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Abstract

People are increasingly reliant on online media sources for information, and media outlets continue
have a great impact on public opinion. With the rise of extremism in society, it is especially important
to understand how media outlets cause polarization of ideologies. Mathematical models can give us new
insight into the dynamics of opinion formation and propagation. One popular type of opinion model is
a bounded-confidence model. In such a model, agents start with some opinion and evolve their opinion
by interacting with other agents whose opinion is sufficiently similar to their own. A recent extension
of the model captures the impact of media on opinions through a network; the network mathematically
characterizes the population by representing both individuals and media outlets and the information
channels between them, while imposing constraints on who interacts with whom. In certain models,
individual opinions will eventually converge to a steady state. Currently, little is known about the
distribution of opinions at steady state and how the media influences this distribution. We examine
bounded-confidence models on synthetic networks with various levels of media influence. In a complete
network, we observe numerically that there is a phase transition, indicating a sudden change in qualitative
behavior, from a single opinion group to several opinion groups. In ongoing research, we are working on
a characterization and rigorous proof of the observed bifurcation and analyzing variations of the model.

1 Introduction

Media outlets and social media enjoy a widespread following in U.S. society [17], and they also affect public
opinion [1]. Because of the growing political polarization in society, we need to gain a better understanding of
how media influences opinion [10]. To make this question mathematically tractable, there are three issues that
must be addressed. First, we must determine how to model social relationships in a population. A natural
representation of a population and its social relationships is a network, where nodes represent individuals
carrying opinions that are measured on a continuous scale, and edges represent relationships between nodes,
allowing social interaction. Second, we have to model how individuals in the population interact (influence
each others’ opinions). In this report, we use an opinion model to represent social interactions. Based on our
current understanding, social dynamics are not governed by any clear laws, so our choice of opinion model
is based on both mathematical tractability and observation. One possible opinion model is the DeGroot
model [9], where individuals update their opinion based on some linear combination of all other opinions.
The model we study in this report is a variation of a DeGroot model on a network. One such model is a
bounded-confidence opinion model, which was first suggested by Deffuant et al. in [8] and Hegselmann and
Krause in [15]. Third, we need to come up with some way of measuring media impact on society. The goal of
this SURF project is to study measures of media impact on bounded-confidence opinion models, extending
the work done by Brooks and Porter in [2].

1.1 Modeling framework

We now give an introduction to the model we started with, taken from [2]. From now until noted, we will
mostly follow the presentation of [2], a recent work that introduced media nodes into bounded-confidence
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models and examined the effects of doing so. Consider a social network represented by a directed graph
G = (V,E), where the set V of nodes encodes accounts and the set E of edges encodes followership, such
as on Twitter. A directed edge from j to i is in the set E if account i follows account j. This allows us to
build an adjacency matrix A, with Aij = 1 if i follows j and Aij = 0 otherwise. In general, followership is
not reciprocal, so A may not be symmetric. We also assume that Aii = 1 for all i, so each account follows
itself.

We suppose that there are N individual accounts in a network, and we suppose that the network also
has M media accounts. These media accounts produce content and do not change their ideology, so each
media account has only out-edges. For our purposes, we assume that each media account has nM followers.
After we include media nodes, there are a total of N +M nodes in our network.

To capture the behavior of the network over time, we give each node i (where i ∈ {1, . . . , N + M}) an
opinion xki at discrete time k, where we take x ∈ [−1, 1]d. For simplicity, we take d = 1. In this report,
we interchange the words “ideology” and “opinion” freely. For d = 1, we can imagine the opinion space to
be political ideologies (we can still use the analogy of political ideologies if d > 1 by allowing more nuanced
ideologies), with x = 1 representing a strongly conservative opinion, x = −1 representing a strongly liberal
opinion, and x = 0 representing a moderate opinion.

Each node in our network updates its ideology synchronously at each discrete time step k by averaging
the opinion of all accounts to which it is receptive. Although accounts may follow many other accounts, we
say that an account i is receptive to account j if i follows j and dist(xi−xj) < c, where dist is some notion
of distance between i and j in the opinion space. We use c as a notion of how similar the opinions of two
accounts have to be in order for the accounts to influence each other. A smaller c means fewer accounts will
be able to influence any given account. Note that this definition of receptiveness implies that any media
node is not receptive to any node except itself (because each media node follows only itself). Intuitively,
account i is only receptive to (and hence can be influenced by) account j if their ideologies are sufficiently
“close” (determined by c) and i receives j’s content. This captures the assumption that individuals are
influenced only by accounts who have a relatively similar opinion [13]. The idea of an opinion cutoff comes
from bounded-confidence opinion models [19]. In this class of models, agents carry opinions and evolve
them by interacting with other agents whose opinion is sufficiently similar to their own. Bounded-confidence
models use confidence intervals; for an opinion x, a confidence interval is an interval of opinions centered on
x that can influence x.

For d = 1, we use the `2 norm to measure distance. That is, we define dist(x, y) = |x − y|, where | · |
denotes Euclidean distance. We can then define the set of all accounts that are receptive to account i as
Ii = {j ∈ {1, . . . , N +M} | account i is receptive to account j}; equivalently, we can write
Ii = {j ∈ {1, . . . , N +M} |Aij = 1 and dist(xi,xj) < c}.

We define the update rule for each account as follows:

xk+1
i =

1

|Ii|
∑
j∈Ii

xkj =
1

|Ii|

N+M∑
j=1

Aijx
k
j η

(∣∣∣xki − xkj

∣∣∣) , for k ∈ N , i ∈ {1, . . . , N +M} , (1)

where

η(x) =

{
1 , if x < c ,

0 , if x ≥ c .

Note that each media account i, with i ∈ {N + 1, . . . ,M}, has Ii = {i}, so the media account ideologies are
constant over time.

To examine the long-term behavior of our model, we simulate the model numerically on various types
of networks. For each trial, we create a network and fix certain aspects, such as the number of nodes or
the type of network. We first construct a network for the non-media nodes and then add media nodes to
the network. For the network for the non-media nodes, we use either a Watts–Strogatz network defined in
Section 1.2 (since a Watts–Strogatz network is undirected, to turn it into a directed network, all edges are
made reciprocal), a random network model with short mean path length, or a complete network, a network
where all nodes are adjacent. We assign each node in the network an opinion that we draw from a uniform
distribution over our opinion space. In all of the numerical simulations, we observed that if we allow the
opinions on the network to evolve over time according to (1), we eventually reach a point in time at which
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the opinions do not change within a tolerance interval of width ε. We use the word convergence to describe
this situation. Mathematically, we define “convergence” for a trial to occur when dist(xk+1

i ,xki ) < ε for all
i for ten consecutive time steps.

1.2 Network definitions

In this report, we focused on studying complete networks and Watts–Strogatz networks; we briefly looked
into star networks and ring-lattice networks [20].

• A star network is a deterministic network with a special node (known as the “star”) that shares an
edge with every other node; any non-star node has only one edge, which it shares with the star.

• A ring lattice is a deterministic network with two parameters: the number of nodes N and the degree
k. For each node i in 1, . . . , N , the node i shares an edge with nodes i+ 1, . . . , i+k (where node N + 1
is equivalent to node 1), so each node has degree k.

• A complete network is a deterministic network, where all pairs of nodes share an edge.

