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corresponding to a selected quality function to split a network into three communities in a single step. In so
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Acad. Sci. U.S.A. 103, 8577 �2006�; Phys. Rev. E 74, 036104 �2006�� to allow one to consider the best
available two-way and three-way divisions at each recursive step. We illustrate the method using simple
“bucket brigade” examples and then apply the algorithm to examine the community structures of the coau-
thorship graph of network scientists and of U. S. Congressional networks inferred from roll call voting
similarities.
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I. INTRODUCTION

Networks, or “graphs,” provide a powerful representation
for the analysis of complex systems of interacting entities.
This framework has opened a large array of analytical and
computational tools, and the study of networks has accord-
ingly become pervasive in sociology, biology, information
science, and many other disciplines �1–5�. The simplest type
of network—an unweighted, undirected, and unipartite
graph—consists of a collection of nodes �representing the
entities� that are connected by edges �representing the ties/
links�. Important generalizations include weighted edges
�ties with different strengths�, directed edges �links from one
node to another without reciprocation�, and signed edges
�e.g., ties interpreted as good or bad�. Many networks in
applications are also bipartite, with two types of nodes and
ties that always connect nodes of one type to those of the
other �2�.

To better understand the structural and functional organi-
zation of networks, it is useful to develop computational
techniques to detect cohesive sets of nodes called “commu-
nities,” which can be identified as groups of nodes that have
stronger internal ties than they have to external nodes
�2,6–11�. The larger density of intracommunity edges versus
intercommunity edges, relative to what one might expect at
random, has been shown in many cases to correspond to
increased similarity or association among nodes in the same
community. For example, communities in social networks
might correspond to circles of friends, and communities in
the World Wide Web might correspond to pages on closely
related topics. Over the last seven years, the detection of
communities has become a particularly active and important
area of network science �6–8,11�. Community-detection ef-
forts have yielded several striking successes, offering in-
sights into college football ranking systems �9,12�, commit-

tee �13–15� and cosponsorship �16� collaborations in the
United States Congress, functional motifs in biological net-
works �17,18�, social structures in cellular-phone conversa-
tion networks �19�, social organization in collegiate friend-
ship networks �20�, and many more.

Available algorithms to detect communities take a variety
of forms, including linkage clustering �21�, betweenness-
based methods �9,22�, local techniques �23–26�, and spectral
partitioning �27,28�. Some of these approaches can be cast as
computational heuristics for the optimization of quality func-
tions, such as the global quantity of “modularity” �and vari-
ants thereof� �29–32� or local quantities that more intimately
measure the roles of links both between individual nodes and
between or within individual communities �6,8�. Most
community-detection algorithms can be classified into one of
three categories: recursive partitioning, local agglomeration,
or direct calculation into a final number of communities. The
last approach tends to be computationally expensive,
whereas the first two can misappropriate nodes and typically
require some heuristic choices in the development of the al-
gorithm. In many community-detection methods, the con-
structed communities can also be layered in a hierarchical
fashion, although the resulting hierarchy might depend
strongly on the algorithm employed rather than just on the
hierarchy of communities in the actual network. Some meth-
ods also allow one to study overlapping communities
�23–26,33�, although in the present discussion we consider
only partitioning into nonoverlapping communities.

Given the expanse and advances in the area of community
detection, we do not endeavor to more fully catalog or com-
pare the numerous methods that are now available in the
literature. Such discussions are now available in several re-
view articles �6,7,10,11�. Starting from the recognition that
using spectral partitioning to optimize modularity and other
similar quality functions is one of the �many� available and
preferred means for identifying communities, we focus on
that family of methods for the remainder of this paper. We
present a fundamental extension to this class of methods and
demonstrate the resulting improvement with some examples.*mucha@unc.edu; http://netwiki.amath.unc.edu
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In traditional spectral partitioning, which arose most
prominently in the development of algorithms for parallel
computation, one relates network properties to the spectrum
of the graph Laplacian matrix �34,35�. In the simplest such
procedure, one starts by partitioning a network into two sub-
networks of specified size. One then examines the resulting
subnetworks and further divides them if desired, continuing
this procedure recursively for as many divisive steps as de-
sired. After community detection became prominent in net-
work science, spectral methods were generalized to include
some algorithms for community detection, including work
that includes steps that go beyond two-way splits �36,37�. In
a recent pair of papers �27,28�, Newman reformulated the
idea of maximizing modularity as a spectral partitioning
problem by constructing a modularity matrix and using its
leading eigenvector to spectrally partition networks into two
subnetworks. He then applied recursive subdivision until no
further divisions improved modularity, resulting in a final
collection of communities whose number and sizes need not
be specified in advance. This is an important feature for the
study of communities in just about every social, biological,
and information network application, as there is often no
way to know the numbers and sizes of communities in
advance.

Given the NP-complete nature of modularity optimization
�38�, the polynomial-time spectral algorithm does not guar-
antee a global optimum. Indeed, Ref. �28� includes a simple
example of eight vertices connected together in a line, in
which the best partition found by recursive bipartitioning
consists of two groups of four nodes each, whereas the ex-
haustively enumerated optimum partition consists of three
communities. The latter partition cannot be obtained by this
recursive bipartition method because the initial split occurs
in the middle of the line. Reference �28� also explores some
possibilities for using multiple leading eigenvectors of the
modularity matrix but does not pursue the idea in detail be-
yond a two-eigenvector method for bipartitioning.

