
ARTICLES
https://doi.org/10.1038/s41593-018-0276-0

1Centre for Neural Circuits and Behaviour, University of Oxford, Oxford, UK. 2Department of Mathematics, University of California Los Angeles,
Los Angeles, CA, USA. 3Mathematical Institute, University of Oxford, Oxford, UK. 4CABDyN Complexity Centre, University of Oxford, Oxford, UK.
5Computational and Biological Learning Lab, Department of Engineering, University of Cambridge, Cambridge, UK. *e-mail: jake.stroud@cncb.ox.ac.uk

Motor cortex is one of the final cortical outputs to down-
stream spinal motor neurons1, and it is fundamental for
controlling voluntary movements2–4. During movement

execution, M1 exhibits complex, multiphasic firing-rate transients
that return to baseline after movement completion4. Recent studies
have provided some understanding of how these complex, single-
neuron patterns of activity relate to intended movements4–6. It has
been illuminating to view motor cortex as a dynamical system in
which preparatory activity sets the initial condition for the system,
whose subsequent dynamics drive the desired muscle activity7,8.
From this perspective, the complex firing-rate dynamics provide a
flexible basis set for the generation of movements9.

Several recurrent neuronal-network models have been devel-
oped to capture M1 activity during movement execution10,11. These
models rely on strong recurrent connectivity that is optimized for
the neuronal dynamics to be qualitatively similar to M1 activity
during movement execution. However, these models cannot explain
how new movements can be constructed or how their static archi-
tecture allows variations in both output trajectories and speed.

A possible mechanism for effectively switching neuronal activity,
and consequently downstream muscle activity, to generate differ-
ent movements (Fig. 1a) is to adjust the intrinsic gain—that is, the
input–output sensitivity—of each neuron so that they engage more
(or less) actively in the recurrent neuronal dynamics12–18. Indeed,
neuromodulation in M1 can cause such changes in neuronal
responsiveness19,20, and gain modulation of both neurons in M113
and spinal motor neurons21,22 has been linked experimentally to skill
acquisition and optimization of muscular control.

Here we study the effects of gain modulation in recurrent neu-
ronal-network models of motor cortex. We show that individually
modulating each neuron's gain allows the models to learn a vari-
ety of target outputs on behaviorally relevant time scales through
reward-based training. Motivated by diffuse neuromodulatory
innervation of M119,23,24, we find that coarse-grained control of neu-
ronal gains achieves a performance similar to that of neuron-spe-
cific modulation. We demonstrate that we can combine previously

learned modulatory gain patterns to accurately generate new desired
movements. Therefore, gain patterns can act as motor primitives for
quickly constructing novel movements25,26. Finally, we show how to
control the speed of an intended movement through gain modu-
lation. We find that it is possible to learn gain patterns that affect
either only the shape or only the speed of a movement, thus enabling
efficient and independent movement control in space and time.

Results
Modeling gain modulation in recurrent neuronal networks. To
understand how cortical networks can efficiently generate a large
variety of outputs, we begin with an existing cortical circuit model11.
We use recurrent networks, with N = 2 M neurons (with M excit-
atory and M inhibitory neurons), for which the neuronal activity
vector x(t) = (x1(t), … , xN(t))T evolves according to

τ = − +x x W x gd t
dt

t f t() () (() ;) , (1)

where the single-neuron time constant is τ = 200 ms, and (unless
we state otherwise) we generate the synaptic weight matrix W in
line with ref. 11 (i.e., we use ‘stability-optimized circuits’). These net-
works consist of a set of sparse, strong excitatory weights that are
balanced by fine-tuned inhibition (see Methods).

The gain function f, which governs the transformation of neuro-
nal activity x into firing rates relative to a baseline rate r0, is

⎧
⎨
⎪⎪

⎩⎪⎪
=

∕ <
− ∕ − ≥f x g

r g x r x
r r g x r r x(;)
tanh() , if 0 ,

()tanh(()) , if 0 , (2)i i
i i i

i i i

0 0

max 0 max 0

where the gain gi is the slope of the function f at the baseline rate r0
and thus controls the input–output sensitivity of neuron i. In equa-
tion (1), f(x; g) denotes the element-wise application of the scalar
function f to the neuronal activity vector x. Unless we state other-
wise, we use a baseline rate of r0 = 20 Hz and a maximum firing rate

Motor primitives in space and time via targeted
gain modulation in cortical networks
Jake P. Stroud" "1*, Mason A. Porter2,3,4, Guillaume Hennequin5 and Tim P. Vogels" "1

Motor cortex (M1) exhibits a rich repertoire of neuronal activities to support the generation of complex movements. Although
recent neuronal-network models capture many qualitative aspects of M1 dynamics, they can generate only a few distinct move-
ments. Additionally, it is unclear how M1 efficiently controls movements over a wide range of shapes and speeds. We dem-
onstrate that modulation of neuronal input–output gains in recurrent neuronal-network models with a fixed architecture can
dramatically reorganize neuronal activity and thus downstream muscle outputs. Consistent with the observation of diffuse
neuromodulatory projections to M1, a relatively small number of modulatory control units provide sufficient flexibility to adjust
high-dimensional network activity using a simple reward-based learning rule. Furthermore, it is possible to assemble novel
movements from previously learned primitives, and one can separately change movement speed while preserving movement
shape. Our results provide a new perspective on the role of modulatory systems in controlling recurrent cortical activity.

Corrected: Publisher Correction

NATURE NEUROSCIENCE | VOL 21 | DECEMBER 2018 | 1774–1783 | www.nature.com/natureneuroscience1774

ARTICLESNATURE NEUROSCIENCE

of rmax = 100 Hz, consistent with experimental observations4,27. The
gain function f(x; g) describes the neuronal firing rates relative to
the baseline steady-state r0

28. Identical dynamics can also result from
using a strictly positive gain function, combined with a tonic (i.e.,
static) external input (see Methods).

For appropriate initial conditions x(t = 0) = x0 (see Methods), the
neuronal dynamics given by equation (1) exhibit naturalistic activ-
ity transients that resemble M1 recordings4,11, and the population
activity is rich enough to enable the generation of complex move-
ments through linear readouts11. We emulate neuromodulation in
this model by directly controlling the input–output gain gi of each
neuron (Fig. 1b,c).

Neuron-specific gain modulation. We find that increasing the gain
of all neurons uniformly (i.e., gi = g in equation (2)) increases both
the frequency and amplitude of the neuronal firing rates (Fig. 1c).
One can understand these effects of uniform modulation by linear-
izing equation (1) around x = 0, yielding the linear ordinary dif-
ferential equation τ = −W I xg()xd

dt
 (where I is the identity matrix),

and studying changes in the spectrum of the matrix gW− I (see
Supplementary Math Note).

To allow more precise control of neuronal activity than through
uniform modulation, we can independently adjust the gain of each
neuron in what we call ‘neuron-specific modulation’. We obtain gain
patterns that lead to the generation of target output activity using a
reward-based node-perturbation learning rule (see Methods). Our
rule, which acts on the modulatory pathway of our model but is
similar to proposed synaptic plasticity rules for reward-based learn-
ing29–32, uses a global scalar signal of recent performance to itera-
tively adjust each neuron’s gain while the initial condition x0 and the
network architecture remain fixed.

Starting with a network and readout weights that produce
an initial movement with all gains set to 1 (Fig. 1d), our learning

rule yields a gain pattern that leads to the successful generation of
a novel target movement after a few thousand training iterations
(Fig. 1d; and see Methods). Errors between the actual and desired
outputs tend to decrease monotonically and eventually become neg-
ligible. Independent training sessions with the same target move-
ment produce nonidentical but positively correlated gain patterns
(Fig. 1e and Supplementary Fig. 1c). Counterintuitively, the neuro-
nal firing rates change only slightly, even though the network output
is altered substantially (Supplementary Fig. 1b). After learning the
target, the same initial condition can produce either of two distinct
network outputs, depending on the applied gain pattern (Fig. 1f).
The outputs are also similarly robust with respect to noisy initial
conditions for each gain pattern (Supplementary Fig. 1d).

We also compare the learning performance of gain modulation
with alternative learning mechanisms. We train either the neuronal
gains, the initial condition x0 of the neuronal activity, a rank-1 per-
turbation of the synaptic weight matrix, or the full synaptic weight
matrix using back-propagation (see Methods). We find empirically
for this task that training through gain modulation yields a learning
performance similar to that achieved by training the initial condi-
tion or the full synaptic weight matrix and that training through gain
modulation performs substantially better than learning a rank-1
perturbation of the synaptic weight matrix (Supplementary Fig. 1f).

Gain modulation in different models. We now examine whether
learning through gain modulation is possible in alternative, com-
monly used variants of our model. Motor circuits that drive
movements also engage in periods of movement preparation5,7,33,
suggesting a role for gain modulation in shaping circuit dynamics
during both movement planning and movement execution. We find
that learning is also possible in a model in which we include gain
modulation during movement planning. We simulate the prepara-
tory period using a ramping input to the system11 (see Methods),

E
M

G
 (

a.
u.

)

100 ms

Time

a

d e f

b c

Initial

condition

Gain
modulation

Network
output
(EMG)

Cortical network

–20

0

20

40

Excitatory

60

Input (a.u.)

Gain
0

1

2

3

4

0

1

2

3

4

E
M

G

5 Hz

E
rr

or

100 ms

Switch
Target
reach

Initial
reach

100 ms

a.u.

80

Target
reach

Initial
reach

E
M

G

0 5 10 15
0.4

0.6

0.8

1

1.2

1.4

1.6

G
ai

n

0 5 10 15

Neuron 1
Neuron 2

0 10 20 30
Percent of
neurons

Simulation
results

Number of iterations (103) Number of
iterations (103)

100 ms

Inhibitory

R
el

at
iv

e
fir

in
g

ra
te

 (
f)

 (
H

z)

N(1, σ2)

Fig. 1 | Controlling network activity through neuron-specific gain modulation. a, Example of a reaching task, with illustrative electromyograms (EMGs)
of muscle activity for two reaches (in orange and black). b, Schematic of our model (see the text and Methods). c, Changing the slope of the input–output
gain function (left) uniformly for all neurons from 1 (black) to 2 (blue) has pronounced effects on neuronal firing rates (right). We show results for three
example neurons. d, The mean error in network output decreases during training with neuron-specific modulation. Inset: five snapshots of network output
(indicated by arrowheads) as learning progresses. (The black curve is the network output with all gains set to 1.) e, Left: neuronal gain changes during
training for two example neurons (gray and black) and 10 training sessions with the same target. Right: histogram of gain values after training. The blue
curve is a Gaussian fit with an s.d. of σ ≈ 0.157. f, Network outputs (gray curves) with all gains set to 1 and a new learned gain pattern for 10 noisy initial
conditions compared to both targets (black and orange). We use a 200-neuron network for all simulations in this figure.

NATURE NEUROSCIENCE | VOL 21 | DECEMBER 2018 | 1774–1783 | www.nature.com/natureneuroscience 1775

ARTICLES NATURE NEUROSCIENCE

such that gain modulation now directly affects the neuronal activity
at movement onset. We find that learning performance (i.e., error
reduction) for the task that we show in Fig. 1d is slightly poorer if
we employ a ramping input than if we do not (Fig. 2a). This occurs
because gain modulation during the preparatory phase changes the
neuronal activity at movement onset, allowing it to leave the null
space of the readout weights (which are fixed) and thus elicit prema-
ture muscle activity at movement onset.

We also construct a ‘chaotic’ variant of our model34 (see Methods)
for the same task and train only the neuronal gains. We achieve
learning performance (Fig. 2a) similar to that achieved by our origi-
nal model in Fig. 1d, even though the neuronal firing rates are very
different (Fig. 2b). Finally, we also use an alternative learning rule
to train the neuronal gains (see equations (10) and (11)); in this
rule, learning slows down as the decrease in error slows down (see
Methods). We find that the error decreases at a faster rate than that
in our original learning rule (Fig. 2a). This may occur because the
variance of the noise perturbation term in the alternative learning
rule becomes smaller over training iterations as the error decreases.
Notably, in all of these examples, changes in neuronal responsive-
ness alone—for example, via inputs from neuromodulatory affer-
ents—can cause dramatic changes in network outputs, thereby
providing an efficient mechanism for rapid switching between
movements, without requiring any changes in either synaptic archi-
tecture or the initial condition x0.

Coarse, group-based gain modulation. Individually modulating
the gain of every neuron in motor cortex is likely unrealistic. In
line with the existence of diffuse (i.e., not neuron-specific) neuro-
modulatory projections to M119,23,24, we cluster neurons into groups
so that we identically modulate units within a group (Fig. 3a; and
see Methods). We find that such coarse-grained modulation gives
performance similar to that of neuron-specific control for as few
as 20 randomly formed groups (see Methods) using our 200-neu-
ron network model from Fig. 1 (Fig. 3b and Supplementary
Fig. 2a). For a given number of groups, we can improve perfor-
mance if, instead of grouping neurons randomly as above, we use
a specialized clustering for each movement that is based on pre-
vious training sessions (Fig. 3b and Supplementary Fig. 2a; and
see Methods). Notably, there exist specialized groupings that per-
form similarly across multiple different movements (Fig. 3c and
Supplementary Fig. 2b,c). Such specialized groupings acquired

from learning one set of movements also perform well on novel
movements (Supplementary Fig. 2d).

Notably, even with random groupings, network size hardly
affects learning performance for a single readout (Fig. 3d).
Performance depends much more on the number of groups than
on the number of neurons per group. When the task involves two
or more readout units, larger networks do learn better, and achiev-
ing a good performance necessitates using a larger number of inde-
pendently modulated groups (Fig. 3e,f). Finally, smaller networks
typically learn faster (Fig. 3e), but they ultimately exhibit poorer
performance, demonstrating that there is a trade-off between net-
work size, number of groups, and task complexity (i.e., the number
of readout units).

Gain patterns can provide motor primitives for novel move-
ments. In principle, it is possible to independently learn numer-
ous gain patterns, supporting the possibility of a repertoire (which
we call a ‘library’) of modulation states that a network can use,
in combination, to produce a large variety of outputs. Generating
new movements is much more efficient if it is possible to ‘intuit’
new gain patterns as combinations of previously acquired primi-
tives15,26. To test whether this is possible in our model, we first
approximate a novel target movement as a convex combination
of existing movements (we call this a ‘fit’ in Fig. 4; see Methods).
We then use the same combination of the associated library of
gain patterns to construct a new gain pattern (Fig. 4a). Notably,
the resulting network output closely resembles the target move-
ment (Fig. 4b). This may seem unintuitive, but one can understand
this result mathematically by calculating power-series expan-
sions of the solution of the linearized neuronal dynamics (see
Supplementary Math Note).