• A Watts–Strogatz network is a random graph generated from three parameters: the number of nodes
N , the mean degree k, and the rewiring probability β. We start with a ring lattice with N nodes and
mean degree k. Then, for each i in 1, . . . , N and for each j in i+1, . . . , k, the edge (i, j) is rewired with
probability β. Rewiring means that (i, j) is replaced (i, k), while avoiding self-loops and duplicating
edges.

The above networks are all undirected. To make them directed, for each edge (i, j) in the undirected version
of the network, we add the edge i→ j and j → i in its directed counterpart.

1.3 Measuring media impact

We look at a network at convergence to examine the effects of media on the opinions of the individuals
over time. Each media node has nM followers, which are selected uniformly at random from the non-media
nodes. Although (1) works for all dimensions d, we use d = 1 in our work. For simplicity, we set all of the
media nodes to have the same ideology m = 0.9. We want to examine how placing media into a network
causes the “average” opinion of the non-media nodes to be closer to the media ideology m than when there
are no media nodes; intuitively, this measures the impact of the media on the population of nodes in a
network. To establish a baseline against which to measure media impact, we run 50 trials (all figures use
50 trials) with M = 0 media nodes. Each of these trials has two sources of randomness: the distribution of
initial opinions and the network structure (except when we use a deterministic network structure, such as a
complete network). For one trial, we define the baseline media impact to be

Rbase =
1

N

N∑
i=1

‖xbi −m‖ ,

where xbi is the opinion of account i at convergence. If we average Rbase over all trials, we obtain the baseline
media impact Rbase. We now add M > 0 media nodes, with nM followers each, and run 50 trials for each pair
(M,nM ). Each of these trials has three sources of randomness: the distribution of the initial opinions, the
network structure (except when we use deterministic networks), and the distribution of media followerships.
For each trial at convergence, we define x∗i to be the opinion of each non-media node. We then calculate

Rinf =
1

N

N∑
i=1

‖x∗i −m‖

and average over all trials to get Rinf. Note that Rinf depends on both M and nM . We define the overall
media impact to be

R =
Rbase

Rinf

.
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We can think of R as measuring how much the media has drawn the mean opinion of the population to its
own ideology at convergence. First, although it is possible for Rinf > Rbase, this would imply that adding
media nodes drives the population opinion further away from the media opinion in the opinion space, which
seems implausible; throughout all trials, we never observed this result. Hence, we expect that R ∈ [1,∞). In
cases where the media has done little to impact the population opinion, we expect that Rinf is slightly smaller
than Rbase, so R should be close to 1. In cases where the media has had a large impact on the population
opinion, we intuitively expect the average opinion to be close to the media ideology, so Rinf should be small
and R should be large. The heatmap (taken from [2]) in Figure 1 shows the media impact R on Facebook
friendship networks of Caltech and Reed College [22].

(a) Caltech (b) Reed College

Figure 1: Heatmaps of media impact R on two college Facebook networks [data taken from [22]]. The
vertical axis M is the number of media accounts, and the horizontal axis nM is the number of followers
per media account. Blue represents low acceptance of media ideology, and red represents high acceptance.
[Taken from [2]].

Interestingly, past a certain point, increasing M and nM actually seem to decrease the value of R, which
may seem counterintuitive. If one examines a specific trial of the opinions on the Reed College network (data
taken from [22]) for M = 1, nM = 1 (few media, few followers per media), M = 11, nM = 225 (some media,
some followers per media), and M = 21, nM = 675 (more media, many followers per media), we see that
although there are more total media followerships, the mean population opinion is further away from the
media ideology, which leads to a decreasing media impact R for increasing M and nM , as seen in Figure 2.

Finally, in cases where the media has pulled a majority, but not an overwhelming majority, of the
population opinion sufficiently close to its own ideology, we see a notable cluster of the population whose
opinions are rather far from the media. We believe this notable cluster occurs because the large number of
media followerships causes people to more quickly adopt the media’s ideology in this case compared to the
some-media, some-followerships case. As further evidence, it takes the many-media, many-followerships case
far less time than cases with fewer media followerships to reach convergence. Intuitively, the many-media,
many-followerships case has “echo chambers” where individuals are too far apart in opinion space to interact.
As a result, the media influences a smaller portion of the network.

Unfortunately, R does not capture the qualitative behavior in the many-media, many-followerships case,
because the mean opinion is still far from the media ideology. Therefore, we seek to devise another statistic
that can help measure the differences between small numbers of media followership and large numbers of
media followership. The most obvious quantity to measure is the variance, which should account for how
“fractured” a population is. However, there are many other promising statistics and properties to calculate.
We now stop following the presentation of [2]; the work in Sections 2–10 is our own.
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(a) Few media, few followers per media (b) Some media, some followers per media

(c) Many media, many followers per media

Figure 2: Time evolution of opinions in the Reed College network for a single trial with various amounts of
media followerships. [Taken from [2]].

2 Comparisons of different statistics to measure media impact

From [2], as noted above, R measures how media nodes affect the mean opinion of a population. A large value
of R indicates that the media brings the mean opinion of the population close to its own ideology, whereas
a small value of R indicates that the media has less of an effect on the mean opinion of the population.

The R measure allows us to compare the influence of the media on the mean opinion in a variety of
scenarios. By varying the number of media nodes or the number of followers per media node, we can get
a broad picture of the level of media entrainment, which measures how much the media has brought the
population opinion closer to its ideology. However, R does not clearly distinguish between cases with few
media nodes with few followers per node and many media nodes with many followers per node. We explained
this issue at the end of Section 1.

Another statistic that we explored is the variance of opinions at convergence:

σ2 =
1

N

N∑
i=1

(x∗i − µ)2 , (2)

where x∗i is the opinion of individual i at convergence and µ = 1
N

∑N
i=1 x

∗
i is the mean of the individual

opinions at convergence. As expected, variance increases with an increasing number of media nodes and an
increasing number of followers per media node.

Calculating the variance can indicate how fractured the opinions of the nodes in a network are at con-
vergence, but we did not attempt to gain further information about the number of opinion groups and their
distribution.
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Figure 3: Using Model (1) with a complete network with N = 100 nodes, we observe a putative bifurcation
in the variance of individual opinions at convergence.

Interestingly, in a complete network with N = 100 nodes, when we plot variance at convergence against
the total number of media edges (edges i→ m such that individual node i follows media node m, regardless
of whether i is receptive to m’s content), we find a sudden shift from zero variance to nonzero variance (see
Figure 3). This suggests that our model may exhibit a phase transition. Therefore, bifurcation analysis [14]
may be able to give further insights into the long-time behavior of the system in (1). See Section 6 for a
discussion of bifurcation analysis.

Another statistic that we calculate to measure media influence is

χ = proportion of individuals at convergence whose opinion is at most (3)

the size of the confidence interval c from the media ideology.

The motivation behind the definition of χ is to provide a coarser notion than that of R for measuring the
proportion of a population that is influenced by the media. It differs from R in that it does not quantify
how close an opinion is from the media ideology; instead, it is concerned only whether an opinion can be
influenced by the media ideology. So χ captures the difference between many media with many followers
and few media with few followers, whereas R does not. However, because it fails to precisely capture how far
individual opinions are from the media ideology, it has trouble detecting how small changes in the amount
of media followerships affect the distribution of opinions at convergence. We have created heat maps of χ
on both complete networks and Watts–Strogatz, but we have not yet fully examined this statistic, because
the variance appeared more promising.

