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The traditional way of studying temporal networks is to aggregate the dynamics of the edges to create a
static weighted network. This implicitly assumes that the edges are governed by Poisson processes, which is
not typically the case in empirical temporal networks. Accordingly, we examine the effects of non-Poisson
inter-event statistics on the dynamics of edges, and we apply the concept of a generalized master equation to
the study of continuous-time random walks on networks. We show that this equation reduces to the standard
rate equations when the underlying process is Poissonian and that its stationary solution is determined by an
effective transition matrix whose leading eigenvector is easy to calculate. We conduct numerical simulations
and also derive analytical results for the stationary solution under the assumption that all edges have the same
waiting-time distribution. We discuss the implications of our work for dynamical processes on temporal networks

and for the construction of network diagnostics that take into account their nontrivial stochastic nature.
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I. INTRODUCTION

Over the past two decades, myriad papers have illustrated
that understanding complex systems composed of large num-
bers of interacting entities can be improved considerably by
adopting a network-science perspective [1]. In particular, the
influence of network architecture on dynamical processes
such as random walks, biological and social epidemics, and
opinion formation is now well appreciated (and somewhat
better understood than it used to be) [2]. The effects of network
structure on dynamics on networks have been investigated
using a variety of techniques, including mean-field theories
and pair approximations, spectral methods, and numerical
simulations [3].

In the study of dynamics on networks, there has been
intense focus on network structure—that is, the arrangement
of edges and their associated weights—but the effects of the
temporal patterns of edges remains very poorly understood
[4]. In a realistic setting, many networks are not static, as
edges and nodes can appear and disappear, and this has a
strong effect on spreading processes [5—12]. Most studies of
networks tend to overlook such temporal patterns by assuming
atime-independent set of nodes and assigning a single scalar to
represent a weighted edge A;; between each pair of nodes i and
Jj- This scalar is supposed to represent some sort of aggregate
importance of the connection between i and j, and it is often
understood as a rate in the case of continuous-time processes
[13]. From such a Poisson perspective, the probability that an
edge appears between two nodes i and j in a time interval
of length dt is given by dt/(t;;), where (7;;) = 1/A;; (and
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7;j = +oo if i and j are not connected by an edge) is the
mean inter-event time and the time t between two consecutive
events obeys an exponential distribution with mean (7).

This Poisson assumption facilitates theoretical analysis,
provides intuitive results, and is reasonably accurate for a
variety of systems in which the rate at which events take place
does not depend on their histories. However, numerous systems
(especially socioeconomic ones) exhibit non-Poisson temporal
statistics due to their nonstationarity or their non-Markovian
nature. Observations in financial markets [14]; e-mail [15-18],
postal [19], and online [20,21] communication networks;
face-to-face contacts [22]; movie rentals [23]; and many other
situations have illustrated that the time intervals between
isolated actions performed by an individual or between isolated
interactions for a pair of individuals deviates significantly from
a Poisson process. Such behavior has important implications
for the spread of epidemics [24], social influence [25], and
more.

Two perspectives have been used to attempt to go beyond
the unrealistic Poisson assumption. First, one can perform
simulations on temporal graphs for which a time series of
the presence versus absence of edges is deduced directly from
empirical observations [9,10]. However, such a computational
approach has a significant drawback: It relies entirely on
simulations and/or algorithms to produce, for example, time-
randomized versions of the original data, and it is thus
unable to improve underlying theoretical understanding or
build predictive models. Second, one can study problems
in a more abstract manner by developing spreading models
that incorporate realistic temporal statistics. Such models can
then be studied either mathematically or using numerical
simulations [11,13]. In this second approach, an underlying
network is treated as a fluctuating entity. One typically assumes
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that it is driven by a stationary stochastic process, which
allows exhaustive computational experimentation through the
analysis of ensembles of realizations and by tuning structural
and temporal parameters. This modeling perspective also lends
itself to mathematical analysis [26,27], though most research
on it thus far has been computational in nature.

In this paper, we take the second approach and argue for
the development of a mathematical framework to explore
the effect of non-Poisson inter-event statistics on dynamics.
To do so, we apply the concept of a generalized master
equation [28], which is traditionally defined on networks
with regular structures (i.e., on regular lattices) to the study
of continuous-time random walks on networks. Generalized
master equations lie at the heart of the theory for anomalous
diffusion and have applications ranging from ecology [29]
to transport in materials [30]. Our choice regarding what
dynamics to consider is motivated by the importance of random
walks as a way to understand how network structure affects
dynamics and to uncover prominent structural features from
networks.