In the present paper, we provide a valuable extension of
the spectral partitioning methods for community detection in
which we use two eigenvectors to tripartition a network �or
subnetwork� into three groups in each step. This method can
be combined with the one- and the two-eigenvector biparti-
tioning methods to more thoroughly explore promising par-
titions for computational optimization of the selected quality
function �either modularity or other choices� with only lim-
ited additional computational cost. In developing this tripar-
titioning extension, we employ a modified Kernighan-Lin
�KL� algorithm �39� �see also Refs. �27,28�; other modifica-
tions of KL are also possible �40,41��. We illustrate the re-
sulting spectral method for community detection with the
same nodes-in-a-line bucket brigade networks that are not
always optimally partitioned by recursive bipartitioning. As
examples, we then apply the method to similarity networks
constructed from U. S. Congressional roll call votes �42–44�
and to the graph of network scientist coauthorships �28�. In
so doing, we include the important consideration that quality
functions other than the usual modularity measure can be
similarly used in such spectral partitioning �without other-
wise altering the algorithm in any way� provided that they
can be cast in a similar matrix form.

The rest of this paper is organized as follows. In Sec. II,
we review the existing formulation for spectral community
detection. In particular, we discuss how to recursively bipar-
tition a network using either the leading eigenvector or the
leading pair of eigenvectors of the modularity matrix. In Sec.
III, we present a theory �and polynomial-time algorithm� that
extends these ideas to three-way subdivision �tripartitioning�
using the leading eigenvector pair. In Sec. IV, we provide a
faster implementation of this procedure in which we employ
a restricted consideration of the possible cases and then le-
verage KL iterations to identify high-quality partitions. We
subsequently present several examples in Sec. V, highlight-
ing situations in which allowing one to choose either two-
way or three-way splits at each step in the recursion proce-
dure results in higher-modularity partitions than recursive
bipartitioning alone. Finally, we summarize our results in
Sec. VI.

II. REVIEW OF SPECTRAL PARTITIONING
USING MODULARITY

In this study, we largely focus on the quality function
known as modularity �29–31�, which we attempt to maxi-
mize for a given undirected network via spectral partitioning.
We stress that our methods can be used with any quality
function that can be cast in a similar matrix form. �We illus-
trate one such example in Sec. V.� Because the algorithms we
present both extend and interface with existing spectral par-
titioning methods, it is necessary to review the essential ele-
ments of Refs. �27,28� that recur in the subsequent presenta-
tion of our tripartitioning scheme.

Starting from the definition of a network in terms of its
nodes and �possibly weighted� edges, we denote the
strengths of connections using a symmetric adjacency matrix
A, whose components Aij =Aji codify the presence and the
strength of connection between nodes i and j. In an un-
weighted network, each Aij component has a binary �0,1�
value. Given some partition of the network, the modularity Q
can be used to compare the total weight of intracommunity
connections relative to the weight that one would expect on
average in some specified null model �28�

Q =
1

2m
�
g=1

c

�
i,j�Gg

Bij =
1

2m
Tr�STBS� , �1�

where B is called the modularity matrix, m= 1
2�ijAij is the

total edge weight in the network, Bij =Aij − Pij for a selected
null model matrix P with elements Pij, the sum over g runs
over the c communities in the specified partition, and the set
of vertices Gg comprises the gth community. The n�c
“community-assignment matrix” S encodes the nonoverlap-
ping assignment �“hard partitioning” �7�� of each of the n
nodes to the c communities,

Sig = �1, if node i belongs to community g

0, otherwise.
	 �2�

The most commonly studied null model for unipartite net-
works recovers the Newman-Girvan definition of modularity
�30�, which is obtained by considering the ensemble of ran-
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dom graphs with independent edges conditional on having
the same expected strength distribution as the original net-
work. This gives Pij =kikj / �2m�, where ki=� jAij is the total
edge weight �“strength”� of the ith node �equivalent to its
degree in the unweighted case�. One then constructs the
modularity matrix B by subtracting these expected connec-
tion strengths from the connection weights in A.

Importantly, modularity is not the only quality function
that can be cast in the form of Eq. �1�. In cases that are
seemingly closer to uniform random graphs, such as those
encountered in the study of network tie strengths inferred
from similarities �as occurs, for example, when studying vot-
ing patterns in roll calls �44��, a uniform Pij = p null model
might be an appropriate alternative. Moreover, modularity
does not always provide a suitable resolution of a network’s
community structure. One means of overcoming this defi-
ciency, which gives the ability to examine a network at dif-
ferent resolution levels, is to multiply the null model by a
resolution parameter, yielding Pij =�kikj / �2m� �32,45�. �This
is related to the sizes of communities obtained using random
walk processes over different time intervals �46�.� Another
means of introducing a resolution parameter is by addition of
�possibly signed� self-loops along the diagonal of a modified
adjacency matrix and carrying the resulting changes into the
usual modularity null model �47�. One can also consider di-
rected networks with appropriate null models by using the
symmetric part of B �48�.

In the present work, we do not restrict ourselves by mak-
ing any assumptions about the null model beyond its repre-
sentation in terms of a B matrix in Eq. �1�. However, the
application to large sparse networks requires that this matrix
have sufficient structure to enable efficient computation of
the product Bv for arbitrary vectors v. All of the quality
functions mentioned above have this property. Indeed, we
will include consideration of the additional self-loops model
in the Congressional roll call example.

