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Dynamics and manipulation of matter-wave solitons in optical superlattices
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Abstract

We study the existence and stability of bright, dark, and gap matter-wave solitons in optical superlattices. Then, using these properties, we
show that (time-dependent) “dynamical superlattices” can be used to controllably place, guide, and manipulate these solitons. In particular, we use
numerical experiments to displace solitons by turning on a secondary lattice structure, transfer solitons from one location to another by shifting
one superlattice substructure relative to the other, and implement solitonic “path-following”, in which a matter wave follows the time-dependent
lattice substructure into oscillatory motion.
© 2005 Elsevier B.V. All rights reserved.

PACS: 05.45.-a; 03.75.Lm; 05.30.Jp; 05.45.Ac
1. Introduction

After the first experimental realization of Bose–Einstein
condensates (BECs) in dilute alkali metal vapors [1], their
study has experienced enormous experimental and theoretical
advancements [2]. Their potential applications—ranging from
matter-wave optics to precision measurements and quantum in-
formation processing—are widely held to be very promising.

External electromagnetic fields or laser beams are used
to produce, trap, and manipulate BECs. Additionally, using
highly anisotropic traps, it is possible to produce quasi one-
dimensional (1D) BECs (see, e.g., [3]). In the formation of
such “cigar-shaped” BECs (lying, e.g., along the x-direction),
atoms are trapped using a confining magnetic or optical poten-
tial V (x). In early experiments, only harmonic potentials were
employed, but a wide variety of potentials can now be imple-
mented experimentally. Among the most frequently studied,
both experimentally and theoretically (see, e.g., [4] and ref-
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erences therein), are periodic optical lattice potentials created
using counter-propagating laser beams [5]. Such potentials have
been used to study Josephson effects [6], squeezed states [7],
Landau–Zener tunneling and Bloch oscillations [8], the classi-
cal [9] and quantum [10] superfluid–Mott insulator transitions,
and so on. Additionally, with each lattice site occupied by one
alkali atom in its ground state, BECs in optical lattices show
promise as registers for quantum computers [11]. Optical lattice
potentials are, therefore, of particular interest from the perspec-
tive of both fundamental quantum physics and its connection to
applications.

An important generalization of this setting was recently re-
alized experimentally when 87Rb atoms were loaded into an
optical “superlattice” by the sequential creation of two lattice
structures [12]. Stationary superlattices can be described math-
ematically in the form

(1)V (x) = V1 cos(κ1x) + V2 cos(κ2x),

where κ1 and κ2 > κ1 are, respectively, the primary and sec-
ondary lattice wavenumbers, and V1 and V2 are the associated
sublattice amplitudes. The great flexibility of superlattice po-
tentials arises from the fact that the above parameters can be
tuned experimentally, providing precise control over the shape
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and time-variation of the external potential. Nevertheless, de-
spite the aforementioned experiments, there have thus far been
very few theoretical studies of BECs in superlattice potentials;
these include work on dark [13] and gap [14] solitons, the
Mott–Peierls transition [15], non-mean-field effects [16], and
spatially extended solutions [17,18].

The aim of this work is to show that optical superlattice po-
tentials may be used not only to sustain solitary matter-waves
but also to manipulate them at will. As we illustrate below,
the addition of the secondary lattice makes optical superlattices
considerably more flexible than regular optical lattices. Using
effectively 1D settings, our model is the 1D Gross–Pitaevskii
(GP) equation [19] in the following dimensionless form [4],

(2)iut = −1

2
uxx + g|u|2u + V (x)u,

where u is the mean-field BEC wavefunction, the nonlinearity
coefficient g = ±1 accounts for repulsive and attractive in-
teratomic interactions, respectively, and the potential V (x) is
given by Eq. (1). In this Letter, we study the kinematics, sta-
bility, and dynamics of bright solitons (for g = −1) as well as
dark and gap solitons (for g = +1). We subsequently utilize
“dynamical superlattices” (in which specific lattice parameters
are time-dependent) to show that superlattice potentials can be
used to controllably guide, deposit, and manipulate solitons.
Because of this flexibility, matter-wave solitons (employed as
information carriers) loaded into superlattice potentials may
prove useful for quantum computing applications.