The rest of this paper is organized as follows. We first
introduce the process and derive its generalized master equa-
tion in both ordinary space and Laplace space. After checking
that the equation reduces to standard rate equations when the
underlying process satisfies Poisson statistics, we focus on
its stationary solution and show that it is determined by an
effective transition matrix whose leading eigenvector can be
calculated rapidly even in very large networks. After validating
theoretical predictions by using numerical simulations, we
discuss the implications of our work in terms of dynamical
processes on time-dependent networks and for the construction
of network diagnostics that take into account their nontrivial
stochastic nature.

II. GENERALIZED MASTER EQUATION

In this section, we derive a generalized master equation
for continuous-time random walks with arbitrary waiting-time
statistics.

A. Beyond static weights on edges

Consider the N-node directed graph G in Fig. 1. To avoid
unnecessary complications, we assume for this discussion that
G is strongly connected (so one can reach any node starting
from any other node). A network is typically represented
using an adjacency matrix A whose elements A;; indicate
the connection strength between each pair of nodes i and j.
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FIG. 1. A directed graph with N = 3 nodes and no self-loops.
The waiting-time distribution v;;(¢) characterizes the appearances of
an edge from j toi.
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For an unweighted network, A;; can take either the value 1 (if
there is an edge) or the value O (if there is not an edge). For a
weighted network, A;; can take an arbitrary real value (which
is assumed to be non-negative in most studies), and a value of
0 again indicates the absence of an edge.

Whether considering a weighted or an unweighted network,
one typically aggregates networks evolving over a certain time
interval and thus ignores the temporal pattern of edges, which
can be of critical importance in empirical situations [4]. We
propose instead to assign to each edge an inter-event time
distribution that determines when a edge is accessible for
transport. The dynamics of a network are thus characterized
by an N x N matrix ¥ (¢) of smooth, piecewise continuous
waiting-time distributions (WTDs) ;;(¢) that determine the
appearances of an edge emanating from node j and arriving
at node i. We also assume that the edges remain present for
infinitesimally small times, which implies that the network
is empty (and thus that the entries of the adjacency matrix
are 0) except at random instantaneous times determined by
¥ (t), when a single edge is present. From now on, we use the
following terminology: G is called the underlying graph (i.e.,
this graph determines which edges are allowed and which are
not) and v;;(¢) determines a dynamical graph, in which edges
appear randomly according to the assigned waiting times. We
use this random process to model the transitions of a random
walker moving on the graph. By construction, a walker located
at a node j remains on it until an edge leaving j toward some
node i appears. When such an event occurs, the walker jumps
to i without delay (i.e., there is no waiting time) and waits until
an edge leaving i appears.

There are several ways that one can set up the WTDs ;; ().
We consider the case in which a WTD corresponds to the
probability for an edge to occur between time ¢ and ¢ + dt
after the random walker arrives on node j in the previous
jump. In other words, all edges leaving j have their clocks
reinitialized when a walker arrives on it." It follows from the
definition of a WTD that

/ Vi) = 1.
0

The probability that an edge appears between j and i before

time ¢ is
t
/ Vi ()dt',
0

and the probability that it does not appear before time ¢ is
therefore

xij(t) =1 —/ Vij(thdt'. (D
0

If a transition from j to i is not allowed, then the corresponding
element v;;(¢) is equal to O for all times. Additionally, we
assume for simplicity that the underlying network G has no
self-loops.

It is important to distinguish between the WTD ;;(¢) of
a process that might lead to a step along an edge and the

' Another possibility is that edges can appear incident to nodes
according to independent processes.
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probability distribution 7;;(¢) for actually making a step to i.
This distinction is necessary because all of the processes on
a node are assumed to be independent of one another, but the
probability to make a step depends on all of the processes.
As an illustration, consider a walker on a node j with only
one outgoing edge to i. The probability distribution function
(PDF) to make a step to i a time ¢ after having arrived on j is
then

T:; (1) = v ().

However, if there exists another edge leaving j (e.g., an edge
to node k), then the PDF to make a transition to i is modified,
as a step to i occurs only if the edge to i appears before the
one going to k. In this situation,

T (1) = i (1) xij (1).

In general, the PDF to make a step from j to i accounting
for all other processes on j is

Tyi() = viO | | xai®)
ki
=vi;0[] <1 - / Wk_,-(t’)dt’>. )
ki 0

Equation (2) emphasizes the importance of the temporal
ordering of the edges in a diffusive process. It can also be
written as

dyij(t)
T = === [T, 3)
ki
as Xi’j(t) = —;;(¢). An extreme scenario occurs when V;; =

8(t —t;j) and yn; = 8(t — ;) for t;; > ;. In this case,
T;;(t) = 0, so a walker located on j never takes the edge to i
even if this edge appears very frequently as a function of time.