We now review the bipartitioning of nodes into two com-
munities �not necessarily of equal size� using the leading
eigenvector of B. In calculating Q �or other relevant quality
function�, one can replace the role of the n�2 community-
assignment matrix S by a single community vector s with
components si= �1 indicating the assignment of node i to
one of two groups. Because 1

2 �sisj +1� equivalently indicates
whether nodes i and j have been placed in the same commu-
nity, it follows that one can attempt to optimize Qs

= 1
4msTBs. If the null model maintains �ijBij =0 identically,

then Qs=Q. For other null models, the difference between Q
and Qs is a constant specified by the adjacency matrix and
the null model, so optimization of Qs is equivalent to opti-
mization of Q. Consequently, the leading eigenvector u1 �as-
sociated with the largest positive eigenvalue� of B gives the
maximum possible value of vTBv for real-valued v. Heuris-
tically, one thus expects the community assignment indicated
by si=sgn��u1�i� to give a large value of modularity. �When
�u1�i=0, one can set si= �1 according to whichever choice
gives larger modularity. If KL iterations are going to be used
later to improve community assignments, it is sufficient to
use a simpler rule of thumb.�

Similar ideas can be used to bipartition using multiple
leading eigenvectors �28�. Without specifying all of the de-

tails here, the p-eigenvector approach starts by the selection
of n node vectors ri whose jth components �j� �1, . . . , p��
are determined by

�ri� j = 
� j − �Uij ,

where � j is the eigenvalue of u j �i.e., the jth-ordered eigen-
vector of B�, U= �u1�u2�¯�, and the constant ���p is re-
lated to the approximation for Q obtained by using only the
first p vectors �proceeding using as many positive � j as de-
sired�. For computational convenience, we hereafter set �
=�n. The modularity is then approximated by the relation

Q � Q̃  n� + �
g=1

c

�Rg�2, �3�

where the sum is over the number of communities �c� and
the contribution of each community is given by the magni-
tude of the associated community vector Rg=�i�Gg

ri. Impor-
tant to further developments in Ref. �28� and by us below is
that the assignments of nodes to communities that maximize
the sum in Eq. �3� require that Rg ·ri�0 if node i has been
assigned to community g. By contrast, if Rg ·ri�0, then sim-
ply reassigning node i from community g to its own indi-
vidual group increases the modularity approximation �3� by

	Q̃ = �Rg − ri�2 + �ri�2 − �Rg�2 = 2�ri�2 − 2Rg · ri � 0.

Similarly, all pairs of communities �g ,h� in the partition that
optimizes Eq. �3� must be at least 90° apart �i.e., Rg ·Rh


0�, because the change in Q̃ from merging two communi-
ties is

�Rg + Rh�2 − ��Rg�2 + �Rh�2� = 2Rg · Rh.

Because the maximum number of directions more than 90°
apart that can exist simultaneously in a p-dimensional space
is p+1, the p-dimensional representation of the vertices and
communities restricts the spectral optimization of Eq. �3� to a
partitioning �in a single step� into at most p+1 groups.

Leveraging the above geometric constraints, the
bipartition-optimizing equation �3� must be equivalent to
some bisection of the node vector space by a codimension-
one hyperplane that separates the vertices of the two com-
munities. The computational use of this observation requires
the efficient enumeration of the allowed partitions. For in-
stance, in the two-eigenvector planar case �p=2, assuming at
least two positive eigenvalues�, only n /2 distinct partitions
are allowed by the geometric constraints. As shown in Fig. 1,
each permissible partition is specified by bisecting the plane
according to a cut line that passes through the origin �28�.
The algorithm for spectral bipartitioning by two eigenvectors
then proceeds by considering each of the n /2 allowed parti-
tions and selecting the best available one.

Recursive bipartitioning can then be used to split a net-
work into as many communities as desired or until it can no
longer further improve the value of the quality function. This
recursive subdivision must be done with a generalized modu-
larity matrix in order to properly account for the contribution
to modularity from further subdivisions of subnetworks �28�.
Specifically, the change in modularity given by subdivision
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of the nG-node group G into cG smaller groups specified by
Sig can be recast as a similar spectral partitioning problem
with the nG�nG generalized modularity matrix B�G� taking
the place of B. Its elements, indexed by the node labels i , j
�G, are specified in terms of B by

Bij
�G� = Bij − �ij �

l�G

Bil. �4�

One can then implement such subdivisions recursively until
modularity can no longer be increased with any additional
partitioning.

As an aside, we remark that spectral bipartitioning using
any null model for which the rows of Bij �or its symmetric
part� sum to zero has the additional property that R1=−R2
because the zero row sums guarantee by eigenvector or-
thogonality that �kRk=�iri=0. Meanwhile, the generalized
modularity matrix B�G� for recursive subdivision has zero
row sums by construction. The absence of this property for
the initial division for more general null models does not
affect the implementation of either any of the algorithms
described above or of our recursive tripartitioning algorithm
that we present below.

Finally, we reiterate that individual partitioning steps and
the recursive implementation of such steps can be employed
as a computational heuristic for optimizing any quality func-
tion �not just modularity� that can be written in a matrix form
similar to Eq. �1�. Naturally, this approach is not the only
available heuristic for optimizing a specified quality function
�1� or its vector approximation �3� �see, e.g., the many ref-
erences mentioned earlier�. For instance, Ref. �49� uses Eq.
�3� as the basis of an eigenvector-ordered vector-partitioning
algorithm that uses bisection in each coordinate as the start-
ing point for collecting nodes into the geometrically con-
strained number of groups �which, we recall, is one more

than the dimension of the ambient space�. In this sense, their
algorithm has some similarities in two dimensions to the one
we describe below. However, we take a different approach:
we first establish in Sec. III the relevant inequalities and
geometry of the problem of tripartitioning �which requires
generalizing the constraints we reviewed above� and then
propose a divide-and-conquer implementation strategy in
Sec. IV. We subsequently apply our techniques to an illustra-
tive example and real-world networks in Sec. V.