Philosophically, there are two different types of media entrainment: influencing individual nodes to share
the media ideology or influencing the mean opinion of the population to shift closer to the media ideology.
While studying R, we realized that it was better at capturing the latter type of entrainment, rather than
the former. To better measure the first type of entrainment with R, we suggest a nonlinear weighting of
opinions. For example, in a population with two people and a media ideology of m = 1, there should be a
quantitative difference between two individuals with opinions x1 = x2 = 0 and two individuals with opinions
x1 = 1 and x2 = −1. Using the original R statistic, there is no difference between these two cases, but we
should expect the second case to have a higher entrainment, because individual 2 shares the media ideology.
We can then weight the individuals using, for example, a Gaussian distribution with variance s2 centered at
m. In this scenario, the baseline media impact is

RG
base =

1

N

N∑
i=1

1√
2πs2

e−
(xbi−m)

2

2s2 ,
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where xbi is the opinion of account i at convergence in the case where no media is present. The variance
is a parameter that we can adjust. We average RG

base over all trials to calculate the baseline media impact

RG
base. After incorporating media nodes, we calculate

RG
inf =

1

N

N∑
i=1

1√
2πs2

e−
(x∗i−m)

2

2s2

and average over all trials to get RG
inf . We then define the weighted media impact statistic to be

RG =
RG

base

RG
inf

. (4)

We have not yet investigated RG, but we seek to investigate it in the future. Additionally, we can apply a
nonlinear weighting of opinions to other statistics to better measure the first type of entrainment.

3 From discrete to continuum in a complete network

Because there appears to be a phase transition in Figure 3 when we measure variance versus the number of
media edges in a complete network, we seek to perform a bifurcation analysis of Model (1) in this case. To
do this, we formulate a continuum version (continuous in both time and space) of the discrete Model (1).
We proceed in four steps to obtain a continuum model:

1. We find an equation for {xτ,ki }
N,T
i=1,k=0 with fixed time step τ from model (1).

2. We take the limit as τ → 0 and find an equation for {xi(t)}Ni=1.

3. We let N →∞ and derive the corresponding particle-model equation for x(t). (See [3] for a discussion
of particle models.) This equation depends on the distribution ρ(t, x) of individuals’ opinions and
captures the “average” dynamics of the opinion x(t) at time t of a typical individual in a population.
In principle, this equation can be derived rigorously by taking a mean-field limit.

4. Using the particle-model equation, we derive the corresponding macroscopic equation for the distribu-
tion ρ(t, x) of individual opinions.

3.1 Discrete-in-time particle model

On a complete network with N non-media nodes and M media nodes, the adjacency matrix for our directed
network can be written as

A =

(
J B
0 IM

)
,

where Aij = 1 if account i follows account j and Aij = 0 otherwise. We also include self-followership. The
first N ×N block of A is J, a matrix of ones (because all non-media nodes follow each other). The first N
rows and last M columns give the matrix B, and they encode the non-media nodes that are following media
nodes. The last M rows and first N columns give a matrix of zeros (because no media node follows any
other nodes). Finally, the last M rows and the last M columns give the identity matrix IM (because every
media node follows only itself and no other accounts). Note that all of the entries are either 0 or 1.

We define a tuning parameter

α =
1

N

M∑
j=1

N∑
i=1

Bij . (5)

Intuitively we can think of α as measuring the mean number of media followerships per individual.
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Consider Model (1): each node xi (for i ∈ {1, . . . , N +M}) at time k follows the update rule

xk+1
i =

1

|Ii|

N+M∑
j=1

Aijx
k
j η

(∣∣∣xki − xkj ∣∣∣)
 ,

where

|Ii| =
N+M∑
j=1

Aijη

(∣∣∣xki − xkj ∣∣∣)
represents the number of nodes (including media nodes) that i both follows and is receptive to (with respect
to content). Recall that for i ∈ {N + 1, . . . , N + M}, we have that xkj = m for all k because media nodes
have a fixed ideology. Therefore,

xk+1
i =

∑N+M
j=1 Aijx

k
j η

(∣∣∣xki − xkj ∣∣∣)∑N+M
j=1 Aijη

(∣∣∣xki − xkj ∣∣∣) =

∑N
j=1 Aijx

k
j η

(∣∣∣xki − xkj ∣∣∣)+
∑M
j=1 Bijmη

(∣∣xki −m∣∣)∑N
j=1 Aijη

(∣∣∣xki − xkj ∣∣∣)+
∑M
j=1 Bijη

(∣∣xki −m∣∣) , (6)

which is the center of mass of all points to which xki is both receptive and adjacent.

To obtain a continuous-in-time equation, we incorporate a constant scaling factor τ in (6). Let xτ,ki
represent the opinion of account i at time kτ , where τ is a fixed time step. We define

Aτ =

(
Kτ τB
0 IM

)
where Kτ = τJ + (1− τ)


|I1| · · · 0

...
. . .

...
0 · · · |In|

 .

Observe for i ∈ {1, . . . , N} and for all k that

|Iτi | =
N+M∑
j=1

Aτ
ijη

(∣∣∣xτ,ki − xτ,kj ∣∣∣)

=

N∑
j=1

Kτ
ijη

(∣∣∣xτ,ki − xτ,kj ∣∣∣)+

M∑
j=1

τBijη

(∣∣∣xτ,ki − xτ,kj ∣∣∣)

= (1− τ) |Ii| η
(∣∣∣xτ,ki − xτ,ki ∣∣∣)+

N∑
j=1

τJijη

(∣∣∣xτ,ki − xτ,kj ∣∣∣)+

M∑
j=1

τBijη

(∣∣∣xτ,ki − xτ,kj ∣∣∣)

= (1− τ) |Ii|+ τ

N+M∑
j=1

Aijη

(∣∣∣xτ,ki − xτ,kj ∣∣∣)
= (1− τ) |Ii|+ τ |Ii|
= |Ii| .

Also observe that |Iτi | = 1 = |Ii| for all i ∈ {N + 1, . . . , N +M} (because these are media nodes). Therefore,

|Iτi | = |Ii| for any i ∈ {1, . . . , N+M}. We define αi =
∑M
j=1 Bij (the number of media nodes that individual

i follows). Note that

|Ii| =
N+M∑
j=1

Aijη
(
|xi − xj |

)
=

N∑
j=1

η
(
|xi − xj |

)
+

M∑
j=1

Bijη
(
|xi −m|

)
=

N∑
j=1

η
(
|xi − xj |

)
+ αiη

(
|xi −m|

)
.