Finally, increasing the number of elements in the movement
library reduces the error between a target movement and its fit,
which is also reflected in a progressively better match between
the target and the network output (Fig. 4b–d and Supplementary
Fig. 3). Although the idea of using motor primitives to facilitate
rapid acquisition of new movements is well-established25,26, our
approach proposes the first (to our knowledge) circuit-level mecha-
nism for achieving this objective. In addition to neuromodulatory
systems19,20,22, the cerebellum is a natural candidate structure to
coordinate such motor primitives25, as it is known to project to M1
and to play a critical role in error-based motor learning25,35.

Original model
a b

Model with
ramping input

E
rr

or

Chaotic network

Before training After training

Original model Ramping input Alternative learning rule

100 ms100 ms

5 Hz
10 Hz

Number of iterations (103)

Chaotic network

Alternative
learning rule

0 5 10 15

10–2

10–1

100

Fig. 2 | Learning through gain modulation in different models. a, Mean error over 10 independent training sessions for our original model from Fig. 1d
(red); the model with a biologically motivated ramping input (blue); the model when using the alternative learning rule equation (10), in which learning
automatically stops at a sufficiently small error (purple); and when using a 'chaotic' recurrent network model (gray; see Methods). Shading indicates one
s.d. b, The firing rates of four example neurons before (i.e., with all gains set to 1) and after training the neuronal gains in (left) our original model, (center
left) our model with a ramping input, (center right) our model with the alternative learning rule, and (right) the model when using a chaotic network. We
use 200-neuron networks for all simulations in this figure.

NATURE NEUROSCIENCE | VOL 21 | DECEMBER 2018 | 1774–1783 | www.nature.com/natureneuroscience1776

ARTICLESNATURE NEUROSCIENCE

2 4 6 8 10 15 20 N
0

0.2

0.4

0.6

0.8

1

N = 100

N = 200

N = 400

2.3

Number of groups

Error before training

Network size:

1 3 5 7 9

10 20 40 N
0

0.2

0.4

0.6

0.8

Two

Number of groups

10 20 40 N

Three

10 20 40 N

Four

0 15 30 45 60

E
M

G

0.1

0.2

0.3

0.4

1
2
3

2.5 3.5 4.5

0.3

0.5

0.7

0 15 30 45 60 0 15 30 45 60

Number of readout units

N = 100

N = 200

N = 400

Network size:

0

100 ms

TargetBefore training After training

1020200
Random

Specialized

1 2 3 4 5

Number of movements

0.02

0.06

0.1

E
rr

or

E
rr

or

E
rr

or
E

rr
or

20 specialized groups

20 random groups

200 groups (neuron-specific)

0 4321

2

1

1.5

0.5

0

E
rr

or

185 16

Number of iterations (103)

Number of iterations (103)

a.u.

Gain
modulation

Initial

condition

Cortical network
a

c

e

f

d

b

Fig. 3 | Controlling network activity through coarse, group-based gain modulation. a, We identically modulate neurons within each group (see Methods).
Target outputs can involve multiple readout units. b, Mean error during training for 20 random, 20 specialized, and 200 (i.e., neuron-specific) groups.
(See Methods for more details.) c, Mean minimum errors after training using specialized groups. We use the same grouping for learning multiple different
movements. In b,c, we use a 200-neuron network. d, Mean minimum errors for different numbers of random groups with networks of 100, 200, and
400 neurons. (The N on the horizontal axis indicates neuron-specific modulation.) In b–d, we use a single readout unit. e, Top: mean minimum error as a
function of the number of random groups when learning each of (left) two, (center) three, and (right) four readouts for the same networks as in d. Bottom:
the corresponding mean errors during training for the case of 40 groups. The inset is a magnification of the initial training period for the case of two
readout units. f, Outputs producing the median error for the case of four readout units using 40 groups in the 400-neuron network.

NATURE NEUROSCIENCE | VOL 21 | DECEMBER 2018 | 1774–1783 | www.nature.com/natureneuroscience 1777

ARTICLES NATURE NEUROSCIENCE

Nonlinear behavior. We initially choose the baseline firing rate
(r0 = 20 Hz in equation (2)) to be consistent with experimentally
measured firing rates in motor cortex4,27,36. Most of the time, neu-
rons operate within the linear part of their nonlinear gain func-
tion. In other words, the neuronal dynamics resemble those when
using the linear gain function f(xi; gi) = gixi (Fig. 5a,c). To test
whether our results hold for scenarios with more strongly nonlin-
ear dynamics, we reduce the baseline firing rate to r0 = 5 Hz. This
increases the neuronal activity near the lower-saturation regime
(i.e., towards the left part of the curve in the left panel of Fig. 1c)
of the gain function (Fig. 5b,c). As expected from the larger range
of possible network outputs (and improved learning performance)
in nonlinear recurrent neuronal networks than in linear ones31,32,34,
we observe better learning performance for r0 = 5 Hz than for
r0 = 20 Hz (Fig. 5d); and we obtain a very similar distribution of
gain values after training (Fig. 5e).

Notably, it is still possible to learn new movements by using
combinations of existing gain patterns. As before, performance
is limited by the accuracy with which one can construct tar-
get movements as linear combinations of existing primitives
(Supplementary Fig. 4b). Moreover, errors in network output
decrease, on average, with increasing numbers of gain patterns
in the movement library (Fig. 5f), and the difference between the
network output and corresponding fit remains small for all tested
numbers of library elements (Fig. 5f). However, reducing r0 to suf-
ficiently small values (r0 < 5 Hz) does eventually lead to a dete-
rioration in the effectiveness of gain patterns at providing motor
primitives for new movements.

Gain modulation can control movement speed. Thus far, we have
demonstrated that simple (even coarse, group-based) gain modula-
tion enables control of network outputs of the same fixed duration.
To control movements of different durations, motor networks must
be able to slow down or speed up muscle outputs (i.e., change the
duration of movements without affecting their shape). In line with
recent experimental results37,38, we investigate whether changing
neuronal gains allows control of the speed of an intended movement
(Fig. 6a; and see Methods). We begin with a network of 400 neurons
(with 40 random modulatory groups) that generates muscle activity
lasting approximately 0.5 s. We find that our learning rule can suc-
cessfully train a network to generate a slower variant that lasts five
times longer (Fig. 6b and Supplementary Fig. 5a) than the original
movement (see Methods).

In contrast to simply changing the single-neuron time constant τ
—which uniformly scales the duration, but does not affect the shape
of each neuron’s activity—modifying neuronal gains to generate
‘fast’ and ‘slow’ output variants leads to changes in both the shape
and duration of neuronal firing rates, in line with recent experi-
mental findings37. Changing neuronal gains thus enables interac-
tions between the shape and duration of outputs without requiring
retraining of the synaptic weight matrix to scale the duration of neu-
ronal activities39.

The learned slow variants are more sensitive to noisy initial con-
ditions than the fast variants, but we can find more robust solutions
by using a regularized back-propagation algorithm to train both the
neuronal gains and the readout weights (see Methods). Following
such training, the network successfully learns the slow variants

100 ms

TargetFit Output

l = 2 l = 4

l = 8 l = 16

G
ai

n
pa

tte
rn

 li
br

ar
y

a
Target

Fit to target

Output

b
l

1 20

d
Output vs. target
Fit vs. target
Output vs. fit

0 5 10 15 20
Number of library elements (l)

0

1

0.5

1.5

2
3

E
rr

or

F (g1)

F (gl)

c 1

c l

0 0.2 0.4 0.6 0.8 1
Output error

0

0.2

0.4

0.6

0.8

1

F
it

er
ro

r

c

E
M

G
E

M
G

g1

g2

g3

gl

Initial

condition c 1F (g1) + + c lF (gl)

F (c 1g1 + + c lgl)

Fig. 4 | Gain patterns can provide motor primitives for novel movements. a, Schematic of a learned library of gain patterns (g1, … , gl, which we color
from purple to blue) and a combination c1F(g1)!+ !… + !clF(gl) of their outputs (which we denote by F) that we fit (red dashed curve) to a novel target (gray
curve). Top right: the output F(c1g1!+ !… !+ !clgl) (orange) of the same combination of corresponding gain patterns also closely resembles the target. We
use a 400-neuron network with 40 random modulatory groups (see Methods). b, Example target, fit, and output (gray, red dashed, and orange curves,
respectively) producing the 50th-smallest output error over 100 randomly generated combinations (see Methods) of l library elements using l!= !2, l!=!4,
l!= !8, and l!=!16. c, Fit error vs. output error for 100 randomly generated combinations of l library elements for l!= !1, … , 20. We show the identity line in gray.
Each point represents the 50th-smallest error between the output and the fit across 100 novel target movements. d, Median errors of the 100 randomly
generated combinations of l library elements vs. the number of library elements.

NATURE NEUROSCIENCE | VOL 21 | DECEMBER 2018 | 1774–1783 | www.nature.com/natureneuroscience1778

ARTICLESNATURE NEUROSCIENCE

(Fig. 6c), which are now less sensitive to the same noisy initial con-
ditions (Supplementary Fig. 5g). The neuronal dynamics oscillate
transiently, with a substantially lower frequency than either the fast
variants or the slow variants trained by our reward-based learning
rule (Fig. 6b,c). We also find a single gain pattern that, rather than
slowing down only one movement, can slow down up to approxi-
mately five distinct movements (which result from five orthogo-
nal initial conditions) by a factor of 5 (Supplementary Fig. 5h–j).
Consequently, one can extend the temporal scale of transient neuro-
nal activity several-fold through specific changes in neuronal gains.

Smoothly controlling the speed of movements. Following training
on a fast and a slow variant of the same movement (see the previous
section), we find that naively interpolating between the two gain
patterns does not yield the same movement at intermediate speeds
(Fig. 6d), consistent with human subjects being unable to consis-
tently apply learned movements at novel speeds39,40. Therefore, even
when we consider fast and slow variants of the same movement,
both our learning rule and the back-propagation training do not
learn to ‘slow down’ the movement; instead, they learn two seem-
ingly unrelated gain patterns. However, it is possible to modify our
back-propagation training procedure by including additional con-
straints on the fast and slow gain patterns (see Methods) so that
interpolating between the two gain patterns produces progressively
faster or slower outputs. We successfully train the network to gener-
ate two movements (associated with two different initial conditions)
at seven different speeds with durations ranging from 0.5 s to 2.5 s
(Fig. 6e and Supplementary Fig. 6; and see Methods). Linear inter-
polation between the fast and slow gain patterns (Supplementary
Fig. 6b) now generates smooth speed control of both movements at
any intermediate speed (Fig. 6d,f). In other words, we can control
the speed of multiple movements associated with different initial

conditions by learning a ‘manifold’41 in neuronal gain space that
interpolates between the fast and the slow gain patterns (Fig. 6a).

Joint control of movement shape and speed. Thus far, we have
shown that gain modulation can affect either the shape or the speed
of a movement. Flexible and independent control of both the shape
and speed of a movement (i.e., joint control) necessitates separate
representations of space and time in the gain patterns. A relatively
simple possibility is to find a single universal manifold in neuro-
nal gain space (see the previous section) for speed control (we call
this the ‘speed manifold’) and combine it with gain patterns that are
associated with different movement shapes. Biologically, this may
be achievable using separate modulatory systems. We achieve such
separation by simultaneously training one speed manifold and ten
gain patterns for ten different movement shapes, such that move-
ments are encoded by the product of shape-specific and speed-spe-
cific gain patterns (Fig. 7a; and see Methods). Following training,
we can generate each of the ten movements at the seven trained
speeds by multiplying a speed-specific gain pattern (Fig. 7b) with
the desired shape-specific gain pattern. Critically, we can also accu-
rately generate each of the ten different movements at any interme-
diate speed by simply linearly interpolating between the fast and
slow gain patterns (Fig. 7c,d). We thereby obtain separate families
of gain patterns for movement shape and speed that independently
control movements in space and time.

Learning gain-pattern primitives to control movement shape and
speed. To construct new movement shapes with arbitrary durations,
we examine the possibility of using both the speed manifold and the
ten trained shape-specific gain patterns that we obtained previously
(Fig. 7) as a library of spatiotemporal motor primitives. We test this
library using 100 novel target movement shapes (as we did in Fig. 4).

E
rr

or

Gain

E
M

G

ba c

ed f

100 ms

100 ms100 ms

0

–5

5

10

15

0

–5

5

10

15

r0 = 20 Hz
r0 = 5 Hz

Number of iterations (103)

r0 = 20 Hz r0 = 5 Hz

0 5 10 15
10–3

10–2

10–1

100

0.5 1 1.5
0

10

20

30

P
er

ce
nt

 o
f n

eu
ro

ns

–10 0 10 20
–10

0

10

20
r0 = 20 Hz
r0 = 5 Hz

Simulation
results
N(1, σ2)

R
el

at
iv

e
fir

in
g

ra
te

(f
)

(H
z)

R
el

at
iv

e
fir

in
g

ra
te

(f
)

(H
z)

Relative firing rate with
linear gain function

R
el

at
iv

e
fir

in
g

ra
te

w
ith

 n
on

lin
ea

r
ga

in
 fu

nc
tio

n

Output vs. target
Fit vs. target
Output vs. fit

Number of library
elements (l)

0 5 10 15 20
0

1

0.5

1.5

2
3

E
rr

or

Fig. 5 | Examining effects of more strongly nonlinear neuronal dynamics by using a baseline rate of r0#=#5#Hz. a, Relative firing rate of 20 excitatory
and 20 inhibitory neurons in a 200-neuron network with r0!= !20!Hz in equation (2). b, Relative firing rate of the same neurons as those in a, but with
r0!= !5!Hz. c, The dotted curves show the relative firing rates of all neurons over time when using the nonlinear gain function (see equation (2)) with (black)
r0!= !20!Hz and (blue) r0!= !5!Hz vs. the relative firing rates that result from using the linear gain function f(xi; gi)!= !gixi. We set each neuronal gain gi to 1, and
we plot the identity line in gray. d, Mean error over 10 independent training sessions with r0!= !20!Hz (black) and r0!= !5!Hz (blue) for the task in Fig. 1d
(see Methods). Shading indicates 1!s.d. Inset: network outputs with all gains set to 1 and the new learned gain pattern with r0!= !5!Hz for 10 noisy initial
conditions (gray curves). We show the two targets in black and orange (see Methods). e, Histogram of gain values after training with r0!= !5!Hz. The black
curve is a Gaussian distribution with a mean of 1 and an s.d. of σ ≈ 0.157 (i.e., the distribution that we obtained with r0!= !20!Hz in Fig. 1e). f, Gain patterns
as motor primitives with r0!= !5!Hz. We generate these results as in Fig. 4d, except that now we use r0!= !5!Hz. We obtain qualitatively similar results to our
observations for the baseline rate r0!= !20!Hz.

NATURE NEUROSCIENCE | VOL 21 | DECEMBER 2018 | 1774–1783 | www.nature.com/natureneuroscience 1779

ARTICLES NATURE NEUROSCIENCE

For each target movement, we learn the coefficients for linearly
combining the ten shape-specific gain-pattern primitives to obtain
each new movement at both the fast and slow speeds, while keeping
the speed manifold fixed (Fig. 8a; and see Methods).

