective than QD(q = 4) only when k ≥ 40 for all values

of n∗. However, for k ≤ 50, QD(q = 4) has the highest probability of eradication for all

strategies and all n∗. We remark that the removal of nodes with high degree has also been

seen as effective in dark network models of [133,134,209] (see Section 2.1 for more discussion

of this model). Our model also echoed the common sense strategy that the faster a network

grows, the more quickly it needs to be eradicated if it is to be at all.

Finally, we briefly explored the effect initial configuration of the network played on dis-

ruption. We studied complete trees and varied their height and branching factor fixing the

number of criminals available for each configuration. As we expect, networks with small or

large branching factor b (large or small height respectively) are the easiest to eradicate. We

found a range b for which the eradication probability is significantly lower particularly than

other configurations.

In future work, we will further quantify the resilience of this network model. Specifically,

we plan to quantify the flow of illicit goods or criminal information through a criminal

networks in future work. For instance, we can simulate the flow of illicit goods stochastically

and examine disruption as not only the removal of criminals but also the removal of goods. To

do so, we may wish to adapt network interdiction for our generative network process [94,207].

In this work, we have only modeled a hierarchal network of criminals. However, we

plan to generalize this model in future work to acyclic directed networks. We consider an
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initial acyclic directed network and consider the following attachment mechanism. There are

k incoming nodes as usual, now each with m in-edges (in the current model each incoming

node has 1 in-edge). We then set the attachment weight of an existing node j on the network

to be:

w(j; t) =
1

1 + dist(j; t)
,

where dist(j; t) is the distance of node j to nodes of out-degree 0. The disruption strategies

that we presented could be modified for this acyclic model. Another possible relaxation on

the structure is to remove a single root node, and replace it with a larger set of criminal nodes

that all equally oversee the organization. We also may want to consider different distances

for the attachment weights to simulate other criminal considerations. For example, we may

wish to instead to investigate the distance to a fixed set of nodes of high rank and set

the attachment weight to be positively correlated with this distance. This model is in its

current form is theoretical and quite simplistic. In future work, we plan to carefully motivate

new generative network models (or adapt existing attachment models) to agree with the data

found in such studies as [67,144]. We proposed a generative network model for the formation

and disruption of criminal networks. This network process, although far from explaining real-

world criminal networks, introduces new mechanisms that can be adapted for the dynamics

of criminal recruitment and disruption.

2.4 Conclusions and Future Work

The network models we presented in Section 2.2 and Section 2.3 describe mechanisms for

recruitment and disruption on a hierarchal criminal network. Both models will require sig-

nificant modifications and improvement to resemble real-world dark networks. Nonetheless,

this work proposes a new framework to model these complex criminal organizations and

law-enforcement interactions. In Section 2.2, we presented our first model for recruitment

and disruption. We adapted the Galton–Watson branching process to simulate recruitment

into a hierarchal criminal network. We then introduced a disruptive agent who moves up the

network and arrests according to a stochastic process. In Section 2.3, we presented our sec-
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ond model. We proposed a new attachment model to simulate recruitment based on certain

criminal incentives. We then introduced a disruptive agent that followed a self-avoiding ran-

dom walk through the network and arrested nodes according to certain disruption strategies.

We designed each model so that they alternate between a recruitment phase and a disruption

phase. Moreover, we equated the capture of the kingpin (the root) with the dismantling of

the network. These simplifying assumptions, though unrealistic, allowed us to simulate the

resulting network dynamics and discuss criminal disruption. In particular, for each model,

we measured the probability a network was terminated (Section 2.2) or eradicated (Section

2.3). In Proposition 2.2.2, we proved a bound on this probability in Section 2.2. Using the

model in Section 2.3, we compared several simplified disruption strategies for law enforce-

ment. This attachment model (Section 2.3.2) may be adapted for more general network

science applications. For example, our process resembles the online referral networks dis-

cussed in [8] because incoming nodes are most likely to attach to those most recently added

to the network.

For this work, rather than using specific criminal network data, we designed our model

considering high-level criminal incentives and law-enforcement goals. In future work, we plan

to carefully integrate criminal network data into these models as in [67, 144, 209]. However,

there are many challenges associated with the reconstruction of criminal network data [67,

144, 209]. For example, criminals must remain secretive about their connections to avoid

government detection, and thus the reconstruction of a criminal network may be incomplete

or inaccurate. Moreover, there are wide variety of incentive structures in various types

of criminal networks such as terrorist networks [114, 209], gang networks [144], and drug

trafficking networks [67, 144]. Additionally, to our knowledge, there is no real-world data

relating the disruption and recovery of criminal networks [67]. As a result, we expect the

validation of all aspects of a criminal disruption model to be largely untenable. However,

using suitable criminal data, we plan to adapt the generative processes studied here to study

real-world criminal organizations and support law enforcement objectives.
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Figure 2.15: (Top) Costs incurred by law enforcement conditioned on kingpin capture

as a function of the recruitment index k. Shades in the data points represent the prob-

abilities of network eradication. We consider 10000 simulations and allow the network

to grow to n∗ = 1000. There is the emergence of maxima for certain curves because we

condition on the eradication of the network. As k increases initially for such curves, the

network grows more rapidly and so too does the number of investigations necessary for

eradication. Upon reaching a threshold in k (maxima), the number of possible pursuit

phases greatly decreases. In particular, for large k, a network must be eradicated within

fewer pursuit phases and thereby reducing cost. (Bottom) The mean eradication time as

a function of k for various strategies. Similarly as in the above panel, there is an emer-

gence of maxima only now for all curves. Note that cost and time curves for QA(p = 1)

and QD(q = 1) are identical and that QI = QA(p→∞) = QD(q →∞).
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CHAPTER 3

Rank Aggregation for Course Sequence Discovery

In this chapter, we adapt rank-aggregation for university-level course-sequence discovery

of mathematics, we consider a large pool of undergraduate students and the sequence of

mathematics courses they take. Our methodology aggregates the course sequences of these

students and outputs a single linear ordering of courses. We refer to this methodology as

course-sequence discovery. Although students rarely take courses in a strictly sequential

fashion, our method’s extraction of a course sequence can assist students in their selection

of courses and determine hidden dependencies between courses.

For this chapter, we apply rank aggregation methods to 15 years of student data (2000–

2015) from the UCLA department of mathematics. We obtained the data from the depart-

ment and discuss it at length in Section 3.3. A student profile determines a partial pairwise

ranking of courses, and a course is ranked higher than another if the course was taken in

an earlier academic term than the other. These individual pairwise rankings are partial

because a student only enrolls in a subset of all the courses offered in the mathematics de-

partment. Moreover, a mathematics student often takes several courses within the same

academic term, in which no pairwise comparison can be made. Using these pairwise ranking

of courses from each student profile, we construct network models, in which nodes represent

courses and edges quantify the flow of students between courses from term to term. With

these network models, we apply several rank aggregation methods and extract a single course

sequence. Using this methodology, we explore the course sequences for different subsets of

students. For instance, we compare the course sequences of high and low performing Pure

Mathematics majors. We are able to identify a course (Discrete Mathematics/Math 61) that

high-performing Pure Mathematics majors take earlier than low performing math majors.
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Although we do not verify there is no causal relationship between a student’s performance

and the course sequence they take, identifying possible trends can assist students in their

course selection and provide administrators information regarding how students are moving

through the coursework of their major.

The rest of the chapter is organized as follows. In Section 3.1, we discuss how our work

fits into larger university-level education and a literature review. In Section 3.2, we review

machine learning and data mining techniques for course-sequence discovery and related tasks.

In Section 3.3, we discuss the student data that we analyzed; specifically the data from the

UCLA Department of Mathematics between 2000–2015. In Section 3.4, we review various

methods and models for rank aggregation. In Section 3.5, we outline the methods we use for

rank aggregation in this chapter. In Section 3.6, we apply these methods to analyze sequences

of mathematics courses at UCLA. We use our findings to infer course sequences from these

records and hidden dependencies between them. We also compare the performance of each

rank aggregation method to demonstrate the many different approaches are fairly consistent

for this data set. In our final Section 3.7, we review our findings and explore future directions.

3.1 Introduction

Many statistics suggest that a college education has become an increasingly important hurdle

in securing one’s financial future [56, 156]. In November 2016, the unemployment rate for

college educated adults was 2.3%, which is less than half of the unemployment rate of adults

with only a high school diploma (4.9%) and almost a quarter of the unemployment rate

for adults who did not graduate high school (7.9%) [156]. Moreover, for 15–32 year olds

in 2013, the median annual income for a college educated person was $45,500, whereas it

was $30,000 for those with only a high school diploma-a more than 50% increase in median

salary. Additionally, college enrollment has grown in recent decades. From 2003–2013,

the proportion of 18–24 year olds in the United States enrolling in colleges has risen by

20% in addition to the population growth of this same segment (18–24 year old adults

rose by 9% in the same period) [56]. To meet this increasing demand, universities must
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create systems to efficiently guide their undergraduate students towards the completion

of their degrees. In this chapter, we focus on a specific aspect of the education process:

how students navigate through their coursework required by their major. The expected

sequence a student navigates through his/her educational coursework informs each course’s

sophistication, the instructor’s expectations, a student’s performance in the course, and the

content covered [96,182]. We apply rank aggregation to analyze temporal patterns of course

sequences in the UCLA department of mathematics.

To earn a college degree, a student must pass a certain number of required classes. A

department often encourages students to take required courses in a particular order, so

that students are best prepared for each subsequent course. For example, departments of

science, technology engineering, and mathematics (STEM) fields frequently have a list of

required course work to provide foundational knowledge for advanced topics and research

[96]. For example, in Department of Mathematics at UCLA, there are six introductory

courses (Math 31AB, Math 32AB, Math 33AB) that every math major must complete in

sequence at the beginning of his/her undergraduate study [161], although some students may

fulfill this requirement in high school or community college. Moreover, the more advanced

introductory courses that introduce linear algebra and differential equations (Math 33AB)

do not formally require all the introductory calculus courses [161], but as we discuss in

Section 3.3, a majority of students take Math 33AB after the calculus sequence is complete.

Generally, the recommended ordering of courses is the product of practical considerations

within a department and broader curriculum goals set by professors and educators to ensure

students are building a core competency in their major [48,96]. A university can ensure that

courses are taken in a specific order by restricting enrollment to those who have fulfilled the

specified prerequisites. For UCLA mathematics courses, course prerequisites are not enforced

due to the changing availability of courses and the diverse needs of a large student population.

Moreover, a popular professor or an early-morning lecture may also influence how a student

selects his/her courses regardless of what a department recommends. Additionally, there

large number of possible student schedules–too many to investigate separately. To do these

considerations, it is important to have tools to identify trends in the order students select
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courses.

We apply rank aggregation to analyze the order students take courses within the UCLA

Department of Mathematics. We obtain a single course sequence that aggregates the several

different ways students navigate their coursework. From this sequence, we can infer and

compare trends in course selection between different student populations. The ability to

determine trends in student course selection is a challenge because of the number of possible

schedules. We assume that an underlying sequence determines the distribution of how courses

are arranged in a students schedule. With this assumption, we obtain the underlying ranking

via rank aggregation and can more easily identify possible trends. For instance, comparing

the course sequences of high- and low-performing Pure Mathematics students, we identify

a course (Discrete Mathematics/Math 61) that high-performing students take significantly

earlier than low-performing students.

To our knowledge, the application of rank aggregation methods to order temporal data

and uncover patterns has not been thoroughly explored in the literature [95, 202]. We hope

that this work can help provide a proof-of-concept and be adapted for other pattern-mining

applications for the temporal ordering of events [73, 74, 112, 177]. In the next section, we

discuss machine learning and data mining approaches for assisting students in their course

scheduling, course-sequence discovery and related tasks.

3.2 Related Work

The mining and analysis of educational data allows universities to build effective systems

to serve their diverse and intelligent undergraduate population. In recent years, researchers

have applied machine learning techniques to model course selection, automate curriculum

design, forecast educational consumption, and understand related student behaviors. For

example, in [210], van der Schaar et al. propose a system to help UCLA engineering students

select courses, term by term. Their model first considers two inputs: the prerequisites of

each STEM course required to graduate and the availability of courses in past years (e.g.

some engineering classes may be offered in a particular term). The system then selects
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candidate schedules for students that minimize a student’s expected time to graduation,

while ensuring a student only takes courses for which he/she has the official prerequisites.

The system then groups students according to their past performance in university courses,

Scholastic Aptitude Test (SAT) scores, and their high school ranking to select those schedules

that maximize their expected grade point average (GPA) at UCLA based on students with

similar profiles. As another example of the application of machine learning to educational

systems, the authors in [213] applied natural language processing to extract a directed graph

model called a concept graph that describes how physics and mathematics concepts depend

on one another. The authors used materials from massive open online courses (MOOCs)

and Wikipedia corpus to infer dependencies between concepts. This approach provides

a system for automating curriculum design. However, it ignores that each university often

customizes courses and particular curriculum to meet departmental goals. In [84], researchers

constructed a correlation network to identify key STEM courses at Warsaw University of

Technology. More specifically, for every pair of courses, they considered the students that

took both and analyzed their grades in each. Suppose there n such students that take both

course i and course j. Let gi and gj be n × 1 vectors such that the kth student’s grades

in course i and course j are the kth component of gi and gj, respectively. The covariance

matrix Σ between any two courses has entries

Σij = (gi − µi1n)T (gj − µj1n)

where µi is the mean of the entries of vector gi and 1n is the n× 1 vector consisting entirely

of 1’s. They defined the correlation network be the weighted, undirected network in which

nodes are the courses and edges between course i and j are weighted according to their

correlation coefficient. The correlation coefficent ρij between two courses is

ρij =
Σij

σiσj
. (3.1)

In Eq. (3.1) above, σi and σj denote the standard deviation of grades in course i and j,

respectively. Specifically, the standard deviation in course i is defined as

σi =
√

(gi − µi1n)T (gi − µi1n) .
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Using this framework, the authors of [84] performed elementary network analysis to identify

key courses. Specifically, they calculated the degree of nodes in the correlation network

to determine which courses had the highest aggregate correlation coefficient among those

courses considered. They also explored maximum spanning trees to investigate how courses

could potentially built on one another. Recall that a spanning tree is a sub-tree that contains

all the nodes of a network. The maximum spanning tree has the additional property that

the total edge weight is greater than or equal to any other spanning tree. Focusing only on

student grades, their analysis suggested that courses such as “Introduction to Programming”

and “Fundamentals of Physics” are key courses, which were both introductory STEM courses

at Warsaw University of Technology.

Researchers have also used MOOC data to analyze how students move through course-

work. On MOOC platforms, students watch lectures from a computer, submit problem

sets electronically, and complete exams online. Even though many elite universities rarely

grant undergraduate degrees strictly with online courses, many university professors have de-

signed university-level courses for MOOC platforms [33,105]. For example, many researchers

adapted internet recommendation systems for MOOC platforms to analyze course naviga-

tion and material consumption [195, 204]. A recommendation system first clusters similar

student profiles using personal data, previous course grades/scores, and usage patterns. The

system then forecasts how students will perform in future courses analyzing the profiles of

students with similar profiles. With the tools to forecast course grades/scores, educators

can better recommend courses for students and identify features that correlate with course

grades. For example, in [204], the authors deployed a recommendation system for six online

business courses at the University of Taiwan. The system collected each students’ gender,

course grade and the order courses were taken (only one course was taken per term); the sys-

tem also surveyed each student at the end of a course about the perceived level of difficulty.

The students were then clustered according to the data allowing the administrators to help

guide students through their coursework. After the system was deployed, 850 students were

required to follow the recommended coursework and provide their feedback at the end of the

online coursework. Over 80% of the students participating in the pilot program thought the
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recommendations were appropriate, although the work did not survey any online learners

that were not confined to the recommendation system. Overall, MOOCs are very different

than typical university classes: only 5–10% of students that sign up for a course complete

it [33, 105]. Although MOOCs rarely provide the same level of accreditation that univer-

sities do (Georgia Institute of Technology is offering an online masters through a MOOC

platform [135] with additional university support), they offer a glimpse into how students

consume educational content and navigate through courses.

For this work, rather than using existing prerequisite structures or course content, we

focus on the flow of students from course to course. We assume an underlying sequence

determines the distribution of course selections and then use student data to infer this

sequence. Our approach applies well-known rank aggregation techniques to infer this global

sequence of courses. We also use this information to identify possible hidden dependencies

between courses whose dependency is not listed in the course catalog.

Rank aggregation is widely applied and studied; it is a powerful tool in Web search

[71, 166], sport rankings [37, 53], recommendation systms [44, 71], and other applications.

In Section 3.5, we adapt it to extract course sequence from student schedules. In the next

section (Section 3.3), we discuss the data set that we use for this application.

3.3 Student Data

We use student data from the UCLA Department of Mathematics between Fall 2000 and

Spring 2015. We provide a snapshot of this data in Table 3.1. This table shows five courses

taken by a student. Each row corresponds to a course taken by this student. Additionally,

each row contains identification information and this student’s grade.

This data set contains only a subset of courses taken by students. Specifically, it only

reveals courses that a student was enrolled in the same term as a mathematics course.

Although all science and engineering majors require completion of particular mathematics

courses, we can only inspect those the terms that such students were enrolled in math courses.

In this data set, there are 66,881 unique students, but many students have only a few terms
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visible for inspection. Each mathematics major (there are seven) has relatively few students.

For example, this data set contains only 346 students declared as a Pure Mathematics Majors

(Bachelor of Science Degree) during 2000–2015 that earned average passing grades in their

mathematics courses.

We now discuss each field listed in Table 3.1. We also point out how certain information

within a field that may be ambiguous or incomplete. The ID field is a student’s unique

identification number. To protect each student’s privacy, the ID number has been encrypted

using a Hash function from a Microsoft SQL database product. The Term field refers to the

academic term from Fall 2000 to Spring 2015.