We then propose the new τ -dependent update rule

xτ,k+1
i =

1∣∣Iτi ∣∣
N+M∑
j=1

Aτ
ijx

τ,k
j η

(∣∣∣xτ,ki − xτ,kj ∣∣∣) . (7)
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We see that

xτ,k+1
i =

1

|Ii|

τ N∑
j=1

xτ,kj η

(∣∣∣xτ,ki − xτ,kj ∣∣∣)+ (1− τ) |Ii|xτ,ki + τ

M∑
j=1

Bijmη

(∣∣∣xτ,ki −mj

∣∣∣)


= (1− τ)xτ,ki +
τ

|Ii|

 N∑
j=1

xτ,kj η

(∣∣∣xτ,ki − xτ,kj ∣∣∣)+ αimη

(∣∣∣xτ,ki −m∣∣∣)
 ,

so

xτ,k+1
i − xτ,ki

τ
= −xτ,ki +

1

|Ii|


 N∑
j=1

xτ,kj η

(∣∣∣xτ,ki − xτ,kj ∣∣∣)
+ αimη

(∣∣∣xτ,ki −m∣∣∣)


= − 1

|Ii|

 N∑
j=1

η

(∣∣∣xτ,ki − xτ,kj ∣∣∣)+ αiη

(∣∣∣xτ,ki −m∣∣∣)
xτ,ki

− 1

|Ii|

−
 N∑
j=1

xτ,kj η

(∣∣∣xτ,ki − xτ,kj ∣∣∣)
− αimη(∣∣∣xτ,ki −m∣∣∣)


= − 1

|Ii|

 N∑
j=1

(
xτ,ki − x

τ,k
j

)
η

(∣∣∣xτ,ki − xτ,kj ∣∣∣)+ αi(x
τ,k
i −m)η

(∣∣∣xτ,ki −m∣∣∣)
 .

Therefore, Model (7) can be written as

xτ,k+1
i − xk,τi

τ
= −

1
N

∑N
j=1

(
xτ,ki − x

τ,k
j

)
η

(∣∣∣xτ,ki − xτ,kj ∣∣∣)+ αi
N

(
xτ,ki −m

)
η

(∣∣∣xτ,ki −m∣∣∣)
1
N

∑N
j=1 η

(∣∣∣xτ,ki − xτ,kj ∣∣∣)+ αi
N η

(∣∣∣xτ,ki −m∣∣∣) . (8)

Equation (8) reduces to equation (1) for τ = 1.

3.2 Continuous-in-time particle model

It is convenient to express the media nodes and individual nodes as two separate “species” because of their
different dynamics. This yields a two-species system; for similar models, see the recent works [4, 12]. We
define the piecewise-constant interpolation function

xτi (t) := xτ,ki for t ∈ [kτ, (k + 1)τ), where k ∈ N .

We also define
xi(t) := lim

τ→0
xτi (t) .

From (8), it follows that xi(t) satisfies the systemẋi = −
1
N

∑N
j=1(xi−xj)η(|xi−xj |)+

αi
N (xi−m)η(|xi−m|)

1
N

∑N
j=1 η(|xi−xj |)+

αi
N η(|xi−m|)

,

ṁi = 0 ,
with initial conditions

{
xi(0) = x0

i ,

mi(0) = m,
(9)

where xi represents the ideology of non-media node i and mj represents the ideology of media node j. Note
all xi and mj depend on time. However, by the update rule in (7), all of the media nodes maintain the
constant ideology m, so mj = m for all media nodes j at all times. We define the function K : R≥0 → R to
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be such that K′(r) = η(r), and we observe that

N+M∑
j=1

Aij(xi − xj)η
(
|xi − xj |

)
=

N∑
j=1

(xi − xj)η
(
|xi − xj |

)
+

N+M∑
j=N+1

Aij(xi − xj)η
(
|xi − xj |

)
=

N∑
j=1

(xi − xj)η
(
|xi − xj |

)
+

M∑
j=1

Bij(xi −mj)η
(
|xi −mj |

)
=

N∑
j=1

(xi − xj)η
(
|xi − xj |

)
+ (xi −m)η

(
|xi −m|

)
αi

=

N∑
j=1

(xi − xj)∇K
(
|xi − xj |

)
+ (xi −m)∇K

(
|xi −m|

)
αi .

Therefore,

ẋi =
−
(

1
N

∑N
j=1(xi − xj)∇K

(
|xi − xj |

)
+ (xi −m)∇K

(
|xi −m|

)
αi
N

)
1
N

∑N
j=1 η

(
|xi − xj |

)
+ η

(
|xi −m|

)
αi
N

. (10)

Equation (10) is alternative way to write equation (9). Equation (10) is similar to the discrete aggregation
model studied in [3], but (10) is more complicated because of the denominator on the right-hand side.

3.3 Mean-field limit

Let [−1, 1] = Ω ⊆ Rd be the opinion space that the individual opinions lie in. Recall that we take d = 1 in our
investigation. (The work here can be generalized to bounded sets in Rd.) Note that the evolution of opinions
in the continuous-in-time particle Model (10) does not depend on the entries of the media followership matrix
B, but rather on the number of media each individual is following; i.e., αi. We thus introduce the function
bN to formulate (10) in such a way that allows us to take the number of non-media nodes to infinity. Let
bN : Ω→ R be a function satisfying

bN (xi) =

M∑
j=1

Bij = αi , for i ∈ {1, . . . , N}

to represent the number of media accounts that non-media node i (with i ∈ {1, . . . , N}) follows. Moreover,
we use bN to encode media followership into our continuum model; we construct bN ourselves. Assuming
that matrix B is such that the following limit exists, we then define

b(x) := lim
N→∞

bN (x)

N
,

so αi
N → b(xi) as N →∞.

If we let ρ(t, x) denote the distribution of individual (non-media) opinions at time t and take the Dirac
distribution ν(x) = δm(x) as the distribution of media opinions, then we may write the mean-field approxi-
mation of equation (10) as

ẋ =
−
∫

Ω
(x− y)η

(
|x− y|

)
ρ(y) dy −

(
(x−m)η

(
|x−m|

))
b(x)∫

Ω
η
(
|x− y|

)
ρ(y) dy +

(
η
(
|x−m|

))
b(x)

, (11)

where x(t) ∈ Ω ⊆ Rd. Equation (11) expresses the “averaged” particle dynamics and corresponds to the
mean-field limit in which we take the number of non-media nodes in the network to infinity, while keeping
the number of media nodes fixed. If instead we take the number of media nodes to infinity (in some suitable
manner), this is another possible mean-field limit. We discuss this further in Section 10.
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3.4 Macroscopic dynamics

From previous work (see [3, 4, 12, 16]), if we know the velocity v of particles that move as part of a group,
the distribution ρ of particles satisfies the continuity equation

∂tρ+ div(vρ) = 0 .

With the velocity of each particle given by equation (11), the macroscopic density ρ is

∂tρ = div

ρ(∫ η (|x− y|) (x− y)ρ(t, y) dy + (x−m)η
(
|x−m|

)
b(x)∫

η
(
|x− y|

)
ρ(t, y) dy + η

(
|x−m|

)
b(x)

) , (12)

where b(x) represents the influence that media with ideology m exercise on individuals having opinion x.

4 Steady States

We now transition to a discussion of steady states. Often in mathematical modeling problems, the time
evolution of a solution is intimately intertwined with its initial conditions. Because the intermediary dynamics
are difficult to analyze, we instead examine steady states (the equilibrium behavior of solutions). If we
understand the steady states of a system, we simplify a problem’s complexity, as we can (hopefully) classify
long-term behavior of solutions based on a few initial conditions. In addition, facts about steady states lead
to facts about the intermediate behavior of solutions. For example, for a certain configuration of a system, if
we know that the variance of opinions in a population at its steady state is 0, then the opinions must converge
over time, which by itself is a strong claim. In a perfect world, we would have complete understanding of
the steady state of a system given any set of initial conditions. However, this is a very difficult problem, so
we turn to probing the steady states with numerical simulation or analytically proving theorems in specific
cases. The work in Sections 5–8 is focused on understanding the steady states of Model (12).