III. EIGENVECTOR-PAIR TRIPARTITIONING: THEORY

Recursive network bipartitioning, combined with subse-
quent KL iterations �which we describe and use in Sec. IV�,
rapidly produces high-quality partitions. However, given the
algorithms’ polynomial running times, such values are not
guaranteed to be optimal. Indeed, Ref. �28� describes a
simple case of an eight-node line segment �bucket brigade�
network in which these algorithms miss the optimal-
modularity partition. The recursive bipartitioning procedure
initially bisects the network into two groups �see Fig. 2�a��
and then terminates because no further subdivision improves
modularity. In contrast, the modularity-maximizing partition
of this small test network �which can be obtained by exhaus-
tive enumeration� consists of three communities �see Fig.
2�b�� that cannot be obtained by subsequent subdivision of
the initial bisecting split. Figure 2 also shows a similar 20-
node bucket brigade network that we will discuss in more
detail in Sec. IV.

Motivated by the above example, the efficient two-vector
bipartitioning algorithm and the geometric constraints that
limit a p-dimensional node vector space representation to at
most p+1 communities �as described in Sec. II�, we consider

FIG. 1. �Color online� Bisection in two dimensions �i.e., using
the leading pair of eigenvectors of B� for a small network. Solid
�blue� lines with dots represent node vectors. The dotted �red� line
represents a selected cut line in the plane. All nodes on one side of
the line are assigned to one community and all nodes on the other
side are assigned to the other community. Rotating this line about
the origin yields the set of possible planar bipartitions. �This figure
is adopted from one in Ref. �28�.�

FIG. 2. �Color online� The eight-node bucket brigade network
discussed in Ref. �28� and a similar 20-node bucket brigade net-
work. Solid lines between nodes represent connections. �a� shows
the best initial bipartition �solid vertical line� of the eight-node net-
work �no further subdivision increases modularity�. �b� shows the
modularity-maximizing partition �dotted lines� of the same network.
Note that the three-community partition in �b� cannot be obtained
directly from �a� via subsequent partitioning. �c� shows the maxi-
mum modularity partition of the 20-node network into four com-
munities �indicated by ovals around nodes and also by colors on-
line�, compared with the partition obtained via the best initial three-
way division �vertical dotted lines�, which is larger than that
obtained by the initial bipartition �vertical solid line�. In this case,
the four-way partition cannot be obtained from recursive partition-
ing of the initial three-way division, but it is obtained from recur-
sive partitioning of the bipartition.
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whether a similarly efficient mechanism exists for dividing
the plane of node vectors into three groups in a single parti-
tioning step. We start by considering the generalization of the
cut line �illustrated in Fig. 1� to a set of three nonoverlapping
wedges that fill the plane �as shown, e.g., in Fig. 3�. That is,
instead of a single cut line that intersects the origin and bi-
sects the plane, we ask whether the planar tripartitions that
are geometrically permitted by Eq. �3� are equivalent to find-
ing three rays emanating from the origin, with each �non-
overlapping� wedge between these rays specifying the verti-
ces of a group. That is, vertices are assigned to a community
if they lie between the rays denoting that community’s
boundaries.

As we now show, such nonoverlapping wedges �50� de-
scribe the geometric constraint that vertices whose vectors
are located inside one wedge cannot be assigned to a com-
munity associated with another wedge in the partition that
maximizes Eq. �3� in the plane. Consider two planar commu-
nity vectors, R1 and R2 �with R1 ·R2
0, as discussed in Sec.
II�. Also, suppose that there is a node vector r0 within 90° of
each community vector, so that r0 ·Rg�0 for g� �1,2�.
Without loss of generality, we introduce a second node vec-
tor r1 in the �smaller-angle� region between r0 and R2. The
proof of nonoverlapping wedges for the optimization of Eq.
�3� then reduces to showing that, if r1 is assigned to the R1
group, then r0 must be assigned to R1 as well. That is, in the

event that r0 has been assigned to R2, the 	Q̃01 improvement
in moving node 0 to group 1 should be positive. Similarly,
the condition that r1 is �correctly� assigned to the R1 group

requires both that r1 ·R1�0 and that 	Q̃12�0 for moving
node 1 to group 2, where

	Q̃12 = �R1 − r1�2 + �R2 + r1�2 − �R1�2 − �R2�2

= 2�r1���r1� − 2�R1�cos �11 + 2�R2�cos �12�

and cos �vg=rv ·Rg / ��rv��Rg��. From the geometric ordering
of the vectors specified above, it follows that 0
cos �11

cos �01
1 and 0
cos �02
cos �12
1. The improve-
ment in moving node 0 to group 1—that is, moving to a
partition assignment by nonoverlapping wedges—then
becomes

	Q̃01 = �R1 + r0�2 + �R2 − r0�2 − �R1�2 − �R2�2

= 2�r0���r0� + 2�R1�cos �01 − 2�R2�cos �02�

� 2�r0���r0� + 2�R1�cos �11 − 2�R2�cos �12�

= 2�r0���r0� + �r1� −
1

2�r1�
	Q̃12	 � 0.

Therefore, the optimal Q̃ value in the plane must result from
the assignment of nodes to groups equivalent to the specifi-
cation of nonoverlapping wedges.

Recall from Sec. II that the bisection of the plane into two
halves, indicated by selecting a cut line, yields only n /2
distinct cases from which to select the best bipartition. How-
ever, the corresponding enumeration for three-way division,
in which one selects three rays that border wedges, leaves
O�n3� distinct partitions in the plane that must be enumerated
and evaluated. While this provides an improvement over the
original nonpolynomial complexity of the partitioning prob-
lem, one still needs a more efficient heuristic for large net-
works to effectively employ such tripartitions �and subse-
quent subdivisions� at computational cost comparable with
spectral bipartitioning. We present such a heuristic in Sec. IV.