UCLA is on a quarter system and there are four academic terms each year: (in order)

fall, winter, spring, and summer. Summer term is over 3 months long, while the other terms

are approximately 10 weeks. Moreover, summer quarter is organized differently than the

other quarters. There are three different summer sessions within a single summer quarter

and Math courses are typically offered in two minimally overlapping sessions (the overlap is

1 week) [184]. Each of the two sessions that math is offered lasts 8 weeks. This means that

an individual course is faster paced; however, instructors meet with students more frequently

and generally students do not take as many courses during a single summer quarter (90%

of students take no more than two Math courses). However, we only have records from the

summer quarter from 2010–2014. We are also not able to differentiate between the different

summer sessions; namely, if a student was able to take two math courses in different summer

sessions then this appears the same in the data set as a student that completed two courses

in a single summer session (the latter being much more demanding of a student’s time).

Additionally, summer courses may be taught by external faculty; and enrollment is open to

international students, professionals, and students from other universities. If we consider all

students that took at least five courses and at least one upper-division math course (a course

beyond the six introductory courses required for all math majors), there are 5,327 students.

Of these students, 1,384 students at least one summer course; 599 took multiple courses in a

single summer quarter; and 119 students took courses in multiple summer quarters. These

small percentages of students are not a reflection of the popularity in summer courses, but
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rather a reflection that we only have summer quarters beginning in 2010. Although summer

quarter is a markedly different experience for students, we do not differentiate summer

quarter from Fall, Winter, and Spring quarters.

The Major field indicates one of the several majors offered at UCLA [3]. The seven Math-

ematics majors are Pure Mathematics, Applied Mathematics, Mathematics & Economics,

Financial and Actuarial Mathematics, Mathematics for Teaching, Mathematics for Applied

Science, and Mathematics of Computation [157]. Since a student can change his/her major

from quarter to quarter, we assume a student’s major is the major he or she declared in their

last quarter. Due to the current data pipeline in place, the department only records stu-

dent’s first major field in his/her student record. Although a student can major in multiple

disciplines, this data set does not reveal those students who obtained multiple degrees. For

this work, we do not ever consider students in the Mathematics for Teaching or the Financial

and Actuarial Mathematics major because there so few students in each. In the entire data

set, there are only 84 students who declare as a Mathematics for Teaching major and only

73 for Financial and Actuarial Mathematics. The Financial and Actuarial Mathematics is a

new major and has only been able since Fall 2014. However, the Mathematics for Teaching

has been available to students since Winter 2007.

The Class Standing deals with what academic rank a particular student has due to their

completed units [159]. There are four possible choices “Freshman”, “Sophmore”, “Junior”,

or “Senior”. Class standing does not refer to the number of years a student has completed.

The Admit Class field refers to the class standing given to an incoming student due to

his/her prior college-approved course credits. There are two types of incoming undergraduate

students: freshman admits and transfer admits. Each of these incoming students can have

two different admit classes. A freshman admit can have either a “Freshman” or “Sophmore”

admit class, but not higher because there are caps on the total number of outside credits

that such students can use toward their degree. Transfer admits can have either “Junior”

or “Senior” admit class. These two types of incoming student navigate their coursework

differently: transfer students have 2 years at UCLA, while freshman students have a full 4

years.
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The Subject field indicates the department of the course from a particular row. The

Course field is the numerical value of a class found in the course catalog [161]. Although we

often include the full course names in our discussion, there are some instances where we refer

to a course in number only. For convenience, we have Appendix A.1 that includes a table

with course name and number. Although there are honor track courses, we ignored honors

labeling. For example there is both an honors Real Analysis I and a non-honors Real Analysis

I, and for this work, we consider them the same. In the UCLA Mathematics Department,

courses numbered from 0–99 are lower-division courses [157]. These courses are viewed

as foundational and can frequently fulfill requirements for other STEM majors. Courses

numbered from 100–199 are upper-division courses and cover more advanced material [157].

Typically, students enrolling in these courses are mostly Mathematics majors.

The Grade field is a numerical score from 0.0 to 4.3 corresponding to letter grades [160].

We note that A-range grades occur in the interval [3.7, 4.3], B-range grades occur in the

interval [2.7, 3.7); and C-range grades occur in the interval [1.7, 2.7). We frequently refer

to such students as A, B, and C students, respectively. We do not further subdivide GPA

categories in this work because in certain instances further subdivision can lead to inference

on very small populations. For example, for students that average an A- (GPAs that lie in

[3.7, 3.85)) there are only 20 such Pure Mathematics students. The population of A-range

Pure Mathematics students is still relatively small with only 87 students in our data set.

We do not specifically consider D-range or F-range students because the GPA requirements

to complete any of the seven math majors pose a significant obstacle. Specifically, for each

major anywhere for 12-15 courses beyond the six introductory courses are submitted to fulfill

major requirements. For each of these submitted courses, a student must at least C grade.

If there are courses that a student receives a C- or worse, these cannot be counted towards

his/her degree. For simplicity, we assume that students with at least a 1.7 major GPA are

those that will be able to eventually earn his/her degree.

The CA Resident and U.S. Resident fields refer to residency status in California and the

U.S., respectively. A student’s tuition is determined using his/her residency status.

We also discuss an important aspect of the mathematics curriculum–namely the set of
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required calculus and related introductory courses [157]. There are six introductory math

courses that all students must take: Calculus I (Math 31A), Calculus II (Math 31B), Mul-

tivariable Calculus I (Math 32A), Multivariable Calculus II (Math 32B), Linear Algebra for

Applications (Math 33A), and Differential Equation (Math 33B). A majority of students

take these courses in this order. However, because many STEM departments only require a

strict subset of these six courses, the math department has made it easier for students take

the sequence in different orders [161]. For example, chemistry students are required to take

all these courses except for Math 33A [155]. As a result, Math 33B does not require Math

33A even though the course numbers may suggest that it does [161]. Twenty-six percent of

students that have taken at least 5 math courses that includes an upper-division math course

(6,250 students total) took the introductory courses in a way that violated the sequence in

the listed order at the beginning of this paragraph. We do not view courses taken concur-

rently as inconsistent with this order. While this is a sizable population that did not follow

the standard order of introductory math courses, our rank aggregation methods should order

courses to reflect how the majority of students select their coursework.

In the following section (Section 3.4), we review matrix techniques for rank aggregation

and discuss their applicability for extracting global course sequences that are most consistent

with the given data. Rank aggregation has been a powerful tool in Web search [71], sport

rankings [37, 53], and more recently, grading schemes [172]. To our knowledge, it has not

been used to infer trends in ordering temporal data [202,211,212].

3.4 Models and Methods for Rank Aggregation

Rank aggregation is the process of obtaining a single ranking from incomplete and noisy

comparisons [71, 80]. In this section, we review a few different methods and models to rank

aggregation. When possible, we connect the methods to our particular application: ordering

courses from student schedules.

Rank aggregation considers n items to rank using the information from a set of compar-

isons. There are numerous applications of rank aggregation methods spanning from informa-
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tion technology to social choice. Some of the earliest applications were to model the perceived

degree of various criminal offenses from vagrancy to murder [197]. Rank aggregation has also

been used to construct voting systems in which voters rank candidates [151,214], and it can

also be used to crowd-source comparisons of movies, video games skill levels, online seller

ratings, etc. [44,70,163]. It is also used to rank professional teams and athletes [37,53,163].

Moreover, the internet company Google uses rank aggregation methods to help infer the

authority of websites and search the WWW [35,89,166].

The manner items are compared and the number of items compared in a single compar-

ison may vary in different data sets. We assume all comparisons are pairwise, but for many

practical applications, comparisons can consider comparisons that are made on a larger sub-

set of items [71, 80]. Aggregating rankings from pairwise comparisons is rather common in

professional sports. For example, National Collegiate Athletic Association (NCAA) ranks

each team according to how well it performs in its regular season games (a pairwise compar-

isons of two teams) [37,163]. We remark that comparisons of multiple items arise frequently

in recommendation systems [70,71]. For instance, MovieLens aggregates user film ratings to

determine a list of best films: each user rates a subset of films and thus ranks these films [70].

Two types of pairwise comparison data can arise. There are ordinal comparisons in which

the data ranks two items relative to each other. For example, in a sports league, an ordinal

comparison of two teams is the identification of the winner in a head-to-head match up as

the better team. There are also cardinal comparisons in items are scored individually or

relatively. Again, using the sports league, a cardinal comparison between two teams may

be the point totals in a head-to-head matchup or the difference of such totals. A cardinal

comparison not only ranks two items, but also provides data about how much better one

item is relative to another.

For our data set, we break up a student’s schedule into several pairwise ordinal compar-

isons. Specifically, we rank course i lower than course j if course i came before course j in

a student’s schedule. We do not make cardinal comparisons between courses, as we do not

consider the number of terms between courses. Such comparisons invariably require more

careful constructions and are beyond the scope of this work. Our simplifying construction
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allows us to ignore complications associated to the varying speeds a student moves through

his/her coursework. We also avoid complications from our data associated to summer quarter

such as several missing summer quarters and the different way summer courses are organized

(see Section 3.3).

There are many challenges extracting a single ranking from pairwise comparisons. First,

many pairs of items are never compared. Second, the comparisons between items may not be

evenly distributed with respect to all possible pairs. For example, the distribution of head-to-

head matchups in a sports league may not be evenly distributed because teams located in the

same geographic region may play each other more frequently than teams that are not. For our

application, because different math majors have different course requirements, certain pairs

of courses may rarely be taken by a students, and thus we are not able to compare the order

of these courses. However, certain courses may be taken frequently in sequence providing

multiple comparisons reinforcing the order such courses. Third, some of the comparisons

may be “noisy.” For example, a hidden variable can influence how comparisons are being

made. A sports team may win all of its head-to-head matchups except one because its star

player was ill. For course-sequence discovery, a “noisy” comparison may be the result of

course availabilities, early-morning lectures, or a popular professor that influenced a student

to not take courses in the recommended order.

For many of our methods, we translate the pairwise comparison data to a directed net-

work. Let G = (V,E) be a network, in which V are the n items to be ranked and E encode

the pairwise comparisons. There are various ways to model the edges to represent pairwise

comparisons. For example, if the pairwise comparisons are ordinal comparisons, the direction

indicates which item is ranked higher: if i is ranked higher than j, then the edge is directed

from i to j. We often describe these networks using a weight matrix W. We also define the

measurement graph GM = (VM , EM) as the graph whose nodes are the n items and edges

between items i and j whenever these items are compared at least once.

We now discuss some of the generative models associated with rank aggregation. These

models describe how rankings (and associated parameters) generate a set of pairwise com-

parisons. These models also provide synthetic benchmarks to evaluate a rank aggregation
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methods. We first discuss the Bradley–Terry–Luce (BTL) model [32, 124]. The BTL model

takes a vector x ∈ Rn as input, where n denotes the number of items compared and xi

represents the skill parameter associated to the ith item. We assume all the components xi

are nonnegative. The BTL model produces a set of pairwise ordinal comparisons of the n

items. Let i and j be two items and consider the lth comparison between them. Let Y l
ij be

a random variable that takes values in {0, 1} such that Y l
ij = 1 if i is ranked higher than j

in the lth comparison and 0 otherwise. Note that Y l
ij = 1 − Y l

ji. This construction assumes

there are no ties when items are compared. The BTL model specifies that

P (Y l
ij = 1) =

xi
xi + xj

. (3.2)

To obtain a more general form, we select vi such that xi = evi for all i = 1, . . . , n and write

P (Y l
ij = 1) =

1

1 + e−(vi−vj)
. (3.3)

We can rewrite Eq. (3.3) as

P (Y l
ij = 1) = F (vi − vj) , (3.4)

where F (x) = 1/(1 + e−x). The form of Eq. (3.4) can be generalized to other ordinal

comparison models as long as F is the cumulative distribution function of a random variable

symmetric about the origin [41, 81]. When F is the cumulative distribution function for a

normal distribution with mean 0 and fixed variance, Eq. (3.4) is an example of the Thurston

model [41,197]. These generative models can be used to provide synthetic data sets for rank

aggregation [53, 81,152] in addition to describing simple mechanisms to relate rankings and

comparisons [197].

However, rankings alone often do not adequately describe cardinal comparisons. For

example, models that forecast professional sport scores in head-to-head matchups consider

weather, player profiles, coaching strategies, and other inputs [86, 91]. Because of this com-

plexity, generative models that produce cardinal comparison data often make simplifying

assumptions. In [53], Cucuringu proposed a generative model for cardinal ranking called the

Erdős–Rényi–Outlier (ERO) model with parameters v, p, and r. Here, v is a vector of skill
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parameters for each of the n items, similar to the BTL model. The vector v is a permutation

on {1, . . . , n}. In other words, the map i 7→ vi is a bijective function. To reduce complexity,

the model considers the rank offsets Rij defined to be

Rij = vi − vj . (3.5)

The ERO Model then outputs a network G = (V,E) with weight matrix W with entries

Wij =





Rij with probability (1− r)p

URij with probability rp

0 with probability 1− p

(3.6)

when i < j where URij is a uniform, integer-valued random variable on [−Rij, Rij]. When

i > j, we define Wij = −Wji; when i = j, Wii = 0. This model specified in Eq. (3.6)

can be generalized replacing Rij with Rij + εij, where εij is a Gaussian random variable

with 0 mean and represents noise in the measurements. Unfortunately, even with these

generative models, estimating parameters of a model with maximum likelihood estimation

is problematic because comparisons may be incomplete or unevenly distributed among pairs

[55]. In [44], Chen et al. applied expectation maximization on a related graphical model

to approximate the parameters of the BTL model in the presence of incomplete and noisy

comparisons.

To circumvent the challenge associated to noisy and incomplete comparison data, rank

aggregation can be posed as a combinatorial problem on a network whose edges encode

pairwise comparison data [90, 104, 163, 164]. This approach requires two steps. First, the

pairwise comparisons are translated into a network model. We assume the weight matrix

W is skew-symmetric. The entry Wij > 0 implies that i is ranked higher than j; Wji < 0

implies that j is ranked higher than i; and Wij = 0 means i and j were never compared.

Next, one extracts the rankings from the structure of the network. There are numerous

network constructions that are possible. Often, several different network constructions are

used for rank aggregation and then compared [81, 90, 104, 163]. We describe a particular

model explored in [90,104,163] to elucidate how such a combinatorial problem can be posed.
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Let’s assume that for each pair i and j, there are Lij cardinal pairwise comparisons. We also

associate a score Rl
i with i and a score Rl

j with j with the lth comparison. We construct a

weight matrix W with entries that are the mean of the rank offsets for these comparison.

Specifically,

Wij =





1
Lij

Lij∑

l=1

(Rl
i −Rl

j) Lij > 0

0 Lij = 0 .

(3.7)

In [104, 163], Jiang et al. and Osting et al. ranked items according to the vector x̂ that

solves

x̂ = arg min
x : 1Tnx=1

∑

(i,j)∈EM

|xi − xj −Wij|p (3.8)

where p = 1 or 2; the vector 1n of length n all of whose entries are 1; and EM are the

edges in the measurement graph defined earlier in this section. There is the constraint

1Tnx = 0 because the addition of any constant to x does not alter the objective Eq. (3.8).

The minimization in Eq. (3.8) is a continuous, convex optimization problem and an optimal

solution can be found using a linear program as in [104]. When p = 2, the above problem can

be well-approximated using low-rank matrix approximations [53, 89]. We refer to the later

approach as a matrix method because it is reduced to a well-known numerical matrix routine

such as the computation of eigenvalues/eigenvectors [60]. In the following section (Section

3.5), we discuss the matrix methods for rank aggregation that we apply for course-sequence

discovery.

3.5 Matrix Methods for Rank Aggregation

We now discuss the methods for rank aggregation that we use for course-sequence discovery.

These methods reduce rank aggregation to a numerical matrix computation. For clarity, we

first discuss some preliminary network constructions in Section 3.5.1 to more easily describe

ordinal course comparisons data. We then describe the different matrix methods in Sections

3.5.2–3.5.6 for rank aggregation and course-sequence discovery.
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3.5.1 Preliminary Networks

In this section, we introduce some preliminary networks and notation to help describe this

pairwise ordinal comparison data. Each method either uses or modifies the networks de-

scribed here. Each network has nodes that represent courses. We consider directed edges to

encode the frequency a course i was taken before course j.

The first model we consider defines directed edge weights to be the ratio of students

that took courses in a particular order out of all the total students that took the courses

in different quarters. Let l = 1, . . . , ns be an enumeration of students. Let i and j be an

enumeration of courses with i, j = 1, . . . , nc. We first define the indicator variable I lij if

student l took course i before course j

I lij =





1 if student l took course i before j

0 otherwise .

Let the count matrix C be an nc × nc matrix such that

Cij =
ns∑

l=1

I lij when i 6= j,

and Cij = 0 when i = j. Let the proportion matrix P be

Pij =
Cij

Cij + Cji
, (3.9)

whenever Cij + Cji > 0. If Cij = Cji = 0, then we define Pij = Pji = 0. By construction,

Pij + Pji = 1 when course i and course j have been taken in different quarters at least

once. The proportion matrix P defines a directed multigraph in which an edge weight

Pij approximates the flow of students moving from course i to course j. In Figure 3.1, we

illustrate a portion of the network model using three courses: Discrete Structures (Math 61),

Linear Algebra I (Math 115A), and Real Analysis I (Math 131A). We have only considered

Applied Mathematics students to construct the edge weights of the network; there were 672

students total. Of these students, there were 437 Applied Mathematics Students that took

Real Analysis I (Math 131A) and Linear Algebra I (Math 115A) in different quarters. Only

24 students of the 437 took real analysis first. The appropriate proportion is applied in the

edge weight (0.056) from Real Analysis I to Linear Algebra I.
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We now define the flow matrix F. Let F be a skew-symmetric matrix of size nc×nc with

|Fij| ∈ [0.5, 1]. Using Pij (Eq. (3.9)), define Fij as

Fij =





Pij if Pij ≥ 0.5

Pij − 1 if Pij < 0.5 .
(3.10)

For example, if 70% of the students (who took both courses i and j) attended course i before

j, then we set Fij = 0.7 and Fji = −0.7. The matrix F defines a multigraph such that edge

weights encodes the flow of the majority of students between two courses. Many of the rank

aggregation methods require a skew-symmetric matrices as in Eq. 3.8. Several other choices

for candidate skew-symmetric matrices are explored in [90] such as Fp = P− PT , where P

is the proportion matrix defined in Eq. (3.9).

