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Network structure can have a significant impact on the propagation of diseases, memes, and

information on social networks. Different types of spreading processes (and other dynamical

processes) are affected by network architecture in different ways, and it is important to develop

tractable models of spreading processes on networks to explore such issues. In this paper, we

incorporate the idea of synergy into a two-state (“active” or “passive”) threshold model of social

influence on networks. Our model’s update rule is deterministic, and the influence of each meme-

carrying (i.e., active) neighbor can—depending on a parameter—either be enhanced or inhibited by

an amount that depends on the number of active neighbors of a node. Such a synergistic system

models social behavior in which the willingness to adopt either accelerates or saturates in a way

that depends on the number of neighbors who have adopted that behavior. We illustrate that our

model’s synergy parameter has a crucial effect on system dynamics, as it determines whether

degree-k nodes are possible or impossible to activate. We simulate synergistic meme spreading on

both random-graph models and networks constructed from empirical data. Using a heterogeneous

mean-field approximation, which we derive under the assumption that a network is locally tree-

like, we are able to determine which synergy-parameter values allow degree-k nodes to be activated

for many networks and for a broad family of synergistic models. Published by AIP Publishing.
https://doi.org/10.1063/1.5017962

Models of cascading processes on networks yield insights

into a large variety of processes, ranging from the spread

of information and memes in social networks to propa-

gating failures in infrastructure and bank networks.
1–9

In

the context of social networks, it is very popular to study

models of social influence based on overcoming individu-

als’ stubbornness thresholds with peer pressure or influ-

ence.
1–3,10–14

Most such models consider peer pressure

only from nearest neighbors, but it is also important to

explore the influence of nodes beyond nearest neighbors

(e.g., in the context of the “three degrees of influence”

that has been reported in some studies).15 If the combined

influence from several nodes is different than the sum of

the influences from individual nodes, synergy is taking

place, and such synergistic effects can exert a major influ-

ence on spreading processes on networks. For example,

in some systems, the amount of influence per person

applying peer pressure may depend on the number of

people who are applying peer pressure, and our goal in

this paper is to incorporate such ideas into a threshold

model of social influence in an analytically tractable way.

In our synergistic model, we examine social behavior in

which the willingness to adopt either accelerates or satu-

rates in a way that depends on the number of neighbors

who have adopted some behavior. We illustrate that a

synergy parameter can have a crucial effect on system

dynamics (e.g., by determining whether degree-k nodes

are possible or impossible to activate). We also develop

an analytical approximation (in the form of a heteroge-

neous mean-field theory) that is effective at forecasting

both the temporal development of cascades and the sizes

of cascades in many networks.

I. INTRODUCTION

Examining the spread of opinions, actions, memes,

information, and misinformation in a population has received

intense scrutiny in sociology, economics, computer science,

physics, and many other fields.1,2,4,6–8,10–24 Such phenom-

ena—including the spread of defaults of banks, norms in

populations, and products or new practices in populations—

are often modeled as contagion processes that spread from

node to node in a network,25–27 in analogy with the spread of

infectious diseases in a population.

In addition to modeling spreading processes themselves,

it is important to consider the effect of network structure on

contagions.1,4,5,28 For example, network architecture can

have a significant impact on phenomena such as the peak

size and temporal development of outbreaks.5,14,26,29–35

In the study of contagions, many studies suppose that

some small fraction of the nodes is infected initially, and

they examine when a meme or disease can spread widely in

a network.4,31 When many nodes have adopted the meme (or

become infected, in the context of a disease), it is said that a

cascade has occurred.11,23 A cascade can either be good or

bad: a game developer may dream about his/her app becom-

ing viral, but bank defaults due to systemic risk is a source
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of fear and dread in the financial sector. Seemingly viral

spread of misinformation was also a prominent aspect of the

2016 U.S. presidential campaigns and election.

In applications ranging from finance25 to meme spreading

on Twitter,36 researchers are very interested in trying to iden-

tify what causes cascading behavior on networks.23 In one

prominent family of models, known as threshold models,
nodes survey their neighborhoods and adopt a meme (i.e.,

change their state) if sufficiently many of their neighboring

nodes have already adopted this meme.2,4,10,11,31 In most such

models (and in most compartmental models), nodes are influ-

enced only by their immediate neighbors, but in many situa-

tions (e.g., including social media such as Facebook and

LinkedIn), individuals are able to observe actions by individu-

als beyond those to whom they are connected directly by an

edge. [In fact, the sizes of the observable neighborhoods are

different in different media (e.g., Facebook versus LinkedIn),

and this can have profound effects on user experience, com-

pany algorithms, and more.37] In such situations, synergistic
effects can occur, as a node can be influenced by multiple

nodes at the same time, and the combined influence differs

from the sum of the individual influences. Synergistic effects

can either increase or decrease the chance that a node will

adopt a meme. The aim of our paper is to construct an analyti-

cally tractable threshold model that incorporates synergistic

effects into spreading processes on networks. We show that

synergy has important effects on system dynamics, and we

illustrate our model’s spreading dynamics on several different

networks.

Synergistic effects can contribute to the dynamics of

spreading processes in a diverse variety of contexts.