IV. EIGENVECTOR-PAIR TRIPARTITIONING:
FAST IMPLEMENTATION

We accelerate the process of planar tripartitioning using a
divide-and-conquer approach that reduces the number of
considered configurations and, hence, the computational
cost. This approach yields a method that is computationally
competitive with two-eigenvector bipartitioning even for
large networks. In our implementation, we start at a coarse
level of considering the four available tripartitions that can
be obtained by unions of the quadrants in the plane. Before
dividing these regions further, we rescale the individual co-
ordinates of the plane according to the standard deviations of
the observed components along each coordinate, keeping
their original values for use in Eq. �3�. This ad hoc rescaling
makes the spatial distribution of vertex vectors more uniform
and improves the efficiency of subsequent refinements. We
then refine the quadrants by bisecting them into w=8 wedge
regions and individually consider each of the permissible
unions of these new regions. If the best tripartition from w
=8 unions is better than that from quadrant unions, we bisect
further to obtain w=16 regions �which we then test�, repeat-
ing this process of bisecting the pieces and finding their best
union until the partition quality no longer improves �or no
longer improves by some specified threshold�.

FIG. 3. �Color online� Tripartitioning with vertex vectors from
the leading pair of eigenvectors of B for a small network. Solid
�blue� lines with dots represent node vectors, which have been res-
caled according to the observed standard deviation of each compo-
nent. The dotted �red� rays border a selected set of wedges in the
plane, where each wedge indicates the set of nodes assigned to one
group. One obtains the tripartitions allowed by the planar geometric
constraints by rotating the boundaries of these wedges about the
origin.
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Obviously, this divide-and-conquer approach does not
consider all O�n3� possible planar tripartitions. Indeed, at the
stage in which the plane has been subdivided into w=2 j

parts, one considers at most � w
3 �= 1

6w�w−1��w−2� neighbor-
ing unions of the w regions �including those already enumer-
ated at smaller w values�. Some sets of nodes might repeat in
this construction, and many such unions do not meet the full
geometric constraints on group vectors, but it is easiest to
code a search over all � w

3 � neighboring unions of the w re-
gions. The quality of the best partition obtained using such a
small subset is of course unlikely to match the optimum
obtained over all O�n3� allowed planar tripartitions. How-
ever, as we demonstrate below and in Sec. V, the resulting
method does not appear to suffer from lower-quality commu-
nities when combined with subsequent KL iterations �which
we now describe�.

The KL iterative improvement scheme we use is a natural
generalization �27� of the original method �39� to the case
where the sizes of communities are not specified in advance.
A single KL iteration step consists of moving vertices one at
a time from their assigned community to a different commu-
nity such that each move provides the largest available in-
crease �or smallest decrease� in the quality function, subject
to the constraint that each node is moved only once. That is,
as soon as a node is moved, it is removed from the list of
those available for consideration in upcoming moves in that
step. These moves are selected independently of the geomet-
ric constraints placed on groups in the reduced eigenvector
space; instead, the quality function is used directly to assess
the value of each move. After all n nodes have been moved
precisely once each, one selects the best available of the n
partitions that has been explored. If that partition is of higher
quality than the initial one, a new KL iteration step is started
from this new best state. Otherwise, the algorithm returns the
initial partition as its final result.

Because KL iterations typically improve the best parti-
tions constructed from the recursive spectral bipartitioning
and tripartitioning algorithms, we recommend using them
whenever possible. The relatively high quality of the spectral
partitions typically manifest in a rapid convergence of the
KL process. Moreover, the use of KL iterations is particu-
larly important in light of our divide-and-conquer approach
for reducing the number of planar tripartitions we consider.
Specifically, we do not consider all of the O�n3� permissible
planar tripartitions. However, the post-KL results do not ap-
pear to suffer in quality despite the substantially reduced
number of configurations considered by our divide-and-
conquer strategy. Consequently, the consideration of the full
set of allowed planar wedges appears to be essentially un-
necessary because the improvement obtained from such ex-
ceptional additional effort is overshadowed by the gains of
the subsequent KL iterations.

As an example of the efficiency of this divide-and-
conquer plus KL approach, we consider the initial tripartition
by modularity of the largest connected component of the
coauthorship graph of network scientists, which has n=379
nodes and 914 weighted edges �28�. �We will discuss this
example in further detail in Sec. V.� The method does not
identify a higher modularity among the allowed unions of
w=64 regions than that obtained at w=32 �with Q�0.5928�.

As a comparison, the best of the O�n3� allowed planar tripar-
titions has modularity Q�0.6175, but comes at the cost of a
greater than 200-fold increase in the number of configura-
tions that must be considered. In contrast, modularity is in-
creased much more by using KL iterations after these two
different tripartitions, with Q�0.6354 starting from the Q
�0.5928 partition, and Q�0.6349 starting from the Q
�0.6175 partition. Observe that the higher post-KL modu-
larity arises from the lower-modularity initial state, possibly
due to an increased flexibility to move nodes between differ-
ent groups; applying KL iterations starting from the best
spectrally identified tripartition here stays stuck near a local
maximum. Moreover, the best union at w=32 in this example
is only marginally �1.4%� better than that obtained at w
=16. One thus might make the algorithmic choice to only
refine if the improvement in the quality function is better
than some minimal threshold, because each refinement step
of doubling w increases the computational cost of this
divide-and-conquer approach by a factor of about 8. In the
present work, we typically require the best modularity ob-
tained with such a refinement to be at least 5% better than
previous values in order to justify the further doubling of w.
We also stop the w-refinement process when w becomes
greater than the number of nodes in the network.