B. Generalized Montroll-Weiss equation

We now focus on the trajectories of a random walker
exploring a temporal, stochastic network. We closely follow
the standard derivation of the Montroll-Weiss (MW) equation
[28] and generalize it to an arbitrary N-node network of
transitions. The probability n;(z) to find a walker on node i
at time 7 is the integral over all probabilities ¢;(¢") of having
arrived oni attime ¢’ < ¢, weighted by the probability ¢; (t — t')
of not having left the node since then:

ni(t) = /0 ¢i(t —t))qi(t)dr'. 4)

We take the Laplace transform #;(s) = L{n;(t)} =
fooo n;(H)e*'dr to exploit the fact that the convolution
reduces to a product in Laplace space [31]:

Ai(s) = ¢i(5)gi(s). (5)

We obtain the quantity (ﬁ,- (s) from the PDF as follows.
Making a step from node i to any other node gives

N
Tt) =) Ti(0). 6)

j=1
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(Note that T;; = 0 because there are no self-loops.) The PDF
to remain immobile on node i for a time ¢ is thus

t
6 =1~ [ naar )
0
Taking the Laplace transform of equation (7) yields

A 1 A
Pi(s) = ;(1 — Ti(s)). ®)

The quantity §;(s) is the Laplace transform of the PDF
qi(t) to arrive on node i exactly at time 7. One calculates it
by accounting for all k-step processes that can lead to such an
event [32]:

ai() =) g,
k=0

where ql.(k)(t) represents the probability of arriving on node i at
time ¢ in exactly k steps. Note that the PDF at node i is related
to that at node j by the recursion relation

g0 = fo dvy Tyt — 0} (0). ©)
J

In other words, the probability of arriving on node i in k + 1
steps is the probability of arriving at any other node j in k
steps weighted by the probability of making a step j — i at
the required time.

Upon taking a Laplace transform, equation (9) becomes

9" ) =Y 1)1 ).
J
Summing over all k and adding c}i(O)(s) yields
0%+ 3% =Y 1) Y 4% + 4.
k=0 j k=0

which can also be written in terms of matrices and vectors:

4(s) = T()4(s) + qO(s).

Noting that ¢©(r) = n(0)8(¢), we see that the last term is
simply n(0), which leads to the following solution in Laplace
space:

4(s) = (I — T(s))"'n(0). (10)

We insert the expression (8) for ¢3,- (s) and the expression
(10) for g;(s) into the equation for the walker density (5) to
obtain a generalization of the MW equation [28] that applies
to arbitrary network structures:

N PR Ao
Ai(s) = ~(1 zu»;u ()7 ni(0)

1 N A _
=Y = = Ti)8i)U = T() (0. (11)
ik S
In terms of vectors and matrices, this is written
1 A A
ii(s) = —(I = Dr(NU = T(s) 'n(0), (12)

where the diagonal matrix DT has coordinates

(Dr)ij(s) = T;(5)8;. (13)
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Equation (12) is a formal solution in Laplace space for the
density of a random walk whose dynamics are governed by the
WTDs ;(t). However, taking the inverse Laplace transform
to obtain the random-walker density as a function of time does
not in general yield closed-form solutions.

C. Integrodifferential master equation

The generalized master equation (12) is an integrodiffer-
ential equation that describes the evolution of the system in
the time domain. In principle, it can be solved numerically to
obtain the random-walker density as a function of time. To
do this, we need to use the property E[‘fl—’t’] = sii(s) — n(0) of
the Laplace transform, which holds provided that the Laplace
transform of n(¢) and its derivative exist. As we show later, the
walker density remains properly normalized.

We define the matrices A = [ — ﬁr(s) andB=1— f‘(s).
We then insert 7i(s) from the generalized Montroll-Weiss
equation (12) to obtain

L [z—’z} = s7i(s) — n(0)

=(AB' = I)(sBA~ )( AB~ n(O))
= (A — B)sA"Yi(s).

Using the definitions for A and B and simplifying yields

c [d”} (F(s) — DT(S))I;AYAZ(S)

dt — Dr(s)
— (P (\D=Y(s) — [ sDr(s)
(T(s)D7'(s) )—I—BT(s)n(s)
= (T(s)D5'(s) — I)K(s)i(s), (14)

where we have defined the Laplace transform of the memory
kernel K as

X sﬁT(s)
Kis)= ————. 15
(s) T Dr65) (15)

The memory kernel characterizes the amount of memory in the
dynamics [33]. The memory kernel K (¢) is usually a function
spanning over a nonvanishing time period. A notable exception
is a Poisson process, for which K(¢) = 6(¢). The entries of
Dr(s) are strictly smaller than 1 for all finite s because f”j (s) =
[ e S Ti(tdt < [} T;(t)dt = 1 (as we show in Sec. IIE).
Hence, the term I — Dy (s) is always invertible.