We find that it is possible to accurately generate the new move-
ments at fast and slow speeds using the above spatiotemporal library
of gain patterns (Supplementary Fig. 7). Critically, we are able to
produce the new movements with accuracies similar to those at the
fast and slow speeds at any intermediate speed by linearly inter-
polating between the fast and slow gain patterns using the unal-
tered speed manifold (Fig. 8b,c). The mean error of approximately
0.5 across all movement durations is similar to the error that we
obtained previously from a movement library consisting of ten gain
patterns (Fig. 4d). We can substantially outperform the (uniformly
at random) permuted gain patterns from their associated targets
and outputs generated using least-squares fitting (which we used in
Fig. 4) to combine gain patterns (Fig. 8c; and see Methods).

Consistent with the idea of rapidly generating movements using
motor primitives, we generate correlated target shapes by using
correlated combinations of gain patterns (Fig. 8d). Therefore, one
can use previously learned gain patterns for controlling movement
shapes to generate new movements while maintaining independent
control of movement speed.

Discussion
The movement-specific population activity that has been observed
in monkey primary motor cortex4 can arise through several pos-
sible mechanisms. Distinct neuronal activity can emerge from
a fixed population-level dynamical system with different move-
ment-specific preparatory states7. Alternatively, one can change

the underlying dynamical system through modification of the
effective connectivity42, even when a preparatory state is the same
across movements. Such changes in effective connectivity can arise
either through a feedback loop (for example, a low-rank addition
to the synaptic weight matrix34) or through patterns of movement-
specific gains, as we explore in this paper. We find that movement-
specific gain patterns provide a performance level similar to that
achieved by training a different initial condition for each desired
output (with a fixed duration) and that both of these approaches
outperform a rank-1 perturbation of the synaptic weight matrix (see
Supplementary Fig. 1f). Gain modulation thus provides a comple-
mentary method of controlling neuronal dynamics for flexible and
independent manipulation of output shape. Additionally, gain mod-
ulation provides a compelling mechanism for extending the dura-
tion of activity transients without needing to carefully construct
movement-specific network architectures39.

Gain modulation may occur via neuromodulators20,22, but it can
also arise from a tonic (i.e., static) input that shifts each neuron’s
resting activity within the dynamic range of its input–output func-
tion (for example, through inputs from the cerebellum)14. Although
this is an effective way of mimicking gain changes in recurrent net-
work models with strongly nonlinear single-neuron dynamics37,43,
we are unable to produce desired target outputs by training a tonic
input. It is worth noting that a tonic input also modifies baseline
neuronal activity, thereby altering the output muscle activities away
from rest.

In line with previous research4,8,10, we train networks to generate
specific target output trajectories (which we suggest act as a proxy
for muscle activity). This is a simplification of actual motor learn-
ing, as there are many different possible muscle activations that can

a b c

e

Slow output

Fast output

Slow-variant target

Slow output

Fast output

Slow-variant target

E
M

G

E
M

G

0 0.5 1 1.5 2 2.5

Time (s)

F
iri

ng
 r

at
e

0 0.5 1 1.5 2 2.5

Time (s)

F
iri

ng
 r

at
e

0.5 1 1.5 2 2.5

Movement duration (s)

f

Movement 1

Movement 2

E
M

G

0 0.5 1 1.5 2 2.5

Time (s)

E
M

G

Fast

Slow

G
ai

n
2

Gain 1

Gain
 40

d

E
M

G

500 ms
0

0.4
0.8
1.2
1.6

E
rr

or

Reward-based rule Back-propagation

Movement 1
Movement 2

0.5 1 1.5 2 2.5
Movement duration (s)

0
0.4
0.8

0

0.5

1

1.5

2

G
ai

n

Initial

conditions

∣ 5 Hz ∣ 5 Hz

Fig. 6 | Gain modulation can control movement speed. a, Schematic of gain patterns for fast (0.5!s; blue) and slow (2.5!s; orange) movement variants.
Bottom right: illustration of a manifold in neuronal gain space for controlling movement speed (see the text). We train a 400-neuron network using 40
random modulatory groups for all simulations (see Methods). b, Top: we train a network to extend its output from a fast-movement to a slow-movement
variant using our reward-based learning rule. Bottom: example firing rates of 50 excitatory and 50 inhibitory neurons for both fast and slow speed variants.
c, As in b, but now we use a back-propagation algorithm to train the neuronal gains (see Methods). d, Top: interpolation between fast and slow gain
patterns does not reliably generate target outputs of intermediate speeds when trained only at the fast and slow speeds. We show an example output
(orange) that lasts 1.5!s and the associated target (gray). Bottom: linear interpolation between the fast and slow gain patterns successfully generates target
outputs when trained at five intermediate speeds. We train one set of gain patterns (see e) on two target outputs associated with two different initial
conditions (see Methods). e, The seven optimized gain patterns for all 40 modulatory groups when training at seven evenly spaced speeds. f, Both outputs
when linearly interpolating at five evenly spaced speeds between the fast and slow gain patterns from e.

NATURE NEUROSCIENCE | VOL 21 | DECEMBER 2018 | 1774–1783 | www.nature.com/natureneuroscience1780

ARTICLESNATURE NEUROSCIENCE

lead to a ‘successful’ movement. For some motor tasks, it is probably
more biologically plausible to train a network to increase the suc-
cess of a desired movement defined by the position of an end effec-
tor while also minimizing the total amount of muscle activity (for
example, see refs 32,44). Nevertheless, our learning rule is biologically
plausible, in that it uses only local information and a single scalar
signal (which is the total sum of squared errors) per trial. It does not
carry detailed information about the exact way in which an output
trajectory deviates from a desired trajectory. We thus expect that
our main results will still be relevant for more realistic models of
motor learning (for example, using a biophysically realistic model
of a human arm32).

In our model, in which the recurrent architecture remains fixed,
synaptic modifications may take place upstream of the motor circuit
(for example, in the input synapses to the presumed neuromodula-
tory neurons45). Additionally, changes in neuronal gains can work in
concert with synaptic plasticity in cortical circuits, thereby allowing

changes in the modulatory state of a network to be transferred into
circuit connectivity46, consistent with known interactions between
neuromodulation and plasticity45. Consequently, understanding
the neural basis of motor learning may necessitate recording from
a potentially broader set of brain areas than those circuits whose
activity correlates directly with movement dynamics.

Our results build on a growing literature of taking a dynamical-
systems approach to studying temporally structured cortical activ-
ity. This perspective has been effective for investigations of several
cortical regions4,5,7,36,37,47,48. In line with this approach, our results may
also be applicable to other recurrent cortical circuits that exhibit
rich temporal dynamics (for example, decision-making dynamics
in prefrontal cortex48, temporally structured memories, etc.).

In summary, our results support the view that knowing only
the structure of neuronal networks is not sufficient to explain their
dynamics49,50. We extend current understanding of the effects of
neuromodulation13,17,20,49 and show that it is possible to control a

a

sg1

sg2

sg3

mg1

mg2

mgn

s m

i = 1
i = 2
i = 3

F(gi × g1)

s mF(g i × gn)

×

G
ai

n
2

Gain 1

Gain
 40

0.5 s

d

b c

E
M

G
 (

a.
u.

)

0 0.5 1 1.5 2 2.5
Time (s)

0 0.5 1 1.5 2 2.5

0.5 1 1.5 2 2.5
0

0.4

0.8

1.2

1.6

2

2.4

E
rr

or

Movement duration (s)

0.5

0

1

2

G
ai

n

1.5

0.5 1 1.5 2 2.5
Movement duration (s)

0.5 1 1.5 2 2.5
0

0.05

0.1

0.15

E
rr

or

Movement duration (s)

Fig. 7 | Joint control of movement shape and speed through gain modulation. a, One can jointly learn the gain patterns ggi
s for (left) movement speed

and ggj
m for (center) movement shape so that the product of two such gain patterns produces a desired movement at a desired speed. Right: example

outputs (which we denote by F) for two movement shapes at three interpolated speeds between the fast and slow gain patterns (see the main text and
Methods). b, Seven optimized gain patterns for controlling movement speed (i.e., ggi

s for i ∈ {1, … , 7} from a) for the 40 modulatory groups when training
on 10 different movement shapes. c, We plot the mean error over all 10 movements when linearly interpolating between the fast and slow gain patterns
for controlling movement speed from b. Vertical axis scale is as in Fig. 6d. Inset: we plot the same data using a different vertical axis scale. Vertical dashed
lines identify the seven movement durations that we use for training. d, Outputs at five interpolated speeds between the fast and slow gain patterns for six
of the ten movements. For each simulation, we train a 400-neuron network using 40 random modulatory groups (see Methods).

NATURE NEUROSCIENCE | VOL 21 | DECEMBER 2018 | 1774–1783 | www.nature.com/natureneuroscience 1781

ARTICLES NATURE NEUROSCIENCE

recurrent neuronal network’s computations without changing its
connectivity. We find that modulating only neuronal responsive-
ness enables flexible control of neuronal activity. We are also able
to combine previously learned modulation states to generate new
desired activity patterns, and we demonstrate that employing gain
modulation allows one to smoothly and accurately control the dura-
tion of network outputs. Our results thus suggest the possibility that
gain modulation is a central part of motor control.

Online content
Any methods, additional references, Nature Research reporting
summaries, source data, statements of data availability, and asso-
ciated accession codes are available at https://doi.org/10.1038/
s41593-018-0276-0.

Received: 15 May 2018; Accepted: 9 October 2018;
Published online: 26 November 2018

References
 1. Rathelot, J.-A. & Strick, P. L. Subdivisions of primary motor cortex

based on cortico-motoneuronal cells. Proc. Natl. Acad. Sci. USA 106,
918–923 (2009).

 2. Rosenbaum, D. A. Human Motor Control. (Academic Press, Cambridge,
MA,USA, 2009).

 3. Sanes, J. N. & Donoghue, J. P. Plasticity and primary motor cortex.
Annu. Rev. Neurosci. 23, 393–415 (2000).

 4. Churchland, M. M. et al. Neural population dynamics during reaching.
Nature 487, 51–56 (2012).

 5. Shenoy, K. V., Sahani, M. & Churchland, M. M. Cortical control of arm
movements: a dynamical systems perspective. Annu. Rev. Neurosci. 36,
337–359 (2013).

 6. Afshar, A. et al. Single-trial neural correlates of arm movement preparation.
Neuron 71, 555–564 (2011).

 7. Churchland, M. M., Cunningham, J. P., Kaufman, M. T., Ryu, S. I. & Shenoy,
K. V. Cortical preparatory activity: representation of movement or first cog in
a dynamical machine? Neuron 68, 387–400 (2010).

 8. Russo, A. A. et al. Motor cortex embeds muscle-like commands in an
untangled population response. Neuron 97, 953–966.e8 (2018).

 9. Churchland, M. M. & Cunningham, J. P. A dynamical basis set for generating
reaches. Cold Spring Harb. Symp. Quant. Biol. 79, 67–80 (2014).

 10. Sussillo, D., Churchland, M. M., Kaufman, M. T. & Shenoy, K. V. A neural
network that finds a naturalistic solution for the production of muscle
activity. Nat. Neurosci. 18, 1025–1033 (2015).

 11. Hennequin, G., Vogels, T. P. & Gerstner, W. Optimal control of transient
dynamics in balanced networks supports generation of complex movements.
Neuron 82, 1394–1406 (2014).

 12. Sehgal, M., Song, C., Ehlers, V. L. & Moyer, J. R. Jr. Learning to learn
- intrinsic plasticity as a metaplasticity mechanism for memory formation.
Neurobiol. Learn. Mem. 105, 186–199 (2013).

 13. Kida, H. & Mitsushima, D. Mechanisms of motor learning mediated
by synaptic plasticity in rat primary motor cortex. Neurosci. Res. 128,
14–18 (2018).

 14. Chance, F. S., Abbott, L. F. & Reyes, A. D. Gain modulation from background
synaptic input. Neuron 35, 773–782 (2002).

 15. Swinehart, C. D., Bouchard, K., Partensky, P. & Abbott, L. F. Control of
network activity through neuronal response modulation. Neurocomputing
58–60, 327–335 (2004).

 16. Zhang, J. & Abbott, L. F. Gain modulation of recurrent networks.
Neurocomputing 32–33, 623–628 (2000).

 17. Marder, E. Neuromodulation of neuronal circuits: back to the future. Neuron
76, 1–11 (2012).

 18. Salinas, E. & Thier, P. Gain modulation: a major computational principle of
the central nervous system. Neuron 27, 15–21 (2000).

 19. Molina-Luna, K. et al. Dopamine in motor cortex is necessary for skill
learning and synaptic plasticity. PLoS One 4, e7082 (2009).

 20. Thurley, K., Senn, W. & Lüscher, H.-R. Dopamine increases the gain of the
input-output response of rat prefrontal pyramidal neurons. J. Neurophysiol.
99, 2985–2997 (2008).

 21. Vestergaard, M. & Berg, R. W. Divisive gain modulation of motoneurons by
inhibition optimizes muscular control. J. Neurosci. 35, 3711–3723 (2015).

a

b c d

G
ai

n
2

Gain 1

Gain
 40

c1

c10

0 0.5 1 1.5 2 2.5

Time (s)

E
M

G

0.5 1 1.5 2 2.5

Movement duration (s)

Movement-shape library

Learn new combination

Speed manifoldTarget

Control

0

1

2

3

E
rr

or

–1 –0.5 0 0.5 1

Correlation coefficient between
combination coefficients

–1

–0.5

0

0.5

1

C
or

re
la

tio
n

co
ef

fic
ie

nt
be

tw
ee

n
ta

rg
et

s

Learning combinations
Linear fit

Example

gm
1

gm
2

gm
10

Fig. 8 | Learning gain-pattern primitives to control movement shape and speed. a, We are able to learn to combine (left) previously acquired gain
patterns for movement shapes to generate (center) a new target movement at both fast and slow speeds simultaneously using (right) a fixed manifold
in neuronal gain space for controlling movement speed (see Methods). b, We plot the output, at three different speeds, that produces the 50th-smallest
error (across all 100 target movements) between the output and the target when summing errors at both fast and slow speeds. c, Mean network output
error across all 100 target movements for all durations when learning to combine gain patterns (black solid curve). The red curve indicates the error for
the output from b. As a control, we plot the mean error over all target movements when dissociating the learned gain patterns from their target movement
by permuting (uniformly at random) the target movements (gray curve). We also plot the mean error over all target movements when combining gain
patterns using a least-squares fit of the ten learned movement shapes to the target (black dashed curve; see Methods). For each example, to generate
outputs of a specific duration, we linearly interpolate between the fast and slow gain patterns. d, We plot the Pearson correlation coefficient between each
pair of target movements vs. the Pearson correlation coefficient between the corresponding pair of learned combination coefficients c1, … , c10. For each
simulation, we train a 400-neuron network using 40 random modulatory groups (see Methods).