2. Bright solitons

For attractive interactions (g = −1), and in the absence of
any potential [V (x) = 0], Eq. (2) possesses an exact stationary
bright soliton solution of the form,

(3)u(x, t) = η sech
[
η(x − x0)

]
exp(−iΛt),

where η is the amplitude (and inverse width), Λ ≡ −η2/2 = μ

is the frequency (i.e., the chemical potential), and x0 is the lo-
cation of the soliton center. Traveling solitons with a constant
velocity can also be generated by applying a Galilean boost to
the solution in Eq. (3). Bright solitons have been realized in ex-
periments [20], and it is also feasible to generate them in optical
lattices and superlattices.

In the presence of the potential, Eq. (2) is a perturbed Hamil-
tonian system with perturbation energy

(4)Ep[u] =
∞∫

−∞
V (x)|u|2 dx.

The reduced Hamiltonian H , obtained by inserting the solutions
(3) into the perturbation energy (4) is readily evaluated to be
[21–23]

(5)H(x0) =
∑

j=1,2

πκjVj

sinh(πκj /2η)
cos(κj x0).

According to Refs. [21–23], stationary states of the perturbed
system can be obtained by demanding that dH(x0)/dx0 = 0.
That is, the selected center positions x0 are critical points of
the reduced Hamiltonian. Following this perturbative treatment,
one can also derive the equation of motion describing the center
of the soliton as if it were a particle in an effective poten-
tial [22]:

(6)
d2x0

dt2
= −1

η

dH(x0)

dx0
≡ − 1

2η

dVeff(x0)

dx0
.

Furthermore, as shown rigorously in [23], the small, nonzero
linear stability eigenvalues (of the linearization around the soli-
tary wave) in the presence of the perturbation are given by
λ2 = −η d2H(x0)/dx2

0 . Hence, the soliton is stable (unstable)
at the minima (maxima) of the effective potential. If initialized
at a maximum, the soliton can be seen to split (a) symmetri-
cally under time-evolution of Eq. (2) if the two minima next to
the maximum have the same height and (b) asymmetrically if
they have different heights.

The top panel of Fig. 1 shows the parametric continuation
of the (always) stable bright soliton solution centered at the
minimum of the effective potential (see the bottom panel). We
have also obtained solutions centered at the maxima of the
effective potential, but they are always dynamically unstable
(and, hence, are not shown here). We have tried to identify so-
lutions centered at intermediate points, as perhaps suggested
by the metastable maxima and minima of the regular poten-
tial V (x) (see the bottom panel of Fig. 1). The fact that this has
not been possible—the effective potential lacks the metastable
critical points of V (x) (again, see the bottom panel of Fig. 1)—
confirms that the effective potential, rather than the actual one,
is governing the steady states. Unless otherwise stated, we used
the parameter values V1 = V2 = 0.5 and κ2 = 3κ1 = 3.75 in our
numerical simulations. The ratio κ2/κ1 = 3 was chosen to cor-
respond to the superlattice reported experimentally in Ref. [12].
We consider V1 = V2 for simplicity, but similar results can be
obtained with other sublattice amplitudes.

Fig. 1. The top panel shows the branch of stable solitons (centered at x0 ≈ 2.5),
with the normalized number of particles N = ∫ +∞

−∞ |u|2 dx as a function of the
frequency Λ. The branch terminates exactly at the edge of the first band of
excitations (the shaded rectangle) of the underlying linear spectrum. The bot-
tom panel shows (for Λ = −1) the profile of the solution (thick solid curve),
together with the superlattice potential (dashed curve), the primary lattice po-
tential (dotted curve), and the effective potential felt by the soliton (solid curve).
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The linear part of Eq. (2) describes the case of a noninteract-
ing condensate (g = 0). Its solution is given by a superposition
of Bloch waves and its spectrum consists of bands of eigenval-
ues (frequencies) Λ = Λn(k), where the index n denotes the
band index and the quasimomentum k is a real wavenumber
of bounded Bloch waves [24]. Different bands are separated
by “gaps” in which Im(k) �= 0. As discussed in, e.g., Refs.
[13,14], a superlattice potential yields a more complicated lin-
ear band structure than a regular lattice, as it includes smaller
gaps (called “minigaps” in [13,14]) in addition to regular gaps.
With the above parameter choices, the underlying linear spec-
trum for the superlattice potential has its first band in the inter-
val [−0.1643,−0.1178] (see the shaded area in the top panel of
Fig. 1), its second band in [0.3900,1.5244] (with a minigap in
[0.7748,0.8171]), and so on.