Based on the above discussion, we hypothesize that the
reduced number of partitions considered have broadly
sampled the gross global configuration possibilities suffi-
ciently well so that the post-KL result should still be close in
quality �and, as we have seen in our examples, even better in
some cases� to that obtained after KL starting from the best
of the permissible planar partitions. We are intrigued by such
thoughts but concerned that the complexity and detail of the
local extrema of the selected quality function might not al-
low any general rigorous analysis.

We thus proceed with some representative examples using
the aforementioned collection of spectral partitioning algo-
rithms with subsequent KL iterations. We obtained the re-
sults in Sec. V using a recursive partitioning code that at
each step selects the best partition from the available bipar-
titions and tripartitions �using the fast implementations de-
scribed above�, followed by KL iterations starting from the
point at which no further improvement in the quality func-
tion can be identified by spectral subdivision. We also gen-
eralize this partitioning algorithm further �as described in
Ref. �16�� by performing additional spectral subdivisions as
if each group to be divided were the full network itself, iso-
lated from the other groups in the partition �i.e., by construct-
ing each B matrix directly from the adjacency submatrix
restricted to one subnetwork at a time�. Such steps decrease
the global quality of the resulting partitions, even though
they increase the quality of partitioning each individual sub-
network in isolation. Despite the extra computational cost of
this subnetwork-restricted partitioning procedure, we have
found that using KL iterations after such extended partition-
ing sometimes results in a higher global quality in the final
partition. Unsurprisingly, these KL iterations correctly tend
to merge a large number of the groups obtained from
subnetwork-restricted partitioning during its search for the
highest-quality partition.

Obviously, one can devise many different variants on the
above ideas, and the efficacy of one’s results may vary �with
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better performance for some choices in specific examples�.
Additionally, one can significantly accelerate the spectral
partitioning steps if the optimization in each step is based on
the summed magnitude of the group vectors, approximating
quality in Eq. �3�, by efficiently updating group vectors from
one considered configuration to the next �as opposed to full
recalculations�. When considering the full modularity �or
other quality function� for different partitions, one can simi-
larly accelerate the spectral steps using direct calculations of
the differences in modularity between the configurations
under consideration.

V. EXAMPLES

Maintaining our focus on the utility of considering tripar-
titioning steps in recursive spectral partitioning with B eigen-
vectors, we proceed to consider example networks using the
two implementations described in Sec. IV �with and without
subnetwork-restricted partitioning�. We specifically include
examples in which one can improve community-detection
results by allowing tripartitioning steps and subnetwork-
restricted modularity maximization. We draw our examples
from different areas: the test bucket brigade networks of
nodes connected to their nearest neighbors along a line seg-
ment, political networks constructed from voting similarities
in U. S. Congressional roll calls �43�, and the coauthorship
collaboration graph of network scientists �28�.

A. Bucket brigade networks

Because the eight-node line segment spurred our interest
in spectral partitioning, we briefly use this network and its
generalizations to further illustrate our results. The eight-
node bucket brigade is the smallest nearest-neighbor line
segment whose modularity-maximizing partition contains
more than two communities. �The seven-node bucket brigade
has two-community and three-community partitions with
equal modularity.� However, the optimal partition �shown in
Fig. 2�b�� cannot be obtained from recursive bipartitioning,
which terminates after the initial bisection of the network
�see Fig. 2�a��. In contrast, the tripartitioning method identi-
fies the optimal partition in a single step. Subnetwork-
restricted partitioning gives another means to identify the
optimal partition through spectral partitioning with KL itera-
tions. Specifically, applying this procedure to the initial bi-
section in Fig. 2�a� further bisects each group, giving four
groups of two nodes each, from which KL iterations merge
two of these four groups on its way to the optimal three-
group partition.

Yet another mechanism available to reach the optimal
state is to allow the individual KL moves to place a node in
a newly created group of its own. If such moves are selected
as tie breakers over other moves that yield equal changes in
modularity, then the optimal configuration of the eight-node
bucket brigade can be obtained even in the absence of tripar-
titioning and subnetwork-restricted modularity maximiza-
tion. However, we warn that allowing the formation of such
new groups as possible KL moves can drastically increase
the number of groups under consideration �in some cases

significantly beyond that obtained using subnetwork-
restricted partitioning�, so the increase in computational cost
in generalizing KL iterations in this manner might not be
worthwhile in all situations. KL iterations can, of course, be
generalized in other ways, such as by modifying the stopping
condition or tie-breaking methods. In our results presented,
we break ties randomly and do not allow new groups to be
created in KL moves �except when explicitly indicated�.

Contrasting the above, the 20-node bucket brigade, with a
maximum modularity partition �Q�0.5914� of four commu-
nities with five nodes each �see Fig. 2�c�� provides a caution-
ary illustration. Recursive bipartitioning by itself initially bi-
sects the bucket brigade into two groups of 10
�Q�0.4474� and further subdivides each of those groups to
correctly identify the optimal partition. However, an initial
tripartition �shown in Fig. 2�c�� has higher modularity
�Q�0.5609� than any initial bipartition, and recursive spec-
tral steps that take the better result from bipartitioning and
tripartioning terminate with a Q�0.5720 partition of sizes
ng= �4,3 ,6 ,3 ,4�, from which KL iterations yield a five-
group ng= �4,4 ,4 ,4 ,4� partition �Q�0.5886, which is less
than 0.5% lower than the optimal�. �For this example only,
we order the numbers in ng spatially along the line segment;
we will typically use ng to indicate community sizes without
spatial reference.� Yet again, subnetwork-restricted partition-
ing provides an improvement, yielding an ng
= �2,2 ,3 ,3 ,3 ,3 ,2 ,2� partition from which KL iterations
converge either to the optimal �5,5,5,5� partition or the nearly
optimal �4,4,4,4,4� partition �depending on a random tie-
breaking step�. Another way out of this situation would be to
generalize the implementation to allow forking and/or back-
tracking along the selected partitioning steps. However, the
potential downside is that this would allow so many choices
that such an algorithm would become untenable on networks
of any reasonable size.