Examples include the spread of behavior,38 the transmission

of pathogens,39 and the spread of new opportunities for farm

activities among vineyards that form a wine route together.40

Other phenomena with synergistic effects include the classi-

cal psychological “sidewalk experiment” with people staring

up at the sky,41 increased value from the merging of compa-

nies (see, e.g., Ref. 42), and “learning” of delinquent and

criminal behavior.43

A few years ago, P�erez-Reche et al.44 introduced a simple

model of synergistic spreading by augmenting a compartmen-

tal model for a biological contagion, and they examined its

dynamics on a square lattice in two dimensions. Their model

was based on the standard susceptible–infectious–removed

(SIR) model,4,5 in which an infectious (I) node infects a sus-
ceptible (S) neighbor at a constant rate rSI¼ a. In this SIR

model, an infectious node is infectious for a time s before it

switches states to removed (R) (or “recovered”, if one is less

fatalistic), and then it can never become susceptible or infec-

tious again. P�erez-Reche et al. generalized this SIR model so

that rSI includes not only the parameter a but also a synergy

term rsyn ¼ bmi, where mi is the number of nodes that contrib-

ute to the synergy when updating node i. They used a linear

form of synergy: rSI ¼ maxfaþ rsyn; 0g ¼ maxfaþ bmi; 0g.
For b< 0, the synergy is interfering, as synergy decreases the

chance that node i becomes infectious; for b > 0, the synergy

is constructive, as synergy increases the chance that node i
becomes infectious. For b ¼ 0, the model in Ref. 44 reduces

to the standard SIR model; there is no synergy.

P�erez-Reche et al. defined two types of synergistic

dynamics: (1) r-synergy, in which miþ 1 is the total number

of infectious nearest neighbors that simultaneously attempt

to infect a focal susceptible node i; and (2) d-synergy, in

which mi is the number of infectious nodes that are adjacent

to the infectious nearest neighbor that is attempting to infect

the susceptible node i. In their simulations, only the node at

the center of the square grid is infectious at time t¼ 0; all

other nodes start in the susceptible state. An important fea-

ture that P�erez-Reche et al. illustrated is that the value of the

synergy parameter can affect whether an infectious host can

infect more than one node.

Several papers have built on Ref. 44 and produced addi-

tional insights on synergistic spreading dynamics on net-

works.45–48 To our knowledge, all previous studies

considered update rules for node states that include stochas-

ticity, and most of them examined spreading on lattices

rather than on more general network structures. To facilitate

analytical treatment of problems and to help isolate the

effects of novel features in a model, it is often convenient to

use deterministic update rules,4 so we will do this in our

exploration of synergistic effects. Specifically, we examine a

two-state deterministic model in the form of a linear thresh-

old model2,10,11 in which a node can be either active or inac-
tive. In the context of social contagions, “inactive” nodes are

susceptible, and “active” nodes are infected. Upon becoming

active, a node remains active forever. This facilitates analyti-

cal treatment, which we will use to shed light on synergistic

spreading processes on networks. We focus on what P�erez-

Reche et al.44 called “r-synergy” (which includes only

nearest-neighbor interactions), although our approach can be

generalized for models with next-nearest-neighbor interac-

tions (what P�erez-Reche et al. called “d-synergy”). It can

also be generalized to incorporate interactions in even larger

neighborhoods.

The rest of our paper is organized as follows. In Secs.

II–IV, respectively, we introduce our models for synergistic

spreading on networks, examine this model on two empirical

networks, and develop an analytical approximation to

describe the fraction of active nodes with degree k and

threshold / in a network as a function of time. We also dem-

onstrate that we expect certain values of a synergy parameter

in the models to lead to abrupt changes in the dynamics. In

Sec. V, we study synergistic spreading processes on several

families of random networks. In Secs. V A and V B, we sim-

ulate synergistic spreading on 3-regular and Erd}os–R�enyi

(ER) random networks and compare our analytical approxi-

mation to the simulated spreading processes. In Sec. V C, we

simulate synergistic spreading on networks that we construct

using a configuration model with degree distributions from

two empirical networks. We conclude in Sec. VI.

II. SYNERGISTIC THRESHOLD MODELS

Probably the most popular type of deterministic model

of meme spreading is threshold models of social influ-

ence.1,2,4,8,10–12,14 In the simplest type of threshold model,

which is a generalization of bootstrap percolation,49,50 one

chooses a threshold /i for each node independently from a
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probability distribution f(/) at time t¼ 0 (in traditional boot-

strap percolation, all nodes have the same threshold), and a

node becomes “active” (i.e., it adopts the meme) if the frac-

tion of its neighbors (or, in some variants, the number of its

neighbors) that are active is at least this threshold. In the so-

called Watts threshold model (WTM),11 one considers the

fraction of active neighbors. An inactive node i with degree

k, threshold /i, and number ni of active neighbors becomes

active when it is updated if and only if ni/ki�/i. Because of

the simplicity of basic threshold models, one can derive ana-

lytical approximations for cascade conditions in a variety of

settings and in various extensions of the model.12,31,34,51–53

We seek to develop a synergistic threshold model. We

focus on r-synergy and hence on nearest-neighbor interac-

tions. (It is also worth thinking about models with d-synergy,

but we leave this for future work.) We examine networks

that consist of unweighted, undirected N-node graphs. At

each point in time, a node can be in one of two states: inac-
tive (S0) or active (S1). Inactive nodes exert no influence on

their neighbors, and active nodes exert some amount of influ-

ence on their neighbors. The total amount of influence

exerted by all neighbors of a node i gives the peer pressure
experienced by node i. Each node i has a stubbornness

threshold /i drawn from a distribution f(/) at time t¼ 0. We

also activate a seed set of nodes at t¼ 0. In all of our simula-

tions, the seed consists of a single node chosen uniformly at

random. Whenever we consider updating node i (which we

do in discrete time with synchronous updating), it becomes

active if and only if the peer pressure on it is at least /i.