From (12), the steady states of the system occur when ∂tρ = 0. It follows that the steady state ρ∞
satisfies ∫

η
(
|x− y|

)
(x− y)ρ∞(y) dy + (x−m)η

(
|x−m|

)
b(x) = 0 . (13)

We believe that investigating ρ∞ for various types of media followerships b(x) will give insight into exactly
how the media affects the distribution of opinions at steady-state. Furthermore, we could investigate which
choices of b(x) maximize which measures of media impact; this could be helpful for designing advertising
strategies (see Section 10). We are currently working on a solver for ρ∞.

In the case when b(x) = 0 (there is no media influence), we give Theorem 1 about the steady states
of (12). Note that b(x) = 0 corresponds to αi = 0 for all i ∈ {1, . . . , N}; in (9), we then have

ẋi = −
∑N
j=1(xi − xj)η

(
|xi − xj |

)∑N
j=1 η

(
|xi − xj |

)
for all i ∈ {1, . . . , N}. We use the continuous-in-time particle model in (9) instead of the macroscopic
equation in (12) for convenience.

Theorem 1. At convergence, the opinions of the particle model given by update rule (9) without media
influence lie in sums of Dirac distributions centered at points at least c apart; i.e. they take the form

ρconv(z) =

K∑
i=1

βiδyi(z),

for some integer K and selection of points {y1, . . . , yK}, where each δyi is centered at least c apart and the

coefficients βi satisfy
∑K
i=1 βi = 1.
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Proof. There must exist some x such that ρconv(x) > 0. Choose i such that ρconv(xi) > 0 and xi is maximized.
We claim that there is no other opinion xj 6= xi such that η

(
|xi − xj |

)
= 1. Suppose, by contradiction, that

there exists an xj such that |xi − xj | = xi − xj < c. Because xi is the maximum point at which ρconv is
nonzero, we know that ρconv(x) = 0 for any x > xi. We conclude there exists an xj such that

(xi − xj)η
(
|xi − xj |

)
= xi − xj > 0.

If no such xj existed, then all the opinions would lie in a Dirac centered at xi, so assume this is not the case.

Since 0 ≤ η
(
|xi − x|

)
≤ 1 for all x, we know that

∑N
j=1 η

(
|xi − xj |

)
> 0. Therefore,

ẋi = −
∑N
j=1(xi − xj)η

(
|xi − xj |

)∑N
j=1 η

(
|xi − xj |

) < 0,

since the denominator is positive and the numerator has only nonnegative summands (with at least one
positive summand). However, because we are at steady state, we must have ẋi = 0. Therefore, we are not
in a steady state, and there cannot possibly exist such an xj .

Therefore, xi must lie in a Dirac distribution with center at least c away from any other opinion. Con-
sequently, the opinions centered at xi do not interact with the other opinions. If we remove the Dirac
distribution at xi and renormalize, ρconv will therefore still be a steady state. If we repeat the above ar-
gument for the normalized ρconv, we then see that the new maximum opinion x′i that we pick after the
normalization is at least c below the old xi. Therefore, this process can only repeat finitely many times.
Repeating this argument, we see that all opinions must lie in Dirac distributions with centers at least c apart
from each other.

5 Variance for the discrete-in-time model in (7) versus the
continuous-in-time model in (9)

We can calculate the variance (one of the media impact measures mentioned in Section 2) of non-media
opinions at steady states to understand how fractured a population’s opinions are. As mentioned in Section 4,
there are several initial conditions that affect the variance. We consider some of these in Section 5. We would
like to numerically investigate the behavior of the discrete-in-time model in (7) as the time step τ decreases
(approaching the continuous-in-time model in (9)). The behavior of solutions to both models are dependent
on the choice of initial condition for the opinions and the way in which media followership is increased. In
Section 5, we concentrate on the former. We address the latter in Section 6.

After developing Model (7) with an explicit fixed time step τ , we ran simulations with τ = 0.1 on a
complete network with N = 100 nodes. We choose the media followerships by constructing a B matrix with
nonzero entries appearing uniformly at random. We chose the initial population opinions in two ways:

1. Initial Condition 1: linear spacing. We linearly space N opinions from the left endpoint of the
opinion space to the right endpoint of the opinion space, inclusive of the end points. This initial
condition is deterministic.

2. Initial Condition 2: uniformly at random. We draw N opinions independently at random from
a uniform distribution on the opinion space. This initial condition is non-deterministic.

Using a deterministic linear spacing of initial opinions, we obtained the plot in Figure 4(a). We examined
the same parameters in the continuum Model (9), and we obtained a similar result shown in Figure 4(b).
We also observe a similarity in shape between τ = .1 and the continuum model when the initial opinions are
drawn uniformly at random; see Figure 5.

As we have observed numerically, the discrete model converges to the continuous-in-time model; therefore,
when we study bifurcations in Section 6, we use (9) for numerics because it runs faster than (7). Additionally,
there is a difference between choosing the initial opinions uniformly at random and linearly spacing them;
the former yields no observable bifurcation in any of our trials, whereas the latter yields an observable
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bifurcation under certain conditions. Given enough trials, we expect that the former converges to the latter,
but we have not yet fully investigated this.

(a) Discrete-in-time Model (7) using a time step τ =
0.1 with initial condition 1

(b) Continuous-in-time Model (9) with initial condi-
tion 1

Figure 4: We plot the variance of the individual opinions at convergence for the two models on a complete
network with N = 100 nodes using initial condition 1. We choose the entries of the B matrix to be 1
uniformly at random. We define the variance σ2 in (2) and the number of media edges α in (5).

(a) Discrete-in-time Model (7) using time step τ =
0.1 with initial condition 2

(b) Continuous-in-time Model (9) with initial condi-
tion 2

Figure 5: We plot the variance of the individual opinions at convergence for Model (7) and Model (9) on a
complete network with N = 100 nodes using initial condition 2. We choose the entries of the B matrix to
be 1 uniformly at random. We define the variance σ2 in (2) and the number of media edges α in (5).

6 Numerical bifurcation analysis

Models often have parameters that appear in their governing equations. Adjusting these parameters can
change the qualitative behavior of these models, including at steady state. When the qualitative dynamics of
a model change with the value of a parameter, one says that there is a bifurcation [14]. From our numerical
computations on the discrete model in (7), we believe that a bifurcation occurs in the continuum model
in (12), at least for certain types of media followership.

To get started on bifurcation analysis, we reviewed [21] to see if the analytical methods that have been
developed by Kuramoto and others who have studied Kuramoto-type models are relevant to our analysis.
However, his methods are not directly applicable, because Model (9) and Model (12) do not have a simple
aggregation equation.
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A rigorous proof of a bifurcation is often mathematically involved. For example, J. D. Crawford proved
the existence of a bifurcation in the Kuramoto model in the papers [5–7], which contain rather intricate
analysis. To prove that a bifurcation exists, we must first show that (12) is the continuum limit of (9). A
rigorous proof of this mean-field limit is left as future work. We then must analytically show a qualitative
change in the state (a nonzero variance) using (12) as we adjust some tuning parameter [14]. We discuss our
specific choice of tuning parameter below. We use linearly-spaced initial opinions for all work in Section 6.