We also briefly review the terminology of a (discrete time) Markov chain in the context

of a student moving through coursework. A complete treatment can be found in [69]. We

assume a student is enrolled in precisely one of the nc courses at time discrete time steps

t = 1, 2, . . .. The model assumes that, with each subsequent time step, the student can move

to a new course repeating courses as needed. We define the probability that a student enrolls

in course j is taken after course i as the the transition probability Tij and Tij does not depend

on t (time homogeneity). We also assume that the probability that course j is taken after

i is independent of the courses taken prior to i (Markov property). The transition matrix

T associated with this Markov chain has entries given as Tij. We can associate a directed

network structure with T if we view T as a weight matrix.

For Markov chains, we investigate systems as t→∞. Let qt be the nc × 1 vector whose

ith entry denotes the probability that a student is at course i in the tth time step. For

normalization,
∑nc

i=1(qt)i = 1. From our construction above, the following equation holds for

all t

qTt = qTt−1T . (3.11)

We define the stationary distribution q∞ associated to Markov chain as the vector that

satisfies

qT∞ = qT∞T .

76



This defines a linear system of equations. In certain cases, we can compute the stationary

distribution as

qT∞ = lim
t→∞

qT0 Tt , (3.12)

independent of an initial condition q0 as is common for several rank aggregation methods [89].

In [69,123], there are conditions that guarantee the limit in Eq. (3.12) exists and equals the

stationary distribution. As another example, if we assume that a Markov chain denotes the

movement of a walker along an undirected graph, then Eq. (3.12) holds as long as the graph

is not bipartite [123]. We use Eq. (3.12) to approximate a stationary distribution via power

iteration (a spectral method discussed [60]).

3.5.2 PageRank

PageRank (“bringing order to the Web” [166]) ranks the authority of websites by computing

the stationary distribution of a random web surfer who either moves to an adjacent website

via a hyperlink or moves uniformly at random anywhere in the network [35,89,166]. In [37],

the authors adapted a similar framework to model voters in the NCAA poll and extract

football rankings based on regular season matchups.

We use PageRank to determine a course sequence. Recall our construction of the pro-

portion matrix P from Eq. (3.9). We define a transition Sα to describes the motion of a

student. This transition matrix Sα is

Spr
α = (1− α)D−1P + α

(
1

nc
1nc×nc

)
, (3.13)

where α ∈ (0, 1), 1nc×nc is the nc × nc matrix of all 1s, and D is the diagonal matrix of out

degrees related to P (i.e. dii =
∑

j Pij). The first term (1 − α)D−1P indicates that with

probability (1 − α) a student at course i travels to an adjacent node j in the network with

probability pij/
∑

j′ pij′ . The second term α
(

1
nc

1nc×nc

)
determines with probability α that

the student moves to any other course uniformly at random. One observes that

1

nc
1nc×nc = 1nc ·

(
1

nc
1Tnc

)
,
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and the latter vector 1
nc

1Tnc is the uniform distribution on the nc courses. One can generalize

Eq. (3.13) replacing 1
nc

1Tnc with an arbitrary distribution v ∈ Rnc on the nc courses with
∑

i vi = 1 from normalization. Specifically,

Spr
α = (1− α)D−1P + α

(
1ncv

T
)
. (3.14)

The movement determined in the second term of Eq. (3.14) is called teleportation and v

as the vector of teleportation probabilities. One associates a Markov chain with states qt at

time t with Spr
α and the transition rule:

(qt+1)T = (qt)
TSpr

α . (3.15)

The PageRank vector q∞ is defined to be the stationary distribution associated to the Markov

chain in Eq. (3.15) and computed as a limit, limt→∞ qt. In our case, the ith component

of q∞ gives the ranking of course i. The smaller (q∞)i for a course i, the more likely a

student is to take course i early in his/her sequence. From this ordering, we extract a

global ranking for ordering courses. We use power iteration to obtain q∞ and find that 200

iterations are sufficient to ensure a relative error ||qk+1 − qk||1 < 10−10. We remark that

PageRank is guaranteed to converge to the stationary distribution via power iteration as

noted in Theorem 2.2 of [89].

Teleportation is required to ensure that all courses have nonzero stationary probability.

When the stationary distribution is determined entirely by P (α = 0), many entries in q∞

are 0 as t→∞. For example, if a student takes Calculus I (Math 31A), this is his/her first

math course. We exclude Precalculus in our network construction because fewer than 1%

of math majors take this course. As a result, there are no in-edges for Calculus I in our

network when α = 0 and the stationary probability associated to Calculus I is 0. Similarly,

when a student takes Calculus II (Math 31B), it is either the first math course taken or

taken after Math 31A. As a result, the stationary probability of Calculus II is 0 as its only

in edge is 0. Therefore, we cannot differentiate the order of Calculus I and Calculus II when

α = 0. Similar problems exist for the six lower-division calculus courses: Math 31AB, 32AB,

and 33AB. In our applications, we select α = .15 as in the original work [166]. We make
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Algebra I
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Figure 3.1: A subgraph corresponding to the proportion matrix P defined Eq. (3.9)

for Applied Mathematics majors. Each node represents a course; for this subgraph,

we selected Linear Algebra I (Math 115A), Real Analysis I (Math 131A), and Discrete

Structures (Math 61). The edge weight Pij from course i to j indicates the proportion of

students that took i in an earlier quarter than j out of all those students that took the

pair of courses in different quarters.

this selection not to align with prior applications of PageRank, but to ensure that the the

six introductory courses are ordered as Math 31A, Math 31B, Math 32A, Math 32B, 33A,

and Math 33B (see Section 3.3 for a discussion). In our experiments, these introductory

math courses were correctly ordered for α between .13 and .17. We examine a type of

personalized PageRank [89] to further differentiate early and late coursework. Specifically,

we first compute q∞ using Eq. (3.13) and then set v = 1n − q∞ when we apply Eq. (3.14)

again.

3.5.3 Rank Centrality

In [152], the method of Rank Centrality was proposed to recover the parameters associated

to the BTL model from a set of pairwise comparisons (Section 3.4). Let x be the vector of

parameters associated to the BTL model. The goal of the network construction is to produce

a Markov chain with transition probability Tij proportional to xi
xi+xj

. Rank Centrality defines
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a Markov chain on the nc courses with the following transition matrix

Src =
1

dmax

P +

(
Inc −

1

dmax

D

)
, (3.16)

where D is the diagonal matrix of out-degrees given as dii =
∑

j Pij, dmax is the maximum

out-degree of all course nodes in the network, and Inc is the nc×nc identity matrix. To obtain

the rankings from the Markov chain of Eq. (3.16), we determine the stationary distribution

q∞ by computing the top eigenvector of (Src)T . This is the numerical method prescribed

in [152], which is guaranteed to be the stationary distribution because Src has both row and

column sums 1 [152]. Again, the smaller (q∞)i, the more likely a student takes course i early

in his/her sequence. Rank Centrality recovers x as long as the pairwise comparison data is

distributed uniformly among pairs (see Theorem 2 of [152]). In our numerics in Section 3.6,

Rank Centrality does poorly in certain cases. Specifically, Rank Centrality poorly orders

advanced classes that are offered infrequently. We conjecture that such classes are highly

correlated with a particular sequence within a major and are not compared to the full range

of classes that are taken. One possible way to explore this poor performance would be to

extract sequences of students that took these poorly ordered courses and compare them to

the larger population. Because the other five rank aggregation methods produced sequences

that were in relative agreement (see Table 3.2 and Table 3.2), we did not examine this aspect

of Rank Centrality further.

3.5.4 SerialRank

SerialRank [81] adapts the seriation problem proposed in [11] to determine a global ranking

of items, which we now detail. The seriation problem is the problem of determining an

ordering of n items given a real-valued similarity function f so that items closer together in

the ordering are more similar than items farther apart [11]. Precisely, if π(i) < π(j) < π(k)

is an ordering of the three elements i, j, and k, then f(i, j) ≥ f(i, k) and f(j, k) ≥ f(i, k).

For SerialRank, one defines a similarity function that counts how frequently two courses are

ordered similarly relative to other courses. To construct the similarity matrix, we first define
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the comparison matrix Ak for course k as

(Ak)ij = 1− |Pik − Pjk|
2

whenever Pik 6= 0 and Pjk 6= 0

where Pij is the proportion matrix (Eq. (3.9)). If either course i or course j has not been

taken in sequence with k, we define (Ak)ij = 1
2
. The comparison matrix Ak counts how

frequently course i and course j are ordered similarly relative to k. The similarity matrix

Ssr is then determined by summing over all possible comparison matrices

Ssr =
nc∑

k=1

Ak.

We can then subtract the minimum value of Ssr from all the entries of Ssr so that those

courses with minimum similarity now have similarity of 0. To determine a ranking from Ssr,

we form the (combinatorial) graph laplacian L and rank the courses using the components

of the Fiedler vector [81]. The graph laplacian L is defined as

L = D− Ssr .

The Fiedler vector is the eigenvector associated to the smallest nonzero eigenvalue of L. Our

rankings can are extracted from q. We interpret q as approximation to a NP-hard ranking

problem described in [11]:

q = arg min
p∈Snc

∑

i,j

ssr
ij(pi − pj)2 , (3.17)

where Snc is the subset of vectors with integer entries representing permutations on the set

{1, 2, . . . , nc} such that i 7→ pi. First, we observe that
∑

i,j s
sr
ij(pi− pj)2 = (p)TLp. Then, we

allow p ∈ Rnc and relax Eq. (3.17) into a minimization that is solved by the the eigenvector

associated to the smallest nonzero eigenvalue of L:

q = arg min
p∈Rnc : ||p||=1

(p)TLp .

After ordering the nc courses using the components of q, we obtain a course sequence. In [81]

(Proposition 2.4), the authors provide guarantees on recovery of the ranking if the pairwise

comparisons are drawn from a BTL model and sufficiently many comparisons from each

possible pair are obtained. In [81], the authors rank teams in the English Premier Soccer

League and competitors on TopCoder.com and both compare favorably to the true rankings

of each data set.
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3.5.5 SyncRank

In [53], Cucuringu formulated rank aggregation as an instance of angular synchronization,

which we now discuss. Group synchronization reconstructs a finite subset S ⊂ G of a group

G given a set M of measurements of the form

M =
{
mij | mij = g1g

−1
2 , g1, g2 ∈ S

}
.

In [188], Singer studied the angular synchronization problem, a special case of the above

where G = SO(2) = {S | S ∈ R2×2, det(S) = 1}. Elements of SO(2) can be identified with

z ∈ C with |z| = 1, where | · | is the norm of a complex number. If we write z = eiθ, the group

operation is given as complex multiplication: eiθ1eiθ2 = ei(θ1+θ2) whenever eiθ1 , eiθ2 ∈ SO(2).

We can also identify each element eiθ ∈ C with θ ∈ [0, 2π) so that the complex multiplication

becomes addition modulo 2π. The angular synchronization problem can be stated as a set

of measurements M with elements

Θij = θi − θj (mod 2π). (3.18)

Singer assumed that each Θij of M is corrupted with additive zero-mean Gaussian noise

and that |M | �
(|S|

2

)
. Singer introduced a spectral method for approximating the set

S = {θ1, . . . , θn} from Θij [188]. We observe that, for any ω ∈ [0, 2π), the set S + ω =

{θ + ω (mod 2π) | θ ∈ S} produces the same set of Θij. Accordingly, once we recover

θ1, . . . , θn, we must use some additional information to determine a suitable phase ω to add

to each angle.

We now relate the angular synchronization problem to rank aggregation. As in [53], we

refer to this method as SyncRank. Suppose we have cardinal comparisons Θij that determine

a skew-symmetric matrix as in Eq. (3.18). The spectral method of [188] guarantees we can

recover real numbers θi ∈ [0, 2π) such that θi − θj ≈ Θij as long as there are sufficiently

many measurements Θij and the pairs are uniformly distributed among possible pairs. After

suitable rotation, we can then rank courses according to the recovered θi. To obtain a

suitable skew symmetric Θij for this method, we define Θij = πFij (Eq. (3.10) in Section

3.5.1). Note that there are several other methods to construct a skew-symmetric matrices
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from ordinal (or cardinal) comparisons as in [90]. With this skew-symmetric πF, SyncRank

correctly orders the six introductory math courses (Math 31AB, Math 32AB, Math 33AB)

for all seven math majors. W use this ordering of courses to tune α in our application of

PageRank in Section 3.5.2 and noted in that section that a majority of students do not

violate this sequence. As a result, we did not explore other skew-symmetric matrices.

We now discuss the matrix formulation of angular synchronization and its spectral relax-

ation [188]. We first build a nc × nc Hermitian matrix H with

Hij =




eiΘij , if Cij + Cji > 0

0 otherwise

.

where i =
√
−1. First, we note that

∣∣e−iθjHije
iθi
∣∣2 =

∣∣e−iθjeiΘijeiθi
∣∣2 ≤ 1 . (3.19)

Suppose that Θij = θi− θj (mod 2π) for angles θ1, . . . , θnc . Then, for each i = 1, . . . , nc, Eq.

(3.19) obtains its maximum value of 1. We thus write the angular synchronization problem

as

z = arg max
w∈Cnc : |wi|=1

||wTHw||2 . (3.20)

Note the constraint on w in Eq. (3.20) is non-convex. We solve the angular synchronization

problem via its spectral relaxation

v = arg max
w∈Cnc : ||w||2=nc

||wTHw||2 . (3.21)

Note that the constraint that |wi| = 1 is stronger than ||w||2 = nc. We solve Eq. (3.21)

finding the largest eigenvector of H. We approximate z from Eq. (3.20) as

zi = eiθi =
vi
|vi|

for i = 1, 2, . . . , nc. We extract the corresponding angles θ1, . . . , θnc . These angles are

correct up to a circular permutation because, for any ω ∈ [0, 2π), the vector eiωv is also an

eigenvector of H. To determine the correct ranking, we use the consistency coefficient that

we introduce in Section 3.5.8 (Eq. (3.26)).
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3.5.6 Least Squares

We now discuss the method of [97] for course-sequences discovery. This method uses the

framework introduced in Eq. (3.8) in Section 3.4. Assume we are given a network with a

skew symmetric weight matrix W. Let k = 1, . . . , |EM | be enumeration of edges ek ∈ EM of

the measurement graph GM . Define the gradient operator associated to this enumeration as

Bik =





1 if ek = (i, j) and i > j

−1 if ek = (i, j) and i < j .
(3.22)

Observe that B ∈ R|EM |×nc . Let w be a vector of size |EM | × 1 that includes only the

nonzero entries of W. We assume that Wij = Wji = 0 precisely when i and j have not been

compared and so there is no edge in the measurement graph GM . The enumeration of edges

to construct B should agree with w. Then Eq. (3.8) can be rewritten as

minimize
x∈Rnc : 1Tnx=0

||Bx−w||22. (3.23)

We assume that nc < |EM |; this is always the case in our data set as the number of courses is

much less than the pairs of courses that co-occurr in a student’s schedule. This assumption

means that Eq. (3.23) is an over-determined system. We apply least-squares [60] to deter-

mine x. In our applications, we use the skew-symmetric F (Eq. (3.10)) as a weight matrix

W.

3.5.7 Ranking via Singular Value Decomposition

We now discuss a rank aggregation method that assumes a skew-symmetric weight matrix

W has a low-rank approximation. These methods were introduced in [53,90]. We follow [53]

and apply the Singular Value Decomposition (SVD) to obtain a low-rank approximation.

Recall a special case of the Singular Value Decomposition of a real nc × nc matrix W is

W = UΣVT ,

where U = [u1u2 . . .unc ] and V = [v1 . . .vnc ] are unitary matrices such that each ui, vi are

unit-length column vectors and Σ is a diagonal matrix of singular values given by σ1, . . . , σn

84



[60]. Each ui is a left singular vector and each vi is the right singular vector. If all but the

top two singular values are negligible in size relative to σ1 and σ2, then we can approximate

W as a rank-2 matrix. Specifically,

W ≈ σ1u1v
T
1 + σ2u2v

T
2 . (3.24)

We observe that the rank of W’s approximation is determined entirely by v1 and v2 and

we refer to these as the top (right) singular vectors. In [90], Gleich applied techniques from

compressive sensing to determine a low-rank approximation of W.

For our application, we assume that v is an nc×1 vector such that vi provides a numerical

score associated to the rank of a course. Let R be the matrix of rank offsets associated to

this vector v given as Rij = vi − vj (see Eq. (3.5)). We observe that R has rank 2 because

R = v1Tnc − 1ncv
T , (3.25)

where 1nc denotes the all-ones column vector of size nc × 1. We assume that a skew-

symmetric weight matrix W can be approximated by R. To obtain a decomposition as in

Eq. (3.25) of W, we assume v is approximately a scalar multiple of one of the top two

singular vectors v1 or v2 given in Eq. (3.24). As in Section 3.5.6, we set W = F (Eq.

(3.10)). Because we obtain singular vectors v1 and v2 up to sign, we must also compare (the

reversed) rankings associated to −v1 and −v2. We choose the ranking that has the highest

consistency coefficient that we introduce in Section 3.5.8 (Eq. (3.26)).

3.5.8 Evaluating a Course Sequence

To compare extracted course sequences from each of the methods above, we need a measure

that demonstrates how well a particular sequence agrees with our student data. We assume

that a hidden course sequence determines the order in which courses are taken. However,

there is no underlying ground truth course sequence that we can use to measure the accuracy

of an extracted sequence. Moreover, rank aggregation should not be viewed as a model for

forecasting course orders, but rather a tool to better analyze high-dimensional space of

course schedules. Also, we do not expect exact agreement of course orders from the different
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rank aggregation methods we apply. For example, in [53, 81], English Premier soccer teams

were ranked using several different methods according to the head-to-head matchups played

during the regular season. Of the eight methods applied, there was no consensus on the top

ranked team.