We now construct a response function F(ni, ki, /i, b)

that depends on the number ni of node i’s active neighbors,

its degree ki, its threshold /i, and a global synergy parameter

b that we will explain below. The response function, a non-

decreasing function of ni, encodes when a node switches

from the inactive state to the active one.32 One can use such

a response function to describe numerous models of binary-

state dynamics, such as bond and site percolation and the

WTM.31 We express the response function using a peer-

pressure function N(ni, b) by writing

Fðni; ki;/i; bÞ ¼
0 ; if Nðni; bÞ < /iki ;
1 ; otherwise :

�
(1)

We want to incorporate synergistic effects into N(ni, b).

With inspiration from P�erez-Reche et al.,44 we require that

Nðni; bÞ

¼ 0 ; if ni ¼ 0 ;
> ni ; if b > 0 and ni � 2 ;
¼ ni ; if b ¼ 0 or ni ¼ 1 ;
< ni ; if b < 0 and ni � 2 :

8>><
>>:

(2)

The first line of (2) encodes the requirement that the peer

pressure experienced by a node is 0 if it does not have any

active neighbors. From the second line, we see that for a pos-

itive synergy parameter b > 0 with ni� 2 active neighbors,

the peer pressure experience by node i is larger than that in

the WTM. This, therefore, amounts to a “constructive syn-

ergy.” The third line encodes the fact that our synergistic

model reduces to the WTM either when the synergy

parameter b ¼ 0 or when the number of active neighbors is

ni¼ 1. (Similarly, the synergistic SIR model of P�erez-Reche

et al.44 reduces to the standard SIR model for b ¼ 0.) From

the last line, we see that for a negative synergy parameter

b< 0 and ni� 2 active neighbors, the peer pressure experi-

enced by node i is smaller than that in the WTM. This, there-

fore, amounts to “interfering synergy.”

We consider the following two peer-pressure functions

that satisfy these requirements:

Nmultiplicative ¼ ð1þ bÞni�1ni ; (3)

Npower ¼ n1þb
i : (4)

Naturally, these are not the only two functions that sat-

isfy the requirements in Eq. (2). Additionally, in Sec. V A,

we will argue that any synergistic peer-pressure function that

is non-decreasing and continuous in the synergy parameter b
exhibits the same qualitative behavior as these two functions,

in the sense of experiencing the same types of bifurcations.

If a node is vulnerable (i.e., it can be activated by a sin-

gle active neighbor), it remains vulnerable if one introduces

synergy using Eq. (3) or Eq. (4). Moreover, no non-

vulnerable node can become vulnerable as a result of the

synergy introduced using Eq. (3) or Eq. (4). We seek to

examine when synergy effects, as encapsulated by the

parameter b, change the number of active neighbors that can

activate a degree-k node. That is, we seek to examine when

synergy can assist or hinder the spread of a meme through a

network. Let us calculate when a specific change like this

occurs. Suppose that a node i with degree ki can be activated

when there are at least mi active neighbors for b ¼ 0. We

wish to determine the values of b for which li active neigh-

bors are sufficient to activate node i. For the power synergy

model (4), we calculate

ðliÞ1þb � /iki; (5)

) b � ln ð/ikiÞ
ln ðliÞ

� 1 : (6)

For the multiplicative synergy model (3), we obtain

b � /iki

li

� �1=ðli�1Þ
: (7)

More generally, except for mi¼ 1 or li¼ 1 (by construction,

nodes cannot become vulnerable or stop being vulnerable

due to synergistic effects), we can solve for the value at

which any li 2N active neighbors can activate a node with

degree ki and threshold /i, given the synergy parameter b.

We thereby examine how synergy alters the difficulty of acti-

vating nodes.

When we initiate our simulations with only a single

node as a seed, there is a risk that this seed is surrounded—

or is part of a small number of vulnerable nodes that are sur-

rounded—by non-vulnerable nodes. Because such situations

arise from the choice of threshold distribution f(/) rather

than from synergistic effects, we discard such simulations

throughout this paper.
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III. SYNERGY IN TWO EMPIRICAL NETWORKS

We start by examining the synergistic threshold model

with power synergy (4) on the network of condensed-matter

physics paper coauthorships from Ref. 54. (This network is

available at https://snap.stanford.edu/data/.) In this network,

a node represents an author, and there is an undirected edge

between nodes i and j if the authors coauthored at least 1

paper. We suppose for simplicity that all nodes have a

threshold of /¼ 1/10.

We show the results of our simulations in Fig. 1. We use

power synergy (4), and we show results for interfering syn-

ergy (with b¼ –0.80) in panel (a) and constructive synergy

(with b¼ 0.15) in panel (b). Data points correspond to the

mean fraction of degree-k nodes that are active at each time

step. Among our simulations, we include only realizations in

which the meme activates at least 0.5% of the nodes in the

network. For each degree, a smaller or equal fraction of

nodes is activated for interfering synergy than for construc-

tive synergy. In panel (b), we show the k¼ 2 curve from

panel (a) for comparison. We see that it takes longer for the

meme to spread in the network for interfering synergy than

for constructive synergy.