3. Dark and gap solitons

We now turn to the study of repulsive BECs with g = 1 and
first consider dark soliton solutions of Eq. (2). Dark solitons
have been realized experimentally [25] in BECs confined in
harmonic traps and have been studied theoretically in lattices
[26,27] and superlattices [13], where they can also be created.

We seek solutions of Eq. (2) of the form u = φ(x, t) ×
exp(−it) (we set the chemical potential μ = 1) and assume that
the potential, characterized by a scale R, is slowly-varying on
the soliton scale (which is on the order of the healing length).
Then, following the multiple-scale boundary layer theory of
Ref. [28] (similar results can be obtained using other pertur-
bative approaches [29]), we use the ansatz

(7)φ = [
φ0 + εφ1(x − x0, t)

]
exp

[
iθ̄ + iv̄(x − x0)

] + O
(
ε2)

for the interval |x − x0| < R, where

(8)φ0 = i(v0 − v̄) + k tanh
[
k(x − x0)

]
,

with v0 = ẋ0 and θ̄ (t) = (1/2)[θ(x0 − R, t) + θ(x0 + R, t)] (v̄
is defined analogously). Letting the cut-off R → ∞ and con-
sidering solutions satisfying v = ∂θ/∂x = 0 yields the equation
of motion for the soliton center x0,

(9)
d2x0

dt2
= −1

2

∂V (x0)

∂x0
≡ −∂Veff

∂x0
.

For the superlattice potential (1), Eq. (9) becomes

(10)
d2x0

dt2
= 1

2
κ1V1 sin(κ1x0) + 1

2
κ2V2 sin(κ2x0).

Fig. 2 shows a dark soliton centered at a minimum of the
superlattice. The depicted solution is unstable due to a lox-
odromic quartet of eigenvalues but can become stable for a
frequency Λ � 0.55 (see the bottom panel in Fig. 2). A solu-
tion centered at a maximum of the potential is unstable due to
the presence of a large real eigenvalue pair (e.g., for Λ = 1, the
eigenvalues have magnitude 0.3833). We have also attempted to
identify solutions centered between consecutive absolute max-
ima and minima, i.e., near metastable minima and maxima of
the effective potential (e.g., for x ≈ 0.9 and x ≈ 1.6), but were
Fig. 2. Unstable dark soliton centered at a potential minimum (x0 ≈ 2.5) with
Λ = 1. The top left panel shows the stationary spatial profile u(x) (solid) and
the superlattice potential (dashed). The spectral plane (top right) of the lin-
earization eigenvalues λ = λr + iλi reveals a so-called “loxodromic quartet”
[i.e., all four eigenvalues have the same (|Re(λ)|, | Im(λ)|)] that causes the
instability. The bottom panel, showing the magnitude of the real part of the
eigenvalue quartet vs. the frequency Λ, indicates that this soliton branch be-
comes stable for Λ � 0.55.

Fig. 3. A branch of gap solitons in the finite gap between the first and second
bands. The top panel shows the normalized number of particles N in each soli-
ton and the lower two panels show a typical example of the solution (around
the middle of the branch) for Λ = 0.15. The stability of the solitons depends on
the value of the chemical potential (and may also be affected for finite domains
by the size of the computational domain).

unable to find any. This apparent violation of the effective en-
ergy landscape suggested by the boundary layer theory poses
an interesting question for future studies.

In the same context of repulsive condensates (again with
g = 1), we have also obtained gap soliton solutions of Eq. (2).
Such gap solitons are spatially localized nonlinear modes that
occur in the band gaps of the linearized spectrum and, in fact,
have the form of bright solitons but in a repulsive medium.
Fig. 3 shows a stable branch of gap solitons that exists in the fi-
nite gap between the first and second bands. Gap solitons have
recently been obtained experimentally in regular optical lattices
[30], and thus they can also be straightforwardly produced ex-
perimentally in the superlattice setting.