There are several different methods for evaluating rankings when ground truth is known

and when it is not [44, 53, 71, 152]. We define a measure similar to a measure that can be

found in [53, 152]. Let q be the score vector of our courses such that qi < qj implies that

course i comes before course j in the sequence. If two courses i and j can be taken in any

order and are offered with similar frequency, our null hypothesis is that Pij = Pji. Because

Pij + Pji = 1, we also have that Pij = Pji = .5. However, if two courses are offered with

similar frequency and course i depends on course j or course j depends on course i, then the

alternate hypothesis is Pij 6= .5. We define the consistency coefficient K(q) to measure the

refutation of our null hypothesis over every possible pair in our ordered sequence. Specifically,

the formula is

K(q) =
4

n2 − n
∑

qi<qj

(Pij − .5) =
2

n2 − n
∑

qi<qj

(Pij − Pji) . (3.26)

The coefficient in front of the sum ensures that K(q) ∈ [−1, 1]. When the courses are taken

in random order by students, we expect K(q) ≈ 0 for any ranking q. On one hand, if all

students take their courses in a single linear order determined by q, then K(q) = 1. On the

other hand, if the courses were all taken the reverse order determined by q, then K(q) = −1.

We can use the consistency coefficient to compare a pair of courses. If we consider two vectors

q1 and q2 from different rank aggregation methods, with K(q1) ≥ K(q2), we conclude that

for any course i coming before course j in the extracted sequence of q1 the mean difference

Pij − Pji over all such pairs is greater than or equal to the same mean for q2. Additionally,

using K(q), we can measure how consistently a particular population takes courses in the

same order as q. No population we consider is aligned perfectly with the extracted course

sequence so K(q) < 1 . The closer K(q) is to 1, the closer the mean Pij −Pji is to 1 for each

course i coming before course j in the extracted sequence.

There are several ways to refine the consistency coefficient K(q), which we will explore
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in future work. First, it would be helpful to incorporate the number of terms between

course i and course j in a meaningful way. However, as noted in Section 3.4, students go

through course offerings at different speeds and spend different amounts of time completing

their required coursework (e.g. incoming transfers versus freshman). Moreover, the distance

between each term is not uniform (e.g. summer break discussed in Section 3.3 breaks up

spring and fall terms). Second, comparing the numerical scores associated to qi and qj may

be interesting as we expect from most methods qi � qj means not only that course i comes

after j, but more frequently. A natural avenue for exploration would be the modification

K̃(q) =
4

n2 − n
∑

qi<qj

(qj − qi)(Pij − .5),

where we have normalized ||q||2 = 1. Third, the measure we define in Eq. (3.26) views each

course comparison as equally important, but the number of students taking a pair of courses

is ignored. For instance, a ranking that correctly orders a pair of required courses both with

high enrollment should be more valuable than a ranking that orders a pair of specialized

courses with relatively low enrollment. These improvements will be explored in future work.

3.6 Course-Sequence Discovery

We now apply the six methods discussed in Section 3.5 to the student data described in

Section 3.3. This section is organized as follows. We compare each of the course sequences

obtained by the six matrix methods. We also discuss how the extracted course sequence

compares to the prerequisites in the UCLA general catalog [161] and the recommendations

provided by the UCLA department of mathematics [157]. In Section 3.6.2, we then com-

pare the course sequences of high and low performing students and identify possible hidden

dependencies between courses.

3.6.1 Evaluating the Matrix Methods

In this section, we discuss some of the results when we apply rank aggregation to various

segments of the student population (see Section 3.3). When applying a method, we construct
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Table 3.2: Course Sequences for Applied Mathematics Majors obtained by three of the

six methods discussed in this chapter.

PageRank Rank Centrality SerialRank

Linear Algebra I Linear Algebra I Linear Algebra I

Discrete Structures Discrete Structures Discrete Structures

Real Analysis I Applied Algebra Real Analysis I

Probability I Partial Diff. Equations Probability I

Numerical Analysis I Mathematical Modeling Numerical Analysis I

Nonlinear Systems Real Analysis I Nonlinear Systems

Complex Analysis Abstract Algebra I Abstract Algebra I

Abstract Algebra I Game Theory Complex Analysis

Real Analysis II Complex Analysis Real Analysis II

Graph Theory Numerical Analysis II Graph Theory

Mathematical Modeling Numerical Analysis I Mathematical Modeling

Actuarial Mathematics Graph Theory Actuarial Mathematics

Ordinary Diff. Equations Probability I Ordinary Diff. Equations

Applied Algebra Nonlinear Systems Applied Algebra

Optimization History of Mathematics History of Mathematics

History of Mathematics Probability II Probability II

Probability II Actuarial Mathematics Optimization

Numerical Analysis II Real Analysis II Game Theory

Game Theory Ordinary Diff. Equations Numerical Analysis II

Partial Diff. Equations Optimization Partial Diff. Equations
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Table 3.3: Course Sequences for Applied Mathematics Majors obtained by the three

of the six methods discussed in this chapter.

SVD Least Squares SyncRank

Linear Algebra I Linear Algebra I Linear Algebra I

Discrete Structures Discrete Structures Discrete Structures

Real Analysis I Real Analysis I Real Analysis I

Probability I Probability I Probability I

Nonlinear Systems Numerical Analysis I Numerical Analysis I

Numerical Analysis I Nonlinear Systems Nonlinear Systems

Complex Analysis Complex Analysis Complex Analysis

Abstract Algebra I Abstract Algebra I Abstract Algebra I

Real Analysis II Real Analysis II Actuarial Mathematics

Graph Theory Graph Theory Graph Theory

Actuarial Mathematics Mathematical Modeling Real Analysis II

Mathematical Modeling Actuarial Mathematics Applied Algebra

Applied Algebra Applied Algebra Mathematical Modeling

Ordinary Diff. Equations Ordinary Diff. Equations Ordinary Diff. Equations

History of Mathematics History of Mathematics History of Mathematics

Probability II Optimization Probability II

Optimization Probability II Optimization

Numerical Analysis II Numerical Analysis II Numerical Analysis II

Game Theory Game Theory Game Theory

Partial Diff. Equations Partial Diff. Equations Partial Diff. Equations
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the relevant matrix (e.g. the flow matrix F) using only students from this population.

In all of our applications, we remove courses in which fewer than 10% of a population

enrolled in order to more easily identify trends. We did not observe relative changes in an

extracted sequence when we lowered the enrollment threshold from 5–15% in our numerical

experiments. Specifically, when we compared a sequence in which we excluded courses with

fewer than 5% enrollment to a sequence with fewer than 10%, the relative positions of

individual courses in both sequences was unchanged except for Rank Centrality, which we

detail below.

We first discuss how the extracted course sequence matched the prerequisites in the course

catalog [161] and capture trends in student course selection we discussed in Section 3.3. First,

all the methods ordered the six introductory math courses (Section 3.3) as Calculus I (Math

31A), Calculus II (Math 31B), Multivariable Calculus I (Math 32A), Multivariable Calculus

II (Math 32B), Linear Algebra for Applications (Math 33A), and Differential Equation (Math

33B), for each math major. This provides some indication that all the methods correctly

identify that a majority of students take introductory courses in this order (see Section 3.3).

In Table 3.2 and Table 3.3, we compare the output sequences beyond these introductory

courses for all six methods on Applied Mathematics majors with A-range GPAs. We inspect

Applied Math majors because they are the largest of the seven possible math majors. We

focus A students because we expect this smaller population (ns = 140) to select similar

coursework. When we further subdivided students between A-, A, and A+ GPAs, we did

not notice variation in the extracted course sequence. In Table 3.2 and Table 3.3, all meth-

ods place Linear Algebra I and Real Analysis I early in the sequence as these are courses

required for all math majors. In fact, the department explicitly encourages students to take

Linear Algebra I as their first proof course [157]. All the methods consistently placed Real

Analysis I before Real Analysis II and III and similarly for other courses that span a single

topic over many quarters (e.g. Numerical Methods I, II). Although no two methods were

in total agreement, we observed that Rank Centrality produced results that were largely

different than the others for this particular population. Specifically, Rank Centrality placed

Applied Algebra and Partial Differential Equations much earlier than the other methods.
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Approximately 10% of students in the Applied Mathematics major took these classes, which

was the minimum for a class to be considered in our course sequence. When Rank Centrality

was applied to all Applied Math majors (not shown), Real Analysis II, which is only taken by

10% of the population, was placed before Real Analysis I in the sequence. When we consider

courses with at least 5% (as opposed to 10%), courses with low enrollment frequently are

moved up and even the introductory courses (see Section 3.3 are not ordered correctly). We

conjecture that this method does poorly when a class is infrequently taken.

After we extract a sequence, we can inspect the heat map of the weight matrix according

to the extracted sequence to obtain a granulated view of the data. For example, in Figure

3.2, we construct P of Pure Mathematics students with A-range GPAs. See Appendix A.1

for a reference of course name of each course number in the axes. Again, we can see from

the same Figure 3.2 that the introductory course sequence (31A, 31B, 32A, 32B, 33A, 33B)

is taken earliest in the sequence and a majority of students take this sequence in this order.

We observe Pij + Pji = 1 when both i and j have been taken by at least one in different

quarters. There are some pairs of classes for which Pij + Pji = 0, which occurs when either

no student takes both course i and j or there are no students that take these courses in

different quarters. For instance, we can see from Figure 3.2 that this is the case for Math 61

(Discrete Structures) and Math 133 (Fourier Series).

We also evaluate each course sequence using the consistency coefficient introduced in

Section 3.5.8. In Table 3.4, we provide values of K(q) for all six methods and their corre-

sponding rankings q for three different majors across four different performance categories.

The majors shown are Applied Mathematics, Applied Science and Pure Mathematics; we

computed similar consistency coefficients for the other four majors not shown. The first

two majors are the largest mathematics majors of those seven in the mathematics depart-

ment. These majors often allow students to allow requirements outside of the mathematics

department (e.g. Statistics) [157]. Because we only have a student’s record when they are

enrolled in a Mathematics course, we expect some “noise” in the pairwise comparison data

as students fulfill similar requirements with courses from different departments. Within each

major, we also illustrate three GPA categories (see Section 3.3). Using the numerics listed
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in the table, we compare different populations as follows. We see that in general, K(q) is

maximal for A range students and minimized when we consider the entire major population.

The large value of K(q) for A students indicate their navigation through coursework is more

homogeneous in terms of the ordering in which classes are taken (see Section 3.5.8). We also

note that Rank Centrality has low consistency coefficient relative to the other methods for

Applied Mathematics majors, reinforcing similar observations we made earlier in this section

that several courses with low enrollment were placed early in an extracted sequence even

though students did not generally follow this ordering. The low consistency coefficient means

relative to the other methods that the extracted course sequence from Rank Centrality has

Outside of Rank Centrality (specifically for Applied Mathematics majors), the coefficients

for K(q) are all within .015 of each other. Again, we are not using the course sequence to

forecast the order of students but rather identify possible trends in a very high dimensional

space of students schedules. Specifically, we can extract a single linear sequence that re-

flects how students fulfill math major requirements to better identify courses that may be

important for students to take early in their mathematics education or hidden dependencies

between courses. We explore such dependencies in Section 3.6.2.

We can also apply rank aggregations to compare how different majors navigate their

coursework. In Table 3.6, we apply SerialRank to students with A-range GPAs from five

different math majors. We exclude Financial and Actuarial Mathematics and Mathematics

for Teaching because these majors are much smaller than the other mathematics majors as

discussed in Section 3.3 (there are only 6 students with A-range GPAs in the Mathematics

for Teaching Major). We observe that the Applied Math disciplines (Applied Science, Math-

ematics & Economics, Mathematics for Computation, and Applied Mathematics) all take

Probability I early, while Pure Mathematics students generally do not. In the next section,

we identify possible hidden dependencies between courses.
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Table 3.4: K(q) coefficients for Applied Mathematics, Applied Science, and Pure Math-

ematics. Each major has ns total students. We subdivide each majors into GPA cate-

gories: All ([0, 4.3]), A-range ([3.7, 4.3]), B-range ([2.7, 3.7)), and C-range ([1.7, 2.7)).

Method Applied Mathematics (ns = 672)

All GPAs A-range B-range C-range

PageRank (α = .15) 0.652 0.691 0.669 0.674

Rank Centrality 0.531 0.671 0.546 0.670

SerialRank 0.657 0.696 0.674 0.678

SyncRank 0.657 0.696 0.669 0.679

Least Squares 0.654 0.697 0.676 0.679

SVD 0.657 0.701 0.674 0.678

Applied Science (ns = 499)

All GPAs A-range B-range C-range

PageRank (α = .15) 0.707 0.772 0.722 0.757

Rank Centrality 0.727 0.743 0.740 0.757

SerialRank 0.725 0.768 0.737 0.767

SyncRank 0.725 0.763 0.737 0.768

Least Squares 0.725 0.760 0.727 0.771

SVD 0.715 0.746 0.735 0.766

Pure Mathematics (ns = 346)

All GPAs A-range B-range C-range

PageRank (α = .15) 0.618 0.706 0.634 0.645

Rank Centrality 0.606 0.708 0.622 0.685

SerialRank 0.617 0.713 0.631 0.692

SyncRank 0.617 0.721 0.632 0.694

Least Squares 0.619 0.718 0.634 0.707

SVD 0.618 0.714 0.632 0.69293
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GPA. We order courses with PageRank.
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3.6.2 Identifying Hidden Course Dependencies

One of the motivations for examining the manner students navigate through coursework is

to be able to identify possible hidden course dependencies. Specifically, we want to iden-

tify courses, when taken earlier in a sequence, that may improve a student’s performance

overall and in a specific later course. Indeed, there are a number of factors that influence

a student’s performance (financial responsibilities, prior training, work ethic), and in this

work, we do not demonstrate causal relationship between the order students take courses

and their performance. In future work, we plan to design hypothesis tests on the possible

hidden dependencies we identify. Our focus in this work is to introduce a tool to reduce the

dimensionality of possible course schedules and more easily identify possible hidden course

dependencies.

We first compare course sequences from two GPA categories: A and C students. In doing

so, we attempt to identify possible hidden dependencies assuming in aggregate A students

more successfully navigate their coursework than C students. This assumption should be

viewed with caution. We expect that a stronger student is able to earn an A GPA taking

courses in a variety of orders assuming he or she has a reasonable amount of prerequisites

for each subsequent course in the sequence. In contrast, we expect weaker students to select

fewer, less-challenging classes to fulfill the basic requirements and regardless of the order

they take courses they will do poorly. Another flaw in this setup is that we completely omit

B students. We chose to omit this population because the extracted course sequence of A

and B students are similar with various methods (not shown). Specifically, the extracted

sequences from A and B students had roughly 5 to 6 courses in identical order following there

introductory lower-division coursework, which too were in the same order. We are uncertain

if B students represent a population similar to A or C students, a mixture of A students

and C students, or a wholly different population. Moreover, we expect that permutation

of course orders should not drastically change a students GPA, and so B students offer

insights into how possible permutations of course orders to impact a student’s performance.

Even with these flaws, the comparison of the extracted sequences from these vastly different
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performance categories have noticeable differences in the ordering of courses, and we can

identify possible hidden course dependencies.

In Table 3.6, we use SyncRank (Section 3.5.5) to extract the course sequences within

these two GPA categories from three different majors. We compare the first 11 courses for

A-range students and C-range students (excluding the required the six introductory courses

discussed in Section 3.3). A-range students have Discrete Structures (Math 61) earlier in

their sequence than do C-range students. Discrete structures is not a required course and

it’s only prerequisite is Calculus I (Math 31A). The course introduces proof techniques

and basic combinatorics. However, there are several challenges associated to validating that

Discrete Structures may improve overall GPA or performance in a specific course when taken

earlier. First, the number of Pure Mathematics students constitutes a fairly small population

(ns = 346) and the number of A-range Pure Mathematics students is even smaller (ns = 86).

Second, only 20% of mathematics students in our sample take Discrete Structure. This

implies that our conclusions are based on a relatively small population and careful statistical

hypothesis tests are needed. Nonetheless, the ability to identify possible hidden dependencies

between courses from a large set of possibilities is valuable for guiding statistical analysis.

In a similar fashion, we observe that Probability I is taken early by A students who

major in Mathematics of Computation (Table 3.5). Probability I is not required, although

this course can serve as an upper-division elective course requirement (an upper-division

mathematics course is numbered 100-199) [157]. Mathematics of Computation majors are

required to take six upper division elective courses in addition to a list of required courses.

Numerical Analysis I is on the list of required courses that all Math of Computation ma-

jors must take. However, the extracted course sequence indicates Numerical Analysis I is

taken significantly later than Probability I. Numerical Analysis I requires Linear Algebra

I, usually the first proof-based course, whereas Probability I does not. However, if Prob-

ability I is taken much earlier, certain unique skills and knowledge acquired in this course

may help a student in future Mathematics courses. We inspect all the 203 students that

were Mathematics of Computation majors and we find that their sequence extracted from

SerialRank is Linear Algebra I (Math 115A), Discrete Structures (Math 61), Real Analysis
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I (Math 131A), Numerical Analysis I (Math 151A), and then Probability I (Math 170A).

Because there are only 20 students in Mathematics of Computation with A-range GPAs, this

observation regarding course ordering must be viewed with a healthy level of skepticism. It

is beyond the scope of this work to provide detailed statistical evidence that Probability I

influences mathematics performance in this major. However, rank aggregation is a tool to

uncover possible trends in student schedules.