NATURE NEUROSCIENCE | VOL 21 | DECEMBER 2018 | 1774–1783 | www.nature.com/natureneuroscience1782

ARTICLESNATURE NEUROSCIENCE

 22. Wei, K. et al. Serotonin affects movement gain control in the spinal cord.
J. Neurosci. 34, 12690–12700 (2014).

 23. Hosp, J. A., Pekanovic, A., Rioult-Pedotti, M. S. & Luft, A. R. Dopaminergic
projections from midbrain to primary motor cortex mediate motor skill
learning. J. Neurosci. 31, 2481–2487 (2011).

 24. Huntley, G. W., Morrison, J. H., Prikhozhan, A. & Sealfon, S. C. Localization
of multiple dopamine receptor subtype mRNAs in human and monkey motor
cortex and striatum. Brain Res. Mol. Brain Res. 15, 181–188 (1992).

 25. Thoroughman, K. A. & Shadmehr, R. Learning of action through adaptive
combination of motor primitives. Nature 407, 742–747 (2000).

 26. Giszter, S. F. Motor primitives–new data and future questions. Curr. Opin.
Neurobiol. 33, 156–165 (2015).

 27. Lara, A. H., Cunningham, J. P. & Churchland, M. M. Different population
dynamics in the supplementary motor area and motor cortex during
reaching. Nat. Commun. 9, 2754 (2018).

 28. Rajan, K., Abbott, L. F. & Sompolinsky, H. Stimulus-dependent suppression of
chaos in recurrent neural networks. Phys. Rev. E 82, 011903 (2010).

 29. Mazzoni, P., Andersen, R. A. & Jordan, M. I. A more biologically
plausible learning rule for neural networks. Proc. Natl. Acad. Sci. USA 88,
4433–4437 (1991).

 30. Legenstein, R., Chase, S. M., Schwartz, A. B. & Maass, W. A reward-
modulated hebbian learning rule can explain experimentally observed
network reorganization in a brain control task. J. Neurosci. 30,
8400–8410 (2010).

 31. Hoerzer, G. M., Legenstein, R. & Maass, W. Emergence of complex
computational structures from chaotic neural networks through reward-
modulated Hebbian learning. Cereb. Cortex 24, 677–690 (2014).

 32. Miconi, T. Biologically plausible learning in recurrent neural networks
reproduces neural dynamics observed during cognitive tasks. eLife 6,
e20899 (2017).

 33. Li, N., Chen, T.-W., Guo, Z. V., Gerfen, C. R. & Svoboda, K. A motor cortex
circuit for motor planning and movement. Nature 519, 51–56 (2015).

 34. Sussillo, D. & Abbott, L. F. Generating coherent patterns of activity from
chaotic neural networks. Neuron 63, 544–557 (2009).

 35. Spampinato, D. A., Block, H. J. & Celnik, P. A. Cerebellar–M1 connectivity
changes associated with motor learning are somatotopic specific. J. Neurosci.
37, 2377–2386 (2017).

 36. Kao, J. C. et al. Single-trial dynamics of motor cortex and their applications
to brain-machine interfaces. Nat. Commun. 6, 7759 (2015).

 37. Wang, J., Narain, D., Hosseini, E. A. & Jazayeri, M. Flexible timing by
temporal scaling of cortical responses. Nat. Neurosci. 21, 102–110 (2018).

 38. Soares, S., Atallah, B. V. & Paton, J. J. Midbrain dopamine neurons control
judgment of time. Science 354, 1273–1277 (2016).

 39. Hardy, N. F., Goudar, V., Romero-Sosa, J. L. & Buonomano, D. V. A model of
temporal scaling correctly predicts that motor timing improves with speed.
Nat. Commun. 9, 4732 (2018).

 40. Collier, G. L. & Wright, C. E. Temporal rescaling of simple and complex
ratios in rhythmic tapping. J. Exp. Psychol. Hum. Percept. Perform. 21,
602–627 (1995).

 41. Gallego, J. A., Perich, M. G., Miller, L. E. & Solla, S. A. Neural manifolds for
the control of movement. Neuron 94, 978–984 (2017).

 42. Friston, K. J. Functional and effective connectivity: a review. Brain Connect. 1,
13–36 (2011).

 43. Sussillo, D. & Barak, O. Opening the black box: low-dimensional
dynamics in high-dimensional recurrent neural networks. Neural Comput. 25,
626–649 (2013).

 44. Kambara, H., Shin, D. & Koike, Y. A computational model for optimal
muscle activity considering muscle viscoelasticity in wrist movements.
J. Neurophysiol. 109, 2145–2160 (2013).

 45. Martins, A. R. O. & Froemke, R. C. Coordinated forms of noradrenergic
plasticity in the locus coeruleus and primary auditory cortex. Nat. Neurosci.
18, 1483–1492 (2015).

 46. Swinehart, C. D. & Abbott, L. F. Supervised learning through neuronal
response modulation. Neural Comput. 17, 609–631 (2005).

 47. Breakspear, M. Dynamic models of large-scale brain activity. Nat. Neurosci.
20, 340–352 (2017).

 48. Mante, V., Sussillo, D., Shenoy, K. V. & Newsome, W. T. Context-dependent
computation by recurrent dynamics in prefrontal cortex. Nature 503,
78–84 (2013).

 49. Bargmann, C. I. Beyond the connectome: how neuromodulators shape neural
circuits. BioEssays 34, 458–465 (2012).

 50. Bassett, D. S. & Sporns, O. Network neuroscience. Nat. Neurosci. 20,
353–364 (2017).

Acknowledgements
We thank the members of the Vogels lab (particularly E. J. Agnes, R. P. Costa, W. F.
Podlaski, and F. Zenke) for their insightful comments and Y. T. Kimura for creating the
monkey illustration. We also thank O. Barak, T. E. J. Behrens, R. Bogacz, M. Jazayeri,
and L. Susman for their helpful comments. Our work was supported by grants from the
Wellcome Trust (T.P.V. and J.P.S. through WT100000, and G.H. through 202111/Z/16/Z)
and the Engineering and Physical Sciences Research Council through the Life Sciences
Interface Doctoral Training Centre at the University of Oxford (EP/F500394/1 to J.P.S.).

Author contributions
J.P.S., G.H., and T.P.V. conceived the study and developed the model. J.P.S. performed
simulations for Figs. 1–5 and Supplementary Figs. 1–4, and J.P.S. and G.H. performed
simulations for Figs. 6–8 and Supplementary Figs. 5–8. J.P.S. analyzed the results,
produced the figures, and wrote the first draft of the manuscript. J.P.S., M.A.P., G.H., and
T.P.V. discussed and iterated on the analysis and its results, and all authors also revised
the final manuscript.

Competing interests
The authors declare no competing interests.

Additional information
Supplementary information is available for this paper at https://doi.org/10.1038/
s41593-018-0276-0.
Reprints and permissions information is available at www.nature.com/reprints.
Correspondence and requests for materials should be addressed to J.P.S.
Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.
© The Author(s), under exclusive licence to Springer Nature America, Inc. 2018

NATURE NEUROSCIENCE | VOL 21 | DECEMBER 2018 | 1774–1783 | www.nature.com/natureneuroscience 1783

ARTICLES NATURE NEUROSCIENCE

Methods
Model. Our model is specified by a differential equation governing the neuronal
activity (equation (1)), the gain function (equation (2)), a set of readout weights, and
each neuron’s gain. In the following discussions, we describe our model precisely.

Neuronal dynamics. We model neuronal activity according to equation (1), which
we integrate using the ode45 function (using default parameters) in Matlab. We do
not explicitly model dynamics before movement execution; all of our simulations
begin at the time of movement onset4,11 (except when we use a ramping input in
Fig. 2). We choose the initial condition x0 among the ‘most observable’ modes of
the system (i.e., those that elicit the strongest transient dynamics11). Specifically,
we first linearize equation (1) around its unique equilibrium point x = 0 using
unit gains (i.e., gi = 1 for all i), and we compute the observability Gramian
(a symmetric positive-definite matrix Q) of the linearized system. The most
observable modes are the top eigenvectors of Q11. Unless we state otherwise, we
choose the eigenvector associated with the largest eigenvalue of Q (note that all
of its eigenvalues are real and positive) as the initial condition x0 for the neuronal
activity. Following ref. 11, we also scale x0 so that ||x0||2 = 1.5√ N.

Biophysical interpretation of equation (1). Equation (1), together with equation
(2), describes how we model neuronal firing rates relative to a baseline rate r0. In
this section, we clarify that one can obtain identical neuronal activity by using a
strictly positive gain function f and including a constant input h in equation (1).
Specifically, given a desired baseline firing rate r0, one can model the neuronal
activity as

τ = − + +x x W x g hd t
dt

t f t() () (() ;) , (3)

for the same initial condition x0 that we described above, where = − ∑h r Wi j ij0 and

⎧
⎨
⎪⎪

⎩
⎪⎪

=
∕ + <

− ∕ − + ≥f x g
r g x r r x

r r g x r r r x
(;)

tanh() , if 0 ,
()tanh(()) , if 0 , (4)i i

i i i

i i i

0 0 0

max 0 max 0 0

where rmax is the maximum firing rate. Note that the constant term h in equation (3)
is necessary to balance the additional r0 term in equation (4).

Construction of the network architecture. Prior to stability optimization (see
below), we generate synaptic weight matrices W as detailed in ref. 11. In keeping
with Dale’s law, these matrices consist of M positive (excitatory) columns and
M negative (inhibitory) columns. We begin with a set of sparse (such that the
connection probability between any two neurons is small) and strong weights with
nonzero elements set to w0/√ N (excitatory) and –γ w0/√ N (inhibitory), where

ρ γ= ∕ − +w p p2 ((1) (1))0
2 2 2 and the connection probability between each two

neurons is homogeneous and is given by p = 0.1. This construction results in W
having an approximately circular spectrum (i.e., set of eigenvalues) of radius ρ
(which we set to ρ = 10), leading to linear instability before stability optimization.
As in ref. 11, we set the inhibition/excitation ratio γ to be γ = 3.

After constructing the initial W, we never change any of the excitatory
connections. Following ref. 11, we refine the inhibitory connections to minimize
an upper bound of W’s ‘spectral abscissa’ (SA; i.e., the largest real part among the
eigenvalues of W)11. Briefly, we iteratively update inhibitory weights to follow
the negative gradient of this upper bound to the SA. First, the inhibitory weights
remain inhibitory (i.e., negative). Second, we maintain a constant ratio (of
γ = 3) of mean inhibitory weights to mean excitatory weights. Third, we restrict
the density of inhibitory connections to be at most 0.4 to maintain sufficiently
sparse connectivity. We observed that this constrained gradient descent usually
converges within a few hundred iterations. As noted in ref. 11, the SA typically
decreases during optimization from 10 to about 0.15. For additional details, see the
Supplementary Information of ref. 11.

As a proof of principle, we also construct a chaotic variant of our recurrent
neuronal-network model (Fig. 2). These networks are chaotic in the sense that
the neuronal dynamics in equation (1) have a positive maximum Lyapunov
exponent51. We use a synaptic weight matrix W (as described above) before
stability optimization, but we now use parameter values of γ = 1 and ρ = 1.5. We
also set τ = 20 ms, and we choose the initial condition x0 for the neuronal activity
from a uniform distribution on the interval [–10, 10]. We use only the first 0.5 s of
neuronal activity for our simulations of the chaotic network model.

Creating target muscle activity. We generate target muscle activities of duration
ttot = 500 ms (Figs. 1–5) and ttot = 2,500 ms (Figs. 6–8). In each case, we draw muscle
activity from a Gaussian process with a covariance function K ∈ [0, ttot] × [0, ttot] →
R≥0 that consists of a product of a squared-exponential kernel (to enforce temporal
smoothness) and a nonstationary kernel that produces a temporal envelope similar
to that of real electromyogram (EMG) data during reaching4. Specifically,

σ σ′ = × ∕ × ′ ∕
′− −

ℓK t t e E t E t(,) () () , (5)t t()
2

2
2

where = − ∕E t te() t(4)2
. We set σ = 110 ms and ℓ = 50 ms for movements that last

500 ms, and σ = 550 ms and ℓ = 250 ms for movements that last 2,500 ms. We also
multiply the resulting muscle activity by a scalar to ensure that it has the same
order of magnitude as the neuronal activity. We use a sampling rate of 400 Hz for
movements that last 500 ms and 200 Hz for movements that last 2,500 ms.

We are modeling network output as a proxy for muscle-force activity. When
we study whether we can generate the same movement that lasts five times
longer (Figs. 6–8), we scale the duration of the muscle activity without changing
its amplitude. To actually generate the same movement so that it lasts five times
longer, we also need to scale the amplitude of the muscle activity by the factor
1/52 = 1/25. To demonstrate the effectiveness of learning through gain modulation,
we omit this scaling, so the tasks on which we train are more difficult ones, as the
target activity without the scaling has a substantially larger amplitude throughout
the movement. However, we find that learning through gain modulation can
also account for this scaling of muscle activity when performing movements at
different speeds (Supplementary Fig. 8). Alternatively, it may be possible for gain
modulation of downstream motor neurons in the spinal cord to account for scaling
of the amplitude of muscle activity when performing movements at different
speeds (for example, see ref. 21).

Network output. We compute the network output z(t) as a weighted linear
combination of excitatory neuronal firing rates:

= +m x gz t f t b() (() ;) , (6)E ET

where m, xE(t), gE ∈ RM, the quantity xE(t) is the excitatory neuronal activity,
and M is the number of excitatory neurons. To ensure that the network output
corresponds to realistic muscle activity (see “Creating target muscle activity”)
before any training of the neuronal gains, we fit the readout weights m and the
offset b to an initial output activity using least-squares regression. To ameliorate
any issues of overfitting, we use 100 noisy trials, in which we add white Gaussian
noise to the initial condition x0 for each trial with a signal-to-noise ratio of 30
dB11. Subsequently, the readout weights remain fixed throughout training of the
neuronal gains. See our simulation details for each figure for additional details.

Measuring error in network output. We compute the error ε between the network
output R∈z ttot and a target R∈y ttot by discretizing time and calculating

ε = − =
∑ −

∑ − ¯
=

=

R
z t y t

y t y
1

(() ())

(())
, (7)t

t

t

t
2 1

2

1

2

tot

tot

where ̄ = ∑ =y y t()t t
t1

1tot
tot and R2 is the coefficient of determination (which is often

called simply ‘R-squared’). Therefore, an error of ε = 1 implies that the performance
is as bad as if the output z were equal to the mean of the target y and thus does not
capture any variations in output. When we use multiple readout units, we take
the mean error ε across all outputs. We use this definition of error throughout the
entire paper.