We tested four possible strategies for adjusting the tuning parameter (i.e., the amount of media follower-
ship) of our bifurcation. These four strategies are different methods of increasing media followership across
the network; they correspond to four different ways of filling the B matrix with ones. (A fifth way of filling
the B matrix would be choosing entries to be 1 uniformly at random; this produced Figures 4 and 5.) The
strategies are

1. Strategy (1): filling in the B matrix by rows. We fill the B matrix by rows from top to bottom.
We fill entries in a row one at a time; after we fill a row, we start filling the highest unfilled row. For
linearly-spaced initial opinions, this strategy yields αi = M for individuals close to the −1 opinion and
αi = 0 for individuals close to the 1 opinion.

2. Strategy (2): filling in the B matrix by columns. We fill the B matrix by columns from left to
right. We fill entries in a column one at a time; after we fill a column, we start filling the rightmost
unfilled column. This strategy yields roughly equal αi for all individuals.

3. Strategy (3): filling in the B matrix by randomly selecting rows. We select a permutation of
the rows of B uniformly at random and fill the rows in permutation order.

4. Strategy (4): filling in the B matrix by diagonals. We fill the B matrix by diagonals, starting
from the upper-right diagonal and stopping at the main diagonal. This strategy roughly yields α1 =
k, α2 = k − 1, . . . , αk = 0, αk+1 = 0, . . . where individual 1 is closest to the −1 opinion.

We observed a bifurcation when employing Strategies (1) and (2). We did all our numerics using the
continuous-in-time model in (9) with linearly-spaced opinions as the initial condition, under the assumption
that simulations with randomly-spaced initial opinions converge to their counterparts with linearly-spaced
initial opinions after sufficiently many trials. See Section 5 for a discussion of our decision to use linearly-
spaced initial opinions.

6.1 Filling in the B matrix by rows

For our simulations with N = 100 nodes, we observe a bifurcation (see Figure 6):

Figure 6: Using Model (9), we observe a putative bifurcation in the variance of individual opinions at
convergence for a complete network with N = 100 nodes. We choose the entries of B using Strategy (1).
We define the variance σ2 in (2) and the number of media edges α in (5).
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Intuitively, increasing α using Strategy (1) of filling the B matrix corresponds to gradually increasing
the media influence starting from opinions near −1 to opinions near 1. However, this scenario is rather
unrealistic (we do not believe that there is empirical evidence of the media only targeting people whose
opinions are close to −1), so we want to examine other ways of filling B that yield a bifurcation.

6.2 Filling in the B matrix by columns

For N = 100 nodes, we did not observe any clear bifurcation. We then tried a variant of Strategy (2) in
which we fill in only the center third of the B matrix. In this strategy, the media only influences these more
“moderate” opinions. We do not observe a bifurcation for networks with more than N = 300 nodes.

We also examined filling in the middle half of the B matrix, instead of the middle third. This leads to a
clear bifurcation; the plots in Figure 7 show the bifurcation for N = 300, N = 500, N = 750, and N = 1000
nodes.

0.012 0.014 0.016 0.018 0.02
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0.1
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(a) N = 300 nodes

0.012 0.014 0.016 0.018 0.02

0

0.1

0.2

0.3

0.4

0.5

(b) N = 500 nodes

0.012 0.014 0.016 0.018 0.02
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(c) N = 750 nodes

0.012 0.014 0.016 0.018 0.02

0

0.1

0.2

0.3

0.4

(d) N = 1000 nodes

Figure 7: We plot the variance of individuals opinions at convergence. Using Model (9) and a modified
version of Strategy (2) (only filling in the middle half of B) to fill the B matrix, we observe a bifurcation for
multiple values of N whose critical point αc grows roughly with N2. We define the variance σ2 in (2) and
the number of media edges α in (5).

We also list the critical point αc for various N in Table 1. The critical point αc appears to grow
approximately with N2.
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N 300 500 750 1000 5000

αc 1609 3718 8898 16316 439901

αc
N2 .017878 .014872 .015819 .016316 .017596

Table 1: A table of network sizes N and their respective critical points αc (rounded to six decimal places) for
media ideology m = 0.9. We use Model (9) and fill the entries of B using the modified version of Strategy
(2), where we only fill in the middle half of B. Here, αc, the bifurcation point, is the first value of α such
that σ2 > 0.10. Interestingly, αc/N

2 is roughly constant as N increases.

We then tested filling in the lower half of the B matrix (corresponding roughly to opinions from 0 to 1)
and observed no bifurcation. Filling in the upper half of the B matrix (corresponding roughly to opinions
from −1 to 0) also has no bifurcation.

We also tried filling in lower 3/4 of the B matrix (corresponding roughly to opinions from −0.5 to 1); in
this case, we observed a bifurcation. We next filled in the upper 3/4 of the B matrix (corresponding roughly
to opinions from −1 to 0.5) and did not observe a bifurcation.

Notably, the continuum limit of Strategy (2) for b(x) is a box function. We chose this strategy because
we believed that influencing these moderate opinions would lead to a bifurcation.

6.3 Filling in the B matrix by randomly selecting rows

We do not observe any bifurcation for N = 100 or N = 300 nodes. Even when we restrict the randomly
chosen rows to the middle half of the rows of the B matrix, we did not observe a bifurcation. We chose this
strategy because we believed that increasing the number of people following media nodes (i.e., increasing
the number of nonzero rows of the B matrix) would lead to a bifurcation. We believe that the lack of an
observed bifurcation for N = 300 nodes is because no such bifurcation exists (as was seen in Strategy (1)).
In the case of N = 100 nodes, we suspect that the observed bifurcation is sensitive to which individuals
are influenced by the media; however, we are interested in finding a concrete explanation for the lack of an
observed bifurcation in this case.

6.4 Filling in the B matrix by diagonals

We see what appears to be a bifurcation for N = 100 nodes, but we did not observe a bifurcation for N = 300
nodes, which leads us to believe that the putative bifurcation in N = 100 nodes was an artifact of the finite
size of our networks. We chose this strategy to test whether the distribution of media followerships among
opinions was important in the existence of a bifurcation.

7 Numerical effects of varying c and m on a complete network

7.1 Different consensus groups based on c

To gain a sense of the qualitative behavior of Model (9) with different levels of media influence, we plot the
number of opinion groups at t = 1000 (note that we round each opinion to four decimal places) for N = 300
nodes with α = 0, α = 600, α = 1200, and α = 1800. Intuitively, when α = 0, we expect the population to
converge to consensus. Therefore, Figure 8 gives an idea of the minimum c that we need to reach consensus.
Interestingly, the smallest c for N = 300 nodes is close to 0.5, which is exactly the choice of Brooks and
Porter [2].
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(a) Opinion groups for N = 300 nodes and α = 0
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(b) Opinion groups for N = 300 nodes and α = 600
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(c) Opinion groups for N = 300 nodes and α = 1200
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(d) Opinion groups for N = 300 nodes and α = 1800

Figure 8: For progressively larger α, the number of opinion groups in a complete network with N = 300
nodes for most c at t = 1000 appears to become larger, which suggests that the population is growing
increasingly polarized.