We now examine our synergistic threshold model on

another empirical network, the NORTHWESTERN25 network

from the FACEBOOK100 data set.55 This data set consists of the

complete set of people and friendships of 100 different U.S.

universities from one day in autumn 2005. NORTHWESTERN25

is the data for Northwestern University. We show results of

our numerical simulations on the largest connected compo-

nent of this network in Fig. 2. We suppose that all nodes have

a threshold of /¼ 1/33, and we again examine power synergy

with interfering synergy (with b¼ –0.80) in panel (a) and

constructive synergy (with b ¼ 0.15) in panel (b). For

FIG. 1. Example behavior of the synergistic threshold model with power

synergy (4) using (a) interfering synergy (with b¼ –0.80) and (b) construc-

tive synergy (with b ¼ 0.15). In panel (b), we show part of the curve for

k¼ 2 from the case of interfering synergy for comparison. Because we

choose the seed active node uniformly at random, there is a chance that only

the seed is activated, and we do not take such runs into consideration. For

the interfering synergy plot, only the seed was activated in 94 of our 110

runs; for constructive synergy, this occurred in 31 of 110 runs. For the simu-

lations in this figure, we run the synergistic threshold model on the

condensed-matter physics coauthor network from Ref. 54, and the threshold

for each node is /¼ 1/10. For each degree, a smaller or equal fraction of

nodes becomes active for interfering synergy than for constructive synergy.

It also takes longer for the meme to spread in the network for interfering

synergy than it does for constructive synergy.

FIG. 2. Example behavior of the synergistic threshold model with power syn-

ergy (4) using (a) interfering synergy (with b¼ –0.80) and (b) constructive

synergy (with b ¼ 0.15). In panel (b), we show the curve for k¼ 13 for the

case of interfering synergy for comparison. Because we choose the seed active

node uniformly at random, there is a chance that only the seed is activated, and

we do not take such runs into consideration. For the interfering synergy plot,

only the seed was activated in 30 of 110 runs; for constructive synergy, this

occurred in 24 of 110 runs. For the simulations in this figure, we run the syner-

gistic threshold model on the NORTHWESTERN25 network from the

FACEBOOK100 data set,55 and the threshold for each node is /¼ 1/33. For each

degree, a smaller or equal fraction of nodes becomes active for interfering syn-

ergy than for constructive synergy. It also takes longer for the meme to spread

in the network for interfering synergy than it does for constructive synergy.
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comparison, we include the curve for degree k¼ 13 for con-

structive synergy among our plots for interfering synergy. We

again see that it takes longer for the meme to spread in the

network for interfering synergy than it does for constructive

synergy and that, for each degree, a smaller or equal fraction

of nodes is activated for interfering synergy than for construc-

tive synergy.

IV. ANALYTICAL APPROXIMATION OF THE NUMBER
OF ACTIVE NODES VERSUS TIME

We now develop an analytical approximation that

describes the fraction of active nodes in a network as a func-

tion of time, given a peer-pressure function, degree distribu-

tion, and threshold distribution. This approximation is a

heterogeneous mean-field approximation,56 and it assumes

that neighbors of a node are independent of each other. In our

derivation, we assume that networks are locally tree-like,4,57

which treats such pairs of neighbors as independent (because,

in the approximation, they are not adjacent to each other).

Recall that we employ synchronous updating in our sim-

ulations. Because our update rule is deterministic, synchro-

nous updating and asynchronous updating yield the same

final (i.e., steady state) fraction of active nodes.58 At time

t¼ 0, we activate one seed node of the N total nodes. For our

theoretical analysis, this entails that the expected initially

active fraction of nodes with degree k and threshold / is

w/
k ¼ 1=N for all choices of k and /.59 See Refs. 32 and 60

for a discussion of the effects on cascade size of using a sin-

gle active node (as opposed to a specified fraction of active

nodes) as a seed for the WTM, and see Ref. 61 for a recent

discussion of issues regarding synchronous versus asynchro-

nous updating (where asynchronous updating, such as

through a Gillespie algorithm, is meant to model continuous-

time dynamics) for dynamical processes on networks.

To calculate the fraction q/
k ðnþ 1Þ of active nodes with

degree k and threshold / at time nþ 1, we write the recur-

sive formula (as in, e.g., Refs. 32, 34, and 60)

q/
k ðnþ 1Þ ¼ w/

k þ ð1� w/
k Þ
Xk

j¼0

Bk
j ð �qk

/ðnÞÞFðj; k;/; bÞ ;

(8)

where �q/
k ðnÞ is the probability that a neighbor (chosen uni-

formly at random) of a uniformly-randomly chosen inactive

node with degree k and threshold / is active at time n, and

Bk
j ðpÞ ¼

k
j

� �
pjð1� pÞk�j : (9)

The first term in Eq. (8) is the fraction of nodes that are

active at time t¼ 0. The second term represents the nodes

that are activated at a later time. The factor 1� w/
k is present

because these nodes are not part of the seed, the sum encom-

passes the probabilities that a degree-k node can have

0, 1,…, k active neighbors at time n, and the response func-

tion F(j, k, /, b) encodes when an inactive node becomes

active when its state is updated. The sum of the two terms in

Eq. (8) gives the fraction of nodes with degree k and thresh-

old / that are active at time nþ 1. We write �q/
k ðnÞ as a func-

tion of q/0

k0 ðnÞ, the probability that, for a given inactive node,

a neighbor with degree k0 and threshold /0 is active at time

n. This probability is

�q/
k ðnÞ ¼

P
k0;/0 P ðk;/Þ; ðk0;/

0Þ
� �

q/0

k0 ðnÞP
k0;/0 P ðk;/Þ; ðk0;/

0Þ
� � ; (10)

where Pððk;/Þ; ðk0;/0ÞÞ is the probability that a node with

degree k and threshold / is adjacent to a node with degree k0

and threshold /0. For an inactive node, the probability that a

neighboring node with degree k and threshold / is active is

q/
k ðnþ 1Þ ¼ w/

k þ ð1� w/
k Þ
Xk�1

j¼0

Bk�1
j ð �qk

/ðnÞÞFðj; k;/; bÞ :