A learning rule for neuronal input–output gains. We devise a reward-based
node-perturbation learning rule that is biologically plausible, in the sense that
it includes only local information and a single scalar reward signal that reflects
a system’s recent performance29,30. Our learning rule progressively reduces the
error (on average) between the network output and a target output over training
iterations. We update the gain gi for neuron i after each training iteration tn (with
n = 1, 2, 3, …) according to the following learning rule:

ξ= + − ̄ +− − − −g t g t R t g t g t t() () () (() ()) () , (8)i n i n n i n i n i n1 1 1 1

where

ε ε
ε αε α ε

α α

= −
= + −

̄ = ̄ + −

−

−

−

R t sgn t t
t t t

g t g t g t

() (() ()) ,
() () (1) () ,
() () (1) () ,

(9)
n n n

n n n

i n i n i n

1

1

1

where ε (tn) represents the output error at iteration tn (see “Measuring error in
network output”), sgn is the sign function, ξi(tn) ~ 𝒩(0, 0.0012) is a Gaussian
random variable with mean 0 and s.d. 0.001, and α = 0.3. The initial modulatory
signal is R(t0) = 0, and the other initial conditions are ε ε=t t() ()0 0 (where ε (t0) is
the initial error before training) and ̄ = =g t g t() () 1i i0 0 . One can interpret the terms

̄gi and ε as lowpass-filtered gains and errors, respectively, over recent iterations,
with a history controlled by the decay rate α 32. We use these parameter values in all
of our simulations in this paper. We find that varying the standard deviation of the
noise term ξ or the factor α has little effect on the learning dynamics (not shown),
in line with ref. 31.

Although our learning rule in equation (8) is similar to reward-modulated
‘exploratory Hebbian’ (EH) synaptic plasticity rules30–32, we investigate changes in

NATURE NEUROSCIENCE | www.nature.com/natureneuroscience

ARTICLESNATURE NEUROSCIENCE

neuronal gains (i.e., the responsiveness of neurons) inside a recurrent neuronal
network, rather than synaptic weight changes. The above notwithstanding, we
expect our learning rule to perform well for a variety of learning problems. For
example, it can solve credit-assignment problems, because one can formulate such
a node-perturbation learning rule as reinforcement learning with a scalar reward52.

The modulatory signal R does not provide information about the sign and
magnitude of the error, and it also does not indicate the amount that each readout
(if using multiple readouts) contributes to a recent change in performance. The
modulatory signal R indicates only whether performance is better or worse, on
average, compared with previous trials. One can view the modulatory signal as an
abstract model for phasic output of dopaminergic systems in the brain19,23,24,53.

We use the following procedure for updating neuronal gains. We update the
gains for iteration t1 according to equation (8), and we obtain the network output
from the gain pattern g(t1). We then calculate the error ε (t1) from the output, and
we subsequently calculate the modulatory signal R(t1) and the quantities ε t()1 and
g t()1 using equation (9). We then repeat this process for all subsequent iterations.
If any gain values become negative, we set these to 0. However, this happened very
rarely in our computations, and we observed it only when we used 60,000 training
iterations (i.e., in Figs. 3e and 6b).

Alternative learning rule. One can also adapt our learning rule so that learning
ceases when the modulatory signal R(tn) saturates at a sufficiently small value. One
can achieve this by instead placing the noise term ξi inside the brackets in equation
(8), so that ξi is multiplied by the modulatory signal R, together with changing
the sgn function in equation (9) to the tanh function. This yields the following
learning rule:

ξ= + − ̄ +− − − −g t g t R t g t g t t() () () (() () ()) , (10)i n i n n i n i n i n1 1 1 1

where

η ε ε
ε αε α ε

α α

= −
= + −

̄ = ̄ + −

−

−

−

R t t t
t t t

g t g t g t

() tanh((() ())) ,
() () (1) () ,
() () (1) () ,

(11)
n n n

n n n

i n i n i n

1

1

1

and η = 50,000 controls the slope of the tanh function at 0 (i.e., when the
lowpass-filtered error ε t()n matches the current error ε (tn)). Learning now stops
when ε ε=−t t() ()n n1 ; see Fig. 2a. We achieve a qualitatively similar learning
performance by using equations (10) and (11) instead of equations (8) and (9),
respectively (Fig. 2a).

Generating groups for group-based gain modulation. For coarse-grained
(i.e., grouped) gain modulation, we generate n (modulatory) groups, and we
independently modulate each group using one external ‘modulatory unit’. Our
generation mechanism for random groups is as follows. For each of the n groups,
we choose N/n neurons (where N is the total number of neurons in the network)
uniformly at random without replacement. If n does not divide N, we assign the
remaining neurons to groups uniformly at random.

When using specialized groupings (Fig. 3b,c and Supplementary Fig. 2a–d) for
a particular target movement, we obtain groups by applying k-means clustering
(where k is the desired number of groups) to 10 gain patterns that we obtain from
10 prior independent training sessions (using neuron-specific control) on the same
target and which correspond to the minimum error for each training session. We
thus apply k-means clustering to a matrix of size N × 10, where row i has the gain
values for neuron i from the 10 independent training sessions to the same target.
Applying k-means clustering then generates groupings in which neurons in the
same group tend to have similar gain values following training using neuron-
specific modulation.

Simulation details. We now give a brief summary of our simulations for Figs. 1–8.
See the Supplementary Math Note for our mathematical derivations. A ‘readme’
file is also available with full details of our simulations, along with sample Matlab
code in the supplementary material. (We have also posted this information at
http://modeldb.yale.edu/246004.) Additionally, see the Nature Research Reporting
Summary for additional information.

Figure 1. We simulate two different electromyograms (EMGs; see “Creating
target muscle activity”) of muscle activities (initial reach and target reach) that each
last 0.5 s (Fig. 1a,f). We use a network of N = 200 neurons and sample transient
neuronal firing rates that last 0.5 s following the initial condition x0 of the neuronal
activity (see “Neuronal dynamics”). We fit the readout weights over 100 trials, in
which we add white Gaussian noise to the initial condition x0 (with a signal-to-
noise ratio of 30 dB) using least-squares regression so that the network output, with
all gains set to 1, generates the initial reach (see “Network output”). We use the
same readout weights throughout all training, and we use only one readout unit for
each simulation.

For each training iteration of the neuronal gains (to generate a target
movement), we use the initial condition x0 at time t = 0. We calculate the
subsequent network output as described in the “Network output” section, and we

update the neuronal gains according to equation (8). We repeat this process for
18,000 training iterations (which corresponds to 2.5 h of training time), which is
enough training time for the error to saturate (Fig. 1d). We run 10 independent
training sessions on the same target, and we plot these results in Fig. 1d,e.

Figure 2. We train neuronal gains on the same task as the one that we showed
in Fig. 1d using three alternative models. For one model, we use a ramping input
to the neuronal activity in equation (1) as a model of preparatory activity before
movement onset4,11. We use the same ramping input function that was used in ref. 11.
It is exp(t/τ on) for t < 0 s and exp(t/τ off) after movement onset (t ≥ 0), with an onset
time of τ on = 400 ms and an offset time of τ off = 2 ms. Gain changes that result from
learning now also affect the neuronal activity at t = 0 (i.e., at movement onset).

We also train a chaotic34 variant of our model (see “Construction of the
network architecture” for a description of how we construct such a model), and we
use the first 0.5 s of neuronal activity.

Finally, we use an alternative learning rule (see equations (10) and (11)) in
which learning stops automatically when the difference between network output
errors in successive training iterations becomes sufficiently small (see “Alternative
learning rule”).

Figure 3. For Fig. 3b,c, we generate five different target outputs and run
10 independent training sessions for each target. For the random groupings
(see “Generating groups for group-based gain modulation”), we use different
independently generated random groups for each simulation. For the specialized
groups (see “Generating groups for group-based gain modulation”), for a given
number of groups, we use the same grouping in all simulations.

We now explain how we determine specialized groups that are shared
by multiple movements (i.e., we use the same grouping for learning multiple
movements); see Fig. 3c and Supplementary Fig. 2b–d. We apply k-means
clustering (where k is the desired number of groups) across all of the gain patterns
that we obtain using neuron-specific modulation for each of the movements.
That is, we apply k-means clustering to a matrix of size N × (10 × q), where N is
the number of neurons and q is the number of movements (and, equivalently, the
number of gain patterns).

For the task that we just described above, we consider various different
numbers of groups (using random groupings) for networks with N = 100, N = 200,
and N = 400 neurons. We again perform 10 independent training sessions for
each network, target, and number of groups. We fit the readout weights so that
each scenario generates the same network output when all gains are set to 1. The
readout weights remain fixed throughout training. We plot these results in Fig. 3d
and Supplementary Fig. 2e–h.

When we use multiple readout units (Fig. 3e,f), we generate 10 different initial
and target outputs for each readout unit. We run independent training sessions
for these 10 sets of target outputs and calculate mean errors across the 10 training
sessions. For a given number of readout units, we use the same sets of initial and
target outputs for all three network sizes and each number of random modulatory
groups. We thus fit readout weights so that each scenario generates the same output
with all gains set to 1. The readout weights remain fixed throughout training. We
use 60,000 (instead of 18,000) training iterations to ensure error saturation.

Figure 4. To create libraries of learned movements, we train a network of 400
neurons and 40 random groups (see “Generating groups for group-based gain
modulation”) on each of 100 different target movements independently. (In other
words, this generates 100 different gain patterns, with one for each movement.)
For library sizes of l ∈ {1, 2, … , 50}, we choose 100 samples of l movements
(from the learned gain patterns and their outputs) uniformly at random without
replacement for each l. We then fit the set of l movements in each of the 100 sample
libraries using least-squares regression for each of 100 hitherto-untrained novel
target movements. We constrain the fitting coefficients cj from the least-squares
regression by requiring that cj ≥ 0 for all j and ∑ == c 1j

l
j1 . We calculate the fit error

(i.e., the error between the fit and the target), the output error (i.e., the error
between the output and the target), and the error between the fit and the output for
each of the 100 novel target movements, each of the 100 library samples, and each
l. In Fig. 4, we show results for up to l = 20 library elements. In Supplementary
Fig. 3, we show results for up to l = 50 library elements.

Figure 5. We train the same 200-neuron weight matrix that we used in Fig. 1 on
the same task as in Fig. 1d–f, except with a baseline rate of r0 = 5 Hz in equation (2).
We also repeat the simulations in Fig. 4 for the baseline rate r0 = 5 Hz.

Figure 6. In each of these simulations, we use a network of 400 neurons
and 40 random modulatory groups (see “Generating groups for group-based
gain modulation”). We construct slow (2.5 s) target movements with σ = 550 ms
and ℓ = 250 ms in equation (5). We then construct a fast (0.5 s) variant of each
movement. Each movement variant has 500 evenly spaced points (see “Creating
target muscle activity”). We sample the fast variant using 100 evenly spaced points,
and we then augment 400 instances of 0 values to the final 2 s of the movement to
ensure that both movement variants have the same length.

For Fig. 6b, we fit readout weights using least-squares regression, such that with
all gains set to 1, the network output generates the fast variant. We then train gain
patterns using our learning rule in equations (8) and (9) so that the network output
generates the slow-movement variant. (The initial condition x0 and readout weights
remain fixed.) We use 60,000 training iterations, and we run 10 independent
training sessions for each of 10 different target movements.

NATURE NEUROSCIENCE | www.nature.com/natureneuroscience

ARTICLES NATURE NEUROSCIENCE

For Fig. 6c, we perform the task that we described in the paragraph above using
a gradient-descent training procedure with gradients that we obtain from back-
propagation54. Together with learning the gain pattern for the slow variant, we
jointly optimize a single set of readout weights (shared by both the fast-movement
and slow-movement variants; see “Network output”) as part of the same training
procedure. The gains are still fixed at 1 for the fast variant. The cost function for
the training procedure is equal to the squared Euclidean 2-norm between actual
network outputs and the corresponding target outputs (summing the contributions
from fast and slow speeds) plus the Euclidean 2-norm of the readout weights,
where the latter acts as a regularizer. We run gradient descent for 500 iterations,
which is well after the cost has stopped decreasing.

For each of the 10 trained movements that we described earlier in this section,
we extract the mean minimum error across all simulations for both the outputs
obtained via our learning rule (Supplementary Fig. 5a) and the outputs obtained
via back-propagation (Supplementary Fig. 5b). We then linearly interpolate
between the learned gain patterns for the fast and slow outputs, and we calculate
the error between the output and the target movement at the interpolated
speed (Fig. 6d.)

For Fig. 6d–f, we train networks to generate a pair of target movements in
response to a corresponding pair of orthogonal initial conditions at fast and slow
speeds and also at each of five intermediate, evenly spaced speeds in between these
extremes. To do this, we parameterize the gain pattern of speed index s (with s
∈ {1, … , 7}) as a convex combination of a gain pattern gs = 1 for fast movements and
a gain pattern gs = 7 for slow movements, with interpolation coefficients of λ s (with
gs = λ sgs = 1 + (1− λ s)gs = 7, λ 1 = 1, and λ 7 = 0). We optimize (using back-propagation,
as discussed above) over gs = 1, gs = 7, the five interpolation coefficients λ s (with s
∈ {2, … , 6}), and a single set of readout weights. For a given speed s, we use the
gain pattern gs for both movements. We call the collection of gain patterns gs for s
∈ {1, … , 7} the gain manifold for speed control (i.e., the ‘speed manifold’).

Figure 7. We train (using back-propagation) a 400-neuron network with
40 random modulatory groups (see “Generating groups for group-based
gain modulation”) to generate each of 10 different movement shapes at seven
different, evenly spaced speeds (ranging from the fast variant to the slow variant)
using a fixed initial condition x0. To jointly learn gain patterns that control
movement shape and speed, we parameterize each gain pattern as the element-
wise product of a gain pattern that encodes shape (which we use at each speed
for a given shape) and a gain pattern that encodes speed (which we use at each
shape for a given speed). We again parameterize (see our simulation details for
Fig. 6) the gain pattern that encodes speed index s (with s ∈ {1, … , 7}) as a convex
combination of two common endpoints, gs = 1 (which we use for the fast-movement
variants) and gs = 7 (which we use for the slow-movement variants). We thus
optimize over 10 gain patterns for movement shape, two gain patterns each for
fast and slow movement speeds, five speed-interpolation coefficients, and a single
set of readout weights.

In Fig. 7c, we calculate the mean error between the network output and the
target over the 10 target movements when generating gain patterns for movement
speed by linearly interpolating between the trained fast (gs = 1) and slow (gs = 7)
gain patterns.

Figure 8. We use the 10 trained gain patterns for movement shapes, as well as
the speed manifold from Fig. 7. (See our simulation details for Fig. 7.) Using our
learning rule from equations (8) and (9), we train the 10 coefficients c1, … , c10
(Fig. 8a) to construct a new gain pattern from the 10 existing shape-specific gain
patterns that, together with the speed manifold, generates a new target movement
at the fast and slow speeds. Specifically, we replace the gains gi (for i ∈ {1, … , N})
with the coefficients ci (for i ∈ {1, … , 10}) in equations (8) and (9). We use the
mean of the errors at the fast and slow speeds in the learning rule. To generate the
network output at the fast and slow speeds, we calculate the element-wise product
between the newly constructed gain pattern and the fast and slow gain patterns,
respectively, on the speed manifold. We independently train, using 10,000 training
iterations, the coefficients c1, … , c10 on each of the 100 target movements that we
used for Fig. 4. As a control, we calculate the mean error between the network
output and the target over the 100 target movements when choosing one of the 100
newly learned gain patterns uniformly at random without replacement (Fig. 8c).