Taking the inverse Laplace transform of (14) leads to the
generalized master equation

dn =(T@)x L~

= D7 ()} = 8) % K(0) % n(), (16)

where £~! denotes the inverse Laplace transform and f * g =
fot dtf(t — 7)g(r) denotes convolution with respect to time.
Unfortunately, mathematical analysis of Eq. (16) is difficult.
However, as we exploit later, it is often significantly easier to
analyze its Laplace-space equivalent (12).

N ote that ﬁr (s) can in principle be singular, but considering
D (s)K (s) = as a single term resolves this issue.

Dr(s)
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D. Conservation of probability

The total number of random walkers is a conserved quantity,
so & Z n;(¢t) = 0. It is not easy to verify this directly in the
tlme domam using Eq. (16). Thankfully, it is sufficient to show
that the Laplace transform of the rate of change of the number
of walkers vanishes because £~! {0} = 0. The inverse Laplace
transform is unique except for null functions, which satisfy
Jo N(@)dt =0 for all a > 0. By assuming that the WTDs
are piecewise continuous, we exclude null functions and the
inverse Laplace transform is guaranteed to be unique [31,34].

Equation (14) gives the rate of change of the total walker
density in Laplace space:

Y [(T®D ) = 1)], IR ()acs)];

ij

= Z (f’,k(s) [ﬁ;l(s)]kj — (Sik(Skj)[Ie(s)ﬁ(s)]j
ikj
=> ( Tut) m) 8 [K (9)A(s)],
ikj

1 A N
=y (T 5 {Z 'nk(s)} - 1) [K ($)A(s)]k =0,
k k i

which confirms that the rate of change of the total walker
density vanishes.

E. Making steps in infinite time

In this paper, we have assumed that the underlying graph
G of potential edges is strongly connected, which implies that
a transition from j to some other node is guaranteed to occur
eventually if one allows infinite time. We thus expect that
fOOO T;(t)dt =1, as T;(¢t) is the PDF to make any transition
from j. We use Egs. (3) and (6) to obtain

. - dx,,(t)
L0 =Y T;0)=-Y x [T

i=1 i=1 ki

Integrating over the entire time domain yields

/O T;(t)dt —/0 di— (Hxij(t)>

(]_[ x,,(r))

because x;;(0) =1 and x;; (co) =0 when the edge j — i
exists in the underlying graph. (Otherwise, x;;(0) =1 and
Xij (00) = 1.)

=1,
t=0

F. Poisson limit

Assume that edge dynamics are Poisson processes and
that the WTDs are exponential distributions [35] with a
characteristic rate A;; for the transition j — i. That is,

Vij(t) = Agje it (17)
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Equations (2) and (6) then imply that
t
T;j(t) = Ajje it 1_[ (1 — / )»Ije_}"/t,dt/>
I#i 0
= )\.ijei}h’j[ Hei}wt = )\ije‘iAjt, (18)

I
)

N
Tj(l) = Zkije_’\f’ = Aje_Aft,
i=1

where the aggregate transition rate from j is A; = Z,N=1 Aij.
The Laplace transform of T (t) is
Aj

Ty(s) = .
=54

Equation (13) then becomes

A A;
[Dr(s)lij = A~—+s8ij’
j

which in turn yields

N s
[DT'(s)]l.j = (1 + T) 8- (19)
J
Equation (15) becomes
A
~ SA,-}H SA_j
Kij(s): [ A 51’]’ = Aj—|-s—Aj8ij =Aj8ij~ (20)
Aj+s

Taking the inverse Laplace transform of Eq. (19) then yields
A 8'(t)
L ]{[DTI(S)]ij} (3([)+—j> 5,']', 21

and taking the inverse Laplace transform of Eq. (20) gives
Kij(l) = Ajé(t)(S,-j. 22)
We insert Egs. (18), (21), and (22) into the generalized

master equation (16) and use the properties of the Kronecker
delta §;; and Dirac delta §(¢) to obtain

Tt A = 5 e ) SO 0 ()

Note that
e M % [AL8() + 8 ()]

t t

:Au/ dte_A“(’_”(S(r)—i—/ dre =98 (1)
0 0

= 3(0),

where the integration of the convolution with §'(¢) is performed
using integration by parts. Inserting this result into Eq. (23)
yields the rate equation [36]

dn,
= ZA,,n,(z‘) Ain(1), (24)

which is driven by the combinatorial Laplacian L;; = A;; —
A;d;; of a weighted network defined by the adjacency matrix
A with components A;;. Expression (24) thus shows that a
random walk on the dynamical graph driven by Eq. (17) is
equivalent to a Poisson continuous-time random walk on a

PHYSICAL REVIEW E 86, 046102 (2012)

static network, which is constructed in the usual manner by
counting the number of times edges appear between each pair
of nodes. In other words, the rate is equal to the number of
observed appearances of an edge divided by the duration of
an observation. (In the Poisson case, each observation has the
same duration.)