(11)

The only difference between Eq. (11) and Eq. (8) stems

from the fact that the degree-k neighbor that we consider in

(11) has a maximum of k – 1 active neighbors if it is adjacent

to at least one inactive node. In these equations, we have

assumed that each neighbor of node i is independent of the

others, because (as indicated above) we are assuming that

the network is locally tree-like.4,57 We also assume that all

nodes with degree k and threshold / have the same dynam-

ics, so our approach constitutes a heterogeneous mean-field

approximation.56

V. SYNERGY IN SYNTHETIC NETWORKS

To illustrate our theoretical results, we examine syner-

gistic spreading in several families of random graphs. For

each family of networks, we draw a new network from the

ensemble (which is a probability distribution on graphs) for

each simulation of a synergistic threshold model. For all net-

works except Erd}os–R�enyi (ER) networks, we specify a

degree distribution p(k). We use this to determine a degree

for each of 10 000 nodes, and we then connect these nodes to

each other using a configuration model (connecting ends of

edges to each other uniformly at random).62

A. Synergy in 3-regular configuration-model networks

We first examine 3-regular random networks, in which

every node has degree 3, which we construct by matching

stubs (i.e., ends of edges) uniformly at random. We study

how synergy affects meme spreading on these networks by

examining several values of the parameter b for both multi-

plicative and power synergy. In our numerical simulations,

we suppose that a fraction p0¼ 0.8 of the nodes have thresh-

old / ¼ 0.32< 1/3 and that a fraction 1 – p0¼ 0.2 of the

nodes have threshold / ¼ 1. Although our numerical simu-

lations illustrate a rather specific scenario, having only two

types of nodes facilitates a detailed investigation of the frac-

tion of active nodes of each type as a function of b and time.

Our particular choice of p0 ensures that there is a large frac-

tion of vulnerable nodes, but it is otherwise arbitrary. It is

also worthwhile to do numerical explorations for a wide
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variety of threshold distributions, but we leave those for

future work.

We choose a single node uniformly at random as a seed

and update nodes synchronously at each discrete time step. We

stop the simulations when we reach steady state (i.e., when no

more nodes can eventually activate). In Fig. 3, we consider

multiplicative synergy and plot the steady-state active fractions

of high-threshold and low-threshold nodes as a function of the

synergy parameter b. Each data point is a mean over 10 realiza-

tions of the spreading process. For each realization, we create a

new 3-regular configuration-model network.

When b surpasses the values 0 and 0.5, the final fraction

of active nodes with threshold / ¼ 1 increases dramatically.

We can see this from Eqs. (7) and (1). For b< 0, it is not

possible to satisfy /iki � ð1þ bÞni�1ni, because ni� ki. For

b 2 [0, 0.5), the relation /iki � ð1þ bÞni�1ni holds only for

ni¼ ki. In this case, nodes with / ¼ 1 can be activated, but

they are never able to help activate a neighbor (unless they

are part of the seed set of active nodes), as all of their neigh-

bors are necessarily already active once they have been acti-

vated. For b � 0.5, the relation /iki � ð1þ bÞni�1ni holds

for ni¼ ki and ni¼ ki – 1. In this case, nodes with / ¼ 1 can

be activated even when they still have an inactive neighbor.

Hence, nodes with / ¼ 1 can help spread the meme, result-

ing in more active nodes with both / ¼ 1 and / ¼ 0.32

than what occurs for b< 0.5. Rephrasing these observations,

bifurcations occur at special values of b (which are b ¼ 0

and b ¼ 0.5 in this example) for the multiplicative peer-

pressure function (3), and we calculate the bifurcation points

by solving N(ni, b)¼ ki/i for ni 2 {2,…, ki} (where we

exclude ni¼ 1 because it corresponds to a vulnerable node,

which by design, is vulnerable for any value of b). Such val-

ues of b exist for any non-decreasing peer-pressure function

N(ni, b) that is continuous in b. For different peer-pressure

functions, the value of b that makes it possible for a specific

number of active neighbors to activate a specific node can

differ, but there is some value of b for each function. Hence,

in this sense, all continuous, non-decreasing synergistic

peer-pressure functions behave in qualitatively the same

way. By contrast, the peer-pressure function N ¼ n
1þjbj
i is

not non-decreasing. This function is similar to Npower, but

with b! jbj. For this peer-pressure function, we do not

obtain the leftmost step that we observe in Fig. 3, so this

choice entails different qualitative behavior than what we

observe with Npower.

In Figs. 4(a) and 4(b), we show how the meme spreads

for b ¼ 0.4999 and b ¼ 0.5001, respectively. Each data

point is a mean over 100 realizations of the spreading pro-

cess. For each realization, we create a new 3-regular configu-

ration-model network.