Additionally, instead of learning to combine gain patterns using the method
that we described in the previous paragraph, we determine coefficients c1, … , c10
using a least-squares regression by fitting the 10 learned movements to each of the
100 target movements at the fast and slow speeds simultaneously and requiring
that cj ≥ 0 for all j and ∑ == c 1j j1

10 (Fig. 8c).
In Fig. 8d, we plot the Pearson correlation coefficient between pairs of target

movements versus the Pearson correlation coefficient between corresponding pairs
of learned coefficients c1, … , c10. In our visualization, we plot only 1,000 of the
4,950 data points. We choose these points uniformly at random.

Statistics. The only statistical test that we use is a (nonparametric) paired
Wilcoxon signed-rank one-sided test in Supplementary Fig. 1e. No statistical
methods were used to predetermine sample sizes for our simulations, but our
sample sizes are similar to those reported in previous studies10,11. There was no
experimental randomization in our study because it was a computational study; we
had no samples, organisms, or participants.

Reporting Summary. Further information on research design is available in the
Nature Research Reporting Summary linked to this article.

Code availability. We include sample Matlab code in the supplementary materials.

References
 51. Sompolinsky, H., Crisanti, A. & Sommers, H. J. Chaos in random neural

networks. Phys. Rev. Lett. 61, 259–262 (1988).
 52. Saito, H., Katahira, K., Okanoya, K. & Okada, M. Statistical mechanics of

structural and temporal credit assignment effects on learning in neural
networks. Phys. Rev. E 83, 051125 (2011).

 53. Frémaux, N. & Gerstner, W. Neuromodulated spike-timing-dependent
plasticity, and theory of three-factor learning rules. Front. Neural Circuits 9,
85 (2016).

 54. Rumelhart, D. E., Hinton, G. E. & Williams, R. J. Learning representations by
back-propagating errors. Nature 323, 533–536 (1986).

NATURE NEUROSCIENCE | www.nature.com/natureneuroscience

1

nature research | reporting sum
m

ary
April 2018

Corresponding author(s): Jake P. Stroud

Reporting Summary
Nature Research wishes to improve the reproducibility of the work that we publish. This form provides structure for consistency and transparency
in reporting. For further information on Nature Research policies, see Authors & Referees and the Editorial Policy Checklist.

Statistical parameters
When statistical analyses are reported, confirm that the following items are present in the relevant location (e.g. figure legend, table legend, main
text, or Methods section).

n/a Confirmed

The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement

An indication of whether measurements were taken from distinct samples or whether the same sample was measured repeatedly

The statistical test(s) used AND whether they are one- or two-sided
Only common tests should be described solely by name; describe more complex techniques in the Methods section.

A description of all covariates tested

A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons

A full description of the statistics including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient) AND
variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)

For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted
Give P values as exact values whenever suitable.

For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings

For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes

Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated

Clearly defined error bars
State explicitly what error bars represent (e.g. SD, SE, CI)

Our web collection on statistics for biologists may be useful.

Software and code
Policy information about availability of computer code

Data collection We used Matlab 2017a for nearly all simulations. In addition, we used Ocaml programming language when we do gradient-descent
through back-propagation that we show in Figures 6 and 7.

Data analysis We used Matlab 2017a for all analyses.

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors/reviewers
upon request. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Research guidelines for submitting code & software for further information.

Data
Policy information about availability of data

All manuscripts must include a data availability statement. This statement should provide the following information, where applicable:
- Accession codes, unique identifiers, or web links for publicly available datasets
- A list of figures that have associated raw data
- A description of any restrictions on data availability

Data sharing is not applicable to this article as no datasets were generated or analysed for this study.

2

nature research | reporting sum
m

ary
April 2018

Field-specific reporting
Please select the best fit for your research. If you are not sure, read the appropriate sections before making your selection.

Life sciences Behavioural & social sciences Ecological, evolutionary & environmental sciences
For a reference copy of the document with all sections, see nature.com/authors/policies/ReportingSummary-flat.pdf

Life sciences study design
All studies must disclose on these points even when the disclosure is negative.

Sample size No statistical methods were used to predetermine sample sizes. Our paper was a computational study and as such, most of the effects we
demonstrate produce very small p-values. Therefore, we used sample sizes in our simulations that were sufficient to demonstrate the results
but sample sizes were always greater than or equal to 10. We show one p-value in our study which we present in Supplementary Fig. 1e. This
p-value is calculated based on 10 training samples (and each sample is composed of the firing rate of 100 neurons). All but 1 of the samples
show an increase in mean correlation (generating a p-value of 0.002) where one sample shows a negligible decrease in mean correlation . This
was simply used to show an additional result relevant to our study.

Data exclusions No data were excluded in our study.

Replication All attempts at replication were successful. Our study was a computational study, and as such, we can re-run simulations by controlling for
specific factors. All the results we report were consistently found across many simulations. We also include sample Matlab code in the
supplementary material for others to replicate our main results.

Randomization Randomization is not relevant because our study did not involve group allocation (we had no samples/organisms/participants in our study).

Blinding Blinding is not relevant because our study did not involve group allocation.

Reporting for specific materials, systems and methods

Materials & experimental systems
n/a Involved in the study

Unique biological materials

Antibodies

Eukaryotic cell lines

Palaeontology

Animals and other organisms

Human research participants

Methods
n/a Involved in the study

ChIP-seq

Flow cytometry

MRI-based neuroimaging

ARTICLES
https://doi.org/10.1038/s41593-018-0276-0

Motor primitives in space and time via targeted
gain modulation in cortical networks
Jake P. Stroud" "1*, Mason A. Porter2,3,4, Guillaume Hennequin5 and Tim P. Vogels" "1

1Centre for Neural Circuits and Behaviour, University of Oxford, Oxford, UK. 2Department of Mathematics, University of California Los Angeles,
Los Angeles, CA, USA. 3Mathematical Institute, University of Oxford, Oxford, UK. 4CABDyN Complexity Centre, University of Oxford, Oxford, UK.
5Computational and Biological Learning Lab, Department of Engineering, University of Cambridge, Cambridge, UK. *e-mail: jake.stroud@cncb.ox.ac.uk

SUPPLEMENTARY INFORMATION

In the format provided by the authors and unedited.

NATURE NEUROSCIENCE | www.nature.com/natureneuroscience

Supplementary Figure 1

Further effects of neuron-specific gain modulation.

a, Changes in the largest real part in the spectrum of ࢃൈdiagሺࢍሻ that result from 10 different training sessions (see our simulation
details). Although this change seems substantial, the resulting firing-rate activity does not change dramatically. (For example, see b and
the far left panel of Fig. 2b.) b, Pearson correlation matrices of the firing rates for all pairs of neurons with (left) all gains set to 1 and
(centre and right) two (of the 10) trained gain patterns for the task in Fig. 1d. The order of neurons is the same in all three matrices.
Training does not result in a substantial reorganization in Pearson correlations between pairs of neurons. c, Histogram of the Pearson
correlation coefficients between the 45 pairs of the 10 trained gain patterns for the task in Fig. 1d. d, Mean error between the network
output with white Gaussian noise added to the initial condition ₀࢞ and the network output without noise added to ₀࢞ for various signal-to-
noise ratios for 1,000 different samples of such noise. We plot results with all gains set to 1 (blue) and the 10 trained gain patterns (red)
for the task in Fig. 1d. Shading indicates 1 standard deviation. e, Left: The mean Pearson correlation coefficient between the neuronal
firing rates and the target increases after training. (We show 10 training sessions, and we use a paired Wilcoxon signed rank one-sided
test to generate a p-value of p	 ൎ	 0.002.) Bottom right: Example change in Pearson correlation coefficients between the 200 neurons’
firing rates and the target after training for the trial in gray in the left panel. Top right: Example of a substantial change in the dynamics
of one neuron after training. f, Box plots of the errors after training independently on 10 different target movements using back-
propagation for four different scenarios. In these examples, we train either the neuronal gains, the initial condition, the recurrent
synaptic weight matrix, or a rank-1 perturbation of the synaptic weight matrix. See our full simulation descriptions in the supplementary
material). The dashed black line is the mean error over the 10 target movements before training. (Centre lines indicate median errors,
boxes indicate 25th to 75th percentiles, whiskers indicate േ 1.5ൈ the interquartile range, and dots indicate training sessions whose error
lies outside the whiskers.

Supplementary Figure 2

Additional results for grouped gain modulation.

a, Mean error over 10	 training sessions (where shading indicates one standard deviation) using (left) random and (right) specialized
groupings for 2,	 10,	 20, and 200 (i.e., neuron-specific) groups (see our simulation details). The target output is the same as in Fig. 1. b,
Relative improvement in performance compared with neuron-specific modulation for each of 5	 movements when using specialized
groups shared across all (squares) or for each (circles) of the 5 movements using either 10 (blue) or 20 (black) groups. A value of 2
implies that the error is 2 times smaller after training compared to neuron-specific modulation. We indicate the performance of neuron-
specific modulation using the red line. c, Mean error over 10 training sessions (where shading indicates one standard deviation) when
learning 5 movements using either 20 specialized groups (shared across all 5 movements), 20 random groups, or neuron-specific
modulation. d, Mean error over 10 training sessions when learning 10 novel movements using the specialized grouping (with 20
groups) shared across the 5 previously trained movements from c. e, The firing rates of 50 inhibitory and 50 excitatory neurons for each
of the three different networks sizes. f, The curves give the mean error over 10 training sessions and across the 3 networks for each of
5 targets. The circles represent the mean error for each network, and the different colours indicate each of 5 different target outputs.
(See our simulation details and our full simulation descriptions in the supplementary material.) g, Outputs for all five targets from the
trial that produces the median error for the 400-neuron network for the cases of 10 and 20 groups. h, Box plots (in blue) of the minimum
error after training for different numbers of groups and the 3 different network sizes. (These are the same data that we plotted in f.) We
also include box plots (in red) for the minimum number of iterations required before the error is within 1% of the minimum error. (Center
lines indicate median errors, boxes indicate 25th to 75th percentiles, whiskers indicate േ 1.5ൈ the interquartile range, and dots indicate
training sessions whose error (or number of iterations) lies outside the whiskers.)

Supplementary Figure 3

Additional results for gain patterns providing motor primitives.

a, The resulting distribution of gains from training independently on each of 100 target outputs (see our simulation details). The
distribution of the gain patterns resembles a normal distribution (blue curve) with the same mean and variance as those in Fig. 1e. b,
Each output from the 100 trained gain patterns. c, Outputs of 100 randomly-generated gain patterns from the distribution in a. (See our
simulation details and our full simulation descriptions in the supplementary material for further details.) The outputs are substantially
more homogeneous than those in b and likely would not constitute a good library for movement generation. d, The same plot as in Fig.
4d, but for up to ݈	 ൌ	 50 library elements. e, The distributions of errors across 100 different libraries for (left) ݈	 ൌ	 5 and (right) ݈	 ൌ	 20. (Note
the difference in horizontal-axis scales in the two plots.) f, The error between the output and the fit from d with a different vertical axis
scale. g, The same plot as in Fig. 4c, but for ݈	 ൌ	 1,...,	 50 and with extended axes. Each point represents the 50th-smallest error between
the output and the fit across 100 novel target movements for each of 100 randomly-generated combinations of ݈ library elements. We
show the identity line in gray. h, The same as in g, but each point represents the 50th-smallest error between the output and the fit
across the 100 libraries for each of the 100 novel target movements. We plot these data in the square ሾ0,	 1ሿ	 ൈ	 ሾ0,	 1ሿ and for ݈	 ൌ	 1,...,	 20. i,
For the data in g, we plot the Pearson correlation coefficient between the output and the fit errors over the 100 randomly-generated
libraries for each number of library elements (up to ݈	 ൌ	 50). j, For the data in h, we plot the Pearson correlation coefficient between the
output and the fit errors over the 100 novel target movements for each number of library elements (up to ݈	ൌ	50).

Supplementary Figure 4

Gain patterns as motor primitives with r0 = 5 Hz.

a, Example target (gray), fit (dashed red), and output (orange) that produces the 50th-smallest output error over 100 randomly-
generated combinations (see our simulation details for a description of the generation process) of ݈ library elements using ݈ ൌ	 2,	 ݈ ൌ	 4,	 ݈
ൌ	 8,	 and	 ݈	 ൌ	 16. b, Fit error versus the output error for 100	 randomly-generated combinations of ݈ library elements for ݈	 ൌ	 1,...,	 20. Each
point represents the 50th-smallest error between the output and the fit across 100 novel target movements. We show the identity line in
gray. c, For the data in b, we plot the Pearson correlation coefficient between the output and the fit errors over the 100 randomly-
generated combinations of library elements for each number of library elements (up to ݈	 ൌ	 50). d, The same as c, but for data
corresponding to the 50th-smallest error for each of the 100 novel target movements, rather than for each randomly-generated
combination of library elements (up to ݈	 ൌ	 50) (see our simulation details). Compare c and d of this figure with i and j in Supplementary
Fig. 3.	

Supplementary Figure 5

Additional results for controlling movement speeds through gain modulation.

a, Mean error over 10 training sessions for each of 10 different movements when learning gain patterns for slow-movement variants
using our reward-based learning rule (see our simulation details). b, Mean error over 10 training sessions for the same 10 movements
when instead learning gain patterns for slow-movement variants using a back-propagation algorithm (see our simulation details). c,
Distribution of gains for the slow-movement variants across all training sessions using our reward-based learning rule. d, Distribution of
gains for the slow-movement variants across all training sessions when using back-propagation. e, Histograms of the real and
imaginary parts of the eigenvalues of the linearization of equation (1) around ࢞	 ൌ	 0 before and after training using our reward-based
rule for the example in Fig. 6b. f, Histograms of the real and imaginary parts of the eigenvalues of the linearization of equation (1)
around ࢞	 ൌ	 0	 before and after training using the back-propagation algorithm for the example in Fig. 6c. g, On the left and right,
respectively, we show the same outputs that we plotted in Figs. 6b and 6c, but we now add white Gaussian noise (with a signal-to-
noise ratio of 4 dB) to the initial condition of the neuronal activity. (See our full simulation descriptions in the supplementary material.) h,
Box plot of the slow-variant errors across 10 training sessions after training for different numbers of initial conditions. (Center lines
indicate median errors, boxes indicate 25th to 75th percentiles, whiskers indicate േ	 1.5ൈ the interquartile range, and dots indicate
training sessions whose error lies outside the whiskers.) (See our full simulation descriptions in the supplementary material for further
details.) i, Mean error during training over 10 training sessions for ݉	 ൌ	 1,...,	 10 initial conditions. j, For the case of 6 initial conditions in
panel (h), we plot 4 example outputs that correspond to the 5th-smallest error for the 10 training sessions. (For each simulation in this
figure, we train a 400-neuron network using 40 random modulatory groups; see our simulation details).