7.2 Varying media ideology

We plot our results of simulations when we employ Strategy (2) with N = 500 nodes and media ideologies
m = 0.8, m = 0.85, m = 0.95, and m = 1.0 (see Figure 9) to see if the bifurcation point itself changes. It
appears that the bifurcation is sensitive to the value of m (see Table 2). This may suggest that for any given
N , there exists a value of m that minimizes αc.

m .95 .90 .85 .80 .75 .70 .65 .60 .55 .50

αc 5249 3718 3707 4378 5693 6746 9676 9499 - -

αc
N2 .020996 .014872 .014828 .017512 .022772 .026984 .038704 .037996 - -

Table 2: A table of media ideologies m and their respective critical points αc (rounded to six decimal places)
for complete networks with N = 500 nodes. We use Model (9) and fill the entries of B using the modified
version of Strategy (2), where we only fill in the middle half of B. Here, αc is the first value of α such that
σ2 > 0.10. An empty entry means we do not observe a bifurcation for that value of m.
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(a) Variance plot with m = 0.8
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(b) Variance plot with m = 0.85
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(c) Variance plot with m = 0.95
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(d) Variance plot with m = 1.0

Figure 9: For progressively larger m, the critical point αc of the bifurcation appears to shift to the left. It
seems that after m increases past a threshold in a complete network with N = 500 nodes, we do not observe
a bifurcation.

8 Adjustments to the model in (1)

8.1 Using a symmetric update rule

Here we explore how a complete network without media nodes should behave at convergence. Intuitively,
we expect x̄, the mean of the non-media opinions, to be conserved over time. We also expect the time
derivative of σ2(x), the second moment of the opinions, to be monotonically non-increasing as individuals
evolve towards consensus within groups to which they are receptive. Unfortunately, we were not able to show
these results using Model (9). Demonstrating these results is challenging because the denominator is not
symmetric with respect to our summation indices, so we will now adjust the model to make the mathematical
analysis more tractable. We start by defining

di :=

N∑
j=1

η
(
|xi − xj |

)
(14)

to represent the “out-degree” of any node. In Model (9), in the absence of media, the time derivative of the

mean x̄(t) = 1
N

∑N
i=1 xi(t) is

d

dt

(
x̄(t)

)
=

1

N

N∑
i=1

ẋi(t) = − 1

N

N∑
i=1

N∑
j=1

(xi − xj)η
(
|xi − xj |

)
di

=
1

2N

N∑
i,j

(
1

di
− 1

dj

)
(xi − xj)η

(
|xi − xj |

)
,

and it is not clear whether this vanishes. Also note that this means that once the distribution of opinions
has reached a situation where opinions are clustered in groups of diameter at most c, then the mean remains
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constant. If we define the new update rule

ẋi(t) = −N
N∑
j=1

(xi − xj)η
(
|xi − xj |

)
didj

, (15)

we obtain

d

dt
(x̄i(t)) = −

N∑
i=1

N∑
j=1

(xi − xj)η
(
|xi − xj |

)
didj

= −
N∑
i=1

N∑
j=1

xiη
(
|xi − xj |

)
didj

+

N∑
i=1

N∑
j=1

xjη
(
|xi − xj |

)
didj

= 0 ,

where the last equality follows from exchanging the summation indices in the second term. The time
derivative of the second moment σ2(t) = 1

N

∑N
i=1(xi(t))

2 is also not easy to analyze in Model (9). However,
using the update rule (15), the time derivative of the second moment is

d

dt

(
σ2(t)

)
=

2

N

N∑
i=1

xi(t)ẋi(t)

= −2

N∑
i=1

N∑
j=1

xi(xi − xj)η
(
|xi − xj |

)
didj

= −2

 N∑
i=1

N∑
j=1

x2
i η
(
|xi − xj |

)
didj

−
N∑
i=1

N∑
j=1

xixjη
(
|xi − xj |

)
didj


= −2

1

2

N∑
i=1

N∑
j=1

x2
i η
(
|xi − xj |

)
didj

−
N∑
i=1

N∑
j=1

xixjη
(
|xi − xj |

)
didj

+
1

2

N∑
i=1

N∑
j=1

x2
jη
(
|xi − xj |

)
didj


= −

 N∑
i=1

N∑
j=1

(xi − xj)2η
(
|xi − xj |

)
didj


≤ 0 ,

because all terms in the parentheses are always non-negative. This shows that the time derivative of the
second moment is monotonically non-increasing. Observe that it is equal to 0 only when either η(|xi−xj |) = 0
or xi = xj for all pairs i, j; this implies that all of the opinions concentrate on points that are at least c
apart. In that case, we also know that ẋi = 0 for all i, so the dynamics have converged.

Model (9) without media influence can be interpreted as a variation of opinion dynamics driven by a
graph Laplacian; we will make this idea precise below. Consider the normalized graph Laplacian

L = D−1/2(D −W )D−1/2 ,

where Wij := η
(
|xi − xj |

)
and D := diag(di), where di =

∑
jWij [23]. Let x = (x1, . . . , xN ) be a vector of
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all the opinions. Then consider the update rule

ẋ = −Lx

= −



d
−1/2
1 · · · 0 · · · 0
...

. . .
...

. . .
...

0 · · · d
−1/2
i · · · 0

...
. . .

...
. . .

...

0 · · · 0 · · · d
−1/2
N





d1 − 1 · · · −η
(
|x1 − xi|

)
· · · −η

(
|x1 − xN |

)
...

. . .
...

. . .
...

−η
(
|xi − x1|

)
· · · di − 1 · · · −η

(
|xi − xN |

)
...

. . .
...

. . .
...

−η
(
|xN − x1|

)
· · · −η

(
|xN − xi|

)
· · · dN − 1




d
−1/2
1 · · · 0 · · · 0
...

. . .
...

. . .
...

0 · · · d
−1/2
i · · · 0

...
. . .

...
. . .

...

0 · · · 0 · · · d
−1/2
N





x1

...
xi
...
xN



= −



d
1/2
1 − d−1/2

1 · · · −d−1/2
1 η

(
|x1 − xi|

)
· · · −d−1/2

1 η
(
|x1 − xN |

)
...

. . .
...

. . .
...

−d−1/2
i η

(
|xi − x1|

)
· · · d

1/2
i − d−1/2

i · · · −d−1/2
i η

(
|xi − xN |

)
...

. . .
...

. . .
...

−d−1/2
N η

(
|xN − x1|

)
· · · −d−1/2

N η
(
|xN − xi|

)
· · · d

1/2
N − d−1/2

N





d
−1/2
1 x1

...

d
−1/2
i xi

...

d
−1/2
N xN



=



−x1 +
∑N
j=1

η(|x1−xj |)xj
d
1/2
1 d

1/2
j

...

−xi +
∑N
j=1

η(|xi−xj |)xj
d
1/2
i d

1/2
j

...

−xN +
∑N
j=1

η(|xN−xj |)xj
d
1/2
N d

1/2
j


Therefore, we introduce the update rule

ẋi = −xi +
∑
j

η
(
|xi − xj |

)
xj

d
1/2
i d

1/2
j

= −
∑
j

η
(
|xi − xj |

)
d

1/2
i

 xi

d
1/2
i

− xj

d
1/2
j

 , (16)

where di is as defined in (14). As shown, the update rule is motivated by the graph Laplacian. We prove
Theorem 2 for the steady states of (16).

Theorem 2. At convergence, opinions in the particle model given by update rule (16) lie in sums of Dirac
distributions centered at points at least c apart; i.e. they take the form

ρconv(z) =

K∑
i=1

βiδyi(z),

for some integer K and selection of points {y1, . . . , yK}, where each δyi is centered at least c apart and the

coefficients βi satisfy
∑K
i=1 βi = 1.