We mention a few more observations that we draw from the extracted sequences in Table

3.6. First, A-range Pure Mathematics students tend to take Real Analysis I and Real Analy-

sis II within two courses of each other whereas C students tend to take Real Analysis II much

later (not in the 11 courses shown). Real Analysis I and II are both required—approximately

90% of the Pure Mathematics students in this data set took both. The department recom-

mends enrolling in Real Analysis after Linear Algebra I [157]. This recommendation suggests

that sufficient experience with proof-based mathematics is important for a students taking

Real Analysis I [157]. Strong mathematics students may continue through the sequence

faster, whereas poor-performing students may postpone the completion the completion of

this course. Similarly, for Applied Science students, we can see from Table 3.6 that a major-

ity of A students take Actuarial Math I much earlier than a majority of C students. Rank

aggregation identifies these possible trends easily and can guide future analysis (statistical

or otherwise) to better quantify these differences in student behaviors.

3.7 Conclusions and Future Work

In this chapter, we applied rank aggregation methods to examine how UCLA mathematics

students navigate their coursework. We used rank aggregation to identify possible hidden

course dependencies and investigate patterns in the order students select courses. The space

of possible course schedules is large and studying all related order statistics is infeasible.

However, if we assume that the order that courses are selected is the result of an underlying

course sequence, we can extract a sequence with rank aggregation and investigate patterns

associated with this sequence. For example, in our application of rank aggregation, we were
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investigated how five of the different mathematics majors at UCLA navigate their course-

work. The extracted sequence of all the methods that we investigated when applied to an

entire major population ordered the introductory Mathematics courses that a majority of

students follow (3.3). Now, the teleportation probability α was selected so that PageRank

ordered these introductory Mathematics courses correctly. However, the other five methods

that we investigated did not require a parameter. The other methods depend on the partic-

ular weight matrix that encodes student data between courses. The matrices we investigated

all crucially relied on the proportion matrix. Moreover, when we inspected the entire major

population, each method also placed Linear Algebra I (Math 115A) directly after this intro-

ductory sequence, consistent with the recommended selection of courses at the departmental

website [157].

We were also able to identify possible hidden course dependencies by comparing high-

performing (A-range GPA) students to low-performing (C-range GPA) students. This ap-

proach compares two populations with vastly different grades. We selected this methodology

because our setup was able to distinguish differences in the extracted sequence between these

GPA categories. We omitted B students because their extracted course sequence was similar

to the extracted sequences of A students and identifying possible hidden course dependen-

cies would be more tenuous. Nonetheless, our work provides an important first step to more

easily identify possible course orders that may impact an overall students performance.

Using our comparison of A and C students, we observed that high-performing Pure

Mathematics students tend to take Discrete Mathematics earlier than low-performing math-

ematics. Another observation was that A students in the Mathematics of Computation

majors [157] tend to take Probability I relatively early in the course sequence even though it

is not required. Unfortunately, although our data set spans 15 years of grade data, there is

not enough data to avoid examining small, specialized populations. For example, there are

only 86 A students that major in Pure Mathematics and 20 A students in the Mathematics

of Computation major. As a result, statistical analysis to validate our findings is hardly pos-

sible without further assumptions. We hope that this preliminary work will prompt future

investigations as the UCLA Department of Mathematics collects more data and larger data
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sets in different academic departments are made available.

To validate the application of rank aggregation in this context of extracting course se-

quences, we compared six different matrix methods: PageRank, Rank Centrality, SerialRank,

SyncRank, Least Squares, and SVD ranking. To compare these methods, we examine a con-

sistency coefficient K(q) in Section 3.5.8. The consistency coefficient measures the mean

proportion of students who move between ordered pairs of courses that are drawn from the

extracted sequence. We observed that the output of all the ranking methods have compara-

ble consistency coefficients (Section 3.6.1). Rank Centrality, however, produced output very

different than the other methods on certain populations. In particular, it incorrectly ranked

courses with low enrollment. Although we removed courses in which fewer than 10% of a

population enrolled, Rank Centrality incorrectly placed courses with low enrollment early

in a course sequence—including placing Real Analysis II before Real Analysis I for Applied

Mathematics majors. Despite the failure of Rank Centrality in certain instances, the compa-

rability of the consistency coefficient among methods suggests that these methods perform

similarly for course sequence discovery.

In future work, we plan to examine the differences among ranking methods more care-

fully particularly on synthetic generative models that include parameters and systems for

the uneven comparison of courses and noise within comparison data. Specifically, we plan

to generate proportion matrices P (Eq. (3.9)) from comparison data generated from ap-

propriate synthetic models. The addition of noise into generative comparison models was

numerically explored in [53] and more theoretically in [171]. Moreover, the original works

of Rank Centrality [152] and Serial Rank [81] provide theoretical investigations about miss-

ing comparisons for particular generative models. The analysis require an assumption that

there are enough comparisons to ensure the proportion matrix of Eq. (3.9) converges to the

probability dictated by the particular generative process producing comparison data (e.g.

the BTL model from Eq. (3.2)). There is no explicit discussion as to how many compar-

isons are required to ensure exact recovery of rankings from a particular generative pairwise

comparison model, nor is there indication of the effect when these comparisons are unevenly

distributed. Such exploration will help us better understand the effect on extracted course
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sequences of low enrollment courses—particularly those that are more advanced, infrequently

offered, or not required. For example, if only two students take course i in a population,

then Pij ∈ {0, .5, 1} for all courses j and our rank aggregation method can incorrectly place

course i in a particular sequence due to the selection of these two students. To more directly

account for such courses, we also plan to integrate the number of times a course was offered

and the number of students enrolled in a particular course (or pair of courses) into the edge

weights of our various network model. Additionally, we plan to build models that integrate

the time between them (cardinal comparisons) in order to more effectively describe course

dependencies. We also plan to build upon our consistency coefficient to reflect more complex

network models (see our discussion in Section 3.5.8).

Ultimately, we want to use this methodology to understand optimal course sequences

that provide the greatest (in a measurable sense) opportunity for students to succeed in

their coursework. This will likely require the integration of grade data directly into network

models to better capture a student’s navigation patterns and the direct impact on his/her

performance. More specifically, we plan to explore the impact of only comparing courses for

a particular student when the grade in both courses are within 1 standard deviation of a

student’s overall GPA and then appropriately encode this data into the matrix P. We also

wish to explore network models that only compare courses when there is an improvement

in course grade and exclude any comparison of courses when a course grade declined. Our

ability to identify possible trends using ordinal comparison data can serve as a foundation

for future, more detailed investigations into course navigation and optimal course selection.
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CHAPTER 4

Core–Periphery Structure in Frugivore–Seed Networks

Local, intermediate (mesoscale), and global structures each help describe the function and

organization of a network. Local structures are structures at the level of nodes and edges.

For example, local structures may be an edge weight or a node degree. Global structures

are those that aggregate various local structures throughout a network. For example, a

global structure is the average node degree or the total number of edges in a network.

Mesoscale structures lie between local and global scales and help to capture intermediate

modes of organization and function. Core–periphery structure is a mesoscale structure that

has attracted attention [176,216] due to varied application in fields such as in economics [115],

sociology [117], and political science [190]. For simplicity, we first describe a core–periphery

structure on an undirected, unweighted network. A core–periphery structure for such a

network is a structure that describes a core that is well connected to the network and a

periphery that is poorly connected to itself. In this case, there has been several methods for

quantifying well-connected and poorly-connected nodes to describe core–periphery structure

[98,120,176,216]. This suggests that formalizing this intuitive definition (even in the simple

case of an undirected, unweighted networks) must be done with some care. When more

general network structures are considered, core–periphery structure must be extended to

account for heterogeneous edge traits. For example, when edges are directed, each pairwise

connection is asymmetric, and therefore, the notion of a well-connected core must be adapted

appropriately [52]. Additionally, when edges are weighted, there are additional considerations

that must be made because a well-connected node may be stipulated as one with large total

edge weight, total number of neighbors, a combination of the previous two, or an entirely

different measure altogether [52]. Due to the varied structure of networks, core–periphery
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structure frequently must be adapted for each particular application [52,176].

Once a specific core–periphery structure is identified, then one can either look to parti-

tion the set of network nodes into core and periphery; score nodes based on their core (or

peripheral) position within a network; or perform some combination of these two approaches.

In the seminal work of Borgatti and Everett in [30], they explored core–periphery structure

both as a partition of nodes into core and periphery in addition to measuring core in terms

of a node centrality. Methods for examining core–periphery structure have been applied to

political networks [176], transportation networks [98, 176], internet networks [98, 216], and

others. In this chapter, we apply a method of core–periphery structure proposed in Rombach

et al. [176] to frugivore–seed dispersal networks.

This chapter consists of three parts. The first part (Section 4.1) reviews graph calculus,

which we use for our discussion of core–periphery structure for undirected networks (weighted

and unweighted). The second part (Section 4.2) is an overview of models of core–periphery

structure in networks. The third and final part (Section 4.3) is an application of the core–

periphery framework described in [176] to describe core–periphery structure in an frugivore–

seed dispersal network.

4.1 Notations and Related Graph Calculus

We review the graph calculus useful for graph cuts and network analysis [99,138,199]. This

framework allows us to discuss core–periphery structure in a unified framework. Let G =

(V,E) be a network, where V is the node set and E the edge set. For simplicity, we identify

V with {1, 2, . . . , n} and edges E as pairs {ij | i, j ∈ V } of vertices. Although we assume all

networks are undirected, we associate two orientations with each edge. Specifically we write

ij for the orientation of edge ij beginning at i and ending at j and ji for the reverse. We

also use an n× n weight matrix W that indicates the edge weight between node i and node

j. In many cases, we identify the weight matrix with the adjacency matrix for which wij = 1

if i is adjacent to j and 0 otherwise. Because we assume that our networks we consider are

undirected, we assume that wij = wji.
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We define the set of real-valued functions on the node set as

FV := {f : V → R} . (4.1)

We write f = (f1, . . . , fn) for f ∈ FV , identifying the function with a vector in Rn. In

particular, we write fi to mean the output of f at node i, or in functional notation f(i).

Because FV is the set of real-valued functions, we also define the product fg, the sum f + g,

and the absolute value |f | for any f ,g ∈ FV .

Using this functional notation, we specify node centrality measures as real-valued func-

tions on V . For instance, the degree of node i in an undirected network is defined to be

di :=
∑

j∈V wij. When W is the adjacency matrix, di is the number of neighbors of node i.

We then define d ∈ FV as d(i) = di.

We also study partitions using this functional notation. Specifically, consider a charac-

teristic function χA of a fixed subset of nodes A contained in V . The characteristic function

χA has range {0, 1} such that χA(i) = 1 if i ∈ A and 0 otherwise.

We define the set of skew-symmetric functions on the edge set E as

FE := {a : E → R, a(ij) = −a(ji)} . (4.2)

Often such functions are construed as flows from one node to another so skew symmetry is a

natural property [199]. Because we view each edge ij as also carrying two orientations, each

a ∈ FE can be interpreted as measuring the flow with respect to one of two orientations.

We define ab, a + b, and |a| for a,b ∈ FE, though to do so, we first must fix an orientation

for every edge first. After an orientation on each edge is fixed, we define the operation on

functions for each edge as (ab)ij = aij ·aij for the appropriate orientation of ij. One possible

way to fix an orientation on a network is to orient edges so that an edge ij is oriented from i

to j such that i < j. For clarity, we orient networks in this fashion for the remainder of our

discussion. We equip FV and FE with inner products and these become finite-dimensional
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Hilbert Spaces [199]. Specifically,

〈f ,g〉 :=
∑

i∈V

figi , f ,g ∈ FV , (4.3)

〈a,b〉 :=
∑

ij∈E:
i<j

aijbij , a,b ∈ FE . (4.4)

Observe that the inner product over edges is depends on how we fix our orientation. In Eq.

(4.4), we assume that each edge ij is oriented from i to j such that i < j. We also define

the gradient operator ∇ : FV → FE as follows:

(∇f)ij =
√
wij(fj − fi) . (4.5)

In other words, gradient operator of a function f in Eq. (4.5) takes as input an oriented edge

and outputs the difference in f along this edge with respect to the reverse orientation. The

normalized gradient operator ∇nor : FV → FE is defined as

(∇nor f)ij =
√
wij

(
fj√
di
− fi√

dj

)
, (4.6)

where again di is the degree of node i.

The divergence operator div : FE → FV is the adjoint of the gradient. The divergence

(written as div) is characterized by the relation

〈∇f , a〉FE = 〈f , div a〉FV , f ∈ FV , a ∈ FE. (4.7)

From the metrics on FV and FE given in Eq. (4.3) and Eq. (4.4) respectively, we obtain the

explicit formula for the divergence and normalized divergence as

(div a)i =
∑

j∈V

√
wij(aij − aji). (4.8)

(divnor a)i =
∑

j∈V

√
wij

(
aij√
di
− aji√

dj

)
. (4.9)

The divergence of an a ∈ FE at node i (Eq. (4.8)) can be interpreted as the net change of a

moving outward from all edges incident to node i. Now, we can define the the (combinatorial)

106



Laplacian and normalized Laplacian as

∆ := div ◦ ∇ , (4.10)

∆nor := divnor ◦ ∇nor , (4.11)

respectively. The quantity (∆f)i measures the total flow associated to ∇f that leaves node

i. A computation shows that the definitions of Laplacians given above agree with the com-

binatorial and normalized Laplacian given in [201] as

∆ = D−W , (4.12)

∆nor = I−D−1/2WD−1/2 , (4.13)

where W is the weight matrix and D is the diagonal matrix in which the ith diagonal element

is the degree of ith node. Clustering nodes using the eigenvectors associate to the Laplacians

defined in Eq. (4.12) and Eq. (4.13) has been applied to problems in image-segmentation

and data science [22].

We now define the integration of functions in FV and FE as
∫

V

f :=
∑

i∈V

fi = 〈f ,1V 〉 , f ∈ FV ,
∫

E

a :=
∑

ij∈E:
i<j

aij = 〈a,1E〉 , a ∈ FE ,

where 1V : V → R is the constant function with 1(i) = 1 and 1E is defined similarly for a

fixed orientation on E. Note that the integral over E depends on how edges are oriented;

for simplicity, we select edges to be oriented as i < j. We can now write our inner products

as the integrals

〈f ,g〉 =

∫
fg , f ,g ∈ FV ,

〈a,b〉 =

∫

E

ab , a,b ∈ FE .

Using this notation, we have the following divergence theorems [199]:
∫

V

∆f = 0 , f ∈ FV ,
∫

E

div a = 0 , a ∈ FE .
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We define harmonic functions as those functions that satisfy ∆f = 0. As in a continuous

setting, harmonic functions are constant on each connected component as shown in [201].

Recall a connected component on a graph is a set of nodes such that each pair can be joined

with a path. The eigenvectors of higher eigenvalues are also important for determining

subgraphs with high edge density relative to the rest of the graph [45,191].

Finally, we define L
p

norms for functions on nodes and edges for p ∈ N such that p ≥ 1.

Let f ∈ FV and

||f ||p := p

√∫

V

|f |p = p

√∑

i∈V

|fi|p ,

where |f | = (|f1|, . . . , |fn|). For a ∈ FE, we define two different L
p

norms. One is a local norm

relative to a node i and the other is a quantity associated to the whole network [138, 178].

They are respectively

||a||p(i) := p

√∑

j∈V

|aij|p ,

||a||p := p

√∫

E

|a|p = p

√∑

ij∈E

|aij|p .

Using the L
p

norms, we define the total-variation (TV) norms of a function f ∈ FV as

in [34,178]. The anisotropic total-variation norm is given as

||∇f ||1 :=

∫

E

|∇f | =
∑

ij∈E

√
wij|fi − fj| .

The isotropic total-variation is given as

||∇f ||iso1 :=

∫

Vi

||∇f ||1(i) =
∑

i∈V

√∑

j∈V

wij(fi − fj)2 .

These TV norms are important tools for image denoising, inpainting, and segmentation

[93, 178], to name a few. This framework and its techniques have also used successfully for

graph clustering and machine learning [22,34,138]. For example, let A be a subset of nodes

V . Define Cut(A,Ac) from A to Ac as

Cut(A,Ac) =
∑

i∈A,j∈Ac
wij .
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We can write the cut in terms of the anisotropic total-variation norm associated to the

characteristic function on A. Specifically,

Cut(A,Ac) =
∑

i∈A,
j∈Ac

√
wij =

∑

i∈A,
j∈Ac

wij =
∑

ij∈E

wij|(χA)i − (χA)j| = ||∇χA||1 .

In fact, this this relationship between graph cuts and TV norms fashions a variational frame-

work for many important graph cut problems that are NP-hard. For example, in [34], the

authors demonstrated the Cheeger cut C(G) of a graph admits a continuous relaxation that

can be solved efficiently. The Cheeger cut is

C(G) := min
A⊂V

Cut(A,Ac)

min(|A|, |Ac|) ,

and can write the Cheeger cut as

C(G) = min
f∈FV :
f=χA

||∇f ||1
||f −med(f)||2

. (4.14)

where med(f) is the median of all the values in the range of f . If one removes the restriction

that f = χA, Eq. (4.14) is solved efficiently in [34]. The graph calculus discussed in this

section connects the methods of image processing [178] to those of classical graph cuts [201].

We also define some foundational graph-cut quantities for subsets S, S1, S2 of nodes as in [45].

Let the volume vol(S), the boundary |∂S|, total edge weight E(S1, S2) from S1 to S2, and

total edge weight |ES| in S be defined (respectively) as

vol(S) :=
∑

i∈S

di , (4.15)

|∂S| :=
∑

i∈S,
j∈V \S

wij , (4.16)

E(S1, S2) :=
∑

i∈S1,
j∈S2

wij , (4.17)

|ES| :=
∑

i∈S1,
i<j

wij . (4.18)

This implies that |∂S| = Cut(S, Sc) and that

vol(S) = 2|ES|+ |∂S| . (4.19)
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Figure 4.1: Two examples weight matrices for networks with characteristic mesoscale

structures: community structure (a) and core–periphery structure (b). We illustrate

strong, intermediate, and weak edge weight. In Figure 4.1a, C1 and C2 are two disjoint

communities with strong edge weight within a community and weak edge weight between

communities. In Figure 4.1b, C1 is the core and C2 the periphery such that the core

is strongly connected to itself, the core is connected to the periphery with intermediate

weight, and the periphery is connected weakly to itself.