For any response function, such as ones that use the

peer-pressure functions (3) or (4), one can compute when

ni� ki nodes can activate a node with threshold /i by solving

the equation N(ni, b)¼/iki. Therefore, different response

FIG. 3. Steady-state fraction of active nodes in 3-regular random networks

of 10 000 nodes for our synergistic threshold model with the multiplicative

synergistic peer-pressure function (3). A fraction p0¼ 0.8 of the nodes have

threshold /¼ 0.32< 1/3, and a fraction 1 – p0¼ 0.2 of the nodes have

threshold / ¼ 1. Each data point is a mean of 10 realizations of the syner-

gistic threshold model on 10 different 3-regular random networks, which we

create using a configuration model. For each value of b, we construct 10 net-

works. (In doing these simulations, we discarded two total realizations due

to the choice of seed node; the contagion did not spread enough in those

cases.).

FIG. 4. Active fraction of nodes as a function of time for our synergistic

threshold model with peer-pressure function (3) with constructive synergy in

3-regular random networks of 10 000 nodes. A fraction p0¼ 0.8 of the nodes

have threshold / ¼ 0:32 < 1=3, and a fraction 1 – p0¼ 0.2 have threshold

/ ¼ 1. In panel (a), the synergy parameter is b ¼ 0.4999; in panel (b), it is

b ¼ 0.5001. In each panel, each data point is a mean over 100 realizations

of the threshold model. We observe good agreement between the analytical

approximation (8) and our simulations. (In these simulations, we did not

need to discard any realizations due to the choice of seed node.) For each

realization, we create a 3-regular random network using a configuration

model. The sets of 100 networks are different in the two panels.
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functions can have sudden increases in the steady-state frac-

tion of active nodes at critical values of b for the same rea-

son: at these values of b, it becomes possible for some nodes

to be activated with fewer active neighbors than is the case

for smaller values of b. Although these critical values of b
can differ for different response functions, our two synergis-

tic response functions exhibit qualitatively similar behavior,

so we henceforth use only the response function that is speci-

fied by the power peer-pressure function (4).

B. Synergy in Erd}os–R�enyi networks

We now simulate the spread of memes with power syn-

ergy (i.e., using the peer-pressure function (4)) on ER net-

works. Specifically, we use GðN; pÞ networks, where N is the

number of nodes and p is the probability that there is an edge

between a pair of nodes. The expected mean degree of such

an ER network is z¼ p(N – 1)� pN. First, we consider ER

networks with expected mean degree z¼ 3, and we then con-

sider ER networks with expected mean degree z¼ 8. In both

cases, all nodes are assigned the same threshold /¼ 1/7. In

our simulations, we use N¼ 10 000. These networks do not

in general consist of a single component, and this is espe-

cially relevant for z¼ 3. However, components other than

the largest connected component (LCC) are so small that if

the seed node is part of one of these small components, the

total number of activated nodes is so small that such a simu-

lation is one that we discard. We also confirm with computa-

tions that the LCC is very large even for z¼ 3. For example,

in one set of 100 realizations of ER networks with N¼ 10

000 nodes and expected mean degree z¼ 3, the mean size of

the LCC is 9409.61 6 4.99 nodes, and the mean size of the

second-largest component is 4.07 6 0.95 nodes.

1. Expected Mean Degree z 5 3

We use our analytical approximation (8) to find the

expected steady-state active fraction of nodes as a function of

their degree and the synergy parameter b for the response

function with power peer-pressure function (4). We plot these

quantities in Fig. 5. In Fig. 6, we plot the time series of the

fraction of active nodes when the synergy parameter is

b¼ –0.93, for which our model predicts different steady-state

active fractions for nodes with degrees 1, 2, 3, and 8. We

observe very good agreement between our simulations and the

analytical approximation (8) for these four node degrees.

2. Expected Mean Degree z 5 8

We now examine ER networks with expected mean

degree z¼ 8. We simulate synergistic spreading with the

power peer-pressure function (4) with a parameter value of

b¼ –0.835. We choose this value of b so that the steady-

state fraction of active nodes is different for nodes with dif-

ferent degrees. In Fig. 7, we show the fraction of active

nodes as a function of time, and we observe good agree-

ment between our computations and our analytical approxi-

mation (8).

C. Synergy on networks with degree distributions
from empirical data

We now simulate the spread of synergistic memes on

two networks with degree distributions from empirical data.

In Sec. V C 1, we consider random networks created using a

configuration model with a degree distribution determined

by the degree sequence of the network of coauthorships in

condensed-matter physics papers54 that we examined in Sec.

III. This network has a mean degree of z� 8. In Sec. V C 2,

we simulate the spread of synergistic memes on

configuration-model networks with a degree distribution

from the degree sequence of the NORTHWESTERN25 network

FIG. 5. Steady-state active fraction of degree-k nodes as a function of the

synergy parameter b for a meme that spreads on ER networks with expected

mean degree z¼ 3, homogeneous threshold /¼ 1/7, and a response function

with the power peer-pressure function (4). Using Eq. (6), our analytical

approximation (8) gives abrupt jumps that agree well with our numerical

calculations (see Fig. 6).

FIG. 6. Active fraction of nodes of degrees 1, 2, 3, and 8 as a function of time

for synergistic spreading with the power peer-pressure function (4) in ER net-

works with interfing synergy b¼ –0.93, expected mean degree z¼ 3, and

homogeneous threshold / ¼ 1/7. Each data point is a mean over 31 realiza-

tions of the spreading process. Our analytical approximation (8) of the tempo-

ral activation of nodes of degrees 1, 2, 3, and 8 agrees very well with the

results of our simulations. We obtain good matches for all node degrees that

we examined in this way. We construct a new random ER network for each

realization. (In doing these simulations, we discarded nine realizations due to

the choice of seed node; the contagion did not spread enough in those cases.).
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from the FACEBOOK100 data set.55,63 This Facebook network

has a mean degree of z� 92. For each realization, we create

a new 10 000-node network using a configuration model and

degree sequences drawn from the associated degree

distribution.