B. United States Congress roll call votes

To provide an interesting real-world example, we infer
networks from Congressional roll call votes �obtained from
Voteview �43�� based on voting similarity between legisla-
tors, which is determined according to the votes they cast
�without using any political information about the content of
the bills on which they voted�. Noting that the definition of
voting similarity is definitively not unique, we choose to de-
fine the weighted link between two legislators as the tally of
the number of times they voted in the same manner on a bill
�i.e., either both for it or both against it� divided by the total
number of bills on which they both voted �thereby account-
ing for abstentions and absences� during each two-year Con-
gressional term. For the purposes of studying voting similari-
ties as a network between legislators, we ignore the perfect
similarity of a legislator with herself, setting Aii=0.

The purpose of this discussion is not an exhaustive politi-
cal analysis �which we present in Ref. �44��. Instead, we aim
only to show examples in which the spectral partitioning
methods we have proposed are particularly advantageous.
We also ignore for the time being a number of important
issues about the construction of the voting-similarity net-
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works and the selection of the null model. For instance,
given the dense nature of the inferred similarity network and
the relative uniformity in the total edge strength distributions
of the nodes, one might reasonably consider a uniform null
model �32� instead of Newman-Girvan modularity, and it
might also be insightful to explore resolution parameters
�6,32� using either null model. Moreover, the entire similar-
ity construction might be reasonably replaced with signed
networks that account separately for the agreements and dis-
agreements between legislators �using an appropriate null
model such as that discussed in Ref. �51�, which is also com-
patible with the partitioning methods proposed in the present
paper�.

Most of the highest-modularity partitions identified in the
�two-year� voting similarity networks of the House of Rep-
resentatives and Senate across Congressional history consist
of two communities corresponding closely but not perfectly
to the two major parties of the day. This is similar to previ-
ous findings on legislative cosponsorship networks, for
which all of the Houses in the available data attain their
highest-modularity partition after the initial bipartition, cor-
responding closely to a Democrat/Republican split �16�. Al-
though no direct tripartitioning steps were used in Ref. �16�,
the subnetwork-restricted partitioning �discussed in Sec. IV�
was frequently able to identify splits in the communities that
appeared to include groups of Southern Democrats and
Northeastern Republicans who were not as tightly tied to
their respective parties. Such results are consistent with po-
litical theories and observations about low-dimensional leg-
islative policy spaces �42,43�, including the assertion that the
essentially one-dimensional �left-right� legislative spectrum
typically observed in U. S. history has not held as strongly
during times when issues related to slavery and civil rights
have been of high legislative importance.

As an example of how this extra dimension in policy
space can affect the detected communities, we use the tools
of the present manuscript to explore the roll call voting simi-
larity network of the 85th House of Representatives �1957–
1958�, which passed the Civil Rights Act of 1957. This net-
work includes all 444 Representatives who voted during the
period �including midterm replacements�. All but 386 of the
98 346 pairs of legislators have nonzero similarity weight in
this network, with 251 of the empty similarities affiliated
with House Speaker Sam Rayburn �D-TX�, who chose to
vote “present” �treated as an abstention� in all but one vote,
in which he broke a tie on an amendment to the Interstate
Commerce Act.

Recursive bipartitioning of the 85th House identifies a
partition with two communities of sizes ng= �230,214� �with
Q�0.079 35� and subsequent KL iterations do not result in a
higher-modularity partition. As expected, such communities
correspond reasonably but not perfectly with party affilia-
tion; the Republican community includes 16 Democrats, and
the Democratic community includes six Republicans. Direct
tripartioning yields three communities of sizes ng
= �192,187,65� and a higher modularity �Q�0.080 19�.
Subsequent KL iterations yield a �197,190,57� partition with
Q�0.080 63, which is the highest modularity we identified
in this network using the methods of the present paper �52�.
Whether or not one allows tripartitions during a single step,

the same partition is obtained by subnetwork-restricted par-
titioning followed by KL iterations �although obviously by a
more convoluted process in this case�. The largest of these
three communities includes 196 Republicans �all but eight of
them� and Democratic Speaker Sam Rayburn, the “misplace-
ment” of whom arises from his having cast only the one
aforementioned vote. The next largest community is domi-
nated by Democrats and includes the remaining eight Repub-
licans. The smallest community consists entirely of Demo-
crats from Southern states.

To demonstrate the use of these methods with a quality
function other than modularity, we also studied voting simi-
larities using the quality function with additional self-loops
proposed by Arenas et al. �47�. As emphasized earlier, any
quality function that can be expressed with a B matrix as in
Eq. �1� is amenable to these spectral partitioning methods.
Adding such self-loops of weight r to the voting similarity
adjacency matrix and null model �53�, our procedure identi-
fies the same three-community structure in the range −3.4
r4.9 �with r=0 corresponding to the usual definition of
modularity�. Below this range, the algorithm identifies a two-
community partition; above this range, it identifies a four-
community partition. We note that the use of the quality
function with self-loops demonstrates a distinct downside in
using subnetwork-restricted partitioning, as even modest
positive values of r lead such extended subpartitioning to
proceed all the way down to single-node groups, thereby
utilizing significantly greater computing time without lead-
ing to any improvement in final communities than would be
obtained by KL iterations starting simply from individual-
node groups. We therefore do not advocate subnetwork-
restricted partitioning for any resolutions significantly finer
than that corresponding to the traditional definition of
modularity.