III. STEADY-STATE SOLUTIONS

We expect the walker distribution to settle into a unique
steady-state solution as ¢+ — oo if any node can be reached
from any other node. By the so-called final value theorem [37],
the steady-state walker density p is

p = lim n(r) = lim sa(s).
t—00 s—0
The final value theorem requires that 7i(s) not have any poles in
the right half of the complex s plane or on the imaginary axis
(except possibly at the origin). As we show later, s7i(s) has a
pole at s = 0, and only this pole contributes to the steady-state

solution [37].
From Eq. (12), one obtains

p=lim (I = Dr(sNU = T(5)"'n(0)
= Mn(0),
where the matrix
M= lim (I = Dr(s)(I — T(s)7"
maps the initial state to the final state. In the limit s — 0, one

can expand the exponential in the definition of the Laplace
transform to first order:

[Dr(s)],; = / (1 = ST, (0)8,dt + O(s?)
0

= (1 = s{t;)8i; + O(s?)
= (I = sDy)ij + O(s?),
where the resting time (z;) fo tT;(t)dt is the mean time

spent on node j and we have deﬁned the diagonal matrix
[Dylij = (t;)5;;. One can also use the approximation

T;; =/ [1 — st + O(sH)]T;(t)dt
0

Hi()
=T, <1—s/0 qu dt + O(s 2))
= T;[1 — s{t;j) + O], (25)

where (1;;) is the mean time before making a step j — i. The
effective transition matrix

T;; = / ” T, (t)dt (26)
0

gives the probability of making a step j — i and is a measure
of the relative importance of an edge. One can write Eq. (25)
in matrix form as

A

T=T=sTo(t)+ O(s?),

where o denotes the Hadamard component-wise product.
The operator M can be written as

M = lim[s Dy (1 = T = sT o N+ 0(s?),
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and we expect it to map any initial condition onto a unique
one-dimensional vector if the underlying graph G consists
of a single strongly connected component. The steady-state
solution is thus given by the leading eigenvector (i.e., the
eigenvector corresponding to the maximum eigenvalue, which
is guaranteed to be positive) of the operator M. In practice,
it is easier to obtain the least dominant eigenvector (i.e., the
eigenvector whose corresponding eigenvalue is the smallest in
absolute value) of the inverse

1
M =1lim - [I =T —sT o ()] D,

s—=0§
1 - -
= lirg [E (I =T)Dy = (To U))D“;} '

In the limit s — 0, the eigenvectors of M~! tend to the
eigenvectors of the matrix C = (I — 11“)D<*,>1 because the
second term in the second line of the above equation becomes
negligible in comparison to the first term. Thus, finding the
least dominant eigenvector of C is equivalent to finding the
dominant eigenvector of M in the limit s — 0. Note that Dy
is invertible unless the mean time (¢;) spent on some node
j is 0. This would imply that any walker that arrives at j
immediately makes a step to another node i, which would in
turn imply that the labels i and j actually refer to the same
node. The matrix Dy, is thus always invertible in practice.

The operator T is a stochastic matrix because its columns
are normalized (as we have shown in Sec. I1 E). In particular,
if G is strongly connected, then T has a single eigenvector x
whose eigenvalue is equal to 1 [35].

This implies that the steady-state walker density p is
given by

P = Dy)x, 27
as it is the least dominant eigenvector of C:
Cp = —T)D, Dyx
=Ix—-Tx=0.

Given the complexity of the stochastic process and the
integrodifferential nature of its associated master equation, it
is remarkable that one can write down such an exact analytical
expression. This equilibrium solution takes a particularly
simple form, as it is calculated from the dominant eigenvector
of the combinatorial Laplacian associated with the effective
transition matrix T. The time spent on node i is thus given
by the expected frequency to arrive on i (which is obtained
by the Markov chain associated to T) multiplied by the mean
waiting time (t;) spent on i. This solution can be computed
easily even for very large graphs, as deriving T from v is
straightforward and the leading eigenvector of a large matrix
can be obtained through standard, efficient techniques (such
as the power method).?

It remains to be shown that s7i(s) has a pole at s =0,
which would guarantee that the requirements of the final value

2Note that if G is composed of k strongly connected components,
then there are k different eigenvectors with unit eigenvalues. This
would then lead to k distinct steady-state solutions rather than the
unique one in the strongly connected case.
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theorem are satisﬁed.AFrom Eq. (12), it follows that 7i(s) has
poles whenever I — T'(s) is singular. Using Eq. (25), we find
in the limit s — O that

I=TE)x=U-=T —=5T o {r))x + O(s?)
=1Ix—Tx —sT o (t)x + O(s?)
= —sT o (t)x + O(s?).

Hence, in this limit, x is an eiggnvector of I — T(s) with
eigenvalue of 0. Because det (I — T(s)) is equal to the product
of eigenvalues, I — 7 (s) becomes singular as s — 0.