1. Condensed-matter physics collaboration network

We draw the degree of each of the 10 000 nodes from

the degree distribution of the condensed-matter physics col-

laboration network,54 and we place edges using a configura-

tion model. In Fig. 8, we plot the fraction of active nodes of

degree k as a function of time. We average over nine simula-

tions (we discarded one simulation because there was insuffi-

cient spreading from the seed node) of the spreading of a

meme with the power synergy peer-pressure function (4) on

these networks. For each of these realizations, we create a

new random network using a configuration model.

As in Sec. III, we use the peer-pressure function (4) and

a homogeneous threshold /¼ 1/10 for our simulations. We

first consider interfering synergy with b¼ –0.85, which

makes it impossible to activate any node whose degree is 16

or larger. Our analytical approximation gives good agree-

ment with our numerical simulations. In Fig. 9, we examine

the effect of constructive synergy with the peer-pressure

function (4). In this case, we use b ¼ 0.20 and /¼ 1/7. For

all node degrees that we checked, the steady-state active

fractions from our analytical predictions and numerical sim-

ulations are indistinguishable. However, in our analytical

approximation, the active fraction increases earlier than what

we observe in our simulations.

2. A Facebook network

We simulate the spread of synergistic memes on

configuration-model networks that we construct using the

degree sequence of the NORTHWESTERN25 network from the

FACEBOOK100 data set.55 The network has a mean degree of

z� 92, a minimum degree of d¼ 1, and a maximum degree

of d¼ 2105. We assign all nodes a degree from a degree dis-

tribution based on the degree sequence of the

NORTHWESTERN25 network, and we again create edges using a

configuration model. We suppose that each node has a

FIG. 7. Fraction of active degree-k nodes as a function of time for our syner-

gistic threshold model with power peer-pressure function (4) and interfering

synergy b¼ –0.835 for ER networks with expected mean degree z¼ 8. Each

node has a threshold of /¼ 1/7. We average our numerical computations

over 31 realizations of the dynamics. We observe a good match between our

numerical computations and our analytical approximation, although there is

a slight discrepancy for nodes with k¼ 1. (In doing these simulations, we

discarded nine realizations due to the choice of seed node; the contagion did

not spread enough in those cases.).

FIG. 8. Fraction of active nodes with degrees 1, 2, 3, 8, 13, and 14 as a func-

tion of time for our synergistic threshold model with power peer-pressure

function (4) and interfering synergy b¼ –0.85 in configuration-model net-

works with a degree distribution determined from the degree sequence of the

condensed-matter theory collaboration network from Ref. 54. Each node has

a threshold of /¼ 1/10. We average the results over nine realizations of the

dynamics, and we create a new configuration-model network for each reali-

zation. We observe good agreement between our analytical approximation

and our numerical simulations. (In doing these simulations, we discarded

one realization due to the choice of seed node; the contagion did not spread

enough in that case.).

FIG. 9. Fraction of active nodes with degrees 1, 2, 3, 8, 13, and 14 as a func-

tion of time for our synergistic threshold model with power peer-pressure

function (4) and constructive synergy b ¼ 0.20 in configuration-model net-

works with a degree distribution determined from the degree sequence of the

condensed-matter theory collaboration network from Ref. 54. Each node has

a threshold of /¼ 1/7. We average the results over 10 realizations of the

dynamics, and we create a new configuration-model network for each reali-

zation. In our analytical approximation, the fraction of active nodes

increases slightly earlier than what we observe in our numerical simulations,

but the resulting steady-state fractions of active nodes are visually indistin-

guishable. (In these simulations, we did not need to discard any realizations

due to the choice of seed node.).
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threshold of /¼ 1/33. In Fig. 10, we plot the fraction of

active degree-k nodes as a function of time. As in our other

simulations, each realization is a different draw of one of

these configuration-model networks. We show results for

both interfering synergy (with power peer-pressure function

(4) and b¼ –0.05) and constructive synergy (with b¼ 0.15

and peer-pressure function (4)). For this family of networks,

our analytical approximation departs from our numerical

simulations for both the steady-state fractions of active nodes

and the times at which the active fractions of degree-k nodes

saturate. Additionally, our analytical approximation suggests

that interfering synergy slows down the spreading process

much more than is actually the case in our simulations.

Our analytical approximation assumes that we are con-

sidering dynamics on a locally tree-like network, although

such methodology can yield results that produce

“unreasonably” effective matches between theory and com-

putations (e.g., of the locations of phase transitions) even in

many situations in which the hypotheses used to derive the

theoretical approximations do not hold.57 Melnik et al.57 dis-

cussed various reasons why a tree-based theory may not pro-

vide a good description of the actual dynamics on a network

(for a given dynamical system, such as a particular type of

spreading process). For the FACEBOOK100 networks, they

found for several spreading processes (including the WTM)

that simulations with a homogeneous threshold distribution

yield different results than what one obtains from a tree-

based theory. (In our work, we usually use a homogenous

threshold.) In contrast, they found for a Gaussian distribution

of thresholds that WTM simulations with a seed consisting

of all nodes with /< 0 yields results that are well-described

by their tree-based approximation. In Ref. 57, all nodes with

/< 0 were active at the beginning of simulations, because

nodes with /< 0 are activated by any nonnegative fraction

of active neighbors.60 In our case, however, when using this

threshold distribution, we obtain different results in simula-

tions versus analytical approximations of cascades.