C. Network coauthorship

The graph of coauthorships in network science publica-
tions �28� has become a well-known benchmark example in
the network science community. The largest connected com-
ponent of this network consists of 379 nodes, representing
authors, with 914 weighted edges indicating the coauthored
papers between pairs of scientists.

Without the use of tripartitioning steps, spectral recursive
bipartitioning yields a Q�0.8188 partition with 29 commu-
nities of various sizes. KL iterations starting from this state
yields a Q�0.8409 partition with 27 communities �subject
to random tie-breaking instances�. In this example, the
subnetwork-restricted modularity maximization does not im-
prove the collection of communities that one obtains; rather,
it generates a partition of 120 subcommunities that KL itera-
tions subsequently merge into a Q�0.8190 partition with 37
communities. That is, while the modularity obtained in this
manner is better than that from the original recursive bipar-
titioning, it is not as good as that obtained when KL itera-
tions are used directly after the modularity-increasing bipar-
titioning terminates. In contrast, using KL iterations that
allow new groups to be created proceeds without ever gen-
erating such new groups when started from the 29-group
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partition obtained by recursive bipartitioning �even with for-
mation of new groups selected in any tie breaking�. Hence,
we note that subnetwork-restricted modularity maximization
yields better results �i.e., a higher-modularity partition� in
some cases, whereas KL iterations that allow the creation of
new groups yield better results in others.

When tripartitioning steps are used along with bipartition-
ing, one obtains a final partition �after KL iterations� with a
higher modularity, even though some of the intermediate
states have lower modularity. Taking the best available divi-
sion at each stage, the algorithm first splits the network into
three groups. Each of these is then further divided three
ways, eventually yielding a Q�0.8032 partition with 39
communities. Even though this modularity is lower than that
obtained using spectral bipartitioning by itself, applying KL
iterations at this stage yields a Q�0.8427 partition with 24
communities, which is slightly better than the best result de-
scribed above. In this case, too, the subnetwork-restricted
modularity maximization plus KL iterations yields a final
partition with lower modularity �Q�0.8220�. Such results
highlight an important point: using multiple combinations of
these methods might give better results than fixating on any
specific combination.

The initial tripartitioning of the full network is itself in-
teresting as an example of our divide-and-conquer approach,
as it illustrates the extent to which KL iterations can improve
a spectrally obtained partition. It also provides a compelling
visualization �see Fig. 4� of the three-way division of the
vertex vectors in the plane. The partition obtained after the
initial split contains groups of sizes �164,118,97� with Q
�0.5928. Applying KL iterations to this partition moves 54
of the nodes and gives a Q�0.6354 partition �see Fig. 4�
with groups of sizes �136,128,115�. �Note that, in contrast to
this example, we do not typically apply KL iterations after
each recursive subdivision step; instead, we apply them after
exhausting spectral techniques.� Although KL iterations
moved a significant fraction of the nodes, the regions in Fig.
4 nevertheless appear to resemble nonoverlapping wedges

because the nodes that were moved are all too close to the
origin to visualize the overlap induced by the KL iterative
improvement. For convenience, we have indicated in Fig. 4
the last names of the ten authors �some of whom are rather
familiar� with largest vertex vector magnitudes. Finally, al-
though this three-community partition illustrates some of the
well-known research camps in network science, it is impor-
tant to remember that the modularity-maximizing partition of
this network has many more than three communities.

VI. CONCLUSIONS

We have presented a computationally efficient method for
spectral tripartitioning of a network using the leading pair of
eigenvectors of a modularity matrix. Our algorithm, which
can be applied without modification to a broad class of qual-
ity functions, extends the previously available methods for
spectral optimization of modularity in Refs. �27,28�. Paired
with spectral bipartitioning in a recursive implementation
with subsequent KL iterations and an optional subnetwork-
restricted modularity maximization extension, the inclusion
of possible tripartitioning steps significantly expands the pos-
sible partitions that can be efficiently considered in the heu-
ristic optimization of modularity or any of the wide class of
quality functions that can be expressed in similar matrix
form �such as those that generalize modularity using a mul-
tiplicative resolution parameter �32� or self-loops �47��.

Our investigation also provides an important cautionary
tale about community detection in networks. Despite a
wealth of recent research on this subject, it sometimes re-
mains unclear how to interpret the results of graph-
partitioning methods and which methods are most appropri-
ate for which particular data sets �6,7,11,20�. While recursive
subdivision seems to give some hierarchical information
about network structure and how nodes are grouped �see Sec.
V and Refs. �9,12–15��, the hierarchies that one obtains
might indicate as much about the algorithms employed as
they do about any true hierarchical structures of communities
�see the discussion in Ref. �54��. Moreover, it is important to
stress that the process of always taking the best modularity at
each divisive step can lead to states that are not as good as
might have been obtained from other choices in the forking
decision process and that the best post-KL partitions are not
always obtained from the best available pre-KL states. Be-
cause of the necessarily heuristic nature of trying to obtain a
high-quality partition in polynomial time, it is beneficial to
have access to a variety of computationally efficient tools
with which to explore the complicated landscape of possible
community partitions.
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