IV. POISSON VERSUS NON-POISSON PROCESSES

We now discuss some of the differences arising from the
non-Poisson nature of the process versus the Poisson situation
that is usually considered. For simplicity, we illustrate these
differences using an undirected network, for which vy;; = ;.
(Recall that the underlying static network has no edge weights.)

For the Poisson process (17), it is straightforward to show
from Eq. (18) that the effective transition matrix T satisfies

T, = —i (28)

ij — Z N 'y s
i=1"1
where A;; is the rate at which the edge between i and j
appears in the network, and A;; = A; because the network
is undirected. As we show in detail in the next section, the
stationary solution is a uniform vector, which we expect be-
cause it is the dominant eigenvector of the Laplacian matrix in
Eq. (24).

The case of a non-Poisson process differs significantly
from this idealized scenario in at least three ways. First, T
is no longer in general the transition matrix of an undirected
network, even in the symmetric case ¥;; = v;; that we
consider. Evaluating the stationary solution thus requires one
to calculate the dominant eigenvector x of T. Second, there is
no reason to expect that the stationary solution p is uniform;
indeed, it is not uniform in general. Finally, p is a stationary
solution only in the limit # — oo and not also for intermediate
times, as we used an expansion for small s throughout Sec. III
to derive its expression. This behavior originates from the
time-dependent nature of the stochastic process, as one can
see because of the integral over time in the generalized master
equation (16). This has interesting implications. For example,
a process starting with the stationary solution p as an initial
condition exhibits transient deviations to stationarity before
returning to its initial condition as r — co. In contrast, if
the dynamics on the graph are Poisson, then the steady-state
solution is time independent. In other words, once the system
has reached its steady-state solution, it will stay there.

To illustrate how the nature of the WTDs affects dynamics,
consider the example of a completely connected graph with
three nodes. Suppose that the WTDs for the processes
occurring on the nodes have different functional types and
different characteristic times (see Fig. 2). We compare this
non-Poisson case to a Poisson process with the same mean
rates. The rate matrix is

01 2
A=|1 0 3
2 30
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FIG. 2. An undirected network with N = 3 nodes and no self-
loops. The waiting-time distributions for the edges a, b, and ¢ are
exponential, uniform, and Rayleigh, respectively. We denote the
corresponding means of these distributions by (t,), (t,), and (z.),
respectively. We show the mean of each distribution using a vertical
dashed line.

We plot the temporal evolution of the walker densities in Fig. 3
to illustrate the differences between the two processes. We
obtain the walker densities from numerical simulations of the
random walks with all walkers located initially at node 1. (See
the appendix for computational details.) The system relaxes
toward a stationary solution in both cases, but the stationary
solution clearly depends on the nature of the WTDs, as walkers
tend to be underrepresented on node 1 for the non-Poisson
dynamics.

In general, the value of the walker density is not sufficient
to define the state of the system. The distribution of resting
times—that is, the times that a walker spends on a node before
making a step—also needs to be specified. Consequently, the
walker density temporarily departs from its steady-state value

1.0 T T T
= = Nodel v v Node 3
08F e o Node?2 — Analytical |
0.6 - a
0.4 A
2 02 A
wn
qC) 00 1 1 1
el
2 1.0 T T T
;u 0.8 — Node 1 Node 3
. — Node 2 - Steady state
0.6 B
0.4F:-: = Nz s ez
02F T TN — T g
e L
OO 1 1 1
0.0 0.5 1.0 1.5 2.0
Time

FIG. 3. Random-walker density on each node as a function of
time obtained from numerical computations for Poisson (upper panel)
and non-Poisson (lower panel) processes. In the former case, we
also plot the analytical solution of the rate equation. The error bars
are smaller than the widths of the curves used for plotting. For the
non-Poisson example, we obtained the steady-state walker density
from equation (27). The relaxation towards stationarity exhibits kinks
in the dynamics that originate from the noncontinuity of the WTDs.
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Node 3
Steady state |

Walker density
z
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m
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Time

FIG. 4. Random-walker density on each node of the graph
illustrated in Fig. 2 as a function of time when the initial condition
is the steady-state solution. Due to the time-dependent nature of the
dynamics, the system exhibits transient dynamics before returning to
its steady-state solution. The error bars are smaller than the widths of
the curves used for plotting.

if a process is restarted with its initial walker density equal to
the steady-state value (see Fig. 4). However, a Poisson process
has no memory—as indicated in Eq. (22), its memory kernel
is proportional to a delta function—so its temporal evolution
is independent of the distribution of resting times. This can
also be understood as a consequence of a unique property of
exponential distributions: The probability for an event to occur
in a time interval dt is independent of the time since the process
started [38]. Setting the walker density to its steady-state value
for a Poisson process is thus sufficient for the walker density
to remain steady, which is the result expected from the rate
equations (24).