4. Dynamical superlattices

We now turn to using the superlattice as a means to guide,
displace, and (more generally) manipulate matter-wave solitons



M.A. Porter et al. / Physics Letters A 352 (2006) 210–215 213
Fig. 4. (Color online). Bright soliton evolution for the V2 cos(κ2x) potential.
The soliton is initially centered at the minimum near 0.8, which becomes a
metastable minimum of the superlattice potential V (x) and disappears alto-
gether as a minimum for the effective potential Veff(x) once the V1 cos(κ1x)

potential is turned on. The abrupt switching-on of the second sublattice at
t = 20 is represented functionally by V1(t) = (1/2)[1 + tanh(5(t − 20))]. The
soliton can no longer stay in its original location, so it goes to the closest mini-
mum of the effective potential (solid red/light curve), about which it oscillates.

at will in the potential landscapes discussed above. In recent
experiments [31], the center of a regular optical lattice was
“shaken” (translated periodically) to examine a period-doubling
instability in BECs. Such dynamical manipulations of superlat-
tice potentials are similarly achievable in the laboratory.

Given a stable bright soliton located at a minimum of a regu-
lar optical lattice, we can displace it from its location by turning
on the second sublattice abruptly (nonadiabatically), as indi-
cated by the space–time plot in Fig. 4. As the soliton is no
longer located at a minimum of the effective potential, it cannot
stay in its original location, so it moves to the closest minimum
and oscillates in that well.

As another example, in Fig. 5, we show how to use a sub-
lattice of the superlattice as a means of transferring bright
and gap solitons at will. A soliton is placed in the potential
V1 cos(κ1(x −xc))+V2 cos(κ2(x)), the first sublattice of which
is subsequently displaced as follows:

(11)xc = xi + 1

2
(xf − xi)

[
1 + tanh

(
t − t0

τ

)]
,

where xi and xf denote, respectively, the initial and final “cen-
ter” positions and the parameter τ determines the speed of
the displacement [27,32]. We considered both adiabatic cases
(large τ ; left panels), where the soliton transfer can be success-
ful, and nonadiabatic ones (small τ ; right panels), where such
manipulations will typically fail to guide the soliton. Note that
similar results have also been obtained both for bright [33] and
dark [27] solitons but in regular optical lattices.

We also performed a more “demanding” experiment, in
which the bright and gap solitons were not merely deposited at
a new location but were instead “instructed” to follow the time-
dependent sublattice into oscillatory motion. This numerical
experiment, shown in Fig. 6, corresponds to a lattice displaced
according to

(12)xc = xi + xf

2
sin

(
t − t0

τ1

)[
1 + tanh

(
t − t0

τ

)]
.

Fig. 5. (Color online). Controllable transfer of bright (top quartet) and gap
(bottom quartet) solitons by manipulating one sublattice of the superlattice po-
tential. For each quartet, the top panels show space–time plots (with colors
indicating the value of |u|2) and the bottom panels show the time-evolution of
the soliton center (solid) and superlattice “center” xc (dashed). The left panels
show the result of adiabatic potential displacement (τ = 5) and the right pan-
els show the result of nonadiabatic potential displacement (τ = 0.5). Clearly,
adiabaticity plays a major role in the success of the soliton transfer.

We turn on the sinusoidal potential abruptly (with τ = 0.5),
but vary its period using both large and small τ1. We observe
that while the solitons lose power (i.e.,

∫
dx|u|2) in traversing

the rough terrain of the immobile lattice (in this example, the
bright soliton with the larger power emits more radiation), they
can still follow the oscillation, provided the motion is, again,
sufficiently adiabatic. For small τ1 (the nonadiabatic case), the
waves completely disintegrate into small-amplitude radiation.

5. Conclusions

In this work, we analyzed the properties of bright, dark,
and gap matter-wave solitons in the presence of superlattice
potentials. We focused, in particular, on showing (for typical
potential parameter values) how the dynamical modification
of the (experimentally tunable) properties of the superlattice
potential can be used to guide, transfer, and deposit these co-
herent structures across their corresponding energy landscape.
We believe that such controllable soliton manipulation bene-
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Fig. 6. (Color online). As in Fig. 5, but for controllable path-following of bright
(top quartet) and gap (bottom quartet) solitons. The evolution of the soliton
center is governed by Eq. (12) for τ1 = 10 (left panels) and τ1 = 5 (right pan-
els) [τ = 0.5 in both cases]. Clearly, it is necessary that the lattice oscillations
be sufficiently adiabatic for solitons to follow a dynamical superlattice’s path
successfully.

fits greatly from the enhanced flexibility arising from the extra
length scale and tunable parameters of the superlattice struc-
ture as compared to regular optical lattices. This, in turn, may
pave the way towards the macroscopic manipulation of soli-
tonic “bits” of information in BECs in a manner that bears
similarities to (but also enables extensions of) the setting of
nonlinear optics.
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