Supplementary Figure 6

Additional results for smooth control of movement speeds through gain modulation.

a, We show outputs that result from the 7 trained gain patterns from Fig. 6e (which we also reproduce here in b) for both initial
conditions (see our simulation details). b, Top: We reproduce the 7 optimized gain patterns for all 40 modulatory groups when training
at 7 evenly spaced speeds from Fig. 6e. We call this the ‘speed manifold’ in the main text. Bottom: We linearly interpolate between the
fast and the slow gain patterns. We use this interpolation for the outputs that we show in Fig. 6f.

Supplementary Figure 7

Additional results for learning gain-pattern primitives to control movement shape and speed.

We plot histograms of the errors over the 100 target movements from Fig. 8 at both fast (blue) and slow (orange) speeds (see our
simulation details).

Supplementary Figure 8

Learning slow-movement variants when scaling both the amplitude and duration of target movements.

We can perform the same task as the one that we showed in Fig. 6b when we also scale the amplitude of the slow-variant target
movement by the factor 1/25	 (see the dashed curves). Scaling the slow-variant target movement by this factor corresponds to the
same movement, but it lasts 5 times longer (see “Creating target muscle activity in Methods). We also reproduce the results from the
top panel of Fig. 6b (solid curves) for comparison. During training, we reduce the errors from approximately 128 to 0.9	 (i.e., a 99.3%
reduction)	 for the amplitude-scaled task and from approximately 1.22	 to 0.02 (i.e., a 98.36% reduction)	 for the amplitude-fixed task. The
error for the amplitude-scaled task is larger than that for the amplitude-fixed task, because we scale the error by the total sum of
squared errors of the target. (See equation (7) for the definition of error that we use.)

	

SUPPLEMENTARY INFORMATION

Supplementary math note

Analysis of the effects of identically changing the gain of all neurons

To examine the effects of gain modulation on neuronal dynamics when identically changing all
neuronal gains (i.e., gi = g for all i), we construct a Taylor expansion of f(xi; gi) from Eqn. (2)
around x = 0. By keeping only leading-order terms, we obtain f(xi; g) ⇡ gxi, and substituting
this expression into Eqn. (1) yields ⌧ ẋ = (gW � I) · x = A · x, where I is the identity matrix
and A = gW � I . Empirically, we find this linear approximation to be valid in a large basin of
attraction around the equilibrium point.

Changing the gain from g to g0 multiplies the imaginary part of the spectrum of A by the factor
g0/g. (Subtracting the identity matrix does not affect the imaginary part of the spectrum of A.)
This, in turn, multiplies the frequency of the associated solution of the linearized dynamics of x(t)
by the factor of g0/g.

A change in gain also causes changes in the real parts of the eigenvalues of A. Specifically,
increasing the gain causes the real parts of all but one of the eigenvalues of gW to increase (i.e.,
the eigenvalues of A get closer to the imaginary axis), generally causing a slower decay of activity
towards the equilibrium [1]. The real part of the remaining eigenvalue, which is associated with
the eigenvector (1, 1, . . . , 1)>/

p
N (see Ref. [2]), becomes more negative with increasing gain,

resulting in faster decay of the neuronal dynamics. However, this effect is small in comparison
with the slowing of the decay due to the changes of the real parts of all of the other eigenvalues.

Analysis of linear combinations of gain patterns and their associated neuronal dynamics

In Fig. 4 and Supplementary Figs. 3 and 4, we illustrated that there is a consistent mapping between
learned gain patterns and their outputs. Specifically, we illustrated that for a library of l gain
patterns (g1, . . . , gl), a convex combination c1F (g1) + . . . + clF (gl) (so cj � 0 for all j andPl

j=1 cj = 1) of their corresponding outputs (which we denote by F) approximates the output
F (c1g1 + . . .+ clgl) that we obtain by combining the gain patterns with the same coefficients (see
Fig. 4). Note that the subscript index j denotes the library element j and is not a neuron index.
We now provide some mathematical understanding of this approximation by studying linearized
solutions of the neuronal dynamics. Because the network output is a linear combination of the
neuronal firing rates, it is sufficient to study convex combinations of internal neuronal activity x
directly, rather than convex combinations of network outputs.

For a convex combination (i.e., a weighted mean) of l vectors or matrices � with weights cj , it is

1

convenient to use the following notation:

C
h
�̃
i
=

lX

j=1

cj�j , (12)

where the tilde in the square brackets is a reminder that we are summing over the index of the
associated library terms. For a given gain pattern Gj 2 RN⇥N (where the neuronal gains are
elements along the diagonal of Gj (that is, Gj = diag(gj)), all other elements are 0, and the index
j denotes library element j), the solution xj(t) 2 RN of the linearized dynamics of Eqn. (1) around
x = 0 is given by

xj(t) = e
t
⌧ (WGj�I)x0 , (13)

under the assumption that there are N distinct eigenvectors for the matrix WGj � I and that we
are away from any bifurcations. Let

u(t) = e
t
⌧ (W C[G̃]�I)x0 (14)

denote the neuronal activity that results from a convex combination C
h
G̃
i

of gain patterns. We
need to show that u(t) is approximately the same as the convex combination of the individual
neuronal dynamics xj(t) with the same coefficients cj . That is, we need to show that the difference

�(t) = u(t)� C [x̃(t)] (15)

is small with respect to the magnitude of the neuronal activity. We first note that d�
dt

��
t=0

= 0,
which we prove as follows:

d

dt
u(t)

����
t=0

=
1

⌧

⇣
W C

h
G̃
i
� I

⌘
x0 (16)

=
1

⌧
C
h
WG̃� I

i
x0

=
d

dt
C [x̃(t)]

����
t=0

,

where we used the fact that
Pl

j=1 cj = 1 to go from the first to the second line, and we note that
the matrices W and I do not depend on the gain patterns.

To see whether we can also expect �(t) to be small for t > 0, it is useful to consider the power-
series expansion of the matrix exponentials on the right-hand side of Eqn. (15):

C [x̃(t)] = C

2

4
 1X

m=0

(WG̃� I)m

m!

! t
⌧

x0

3

5 , (17)

u(t) =

 1X

m=0

�
W C

h
G̃
i
� I

�m

m!

! t
⌧

x0 . (18)

2

We observe in numerical simulations (not shown) that power-series expansions of this form are
accurate descriptions of the associated neuronal dynamics up to second order in m. We therefore
truncate to m = 2, and we evaluate the difference of Eqns. (17) and (18):

�(t) =

✓
1

2

◆ t
⌧

C
⇣

(WG̃)2 + I
⌘ t

⌧

�
�
✓⇣

W C
h
G̃
i⌘2

+ I

◆ t
⌧

!
x0 . (19)

We need to check if the right-hand side of Eqn. (19) is small compared to the neuronal dynamics
(i.e., compared to Eqn. (17)). One way to check if this holds at certain times t is to substitute values
of t into Eqns. (19) and (17) and calculate the ratio of the norms of these two expressions. Setting
t = ⌧ — at t = ⌧ = 200 ms, the neuronal dynamics are close having reached their maximum
amplitude (see Supplementary Fig. 2e) — yields

k�(t) |t=⌧ k
kC [x̃(t) |t=⌧] k

⇡

����

✓
C
⇣

WG̃
⌘2

+ I

�
�
⇣
W C

h
G̃
i⌘2

� I

◆
x0

����
����

✓
C
⇣

WG̃
⌘2

+ I

�◆
x0

����

=

����

✓
C
⇣

WG̃
⌘2
�
�
⇣
C
h
WG̃

i⌘2
◆
x0

����
����

✓
C
⇣

WG̃
⌘2
�
+ I

◆
x0

����
. (20)

We now study the magnitude of the numerator and the denominator of Eqn. (20) and show that
the ratio of the former to the latter is small. Both the numerator and the denominator scale ap-
proximately in linear proportion to the norm of the product of W 2 and x0. (The identity matrix
in the denominator is small compared to W 2.) The main difference between the numerator and
denominator is their dependencies on the gain patterns Gj . The numerator scales approximately
proportionally to a ‘weighted variance’ of the gain patterns, whereas the denominator scales ap-
proximately proportionally to a weighted mean of the squared gain patterns. Because our learned
gain patterns are typically narrowly distributed, with a mean of 1 and approximate standard devia-
tion of 0.15 (see Supplementary Fig. 3a), this ratio is small (on the order of 10�2). Numerically, we
confirm that the normalized error in Eqn. (20) is indeed small, which also corroborates the results
of Fig. 4 of the main text.

Finally, although we restricted our discussion above to a linear gain function, we note that our nu-
merical simulations suggest that Eqn. (15) is also small for the nonlinear gain function of Eqn. (2)
(see Fig. 4 and Fig. 5f) that we used throughout the main text.

3

REFERENCES
1. G. Teschl, Ordinary Differential Equations and Dynamical Systems. American Mathematical

Society, 2012.

2. G. Hennequin, T. P. Vogels, and W. Gerstner, “Optimal control of transient dynamics in bal-
anced networks supports generation of complex movements,” Neuron, vol. 82, no. 6, pp. 1394–
1406, 2014.

4

FULL SIMULATION DETAILS

Simulation details for Fig. 1 and Supplementary Fig. 1

We simulate two different electromyograms (EMGs) (see Methods Section 1.4) of muscle activities
(initial reach and target reach) that each last 0.5 s (see Figs. 1a,f). We use a network of N = 200
neurons and sample transient neuronal firing rates that last 0.5 s following the initial condition x0

of the neuronal activity (see Methods Section 1.1). We fit the readout weights over 100 trials, in
which we add white Gaussian noise to the initial condition x0 (with a signal-to-noise ratio of 30 dB)
using least-squares regression so that the network output, with all gains set to 1, generates the initial
reach (see Methods Section 1.5). We use the same readout weights throughout all training, and we
use only one readout unit for each simulation.

In Fig. 1c, we plot the dynamics of three example neurons with all gains set to 1 (black) and all
gains set to 2 (blue).

For each training iteration of the neuronal gains (to generate a target movement), we use the initial
condition x0 at time t = 0 (see Methods Section 1.1). We calculate the subsequent network output
as described in Methods Section 1.5, and we update the neuronal gains according to Eqn. (8). We
repeat this process for 18, 000 training iterations (which corresponds to 2.5 hours of training time),
which is enough training time for the error to saturate (see Fig. 1d).

We run 10 independent training sessions on the same target, and we plot these results in Figs. 1d,e.
For each of the 10 trained gain patterns g, we plot the change in the spectral abscissa of W ⇥
diag(g) (i.e., the largest real part in the spectrum of W ⇥ diag(g)) in Supplementary Fig. 1a. We
observe an increase in the spectral abscissa after training. Although this change seems substantial,
the resulting firing-rate activity does not change dramatically (see Supplementary Fig. 1b).

Additionally, we generate 100 network outputs for each of the 10 trained gain patterns using 100
different instances of white Gaussian noise added to the initial condition x0 with a signal-to-noise
ratio of s dB (where we consider values of s between 1 and 30 dB in increments of 1). We then
calculate the square of the Euclidean 2-norm between each network output and the network output
that we obtain when we do not add noise to the initial condition. We call these squared errors e1.
(This vector has 1, 000 entries, with one entry for each network output.) We also generate 1, 000
outputs with all gains set to 1 using 1, 000 different instances of white Gaussian noise added to the
initial condition x0 with a signal-to-noise ratio of s dB. (We again consider values of s between 1
and 30 dB in increments of 1.) We then calculate the square of the Euclidean 2-norm between each
of these network outputs and the network output that we obtain with all gains set to 1 and no noise
added to the initial condition. We call these squared errors e2. For each signal-to-noise ratio s,
we plot the mean and standard deviation of e1 (i.e., the squared error corresponding to the trained
gain patterns) in red and e2 (i.e., the squared error corresponding to all gains set to 1) in blue in
Supplementary Fig. 1d. We obtain very similar errors for both the trained and untrained (i.e., all
gains set to 1) gain patterns, except for large (i.e., approximately larger than 25 dB) signal-to-noise
ratios. For the outputs that we show in Fig. 1f, we add white Gaussian noise to the initial condition

1

x0 with a signal-to-noise ratio of 30 dB using one of the trained gain patterns and with all gains
equal to 1.

To generate the correlation matrices that we show in Supplementary Fig. 1b, we calculate the
Pearson correlation coefficient of the neuronal firing rates between all pairs of neurons in the
recurrent neuronal network. Therefore, each entry in the matrix indicates the extent to which the
neuronal firing rates are similar for a pair of neurons over the duration of the movement (i.e., 0.5 s).
In Supplementary Fig. 1b, we show correlation matrices for examples in which all gains are set to
1 and for two example learned gain patterns. We use the same initial condition x0 that we used
during training.

We also study whether neuronal firing rates correlate more positively with a target movement after
training than before training. To quantify the similarity between the neuronal firing rates and the
target output, we calculate — for each of the 10 training sessions that we used in Fig. 1d — the
Pearson correlation coefficient of the neuronal firing rates between each neuron and the target
output. In Supplementary Fig. 1e, we plot the mean Pearson correlation coefficient across all
neurons for the case in which all gains are set to 1 (i.e., before training) and for each of the 10
learned gain patterns (i.e., after training). There is a significant (with a p-value of p ⇡ 0.002)
change in the mean Pearson correlation coefficient before training versus after training using a
paired Wilcoxon signed rank one-sided test. For the gain pattern that produces the largest change in
the mean correlation coefficient (we show this with the grey line in the left panel of Supplementary
Fig. 1e), we plot the distribution of changes in the correlation coefficients for all neurons in the
bottom right panel of Supplementary Fig. 1e. We see that most values are larger than 0, so the
neuronal firing rates become more positively correlated with the target output after learning. We
also show an example of a substantial change in the neuronal firing rate of one neuron in the top
right panel of Supplementary Fig. 1e.

In another computational experiment, we generate 10 different target muscle activities (see Meth-
ods Section 1.4) and, independently for each movement, we train either the neuronal gains, the
recurrent synaptic weight matrix W , the initial condition x0, or a rank-1 perturbation of the re-
current synaptic weight matrix using a gradient-descent training procedure (with gradients that
we obtain from back-propagation [1]). Before training, we use the 200-neuron stability-optimised
network, initial condition x0, and readout weights that we used in Fig. 1. Specifically, before any
training, the network output is the black curve that we show in Fig. 1f. The cost function for the
training procedure is the squared error between the network output and the target movement scaled
by the total sum of squares of the target movement (i.e., Eqn. (7)). We run the gradient-descent
training procedure until the difference between the cost function at successive training iterations
is below 10�5 (i.e., until the cost saturates to a small value). When we train the recurrent synaptic
weight matrix W , after each weight update, we set any positive inhibitory weights to zero and we
set any negative excitatory weights to zero. For the rank-1 perturbation, we independently train
vectors u,v 2 R200⇥1 to reduce the error between the network output, which we obtain from the
neuronal firing rates in Eqn. (1) with W replaced by W +uv>, and the target movement. Before
training, the elements of u and v are chosen from a Gaussian distribution with a mean 0 and stan-
dard deviation 0.05. In Supplementary Fig. 1f, we plot the errors for 10 different target movements

2

for each of our 4 different training approaches.