V. EXAMPLES: THEORY AND COMPUTATIONS

We consider the steady-state solutions for two different
example network topologies (using networks with N = 10°
nodes) to demonstrate the consequences of considering non-
Poisson processes. We again use undirected networks as
examples.

In general, the steady-state solution of a random walk is
given by p = D)x, where x is the dominant eigenvector of
the stochastic matrix T. However, for a Poisson process, the
steady-state solution is p; = % for all i because the rate of
change of all walker densities vanishes according to the rate

equations (24):

dl’ll' 1
- == Aij—Ai | =0,
dt N Xj: !

where we have used 4;; = A ;. Consequently, the steady-state
solution of a Poisson random walk on an undirected network
is uniform regardless of the topology of the network and the
transition rates associated with the edges.

For non-Poisson random walks, let us consider situations
for which the WTDs of all edges are identical. In other
words, V;;(t) = ¥(¢)A;j, where A;; is the binary adjacency
matrix. Because of this assumption, we can obtain analytical
expressions for steady-state solution and thereby demonstrate
that the steady-state solutions are nontrivial despite the
restrictions placed on the network and the WTDs.
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From Egs. (1), (3), and (26), the effective transition matrix
is given by

Cdx(t
T[j = —A,j/ %Xd/_l(l)dl
0

1 d; [
= _d_inj[X (Do

1
= EAij,

J
where d; = Z,N:1 A;;j is the degree of node j. This is the
expected result from symmetry considerations: All WTDs are
identical, so the probabilities to make a step to any node are
necessarily the same. The dominant eigenvector of T;; has
components x; = d; because

N N oy

> Tidy =) —Aijd;
j=1 :

j=1"7

I
M=

A,‘j =1Xd,',
1

~.
Il

where we have used A;; = A ;. The mean resting time on node
J becomes

N = —(. * _dX(t) dj—1
(tj) = d<,/0 t I X (t)dt

—[tx (I + / x%dt.
[ —— 0
=0

Consequently, the steady-state solution for a random walk on
an undirected network with identical WTDs is

p; =Nd; / x% (t)dt, (29)
0

where A is a normalization constant. Equation (29) shows that
the probability of finding a walker on a node at stationarity only
depends on local information (namely, on its degree and the
shape of the WTD), which implies that any node with a certain
degree must have the same stationary solution. This property
arises because the underlying network is undirected and the
WTDs are identical—that is, because ;;(¢) = ¥ (¢) for all i
and j. As we show below, the degree d; can either increase or
decrease the density of walkers p; on node j at stationarity,
depending on x(¢) and thus on the shape of the WTD.

These results are consistent with the claim that the steady-
state solution of a Poisson random walk on an undirected
network is uniform. In particular, the mean resting time is

00
<tj>Poisson = djf [1 - (1 - ei)\t)]d/dt
0
1
)

where A denotes the scalar rate parameter of a Poisson process.
The associated steady-state solution is uniform:

1 N
=Ndj— =—, je{l,....N}.
Dj jde Y ASH }
Unlike in the Poisson case, the mean resting time (¢;) does

not in general scale as the inverse of node degree. Consider
y-distributed waiting times with mean p and standard
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FIG. 5. Distributions of steady-state random walker densities on
Erd6s-Rényi networks with identical y -distributed WTDs. The lower
panel shows the distinct walker densities associated with a given node
degree for a range of standard deviations. We show the results for
numerical computations as a density plot in logarithmic coordinates,
and we show our analytical results using solid curves. The blurring
of the density plot arises from the finite number of simulations. The
upper panel shows the degree distribution and the grayscale map for
the density plot.

deviation o. That is,
2 2

Yt mw,0) = (%)M /o 1exp (_;_;5)

N Tr(5)

w

When o/un =1, the waiting times are exponentially dis-
tributed. Hence, we can continuously deform the distribution
from an exponential distribution by changing the standard
deviation o while keeping the mean fixed at u = 1.

In Fig. 5, we show steady-state solutions on networks
generated by the Erd6s-Rényi (ER) random graph model [39]
for the parameter range o € [0.5,1.5]. We consider connected
networks with N = 10 nodes and a connection probability
of 5 x 1073, For our numerics, we generated 10° networks
and found the steady-state solution by averaging solutions
obtained by Eq. (27). We also determined the steady-state
solution analytically using Eq. (29) combined with the degree
distribution of Erds-Rényi networks. In Fig. 6, we proceed in
the same way for networks generated using a Barabasi-Albert
(BA) model [40] in which we have connected each new node
to three existing nodes.

The computations for both ER and BA networks confirm
our theoretical prediction: The behavior is qualitatively
different from that expected for Poisson processes even
though the mean rates of making steps along all edges are
identical. Simulations show that walkers tend to accumulate on
low (respectively, high) degree nodes for o > 1 (respectively,
o < 1). In other words, p; > p; when d; < d; for o > 1,
whereas p; < p; whend; < d; foro < 1.