We also define the edge expansion eS of a set of nodes S contained in a network (as in [9])

to be

eE(S) :=
|∂S|

min(|S|, |V \S|) . (4.20)

These quantities arise often in spectral graph theory [45,191].

4.2 Core–Periphery Structure

Core–periphery structure is a mesoscale structure that describes a network’s so-called core

and periphery [52, 176]. For simplicity, we first discuss the undirected, unweighted case,

although our focus will return to the weighted case shortly as this latter structure is what

concerns us for ecological applications. A core structure is interpreted as a set of nodes that

is well connected a network, whereas a periphery structure is poorly connected to itself. This
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definition is not mathematically precise (even in this limited context), and core–periphery

structures continue to be actively developed and explored [52, 98, 176, 216]. Specifically, the

notions of “well connected” and “poorly connected” must be properly specified to describe

this structure. For example, we can quantify a nodes connections via adjacency. In other

situations, a courser resolution of connections (or proximity) may be quantified using shortest

path lengths or the distribution of a walkers starting at a particular node [54,120,130]. Once

a suitable definition for core–periphery structure is selected, one can score nodes according

to a related measure [120,176], partition a network into core and periphery [216], or provide

combination of both scoring and partitioning [54,176].

Core–periphery structure for undirected, unweighted networks can be transferred to

weighted networks, but notions of “well connected” and “poorly connected” must be ap-

propriately specified. In this chapter, we quantify how “well connected” two nodes are

relative to the weight of an edge connecting them. More generally, we quantify how well

connected a particular node v is to a fixed set S of nodes using the total weight of edges

from v to S. Even though this definition appears reasonable, we remark that there are still

caveats that may produce unintended consequences in certain applications. For example, let

v be a node and S a fixed set of nodes in a network. Let’s assume that S � 1. According

to our definition, a node v can be measureably well connected to S even if it has but one

neighbor in S if its edge weight connecting it to a node in S is high enough relative to

other edge weights in the network. We note that the edge density (counting the number of

edges per node) is a wholly separate measure than the edge weight and the total edge weight

associated to a node. We attempt to highlight this distinction for core–periphery structures

in weighted networks. We will not consider directed networks in this chapter.

Core–periphery structure contrasts another mesoscale structure known as community

structure. Just as with core–periphery structure, we begin our discussion our discussion

in an undirected, unweighted network. Intuitively, a community structure may be thought

of as a division (or sometimes a set of partitions at different resolutions) of nodes into

communities, in which nodes within a community are well connected to each other but not

to the rest of the network. However, this intuitive explanation is imprecise and runs into
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several complications when applied to empirical networks. For example, communities can

overlap and each node may have mixed membership; a node’s community membership can

be determined as a probability distribution (not a partition); there can be several different

community structures valid within a network (and possibly organized hierarchically); or

nodes may be sorted into communities based on similarities of local or global structures

rather than adjacency. Reviews of community detection methods and analyses can be found

in [82,170]. When extending our preliminary notion to weighted networks, we quantify how

well two nodes are connected via the weight of an edge connecting them. We again remark

that this particular generalization is not suitable for all applications due to the distinction

between edge density and weight.

To compare community and core–periphery structures, we illustrate two weight matrices

that represent particular forms of community and core–periphery structures. For this brief

discussion that occupies the remainder of the section, we assume that the blocks (either

core and periphery or two communities) can be partitioned into separate sets of nodes. In

Figure 4.1a, we illustrate a weight matrix and a division into two communities, C1 and

C2. In this representation, each node within a community is strongly connected with one

another but connections between each community is weak. This representation focuses on

edge weight and ignores edge density. We can also interpret Fig 4.1a as probabilities that an

edges connects two nodes with the assumption that all nodes are equally weighted. In this

interpretation, we ignore edge weights and focus on the edge density. In either interpretation

of Figure 4.1a, a form of community structure in a weighted network is highlighted. In Figure

4.1b, we illustrate a weight matrix of a core–periphery structure in a network. We have a

core C1 that is strongly connected to every core other node in the network and connected

with intermediate strength to each peripheral node C2. We also see that peripheral nodes are

weakly connected to each other. We can also interpret this as probabilities that two nodes

connected assuming edge weights are again uniform throughout a network. Again, each

different interpretation highlights a different aspect of core–periphery structure in weighted

networks, namely edge density and edge weights. Even in the scenario that a core and

peripheral nodes can be divided, a network can have multiple cores or can be separated into
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Figure 4.2: The barbell graph in which there are two complete graphs on 10 vertices

connected by a single edge. The shaded regions indicate the disconnected subgraphs when

a single edge connecting these two subgraphs is removed.

communities each with their own core–periphery structure as discussed in [176]. In practice,

one must carefully select and possibly adapt a particular core–periphery structure for an

application.

4.2.1 Combinatorial Quantities Related to Core–Periphery Structure

In this section, we discuss some combinatorial quantities and graph structures related to

core–periphery structure. Because we consider graphs, such discussions center on unweighted

networks. Although these methods have frequently been applied to empirical networks, many

of the methods and models were described within graph theory or theoretical computer

science. We indicate whenever possible which structures can be extended to the weighted

case. We also provide examples of how a combinatorial quantity or structure may differ from

a particular core–periphery heuristic.

Let G = (V,E) be an unweighted network (or a graph). We write H ⊂ G to denote a

subnetwork (or subgraph) if H = (VH , EH) when VH ⊂ V and i, j ∈ VH and ij ∈ E for every

ij ∈ EH . Therefore, one may wish to phrase core–periphery structure as finding a particular

subgraph with a certain graph-theoretic property. This particular choice would correspond

to determining core–periphery structure as a partition, though this may not be suitable for

all applications.

One may define a core structure as a maximal clique [28]. To define a maximal clique,
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we first define a complete graph, which is a graph in such that every node is adjacent to all

others. A maximal clique is is the maximal subgraph that is complete subgraph. In general,

a maximal subgraph with respect to a property is a subgraph with the greatest number of

nodes that still possesses this property. A maximal subgraph is not unique. For example,

there are two maximal cliques in Figure 4.2. When a small fraction of edges are removed

from a clique, the clique structure is destroyed and this combinatorial definition may be too

restrictive for analyzing possible core–periphery structure [176]. Also, this combinatorial

structure ignores the notion of periphery. To our knowledge, there is not a generalization of

this structure to weighted networks.

Another possible way to analyze core structure in unweighted, undirected networks is a

k-core for fixed k ∈ N with k > 0 [63,98]. A k-core is the maximal subgraph such that every

node is connected to at least k other nodes in the subgraph. For social network analysis,

the k-core can model social cohesion [18]. A interesting feature of the k-core is that it

decomposes a network into nested core structures as if Gk is a k-core of a network G, then

Gk ⊃ Gk+1. In Figure 4.3, we illustrate a sequence of k-cores for k = 1, 2, 3. We note that

the largest degree node is not included in the top most k-core as it is connected to many

degree one nodes in Figure 4.3. Finding a k-core has time complexity O(|E|) = O(|V |2) [18],

so it can be found in large empirical networks. Recently, the notion of a k-core has been

studied in weighted networks [87] by defining the notion of a weighted degree dwi of node i.

In [87], they defined the weighted degree dwi of node i with d incident edges and w as the

total edge weight of incident edges as

diw = (dαi w
β
i )

1
α+β ,

for α, β ≥ 0. W remark that there are other combinatorial notions for unweighted networks

that identify core structures using shortest path distance. For example, a k-clan is a maximal

subgraph with diameter exactly k [141]. The diameter of a subgraph is the maximal edge

distance between any two nodes. See [141] for a survey of combinatorial core quantities

related to k-core and k-clan in unweighted networks.

Core structures can also be examined in terms of the connectivity of a network. The edge
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Figure 4.3: The k-cores for k = 1, 2, 3 enclosed in increasingly dark concentric ellipses,

respectively. Note that the largest degree node is not considered part of the core for k > 1

as it is connected to several degree one nodes. Using the k-core requires a core structure

to be well connected with itself, though not necessarily with the periphery.

connectivity is defined to be the minimal number of edges that disconnects a graph when

they are removed [76]. Similarly, the node connectivity is the minimal number of nodes

when removed that disconnects a graph when they are removed [76]. For edge connectivity,

we can associate a subgraph to the network structure after edges are removed. One may

elect to view the remaining edge set as representing a peripheral structure. However, the

resulting connected components may be well connected unto themselves and not reflect that

a periphery structure is poorly connected onto itself. For example, in Figure 4.2, we see that

once a single edge is removed, we have two complete subgraphs. We can similarly examine

peripheral structures when we remove nodes and incident edges. Node connectivity can be

examined for weighted networks as in [173]. Specifically, they examine those nodes and edges

when removed have minimal total edge weight.

Some core-structures are also related to the combinatorial optimization problem of dense

subgraphs in unweighted networks. There are several nonequivalent ways to define a maximal

dense subgraphs, each depending on how we define subgraph density. Ultimately, finding a

dense subgraph is finding a subgraph with maximum density.

We first discuss edge–edge density related to a subgraph. LetH = (VH , EH) be a subgraph
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of G = (V,E). We define the edge–edge density of H as

dE(H) :=
|EH |

 |VH |
2



∈ [0, 1] . (4.21)

We see that dE is maximum on any complete subgraph H and minimum on a subgraph

H with EH = ∅. Many subgraphs of very different sizes within the same graph may have

maximum edge–edge density. For instance, every subgraph in the complete graph with at

least 2 vertices has maximal edge–edge density 1. In particular, the subgraph of two nodes

connected by a single edge has maximum edge–edge density. As a result, one must specify a

range of acceptable sizes for possible. An algorithmic framework for studying the edge–edge

density is still nascent [23], and to our knowledge, has not been directly applied to core–

periphery detection. Moreover, we are not aware of extensions of the edge–edge density to

weighted networks. The challenge of this extension comes in part because the denominator

of Eq. (4.21) may have several different extensions for a weighted network.

The edge–node density [92] of a subgraph H is defined as

dV (H) :=
|EH |
|VH |

. (4.22)

Finding a maximal edge–node density subgraph can be translated into a Min-Cut problem

[23, 92]. The Min-Cut problem is the task on a weighted undirected graph that partitions

the network into two subsets S and Sc such that |∂S| is minimized. Note that 2dV (H) is

the average degree of the subgraph H. One can rephrase the maximal edge–node dense

subgraph problem as finding a subgraph with maximal degree (here, degree is the degree

in H rather than in G). Let S ⊂ V be a subset of nodes. We define dV (S) and dE(S) to

be dV (HS) and dE(HS), where HS is the induced subgraph on the nodes of S. When we

think of core–periphery structure as a partition, it is useful to have notation for this induced

subgraph density. The notion of a dense subgraph can be generalized to weighted networks

using total edge weight and enjoys the same computational efficiency [92].

Although a maximal edge–node density can be extracted in O(|V |)-time when G =

(V,E) is unweighted or weighted [23], edge–node density may not be desirable to examine
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core–periphery structure. We illustrate this with a family of synthetic unweighted networks

Gn = (V,E) indexed by a size parameter n > 1 with a core C and periphery P such that

|C| = |P | = n. Let Gn = (V,E) such that C and P partition V and both C and P each have

n nodes. Let C be a complete subgraph. Let each node of P be connected to each node of

C. Further assume no pair of nodes in P are connected to each other. We show that any

maximal edge–node density subgraph of Gn that contains C must also include all nodes of

Gn. In general, if we consider a subgraph H ⊂ Gn and add a node v in V \VH such that

v is adjacent to more nodes in H than dV (H), then the edge–node density increases. This

follows from the fact that

dV (H ∪ {v}) > |EH |+ dV (H)

|VH |+ 1

=
|EH |+ |EH |

|VH |

|VH |+ 1

=
|EH |
|VH |

×
1 +

1

|VH |
1 +

1

|VH |
= dV (H) ,

where H∪{v} is the subgraph adding v to H and all incident edges of v that connect to nodes

in H. For any proper subgraph H of Gn that contains C, dV (H) is bounded from above by

1
2
(2n− 1) because the maximum degree in Gn is 2n− 1. However, whenever a new node of

P is added, we introduce n new edges since we assume C ⊂ H. Therefore, the number of

incident edges to a new node from C is larger than dV (H) because n > 1
2
(2n− 1). From our

heuristic, we expect that for Gn, the node sets C and P provide a partition that describes

a core–periphery structure. Specifically, core nodes are connected to the entire network and

peripheral nodes are not well connected to each other (there are no edges connecting any

pair of peripheral nodes). Unfortunately, the subgraph with largest edge–node density does

not partition Gn as we expect.

In general, one must be careful when adapting combinatorial quantities or methods to

examine core–periphery structure. First, many quantities and methods are defined for un-

weighted networks and may not suitable for weighted networks. Additionally, some networks
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may admit a particular core–periphery description that is incompatible with a combinatorial

quantity or method. For example, when we describe core–periphery structure as a partition

of a Gn into C and P above, this was not compatible with the notion of a dense subgraph

with respect to edge–node density.

4.2.2 Models for Core–Periphery Structure

As we discussed at the beginning of Section 4.2, core–periphery structure can be described

with the heuristic that core nodes are well connected to the entire network, while peripheral

nodes are poorly connected to each other. We introduced this heuristic specifically for the

unweighted case and discussed it appropriate adaption to the weighted case. In this section,

we overview models for core–periphery and their related models that arise outside of graph-

theoretic setting. Although many of the methods that we introduce in Section 4.2.1 have

been explored in empirical settings, many of the models for core–periphery structure that

we discuss now frequently require numerical simulations and consider more general network

structures. We will focus on weighted and unweighted networks, and will make sure the

particular structure is apparent. As usual, we assume our networks are undirected, unless

otherwise specified.

We first discuss stochastic block models that describe core–periphery structure in un-

weighted networks. It is convenient to consider generative network models that specify blocks

of nodes and the inter– and intra–connection probabilities of connections as in [168]. We

investigate stochastic block models that represent a particular form core–periphery struc-

ture. In this case, we assume that core and periphery are blocks of nodes and hence are

described with a partition of our network. Although these models are not historically the

first to describe core–periphery structure in networks, they have been used to explore core–

periphery structure in synthetic networks [54, 176, 216]. For stochastic block models with

core–periphery structure, we consider two blocks, C and P . Set |C| = nc and |P | = np. One

defines the the stochastic symmetric matrix S as in [168,216] to specify the edge probability
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across and within core/periphery blocs as

S =

C P
( )

C pcc pcp

P pcp ppp

. (4.23)

For instance, we place an edge between two nodes in C with probability pcc. One additionally

stipulates that

pcc ≥ pcp ≥ ppp , (4.24)

with at least one strict inequality so that we do not have the Erdős-Rényi model [75].

Assuming we measure how well connected a node according to which nodes and how many

a particular node is adjacent to, this block model (Eq. (4.23)–(4.24)) satisfies the heuristic

that a core node is well-connected to a network and periphery connected is poorly connected

to itself. Moreover, the constraints in Eq. (4.24) imply that a core has highest expected

degree and periphery has the lowest expected degree. Frequently, a coarse measure for

core–periphery structure is to group nodes according to their degree. For stochastic block

models described according to Eq. (4.23)–(4.24), degree can in fact be used to partition

nodes and extract the desired structure. In general, we cannot expect that core–periphery

structure to be entirely determined from the distribution of degrees and even in the case of

the stochastic block model we consider, more advanced methods can be used to partition

nodes with greater accuracy. In Figure 4.4, we illustrate the adjacency matrix of a stochastic

block model with np = nc = 50 and its distribution of degrees as in [216]. We set pcc = .8 and

pcp = ppp = .5. In Figure 4.4b, we see the degree distribution of core nodes minimally overlaps

from the degree distribution of peripheral nodes. In [216], the parameters of the stochastic

block models were inferred using an iterative statistical inference algorithm. Specifically,

they applied belief propagation [146,150] to infer which nodes are members of the core and

periphery blocks. A powerful feature of the approach is that all the parameters (nc, np,

pcc, pcp, and ppp) of the stochastic block model are approximately recovered. Unfortunately,

general convergence of belief propagation requires either sparse [5] or “locally tree-like”

networks [216]. Clauset et al. proposed stochastic block models for weighted networks
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Figure 4.4: (a) A realization of a network from the stochastic block model from Eq.

(4.23)–(4.24) with parameters nc = np = 50, pcc = .8, and pcp = ppp = .5 specified. (b) A

histogram of degrees in the same network.

in [5] and discuss possible core–periphery structures on such networks. To our knowledge,

the methods in [216] do not provide a measure to compare the strength of core–periphery

structures in networks. Specifically, given a particular network, it is useful to have a measure

to numerically compare a networks mesoscale structure to synthetic networks (e.g. networks

with identical degree distributions) or other empirical networks with similar functions. For

example, we do not expect a block structure in a complete graph; in particular, we do

not expect a core–periphery structure for such a graph when core–periphery structure is

stipulated as a connection patterns of blocks as in Eq. (4.23)–(4.24). We remark that

the work of Jeub et al. [103] provided a general discussion regarding a class of unweighted

networks (expander graphs) that have poor block structure with respect to edge expansion

(Eq. 4.20).

Continuing with unweighted networks, core–periphery structure can also be described in

terms of low-rank matrix models [30,54]. These models assume that the observed network’s

adjacency matrix is a perturbation of a low-rank matrix. In [54], Cucuringu et al. assumed

that a weight matrix W is a perturbation of a rank-2 matrix when core–periphery structure is

present. For example, Figure 4.5a shows a rank-2 matrix with self-loops at each core node. To
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find a rank two-approximation of an adjacency matrix W, one computes the diagonalization

W = QΛQT , where Q is an orthonormal matrix whose columns are eigenvectors of W and

Λ is a diagonal matrix of eigenvalues. The rank-2 approximation is

W ≈ QΛ̃QT , (4.25)

where Λ̃ is the diagonal matrix with all but the top two eigenvalues of W set to 0. When

W is an adjacency matrix, they also thresholded each entry of QΛ̃QT to 0 or 1 such that

each entry greater than or equal to .5 is set to 1 and those less than .5 set to 0. In Figure

4.5, we apply this method on a stochastic block model with parameters nc = np = 50

and pcc = pcp = .8 and ppp = .5. One can inspect the degree distribution of the low-rank

approximation of W and then extract a possible core–periphery division. This degree of

each node associated to the low-rank approximation can also be seen as numerical scoring

of core position [54]. This low-rank model can in practice be applied to weighted networks

without modification. However, given possible distribution of edge weights, this approach

requires careful consideration when using this model to examine core–periphery structure in

weighted networks.