Two properties that may provide some indication of the

effectiveness of tree-based theories for studying dynamical

processes on a network are the mean geodesic (i.e., shortest)

path length between nodes and the mean local clustering

coefficient of the network. Although this is not something

that is required mathematically (as there are counterexam-

ples, such as a star graph), we expect that a “typical” tree-

like network—in the extreme case, consider an ensemble of

networks drawn uniformly at random from the set of all trees

with a given number of nodes—to have larger mean geodesic

path lengths than networks of the same size that are not tree-

like. One also expects a locally-tree-like network to have a

smaller mean local clustering coefficient than a network with

the same number of nodes that is not locally tree-like.

Averaging the mean geodesic path length between nodes in a

set of 10 randomizations (based on a configuration model, as

described above) of the NORTHWESTERN25 network yields

2.510 6 0.007, which is somewhat smaller than in the origi-

nal network and is much smaller than any other random net-

work in our study (see Table I). Averaging the local

clustering coefficient for the same 10 networks yields

0.02828 6 0.00109, which is reasonably small but is much

larger than for any other random network that we examine in

this paper. This suggests that the randomized

NORTHWESTERN25 networks are less tree-like than our other

random networks. Additionally, the mean local clustering

coefficient and the mean geodesic path length in the original

NORTHWESTERN25 and condensed-matter collaboration net-

works are larger than those of the randomized networks that

we construct from those networks. Unsurprisingly,

FIG. 10. Simulations of synergistic spreading on 10 000-node networks

with a degree distribution determined from the degree sequence of the

NORTHWESTERN25 network from the FACEBOOK100 data set.55 The nodes have

a homogeneous threshold of /¼ 1/33. (a) We examine interfering synergy

(with power synergy (4) and b¼ –0.05) and plot the fraction of active nodes

with degrees 1, 2, 3, and 4 as a function of time. All nodes with degree k� 5

exhibit similar behavior to those with the plotted degrees, and the final frac-

tions of activated nodes are between 0.79 and 0.88. The time until the cas-

cade occurs is very different in our analytical approximation (8) and

numerical simulations, and there are also discrepancies in the steady-state

fraction of active nodes between our analytics and numerics. We average

our results over 51 realizations. (In doing these simulations, we discarded

149 realizations due to the choice of seed node; the contagion did not spread

enough in those cases.) (b) We examine constructive synergy (with power

synergy (4) and b ¼ 0.15) and plot the fraction of active nodes with degrees

1, 2, 3, and 4 as a function of time. All nodes with degree k� 5 eventually

have fractions of active nodes that are larger than 0.92. For this case as well,

the time until the cascade occurs is very different in our analytical approxi-

mation (8) and our numerical simulations, and there are also discrepancies

in the steady-state fraction of active nodes between our analytics and

numerics. We average our results over 53 realizations. (In doing these simu-

lations, we discarded 147 realizations due to the choice of seed node; the

contagion did not spread enough in those cases.).
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randomization considerably decreases the value of the mean

local clustering coefficients, especially for the condensed-

matter collaboration network.

VI. CONCLUSIONS

It is important to study when diseases, information,

memes, or other things (e.g., misinformation or “alternative

facts”) spread to a large number of nodes in a network.4,15

For example, prior studies have suggested that some organ-

isms and tumors spread via synergistic effects64,65 and that

synergistic effects can also be important for the spread of

information on networks,35 the spread of behavior in online

social networks,38 the transmission of pathogens,39 and the

spread of opportunities among vineyards on wine routes.40

In the present paper, we developed a deterministic

threshold model with synergistic spreading, and we illus-

trated that constructive synergy speeds up the spreading pro-

cess and that interfering synergy slows down the spreading

process. Using both computations and a heterogeneous

mean-field approximation (which assumes that a network is

locally tree-like), we investigated the fraction of nodes,

resolved by degree and as a function of a synergy parameter,

that are activated for two empirical networks and several

families of random graphs. We illustrated that the synergy

functions (3) and (4) lead to critical values of a synergy

parameter b, and we showed that such values also arise for

any peer-pressure function that is continuous and non-

decreasing in b. We found for non-vulnerable nodes with a

specified degree k that there exist k – 1 critical synergy

parameter values that indicate when a node is activated by at

least m 2 {2, 3,…, k} active neighbors. In all cases, we

observed that constructive synergy speeds up the spreading

process and that interfering synergy slows down the spread-

ing process.

Investigating the influence of synergistic effects on

spreading processes on networks is a promising area of

study. It is an important feature to consider when studying

the spread of information (and misinformation) on social net-

works,35 the dynamics of certain biological organisms, and

social processes in which the propensity for state changes

either saturates or increases with the number of individuals

who are trying to influence others in a network. It has inter-

esting effects on spreading behavior in various types of net-

works, such as lattices35 and modular networks,47 and it can

affect whether or not it is possible for certain nodes to adopt

a certain meme or behavior.

In the future, it will be interesting to consider synergistic

spreading processes—with both deterministic and stochastic

update rules—on other types of networks, such as multilayer

networks,66–68 temporal networks,69 and adaptive

networks.70
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