VI. DISCUSSION

The overwhelming majority of research that considers
dynamics on networks implicitly includes the assumption
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FIG. 6. This figure is the same as Fig. 5, except that we use
Barabasi-Albert networks instead of ER networks. Note that the
smallest degree is 3 because each new node is connected to three
existing nodes.

of underlying Poisson processes. For instance, this is the
case when one builds an aggregated network from empirical
data and assigns only a single number (i.e., a weight) to
edges to summarize their dynamics. In that framework, edge
weight is understood as a rate of interaction between nodes,
so such a choice would imply that events occur in an
uncorrelated fashion. The main purpose of the present work
is to consider a mathematical framework that goes beyond
this oversimplification and thereby propose a compromise
between abstract but unrealistic models and data-driven but
nonmathematical approaches for studying temporal networks.
In the proposed framework, we view temporal networks as
sequences of realizations of random networks in which present
events depend on past ones. We summarize the temporal and
structural organization of a system by a matrix of WTDs that
characterizes the activation patterns of edges between nodes.
In this paper, we have derived a generalized master equation
for a random walk associated with this process, obtained an
expression for its stationary solution, used a sample network to
highlight the importance of the shape of WTDs, and illustrated
our results using Erd6s-Rényi and Barabasi-Albert networks.

The present paper is a step towards a mathematical descrip-
tion of temporal networks, and it suggests several research
directions. An important step is the thorough consideration of
empirical data, such as human communication patterns, to help
design appropriate WTDs and to study how their shape affects
equilibrium solutions. This step is related to the development
of network diagnostics that properly take into account the tem-
poral dynamics of complex systems [41-44], whose behavior
arises not only from their structural patterns but also from their
dynamics. The investigation of complex systems thus requires
the development of diagnostics that consider both structure and
dynamics [36]. The fact that most existing network diagnostics
account only for the presence, weight, and direction of edges
and assume that they are present for all time presupposes an
underlying Poisson process, which can yield a fundamentally
incorrect representation of a system. Indeed, assuming a

PHYSICAL REVIEW E 86, 046102 (2012)

Poisson waiting time can be as unrealistic as assuming that
the topology of a network is organized like an Erdds-Rényi
random graph. It is thus crucial to develop network concepts
that account for nontrivial temporal dynamics. This includes
centrality measures (such PageRank [45]), which measure the
importance of network components in various ways, and the
components of the steady-state solution vector derived in this
paper provide an example of one such diagnostic. Another
example is community-detection methods based on the idea
that non-Poisson random walkers are trapped for long times
in good communities [46,47], though of course there is much
more that one can do. Other interesting research directions
include the development of a sound mathematical framework
for various dynamical processes, such as synchronization or
epidemic spreading [27], and the study of random walks with
alternative ways to build the matrix of waiting times. For
example, the dynamics could be driven by the normalized
Laplacian in the Poisson limit.
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APPENDIX: NUMERICAL SIMULATION

We implemented our numerical simulations using PYTHON.
The approach in this paper requires computing the probability
of finding a walker on a certain node. To approximate this
numerically, we simulate 10° random walks for each scenario
and average over the realizations of the walk in order to
estimate the walker density numerically.

1. Generating trajectories

We generate the trajectory of a walker by making steps on a
graph G until the maximum simulation time fmax is reached.
See algorithm 1.

Algorithm 1 Generation of the trajectory of a random
walker on a graph G starting at an origin node.

function TRAJECTORY(G, origin, tmax)
t«—0
current « origin
steps < {(t, current)}
5: while ¢t < tmax do
§ — o0
fOI‘ Pi,current € g dO
¢’ — random sample following p; current
if &' < § then
10: Successor «— 1
§«— ¢
end if
end for
current «— successor
15: t—t+0
add (t, current) to steps
end while
return steps
end function
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—

t/At

FIG. 7. A random walker makes three steps on a graph of three
nodes at irregular intervals.

2. Averaging over different realizations

Each of the 10° different realizations includes steps at
irregular times. We consider a set of k finite intervals of

PHYSICAL REVIEW E 86, 046102 (2012)

TABLE I. Fractions of time spent on each node in Fig. 7 during
the first three intervals.

Interval Node 1 Node 2 Node 3

1 1 0 0
0.125 0.625 0.25

3 0.625 0 0.375

uniform width Az = 0.01 such that kAt = .. The proba-
bility of finding a random walker on node j during a certain
interval is then given by the mean over all realizations of the
fraction of the time spent on j during this interval. Consider
a single realization of a random walk on a graph of three
nodes (see Fig. 7). In Table I, we give the fractions of
time spent on each of the nodes in the contribution to the
average.
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