In [30], Everett and Borgatti provided another low-rank model to examine possible core–

periphery structure for unweighted networks. They assumed that the adjacency matrix W of

a network with core–periphery structure is rank-1. The rank is then determined according

to a single vector ccp, which approximates off-diagonal elements. (They only considered

networks without self-loops). Specifically, they defined ccp ∈ FV as

ccp := arg min
c∈Rn

∑

i 6=j

(wij − cicj)2 = arg min
c∈Rn

||PO(W − cTc)||22 , (4.26)

where PO : Rn2 → Rn2−n is the projection onto the off-diagonal of a matrix. Eq. (4.26)

can be solved iteratively as in [49]. As with rank-2 approximation, this rank-1 model can be

applied to weighted networks without any modification. However, the interpretation given

in [30] is only for unweighted networks and must be cautiously applied to weighted networks.

Core structures can also be characterized in terms of shortest paths. In [54, 120], core

nodes are characterized as those frequently occurring in short paths, while peripheral nodes
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Figure 4.5: (a) A rank-2 adjacency matrix of a core–periphery structure. (b) An

adjacency matrix that we generate from a stochastic block model with parameters pcc =

pcp = .8 and ppp = .5. (c) A rank-2 approximation of the adjacency matrix with entrywise

thresholding such that each entry w̃ij in rank-2 matrix is set to 0 if w̃ij < .5 else we set

w̃ij to 1.
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are rarely occurring. In [120], they similarly describe core edges as those that are frequently

occurring in short paths, while periphery edges are rarely occurring. In many networks,

short paths between nodes represent the pathway that information is transmitted [154]. A

well-known way of quantifying this heuristic for nodes is betweenness centrality [154, 176].

Let σst be the number of shortest paths between s, t ∈ V . Let σst(i) be the number of

shortest paths between s, t ∈ V that pass through i. In either case, if no such path exists,

we define this quantity to be 0. The betweenness centrality bi of a node i is defined as

bi =
∑

s,t∈V \i :
s<t

σst(i)

σst
. (4.27)

For simplicity, we assume that the network is connected so there is no division by 0. For fixed

s, t ∈ V , if the ratio of shortest paths
(
σst(i)
σst

)
between s and t that pass through i is large

relative to other nodes, then node i has a core position relative to nodes s and t. Summing

this ratio for all possible pairs is what determines betweenness centrality and can be used to

assess core position in a network. In [176], a family of stochastic block models (specifically,

Eq. (4.23)–(4.24) with pcc = k2/4 and pcp = ppp = k/4 for k ∈ [1, 2] and nc = np = 50) had

nodes from the specified core block with much smaller betweenness centrality than nodes

from the periphery block. In [54, 120], Cucuringu et al. improve betweenness centrality for

core–periphery detection making the observation that in the rare case two peripheral nodes

are adjacent, any shortest path that avoids this edge should pass through the core. Let

E\i := {st ∈ E|s, t 6= i}. Let G\st to be the graph omitting st ∈ E. The path score pi of a

node i is defined as

pi :=
∑

st∈E\i

σst(i)|G\st
σst|G\st

. (4.28)

When there are not paths in G\st, the ratio in Eq. (4.28) is set to 1. The removal of st

of the graph differentiates Eq. (4.28) from betweenness Eq. (4.27) [175]. Cucuringu et

al. expected that many short paths should pass through the core: the removal of any edge

between core nodes should not impact the betweenness centrality. However, if two peripheral

nodes are connected by an edge, the removal of this edge should force shortest paths to travel

through the core. An analogous measure for edges is defined in [120]. The time complexity
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of computing the vector p of path scores is O(|E|2) [54], which is prohibitive for large dense

graphs.

One can also measure for core–periphery structure is using the stationary distribution

of a random walker in a network. We employ the terminology of a discrete-time random

walk described in Section 3.5.1. Such measures are easily adapted to weighted networks if

one assumes that a random walker travels to an adjacent node with probability proportional

to the weight of the incident edge connecting the edges. We assume that the walker has

probability 0 of remaining at the same node. Consider a random walker that begins a

discrete time random walk at node i with probability (q0)i. The n× 1 column vector of all

such probabilities is q0. Let qt be the vector of probabilities associated that a random walker

is at node i at time t ∈ N. We specify the time-homogeneous transition between discrete

times as

qTt = qTt T , (4.29)

where T is the transition matrix. In this discussion, we set T = D−1W, where D is the

diagonal matrix of degrees and W is the weight matrix. Each entry of T has the form

Tij =
wij
di

. (4.30)

The stationary distribution q∞ is the solution to the linear system qT∞ = qT∞TT . As in [130],

we note that

(q∞)i =
di∑

i′,j′∈V wi′j′
=

di∑
j′∈V dj

(4.31)

for undirected weighted networks. In [59], core structure of a set S was measured in terms of

the probability that a random walker stays in S after a single time step and its initial state

is q∞. This is

αS =

∑
i,j∈S(q∞)iTij∑
i∈S(q∞)i

. (4.32)

Substituting Eq. (4.30) and Eq. (4.31) into Eq. (4.32), we obtain

αS =

∑
i,j∈S wij∑
i∈S di

. (4.33)
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We expect a set S of peripheral nodes to have αS ≈ 0. In [59, 130], a randomized greedy

algorithm was employed to incrementally add nodes from a network to build a periphery set

S with low αS. Nodes of a network can also be ranked in the order they are added to a

periphery set S using this greedy algorithm. Let Sk be the set S after k nodes have been

added. Let ik be the kth node added to S. The node ik may be different with different

runs of the randomized algorithm in [59]. The authors in [59] measured the core quality of

a node as αik = αSk − αSk−1
. Using this ranking of nodes, they profiled a core–periphery

structure by incrementally adding nodes to S and inspecting the curve αik versus k =

1, . . . , n. Their null model for assessing the presence of core-periphery in unweighted networks

is the complete graph, where αik increases linearly as αik = k/n. Networks with more core–

periphery structure have αik-curves below this curve and candidate periphery sets P are

those with αP ≈ 0. The authors suggested with various numerical experiments that these

curves can be used to compare the presence of core–periphery structure in networks. We

remark that, in the recent work of Jeub et al. [103], the authors suggested that expander

graphs do not have identifiable block structure. It seems a natural question to ask if αSk

has a similar contour as a complete graph. We do not agree with the authors of [59] that

complete graphs are an appropriate null model. A large sparse unweighted network has

such different global structure than a complete graph of the same size that it doesn’t seem

appropriate to compare these two networks. However, expander graphs may serve as a more

appropriate null model assuming they have similar αik-curves.

In the early pioneering work on core–periphery structure [98], Holme provided another

distance-based measure to assess core–periphery structure in unweighted networks. Recall

that the closeness centrality CC(i) of a node is

CC(i) =
∑

j∈V

1

d(i, j)
,

where d(i, j) denotes the shortest path distance from node i to j [154]. The closeness cen-

trality of a node i measures when the shortest path length between i and other nodes is

small. In [98], Holme defined the closeness centrality of a subset U of nodes V as

CC(U) = 〈CC(i)〉i∈U (4.34)
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Holme defined the core vertices Vcore(G) of a network G as the k-core (see Section 4.2.1) that

maximizes the closeness centrality in Eq. (4.34). He also defined the core coefficient cc for

evaluating if a network possessed core–periphery structure as

cc(G) =
CC(Vcore(G))

CC(V )
−
〈
CC(Vcore(G

′))

CC(V ′)

〉

G′∈G(G)

, (4.35)

where G(G) is the set of networks with the same degree distribution as G generated using

a configuration model (self-loops permitted) [83]. In this case, the null model is taken to

be a configuration model and the core–periphery structure in a given network is compared

to networks generated from this null model. We observe that the null model selected (a

configuration model) is highly constrained when dealing with unweighted networks with a

core that is well connected to the entire network such as Gn from Section 4.2.1. Specifically,

if we consider a network with the same degree distribution as Gn, there are no other possible

networks if we forbid self-loops. Additionally, because degree can serve as a preliminary way

to classify core and peripheral nodes for certain core and periphery structures, we expect that

certain degree distributions may be much more likely to exhibit particular core–periphery

structures. As a result, the configuration model may not serve as null model that effectively

differentiates networks with high core–periphery structure and those that do not.

Ecologists have also developed their own notions of core–periphery structure to study

animal–plant interactions. The so-called mutualistic frugivore–seed networks are networks

that encode the interactions between fruit-eating species (frugivores) and the seeds they

spread [136, 137, 183]. These networks are bipartite networks. A bipartite network is a

network with two independent sets S1 and S2 of nodes. Subsets S1 and S2 of nodes are

said to be independent if no edges have both endpoints in the same set. An important core

quantity associated to such mutualistic networks is nestedness. There is a lot of debate

among ecologists and network scientists as to the appropriate definition of nestedness in

mutualistic networks [52]. We discuss a few notions of nestedness in this chapter. According

to [52], a heuristic that frequently guides the notion of a perfectly nested mutualistic network

is a network with the following property: if the degrees di and dj of nodes i and j respectively

obey di < dj, then all of the adjacent nodes of i are also adjacent to j. To measure nestedness
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in unweighted bipartite networks, the authors in [167] proposed a nestedness coefficient Nc.

They labeled nodes by degree so that i < j implies that di < dj. They first defined the

matching coefficient

Nij =
|Ni ∩Nj|
|Ni|

=
|Ni ∩Nj|

dj
,

where Ni is the set of adjacent nodes of i. The nestedness coefficient is then

Nc =

∑

i,j∈S1,
i<j

Nij +
∑

i,j∈S2,
i<j

Nij

(|S1|
2

)
+

(|S2|
2

) . (4.36)

The authors in [6] extended nestedness to weighted networks. First, they defined the weighted

matching coefficient

Nw
ij =

∑

l∈V :
l∈Ni∩Nj

min(wil, wjl) . (4.37)

This weighted matching coefficient is then substituted into Eq. (4.36). In [120], Nw
ij is

defined as
∑

l∈V :
l∈Ni∩Nj

1wil<wjl , where 1wil<wjl = 1 if wil < wjl and 0 otherwise. In [120],

Lee explores particular core–periphery structures and nestedness on synthetic and ecological

networks and found high correlation between the measures he investigated. He suggests that

core–periphery and nestedness are related, and are “two sides of the same coin.” There are

several other related definitions of nestedness on bipartite networks [52, 208]. Nestedness

can also be extended to general non-bipartite networks in [118]. We remark that for many

notions of nestedness including the unweighted coefficient Nc in Eq. (4.36) assumes that

degree determines how nested a node is in a network. While nestedness does not explicitly

score nodes according to its core position or partition nodes into different blocks, the basic

assumption that a nested core are those with highest degree contrasts many models of core–

periphery structure such as k-core used by Holme [98].

In the seminal work of [30], Everett and Borgatti first to formalized the study of core-

periphery structure in networks. We discuss a model they proposed using the graph calculus

that we discussed in Section 4.1. Let us first consider G = (V,E) to be a weighted network.
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In this model, Everett and Borgatti viewed core–periphery structure as a partition of nodes

into a core C with |C| = nc and periphery P with |P | = np. Let BV (nc) be the set of

binary-valued functions on V that map nc vertices to 1. Specifically,

BV (nc) = {f ∈ FV | ran(f) = {0, 1}, 1Tn f = nc} , (4.38)

where 1n is the n × 1 vector of 1s. The set BV (nc) specifies candidate core sets of size nc.

Let Fa : R2 → R for a ∈ [0, 1] be the function

Fa(x, y) =





1 if x = y = 1

0 if x = y = 0

a otherwise .

We define a core–periphery structure as a maximization of a functional Ea : BV (nc) → R.

Let Ea : FV → R be the functional

Ea(f) =
∑

i,j∈V

wijFa(fi, fj) . (4.39)

One then determines

χC = arg max
f∈BV (nc)

Ea(f) . (4.40)

In this model, it is crucial to specify nc (the size of the core) otherwise the functional is

trivially maximized when f = 1n. The maximization in Eq. (4.39) can be expressed as

C = arg max
S⊆V ; |S|=nc

vol(S) + (2a− 1)|∂S| , (4.41)

where vol(S) and ∂S were defined in Eq. (4.15) and Eq. (4.16), respectively. This follows
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from the following computation for f = χS:

∑

i,j∈V

wijFa(fi, fj) =
∑

i,j∈S

wijFa(fi, fj) + 2
∑

i∈S,
j∈V \S

wijFa(fi, fj) +
∑

i,j∈V \S

wijFa(fi, fj)

=
∑

i,j∈S

wij + 2a
∑

i∈S,
j∈V \S

wij

=
∑

i,j∈S

wij +
∑

i∈S,
j∈V \S

1−
∑

i∈S,
j∈V \S

1 + 2a
∑

i∈S,
j∈V \S

wij

= 2|ES|+ |∂S| − |∂S|+ 2a|∂S|

= vol(S) + (2a− 1)|∂S| .

We now investigate the parameter a using Eq. (4.41). When a = 1/2, the solution to the

cut problem is precisely the set of nc nodes with highest degree in G as vol(S) is the sum of

degrees of nodes in S. When a = 0, the cut problem of Eq. (4.41) is equivalent to finding the

maximum edge–node density subgraph of fixed size [77] because we are maximizing |ES| (Eq.

(4.19)). Recall the extraction of subgraph with maximum edge–node density is equivalent

to a minimum cut, where there is no restriction on the possible size of a subgraph [92].

However, if we restrict our search to only those subgraphs of fixed size, the problem becomes

NP-hard [77]. When a = 1, Eq. (4.41) becomes 2|ES| + 2|∂S|. In other words, the number

of edges contained entirely in S and the number of edges from S to Sc are weighted equally.

We are not aware of related combinatorial quantities.

We can relate Eq. (4.41) to the edge–node densest subgraph problem (see Section 4.2.1)

for all a ∈ [0, 1]. Let nc ≤ |V |/2. We can divide both sides of Eq. (4.41) by |S| without

affecting the maximum S since nc is fixed. The cut energy is given by

vol(S)

|S| +
(2a− 1)|∂S|

|S| = 2dV (GS) + 2a · eE(GS), (4.42)

where eE is the edge expansion (Eq. (4.20)). We assumed that |S| ≤ |V |/2 to ensure the

equality of Eq. (4.42) holds.

We now relate Eq. (4.39) to eigenvector centrality e as in [30]. Borgatti and Everette

viewed eigenvector centrality as a numerical score to measure each node’s core position in

129



the network. We note this is a different approach from their model that assumed there

was an underlying partition of core and periphery nodes. Eigenvector centrality e ∈ FV
is defined to be a unit-length n × 1 eigenvector associated to the largest eigenvalue of the

weight matrix W [175]. Because wij ≥ 0, the Perron–Frobenius theorem guarantees that

there is a unit-length e with ei ≥ 0 for all i = 1, . . . , n [191] . If we set a = 0 in Eq. (4.39),

then

E0(f) =
∑

i,j∈V

wijF0(fi, fj)

=
∑

i,j∈V

wijfifj

= fTWf ,

for binary f ∈ FV . Let the quadratic form QW for f ∈ FV be

QW(f) := fTWf . (4.43)

The largest eigenvector of W maximizes QW over the set of unit vectors [191]. Thus, if

change the constraint on f in Eq. (4.39) to those with ||f || = 1 and set a = 0, we recover

eigenvector centrality. We can view this eigenvector as a ranking of a each node’s “coreness”,

which we refer to as a nodes core score. A node’s core score is a numerical score assigned to

each node according to a particular core–periphery model. We specify a core score using an

f ∈ FV .

In [176], the core–periphery models from Eq. (4.39) and Eq. (4.40) were generalized so

that the constraint on f is relaxed to a broader classes of functions to obtain core scores.

We focus on a particular case discussed in which the functions were piecewise-linear. First,

they defined the sets

S1(α, β, n) :=

{
k(1− α)

2bβnc

∣∣∣∣ k = 1, . . . , bβnc
}
, (4.44)

S2(α, β, n) :=

{
(k − bβnc))(1− α)

2(n− bβnc

∣∣∣∣ k = bβnc+ 1, ..., n

}
, (4.45)

S(α, β, n) := S1(α, β, n) ∪ S2(α, β, n) , (4.46)
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Figure 4.6: S(α, β, n) where α = .7, β = .5, and n = 30. We consider fα,β with range

S(α, β, n).

where n ∈ N, α ∈ [0, 1], and β ∈ (0, 1). For this discussion, let n = |V |. In Figure 4.6, we

show S(α, β, n) with α = .7, β = .5, and n = 30. Rombach et al. then replace BV (nc) of

candidate binary functions (Eq. 4.38) with the set

PV (α, β) = {fα,β ∈ FV | ran(fα,β) = S(α, β, n)} . (4.47)

Note that |S(α, β)| = n so fα,β hits precisely each element of S(α, β, n) exactly once. The

function fα,β maps peripheral nodes to S1(α, β, n) and core nodes to S2(α, β, n). The pa-

rameter β specifies the fraction of nodes to include into the periphery (|P | = bβnc), and the

parameter α represents the discontinuity of f between peripheral node scores and core node

scores.

In [176], the authors also considered more general F in the functional Ea (Eq. (4.39)).

This function F : R2 → R in [176] is called a transition function. In [176], the authors

considered nonnegative functions that are monotonic in each component, that is for every

fixed x0, the function F (x0, y) is monotonic in y. For example, they considered the L
p

norm

on Rn to be a transition function Fp(x, y) = ||xp + yp||p and multiplication F (x, y) = xy.