Proof. Let ψ(x) be the proportion of the nodes with opinion at most c from opinion x. Therefore, if xi is
the opinion of node i, then

di =
∑
j

η
(
|xi − xj |

)
= Nψ(xi) ,
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where N is the total number of nodes. Let ρconv be the distribution of nodes over the opinion space [−1, 1]

at steady state. Normalize ρconv such that
∫ 1

−1
ρconv(z) dz = 1. Note that

ψ(x) =

∫ x+c

x−c
ρconv(z) dz, so di = Nψ(xi) = N

∫ xi+c

xi−c
ρconv(z) dz

and that ρconv(x) = 0 if |x| > 1.

There must exist some x such that ρconv(x) > 0. Choose i such that ρconv(xi) > 0 and |xi| is maximized.
If |xi| = 0, then all opinions are centered on a Dirac distribution at x = 0; this satisfies the claim. Therefore,
assume that this is not the case. Because the update rule is symmetric with respect to x = 0, we may assume
that xi > 0 without loss of generality.

We claim that there is no other opinion xj 6= xi such that η
(
|xi − xj |

)
= 1. Suppose, by contradiction,

that there exists an xj such that |xi − xj | = xi − xj < c. Because xi is the maximum point at which ρconv

is nonzero, we know that ρconv(x) = 0 for any x > xi. Therefore,

di = N

∫ xi+c

xi−c
ρconv(z) dz = N

∫ xi

xi−c
ρconv(z) dz ≤ N

∫ xi

xj−c
ρconv(z) dz = N

∫ xj+c

xj−c
ρconv(z) dz = dj . (17)

Therefore, because xi > xj , it cannot be the case that xi/di = xj/dj . Therefore, we are not in a steady
state, and there cannot possibly exist such an xj .

Therefore, xi must lie in a Dirac distribution with center at least c away from any other opinion. Con-
sequently, the opinions centered at xi do not interact with the other opinions. If we remove the Dirac
distribution at xi and renormalize, ρconv will therefore still be a steady state. If we repeat the above ar-
gument for the normalized ρconv, we then see that the new opinion x′i that we pick after the normalization
is at least c below the old xi. Therefore, this process can only repeat finitely many times. Repeating this
argument, we see that all opinions must lie in Dirac distributions with centers at least c apart from each
other.

Unfortunately, although we can add a symmetry term dj to the continuum Model (9) to make the analysis
easier, we do not yet know where to add the symmetry term dj to the discrete Model (7). More work needs to
be done to determine where we can add dj . From our current perspective, although they are mathematically
interesting, the models (15) and (16) are conceptually different from our original model. We leave them for
further research efforts.

9 Conclusions

We began this SURF project off of the work done by Brooks and Porter in [2]. We wanted to better under-
stand how media impacts opinion in society. To make this problem approachable mathematically, we made
several simplifications, such as: representing the population with a network, modeling social interactions
with an opinion model, and devising measures to gauge ”media impact”.

We devised several measures of media impact, such as σ2 in (2), χ in (3), and RG in (4). We focused
on the variance of opinions at convergence and how it behaves with various initial conditions, network
structure, and amount of media influence. In one of these trials, we observed a bifurcation in Model (1),
leading us to develop a mean-field limit (see Equation (12)). We proved Theorem 1 regarding the steady
states of Model (9). After running numerical simulations with the continuous-in-time Model (9), we realized
the bifurcation was sensitive to both initial conditions and how the tuning parameter, the amount of media
influence, is increased. We also experimented with other types of models, one of which resulted from exploring
the graph Laplacian, and proved Theorem 2 regarding steady states of Model (16). At this point, there are
several avenues for further research.

10 Future plans

Since we did not expect to observe a bifurcation in Model (1), we now want to rigorously prove the existence
of a bifurcation for Model (12) and understand how the long term behavior of solutions depends on the tuning
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parameter α, the amount of media influence. Additionally, we want to explore the behavior of the solution
ρ to the macroscopic Model (12) with numerics to gain a better understanding of the observed bifurcation
using Strategy (2). As a first step, we plan to implement a numerical scheme to simulate ρ∞ from (13). One
possible idea to explore is if the bifurcation holds when we decrease c as some function of N as N increases.
This represents holding constant the number of other individuals with whom any one individual interacts.
Such a continuum model is entirely different from Model (12) in Section 3. One argument in favor of this
continuum limit is the principle of cognitive capacity [11], which implies that individuals realistically only
interact with a finite number of other individuals at any given time. Consequently, keeping the number
of individuals in a characteristic neighborhood (the confidence interval) constant is a reasonable choice to
explore. We also want to examine the possibility that for any given complete network size N , there exists a
media ideology m that minimizes the critical point αc. Table 2 supports this possibility.

We seek to use spectral clustering techniques to determine opinion groups in a population. Specifically,
we want to find a method to separate opinions into clusters and determine the number, size, and spread
of opinion clusters at convergence. See [23] for more details on spectral clustering techniques. We initially
planned on studying the graph Laplacian, leading to development of Model (16), which is related to the
graph Laplacian. Even though the model variants in Section 8 are not directly related to Model (1) (the one
we focused on), we are interested in exploring their connection to the graph Laplacian. Because the graph
Laplacian is well studied in other areas, there are known properties that we can use to analyze the dynamics.
Also, because there are no laws that govern social dynamics (to our knowledge), we might be able to make
more analytical insights with a model that is more mathematically tractable (for example: choosing a model
whose moments are explicit in the absence of media). Finally, if we understand the dynamics of a similar
model, we might be able to draw similar insights with Model (1).

We are also interested in further exploring the susceptibility of a population on a given network to media
influence. Instead of using the media impact statistic R, one can calculate χ in (3), the fraction of nodes
in a network whose opinion is within the confidence interval of the media ideology. We think that this
intuitively captures how receptive a population is to the media, but it is likely too coarse of a measure. It
does not distinguish between many nodes that are clustered very closely to the media ideology versus pockets
of individuals who are all somewhat close to the media ideology (but not quite at it). We want to come up
with another statistic to help quantify this idea.

We believe that RG will measure media entrainment with a finer distinction than R by removing cases
where an opinion near −1 and an opinion near 1 “cancel” in the mean. We plan to run numerics to gain
intuition on the behavior of RG under different initial conditions and network structures.

Moreover, we are looking into which sorts of algorithms (ways to add media influence into the opinion
dynamics) create the highest media entrainment in a population. For example, we have looked at greedily
choosing nodes to be influenced by the media based on some measure of their centrality (i.e., importance [20]).
We observed an increase in χ compared to the case in which we select nodes to influence uniformly at random.
From this perspective, we imagine the media as advertisers, and we want to find which strategy is the most
effective for advertising. Another variation is to include a competing ideology and develop algorithms that
help reduce the influence of the competing ideology. We expect challenges to include showing statistically
significant results from numerical computations and also analytically proving that our algorithm results in
higher values of χ.

Finally, there are several modifications to the current model that we plan to explore. One possibility is
extending the opinion space to dimensions d > 1; another is to allow the media to have different ideologies.
For the latter purpose, we can draw the distribution of ideologies from empirical data. For example, we
could use Figure 10, a hand-curated chart of media biases against political ideologies. Finally, we plan to
make c a function of x ∈ Rd, as we expect people with views further from 0, who are more extreme, to be
less likely than moderates to be influenced by opinions further than their own.
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Figure 10: A chart of media bias against political ideology created from sentiment analysis of empirical data.
[Taken from [18]].
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