With these constructions, Rombach et al. defined the functional

E(f) =
∑

i,j∈V

wijF (fi, fj) . (4.48)
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We often consider F (x, y) = xy because the functional E in Eq. (4.48) resembles the

quadratic form in Eq. (4.43) discussed in [30]. A core score f̂α,β is obtained through the

maximization procedure

f̂α,β = arg max
fα,β∈P(α,β)

E(fα,β) . (4.49)

Numerically, the function f̂α,β is obtained through a stochastic optimization technique known

as simulated annealing. We briefly discuss simulated annealing for this application in Ap-

pendix B.1. To assess the validity of a particular core score f̂α,β, the authors of [176] defined

the core quality Rα,β as

Rα,β = E(f̂α,β) =
∑

i,j∈V

wij f̂α,β(i)f̂α,β(j) . (4.50)

To obtain a core score independent of the parameters α and β, Rombach et al. defined the

aggregate core score as the weighted mean with respect to the core quality of a core score

for fixed α and β. Specifically,

fcp(i) =
1

Z

∑

α,β

f̂α,β(i)Rα,β , (4.51)

where Z is a normalizing constant so that fcp(i) ∈ [0, 1] for all i ∈ V . The aggregate core

score fcp is quite computationally expensive to compute because to obtain this vector, the

maximization problem Eq. (4.49) must be solved for each (α, β) on a mesh of [0, 1]× (0, 1)

(these restrictions on α and β are required by Eq. (4.46)).

Although core scores provide extra information about a core–periphery structure, there

is not a standard way of obtaining a partition. In [54], Cucuringu et al. defined the following

core–periphery cut CP-Cut(C,P ) for a given partition C and P in V :

CP-Cut(C,F ) =
1

n

(
|EC |(|C|

2

) +
E(C,P )

|C||P | −
|EP |(|P |

2

)
)
. (4.52)

This is related to the densities discussed in Section 4.2.1, as one can write

CP-Cut(C,P ) =
1

n

(
dE(C) +

E(C,P )

|C||P | − dE(P )

)
. (4.53)
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Cucuringu et al. [54] also discussed an optional term to control the core-size in Eq. (4.52).

To determine a cut from a general core score f , Cucuringu et al. outlined the following

process in [54]. First, one orders f as fi1 ≤ fi2 ≤ . . . ≤ fin or as fi1 ≥ fi2 ≥ . . . ≥ fin so that

i1 is the most core-like node and in is the most periphery-like node with respect to f . One

then computes the cut in Eq. (4.52) for Ck of the form {i1, . . . , ik} and Pn−k = V \C. The

final C and P are those sets with maximum CP-Cut(Ck, Pn−k) such that k, n − k > τ for

some fixed τ ∈ N. Although the cut from Eq. (4.52) captures the heuristic associated with

core–periphery structure, there are some challenges. Define the function L : {1, . . . , n} → R

as L(k) = CP-Cut(Ck, Pn−k). In general, because we expect the landscape of Eq. (4.52)

to be nonconvex with many local maxima according to all possible partitions C and P , the

1-dimensional view of this cut (i.e. L) can still be nonconvex, too [54]. Moreover, the core

score f that we select may be measuring a different core–periphery structure and it is not

clear the relative size of L’s maximum relative to the absolute maximum of the cut for all

possible partitions.

Lastly, there are some exploratory methods for core–periphery detection related to Eq.

(4.39) and Eq. (4.48) [30]. Given a centrality c or a vector of core scores f , one defines a

core matrix K as

Kij = wijF (fi, fj) . (4.54)

As in [30], we consider F (x, y) = xy. One can rescale K to ensure that Kij ∈ [0, 1] by

dividing entrywise by the maximum value in K. One can explore the core matrix directly

or further threshold low-weight edges to 0. Specifically,

K̃ij =




Kij if Kij > t,

0 otherwise,

(4.55)

with t ∈ R a thresholding constant. In this discussion, we have thresholded K using the

median of K’s nonzero entries. In Figure 4.7, we provide some examples of core matrices.

We use degree centrality, eigenvector centrality, and Pagerank with α = .15.
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Figure 4.7: Core matrices for an instance of a stochastic block model using three dif-

ferent centralities. The network was generated using tje stochastic block model specified

with Eq. (4.23)–(4.24) and parameters nc = np = 50, pcc = .8, pcp = ppp = .5. We set t

in Eq. (4.55) to be the median of nonzero entries.
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4.3 Core–Periphery Structure in Frugivore–Seed Networks

Ecological systems are not easily transferred into a network structure. The interaction pat-

terns of two species are much more nuanced than simply counting the number of times two

species interact. For example, within a particular ecological system, there are varying inter-

action types (e.g. avian–seed versus. predator–prey), time dependencies, and environmental

factors (e.g. seasons or weather) [169]. Nonetheless, networks can provide a simplified struc-

ture to measure biological systems and quantify certain ecological phenomena [136,137,181].

For example, the community structure of seed dispersion provides insights into the precise or-

ganization of particular mutualistic networks [137,162]. In this section, we briefly discuss our

joint investigation of core–periphery structure in frugivore–seed dispersion networks [179].

The focus in this section is the examination of core–periphery structure.

We model each mutualistic networks as a weighted bipartite network. We consider data

collected from ecologists’ observations of fruit-eating bird (frugivorous birds) and seed dis-

persion at 10 sites in northwestern Argentina [179, 180]. A node represents an animal or

plant species. We weight each edge by the number of interactions between a bird species and

a seed species during observation. This construction was also used in [6, 137]. A discussion

on how this data was collected can be found in [179, 180]. Although this simple network

construction is common for ecological applications, there are many potential problems with

this approach [169]. In this data set, we only consider 3–4 days during the rainy season. The

types of interaction patterns frequently change in different seasons [169]. In our network, the

various seed types of fruits often lead to different types of dispersal by the birds. Nonetheless,

we stick with this relatively simple construction because forms of core–periphery structures

other than nestedness have been less studied in ecological systems. To illustrate the network

structure, we show the weighted adjacency matrix and related network at Pozo Verde in

Figure 4.8 and Figure 4.9, respectively.

We apply a core–periphery methods introduced in [54, 176] and that we discussed in

Section 4.2.2. Specifically, we first obtain core–scores f̂α,β using Eq. (4.49) for (α, β) ∈
[0, 1] × (0, 1) using a multiplicative transition function. We then compute aggregate core
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A. edulis

T. sayaca (F)

B. salicifolius

E. strepera (F)

T. nigriceps (F)

V. breviflora

C. ustulatus (F)

C. striata

S. nigra

C. ophthalmicus (F)

P. melanonota (F)

T. sordida (F)

S. buxifolia

P. tucumanensis

E. uniflora

P. erythrophrys (F)

M. coriacea

T. rufiventris (F)

A. torquatus (F)

E. cyanocephala (F)

V. olivaceus (F)

P. obscura (F)

R. imperialis

A. citrinellus (F)

E. obscura (F)

D. indica

Solanum 3

Pozo Verde

0

52

wij

Figure 4.8: The weight matrix associated to Pozo Verde, one of the 10 sites. Each

frugivore is labeled with an ‘(F)’. The weight between frugivores and plants is determined

from the number of recorded interactions. A related network visualization is in Figure

4.9.
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Figure 4.9: The network from Pozo Verde with weight matrix shown in Figure 4.8.

The nodes’s sizes are proportional to their aggregate core score (Eq. (4.51)). The edges

are proportional to the weight. The two darker nodes are core-nodes. These nodes define

a cut that maximizes CP-Cut from (Eq. (4.52)).
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scores using Eq. (4.51). We finally propose a core–periphery partition according to the

CP-Cut proposed in [54]. To obtain a partition, we order the aggregate core scores (fcp)i1 ≥
(fcp)i2 ≥ . . . ≥ (fcp)in and check each possible core and periphery partition of the form

Ck = {(fcp)i1 , . . . , (fcp)ik} (4.56)

Pn−k = {(fcp)k+1, . . . , (fcp)in} , for k = 0, . . . , n+ 1, (4.57)

such that CP-Cut(Ck, Pn−k) from Eq. (4.52) is maximized. We note that when k = 0, C

is empty and the cut takes a negative value. The definition of the cut CP-Cut(Ck, Pn−k)

assumed an unweighted network, as two of the terms can be interpreted as an edge–edge

density (Eq. (4.21)). To modify this cut for our weighted network by scaling each entry wij

so that wij ∈ [0, 1]. Specifically, we divide each entry wij by the maximum over all possible

entries in W. We explore two other methods to rescale W as well. First, we set each nonzero

to 1 and examine the underlying connections ignoring weights. Second, we divide each entry

by the average of non-zero entries of W. However, we find that these two alternative scalings

of W produced identical cuts C and P at all 10 sites.

We select these particular core–periphery methodologies from [54,176] because this model

numerically assigns a core score to each node (Eq. (4.51)) in addition to providing a partition.

Moreover, the aggregate core scores from Eq. (4.51) have been applied to small (less than

100 nodes), weighted empirical networks and we believe it would be beneficial to investigate

such structures in ecological networks [17, 176]. Additionally, we wanted to provide some

more empirical comparisons of nestedness to core–periphery structure as in [120]. We remark

that scoring nodes with Eq. (4.51) is computationally expensive. The greatest bottleneck is

the computation of Rα,β (Eq. (4.50)) and f̂α,β (Eq. (4.49)). Although each site has at most

50 nodes, the computation of the Rα,β and f̂α,β on a 100× 100 grid required approximately

2 hours per site on a quad 2.6 GHz Intel Core i7. In Figure 4.10, we display the grid of

core-qualities Rα,β for the 100× 100 grid. We note that the maximum values of Rα,β occur

for β ∈ (.92, .96). To obtain a partition from Rα,β, we compute the aggregate core score fcp

(Eq. (4.51)) and then maximize the cut CP-Cut (Eq. (4.52)) using the ordering induced

from the core scores. For all 10 sites, we find that |C| = 2. In Figure 4.11, we show the
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contour of the function k 7→ CP-Cut(Ck, Pn−k). All the sites have a similar contour with

maximum at k = 2.

We briefly verify that the core scores differ from degree. In Figure 4.12, we show a scatter

plot for the degree and the core scores. We can see that for both sites, the two nodes with

highest degree are the core-nodes (this was always the case). However, as we examine the

group of seven nodes with highest degree, we see that there aggregate core score and degree

are not perfectly correlated as in Figure 4.12b. We also compute the correlation coefficient

for the entire network and find ρ ≥ .9 at all sites.

Our colleagues used our core–periphery analysis along with additional ecological tools to

identify those bird species that played a crucial role in seed dispersion [179]. We do our best

to briefly discuss some of their findings. Because the cores we obtain from our methodology

were rather small (precisely 2 core nodes), our collaborators used core scores to evaluate the

core position of different species in a network. Our colleagues found that the bird species

Austral Yungas had high core score at several sites (frequently ranked among the top five

in aggregate core score). This bird species is a masher and often discards large seeds near

the plant. As a result, many ecologists classify mashers as poor seed dispersers as opposed

to gulpers that swallow fruit whole including the seeds [179]. However, the watery fruit

that mashers in the ecological system ate have seeds are embedded inside the fruit and thus

these seeds are more easily dispersed by mashers. Our collaborators also used our analysis

to indicate that the core plant species across 10 sites were more heterogeneous than the bird

species with respect to ecological metrics. Specifically, the fruits of each plant identified

as core varied in shape, color, seed number, pulp mass, etc. across the 10 sites, whereas

the birds had similar assemblage (bill morphology and size) across these sites. Our brief

exploration of core–periphery structure in ecological networks can provide a template for

more advanced core–periphery analysis in future ecological analysis. More often, nestedness

is used as a measure for core structure in ecological networks. Here, we introduce a new tool

for assessing core–periphery structure. Although we did not explore nestedness here, Lee

in [119] explored the relationship between a particular definition of nestedness and a core–

periphery model proposed in Rombac et al [176]. Lee found that the nestedness coefficient
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Nc (Eq. (4.36)) was correlated with a aggregate core-quality (Eq. (4.50)) defined as:

Rcp =

∑
i,j∈V wij f̂cp(i)f̂cp(j)

∑
i,j∈V wij

∑
i,j∈V f̂cp(i)f̂cp(j)

.

in synthetic and empirical networks. We hope to more carefully examine differences between

possible core–periphery structure and nestedness for future ecological analysis.

4.4 Conclusions and Future Work

Core–periphery structure is a fundamental mesoscale structure. One can describe this struc-

ture as a core that is well connected to a network and a periphery that is poorly connected

to itself. Even with this seemingly simple definition, there are many varied interpretations

into how to quantify this structure in weighted and unweighted networks.

In Section 4.1, we reviewed graph calculus and then then used this framework to provide

a mathematical overview of some of the models for core–periphery structure in 4.2. In partic-

ular, we related various combinatorial quantities in unweighted networks such as subgraph

densities to the core–periphery structure, specifically to the seminal work of Everett and

Borgatti [30]. We highlight those quantities that are easily generalized to the weighted case

as this is our focus in our ecological application. Our original motivation for this research was

to find methods to improve the computational overhead associated with methods introduced

in [176] and to scale faster methods to larger networks. Although we did not accomplish this,

we plan to use the research here to further explore methods for core–periphery structure and

help illustrate the broad landscape of such models for related endeavors in the future.

In Section 4.3, we briefly discussed our joint work analyzing core–periphery structure

in mutualistic frugivore–seed networks [179]. We identify core and periphery structures in

these networks using methods from Rombach et al. [176] and discuss the interpretations of

this analysis made our ecologist colleagues. For example, our colleagues found that birds

classified as mashers were characterized as core at a variety of the 10 sites investigated. Our

colleagues suggest that certain mashers are good dispersers at these sites because they feed

on watery fruit with seeds embedded in the fruit’s flesh. Typically, mashers are seen as poor
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Figure 4.10: The matrix of Rα,β from Eq. (4.50).

dispersers because they use their beak as a sieve to sort out hard seeds when eating fruit.

Admittedly, this exploration of core–periphery structure was brief, and in future work, we

plan to more fully explore the bipartite nature of core–periphery structure as Larremore did

for community structure [116] and Lee began to using a core–periphery structure proposed

in [120]. We also hope to provide a more detailed analysis of the relationship between

nestedness and core–periphery structure.
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Figure 4.12: A scatter plot for degree versus core scores for two sites. We compute

the correlation coefficient ρ.
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APPENDIX A

Rank Aggregation for Course–Sequence Discovery

A.1 Course Numbers

Table A.1 shows the official course numbers and the associated course names used throughout

the paper. We shortened the official course names wherever possible, to make the tables

more visually appealing. For example, “Introduction to Fourier Analysis” is simply labelled

“Fourier Analysis”. Also, A, B, C are substituted with I, II, and III respectively. A short

description of each course in addition to the courses prerequisites is available in the UCLA

general catalog [161].
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APPENDIX B

Core-Periphery Structure in Fruigivore–Seed Networks

B.1 Simulated Annealing

Kirkpatrick et al. in [110] proposed simulated annealing as a stochastic minimization algo-

rithm for combinatorial problems. We present pseudocode in Alg. 1 to represent the main

idea of the minimization algorithm. Roughly speaking, Alg. 1 performs a local search, but

rather than rejecting all states with higher cost J , we accept new states with a diminishing

probability that depends on the difference in costs between the current state and possible

new state.

Algorithm 1 Simmulated Annealing for Minimization

1: Inputs: Finite set of states S, cost function J : S → R, cooling schedule C : R →
(0,∞) such that limnC(n) = 0, randomized neighbor function N : S → S; minimum

temperature Tmin

2: Select s ∈ S; select T .

3: while T > Tmin do

4: s′ ← N(s)

5: if J(s) < J(s′) then

6: s← s′

7: else

8: s← s′ with probability exp(−(J(s′)− J(s))/T )

9: T ← C(T ) (cooling)

We use the Matlab code in [200]. The full pseudocode of this algorithm is given in

Algorithm 2. We do not experiment with local search heuristics, neighboring functions and
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different cooling schedules, in part because we select parameters are designed to survey a

large portion of the possible states [176]. We specify the inputs here. The set S of states

from Line 1 of Alg. 2 is precisely the set PV (α, β) from Eq. (1). Recall that P(α, β) is

the set of all possible bijections of nodes V to S(α, β, n) (see Eq. (4.46)), where n = |V |.
The cost function J is E from Eq. (4.48). Given an assignment fα,β, we define the set of

neighbors of fα,β as gα,β such that if i1, . . . , in is an enumeration of the nodes V , then

1. fα,β = gα,β on nodes i1, . . . , in−2,

2. fα,β(in−1) = gα,β(in), and

3. fα,β(in) = gα,β(in−1).

In other words, the set of neighbors of fα,β are those functions in PV (α, β) whose assignment

on two nodes are swapped. The randomized neighboring function N from Line 1 of Alg.

2 is a random selection of one of the possible neighbors. We used the cooling schedule

C(T ) = .8T given as default in [200]. We also set attmax = 5000 and succmax = 1000 using

the code from [17].
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Algorithm 2 Simmulated Annealing for Minimization from [200]

1: Inputs: Finite set of states S; cost function J : S → R; randomized neighbor function

N : S → S; minimum temperature Tmin; maximum consecutive rejections R; maximum

number of attempts attmax; maximum number of successes succmax; cooling schedule

C : R→ (0,∞) such that limy→∞C(y) = 0.

2: Select state s ∈ S uniformly at random (or using a heuristic).

3: Current consecutive rejections r (r ← 0); current number of attempts att (att ← 0);

current number of successful attempts succ (succ← 0).

4: Temperature T (T ← 1).

5: while T > Tmin and r < R do

6: if att > attmax or succ > succmax then

7: T ← C(T )

8: succ← 0

9: att← 0

10: s′ ← N(s).

11: att← att + 1

12: if J(s′) < J(s) then

13: s← s′

14: r ← 0

15: succ← succ + 1

16: else

17: x← Rand(0, 1)

18: if x < exp(J(s′)− J(s)/T ) then

19: s← s′

20: r ← 0

21: succ← succ + 1

22: else

23: r ← r + 1
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