Simulation details for Fig. 2

For this figure, we train neuronal gains on the same task as the one that we showed in Fig. 1d
— that is, we independently train 10 gain patterns to generate the target output that we showed
in orange in Fig. 1f — using 3 alternative models. We use neuron-specific modulation for these
simulations. (This contrasts with our group-based gain modulation.) We fit the readout weights
so that, prior to any training (i.e., with all gains set to 1), the network output is the same in each
model. (See the black curve in Fig. 1f.) We show the mean error during training in Fig. 2a. The red
curve is the same error curve that we plotted in Fig. 1d, but we now use a logarithmic vertical-axis
scale.

We also train the neuronal gains on the same task as above, but now using a ramping input to
the network (to simulate preparatory activity prior to movement onset [2, 3]). We use the same
ramping input function as the one that was used in Ref. [2]. It is exp(t/⌧on) for t < 0 s and
exp(�t/⌧o↵) after movement onset (t � 0), with an onset time of ⌧on = 400 ms and an offset time
of ⌧o↵ = 2 ms. Gain changes that result from learning now also affect the neuronal activity at t = 0
(i.e., at movement onset). We again run 10 independent training sessions, and we observe results
that are qualitatively similar to those we saw in Fig. 1d. (See the blue curve in Fig. 2a.)

We also train a ‘chaotic’ [4] variant of our model (see Methods Section 1.3, where we describe
how we construct such a model), and we train on the same target movement that we mentioned
above. We use the first 0.5 s of neuronal activity. We observe a very similar error reduction over
training iterations (see the grey curve in Fig. 2a) as we saw in Fig. 1d. (Compare the grey and red
curves in Fig. 2a.)

Finally, we use an alternative learning rule (see Eqns. (10) and (11)) in which learning stops auto-
matically when the difference between network outputs over successive training iterations becomes
sufficiently small (see Methods Section 1.7). In Fig. 2a, we plot the error reduction using this al-
ternative learning rule in purple. Using this alternative learning rule, we obtain a smaller error for
this task (compare the purple and red curves in Fig. 2a), and learning stops after approximately
10, 000 training iterations on average.

In Fig. 2b, we plot the firing rates of 4 example neurons for each of these 4 models both before and
after training the neuronal gains.

Simulation details for Fig. 3 and Supplementary Fig. 2

For the same task as in Fig. 1, we plot the results of using random and specialized groupings (see
Methods Section 1.9), as well as the neuron-specific result from Fig. 1d, in Supplementary Fig. 2a.
We use the same readout weights that we used in Fig. 1.

3

We now give details for Figs. 3b,c and Supplementary Figs. 2b–d. We generate 5 different target
outputs and run 10 independent training sessions for each target. For the random groupings (see
Methods Section 1.9), we use different independently-generated random groups for each simula-
tion. For the specialized groups (see Methods Section 1.9), for a given number of groups, we use
the same grouping in all simulations. We plot the results of using 10 or 20 groups with either
random or specialized groups in Figs. 3b,c and Supplementary Figs. 2b,c.

We now explain how we determine specialized groups that are shared by multiple movements
(i.e., we use the same grouping for learning multiple movements); see the plots in Fig. 3c and
Supplementary Figs. 2b–d. We apply k-means clustering (where k is the desired number of groups)
across all of the gain patterns that we obtain using neuron-specific modulation for each of the
movements. That is, we apply k-means clustering to a matrix of size N ⇥ 10 · q, where N is
the number of neurons and q is the number of movements (and, equivalently, the number of gain
patterns). We also use the specialized grouping that we obtain for 20 groups that is shared across 5
movements (see Supplementary Figs. 2b) to learn 10 hitherto-untrained movements. We plot these
results in Supplementary Fig. 2d.

For the task that we just described above, we consider various different numbers of groups (using
random groupings) for networks with N = 100, N = 200, and N = 400 neurons. We again
perform 10 independent training sessions for each network, target, and number of groups. We fit
the readout weights so that each scenario generates the same network output when all gains are set
to 1. The readout weights remain fixed throughout training. We plot these results in Fig. 3d and
Supplementary Figs. 2e–h.

We now give details for Figs. 3e,f. When we use multiple readout units, we generate 10 different
initial and target outputs for each readout unit. For example, for 2 readout units, we generate
10 different initial and target outputs for each of units 1 and 2. We run independent training
sessions for these 10 sets of target outputs and calculate mean errors across the 10 training sessions.
For a given number of readout units, we use the same sets of initial and target outputs for all 3
network sizes and each number of random modulatory groups. We thus fit readout weights so
that each scenario generates the same output with all gains set to 1. The readout weights remain
fixed throughout training. We use 60, 000 (instead of 18, 000) training iterations to ensure error
saturation.

Simulation details for Figs. 4, 5f, and Supplementary Figs. 3,4

To create libraries of learned movements, we train a network of 400 neurons and 40 random groups
(see Methods Section 1.9) on each of 100 different target movements independently. (In other
words, this generates 100 different gain patterns, with one for each movement.) In Supplementary
Fig. 3a, we plot the distribution of gains that we obtain after training across all 100 gain patterns.
We plot all 100 outputs from these 100 learned gain patterns in Supplementary Fig. 3b. We also
generate 100 new gain patterns by sampling uniformly at random from the distribution in Supple-
mentary Fig. 3a and plot the output of each of these gain patterns in Supplementary Fig. 3c. These

4

outputs are much more homogeneous than the learned gain patterns in Supplementary Fig. 3b, and
they likely would not constitute a good basis set for movement generation.

For library sizes of l 2 {1, 2, . . . , 50}, we choose 100 samples of l movements (from the learned
gain patterns and their outputs) uniformly at random without replacement for each l. We then fit the
set of movements in each of the 100 sample libraries using least-squares regression for each of 100
hitherto-untrained novel target movements. We constrain the fitting coefficients cj from the least-
squares regression by requiring that cj � 0 for all j and

Pl
j=1 cj = 1. That is, we consider convex

combinations of the coefficients cj . We calculate the fit error (i.e., the error between the fit and the
target), the output error (i.e., the error between the output and the target), and the error between the
fit and the output for each of the 100 novel movements, each of the 100 library samples, and each
l.

For each l and for each randomly-generated combination of library elements (see the paragraph
immediately above), we order the 100 novel target movements based on the error between the
output and the fit, and we select the one that is the 50th smallest (i.e., close to the median error).
We then extract the output and fit errors for this target and repeat this procedure for each of the
100 randomly-generated combinations of library elements and for l = 1, . . . , 50. We plot these
results in Fig. 4c and Supplementary Fig. 3g. In Fig. 4, we plot results for l 2 {1, 2, . . . , 20}; in
Supplementary Fig. 3, we plot results for l 2 {1, 2, . . . , 50}. Observe that there is only a small
change in the errors between l = 20 and l = 50.

In Fig. 4b, for an example target (and for l = 2, l = 4, l = 8, and l = 16), we plot the output and
fit that produce the 50th-smallest error between the output and the target across the 100 randomly-
generated libraries. In Supplementary Fig. 3e, we calculate the median error over the 100 target
movements and we plot the distribution of these median errors over the 100 randomly-generated
combinations of library elements for l = 5 and l = 20.

Additionally, for each l and for each of the 100 target movements, we order the 100 combinations
of library elements based on the error between the output and the fit, and we select the one that
is the 50th smallest. We then extract the output and fit errors for this combination and repeat this
procedure for each of the 100 target movements and for l = 1, . . . , 50. We plot these results in
Supplementary Fig. 3h. This indicates that we obtain qualitatively similar results if we average over
the 100 target movements or if we instead average over the 100 combinations of library elements.
In Fig. 4d and Supplementary Fig. 3d, we first calculate the median error over the 100 target
movements for each l and for each of the 100 combinations of library elements. We then plot the
median of these errors over the 100 combinations of library elements for each l.

We also calculate the Pearson correlation coefficient between the output and the fit errors for each
l when taking the 50th-smallest error across the 100 novel target movements (see Supplementary
Fig. 3i) or across the 100 randomly-generated samples (see Supplementary Fig. 3j).

We also repeat these simulations for the baseline rate r0 = 5 Hz in Eqn. (2). We plot the results of
these simulations in Fig. 5f (see the next subsection) and Supplementary Fig. 4, and we note that
we obtain very similar results to those that we obtained for r0 = 20 Hz.

5

Simulation details for Figs. 5a–e

We now describe the details of our simulations when using a baseline rate of r0 = 5 Hz.

For the 200-neuron network that we used in Fig. 1, we plot the (relative to baseline) firing rate f(x)
(see Eqn. (2)) of 20 excitatory and 20 inhibitory neurons in Fig. 5 with (panel (a)) r0 = 20 Hz in
Eqn. (2) and (panel (b)) r0 = 5 Hz. In Fig. 5c, we plot the relative firing rate of all neurons over
time versus the relative firing rate when using a linear gain function (i.e., f(xi; gi) = gixi) for the
cases of (black) r0 = 20 Hz and (blue) r0 = 5 Hz. We set all of the gains to 1 for these simulations.

We also train a recurrent neuronal network on the same task as the one that we showed in Figs. 1d–
f, except with a baseline rate of r0 = 5 Hz. We plot these results in Fig. 5d–e and compare them
to our observations for r0 = 20 Hz. For the 10 noisy initial conditions that we used to generate
the outputs in the inset in Fig. 5d, we add white Gaussian noise to the initial condition x0 with a
signal-to-noise ratio of 30 dB. In other words, we generate noise in the same manner as we did in
Fig. 1f.

Simulation details for Fig. 6 and Supplementary Figs. 5,6,8

We now describe our simulations for learning target activity that lasts longer than 0.5 s. In each
of these simulations, we use a network of 400 neurons and 40 random modulatory groups. (See
Methods Section 1.9 for details on how we determine such groups.) We construct ‘slow’ (2.5 s)
target movements with � = 550 ms and ` = 250 ms in Eqn. (5). We then construct a ‘fast’ (0.5 s)
variant of each movement. Each movement variant has 500 evenly-spaced points (see Methods
Section 1.4). We sample the fast variant using 100 evenly-spaced points, and we then augment 400
instances of 0 values to the final 2 s of the movement to ensure that both movement variants have
the same length. (See the top right of Fig. 6a.)

Details for Fig. 6b, Supplementary Figs. 5a,c,e, and Supplementary Fig. 8. For Fig. 6b, we fit
readout weights using least-squares regression, such that with all gains set to 1, the network output
approximates the fast variant. We then train gain patterns using our learning rule in Eqns. (8)
and (9) so that the network output generates the slow-movement variant. (The initial condition x0

and readout weights remain fixed.) We use 60, 000 training iterations, and we run 10 independent
training sessions for each of 10 different target movements. We plot one such movement in Fig. 6b,
and we plot results of all simulations in Supplementary Figs. 5a,c. For Supplementary Fig. 8, we
perform the same task except that we scale the amplitude of the slow-movement variant by the
factor 1/25. Scaling the slow-variant target movement by this factor corresponds to the same
actual movement but lasting 5 times longer (see Methods Section 1.4). In Supplementary Fig. 8,
we show results for the same example that we plotted in Fig. 6b.

6

Details for Fig. 6c and Supplementary Figs. 5b,d,f,g. We wish to obtain neuronal dynamics
that are less sensitive to noisy initial conditions than those that we generated from gain patterns
that we obtained from our learning rule (i.e., those that we plot in Supplementary Figs. 5a). For
example, in Fig. 6b, the neuronal firing rates have decayed substantially towards baseline after
approximately 0.75 s, even though the output activity is close to its maximum value. Therefore,
a small change in the initial condition would likely substantially affect the neuronal activity for
times after approximately 0.75 s. We therefore perform the task that we described in the paragraph
above (i.e., generating a slow-movement variant by changing neuronal gains) using a gradient-
descent training procedure with gradients that we obtain from back-propagation [1]. Together with
learning the gain pattern for the slow variant, we jointly optimize a single set of readout weights
(shared by both the fast-movement and slow-movement variants), as we discussed in Methods
Section 1.5, as part of the same training procedure. The gains are still fixed at 1 for the fast variant.
The cost function for the training procedure is equal to the squared Euclidean 2-norm between
actual network outputs and the corresponding target outputs at both fast and slow speeds plus the
Euclidean 2-norm of the readout weights, where the latter acts as a regularizer. We run gradient
descent for 500 iterations, which is well after the cost has stopped decreasing.

Using the target movement from Fig. 6b, we plot the output of the back-propagation training pro-
cedure in Fig. 6c, and we plot results of all simulations in Supplementary Figs. 5b,d on the same
10 target movements as those that we used in Supplementary Fig. 5a. In Supplementary Fig. 5g,
for the outputs in Figs. 6b,c, we add white Gaussian noise with a signal-to-noise ratio of 4 dB to
the initial condition. We observe that the outputs from the back-propagation training procedure are
less sensitive than the outputs from the learning rule to noisy initial conditions.

Details for Supplementary Figs. 5h–j. In these simulations, we train a single gain pattern that
is shared by m different movements, which each last 2.5 s and where each movement corresponds
to a different initial condition (IC). To generate a collection of m such ICs, in which each IC
evokes neuronal activity of approximately equal amplitude with all gains set to 1, we randomly
rotate the top m eigenvectors of the observability Gramian of the matrix W � I [2]. Specifically,
we do this by creating a matrix of m columns — one for each of these m eigenvectors — and
right-multiplying this matrix by a random m ⇥ m orthogonal matrix (which we obtain via a QR
decomposition of a random matrix with elements drawn from a normal distribution with mean 1
and standard deviation 1).

Given m ICs, we uniformly-at-random choose m fast target movements and their slow counterparts
out of a fixed set of 10 different movements. We then train a recurrent neuronal network to generate
the correct fast and slow target movements by optimizing a single set of readout weights (shared
by both fast and slow variants) and a single gain pattern that generates the slow variants (where we
set the gains for each of the fast variants to 1). We train using the same gradient-descent method
with back-propagation that we described above for Fig. 6c. We plot the results as a function of the
number m of movement–IC pairs (see Supplementary Figs. 5h,i) for 10 independent draws of the
ICs that we just described above.

7

Details for Fig. 6d; top panel. For each of the 10 trained movements in Supplementary Figs. 5a,b,
we extract the mean minimum error across all simulations for the outputs that we obtain both from
our learning rule (see Supplementary Fig. 5a) and from training via back-propagation (see Sup-
plementary Fig. 5b). We then linearly interpolate between the learned gain patterns for the fast
and slow outputs, and we and calculate the error (see Methods Section 1.6) between the output
and the target movement at the interpolated speed. We calculate these errors for many interpolated
movement durations between 0.5 s and 2.5 s, and we plot the mean errors for both our learning
rule and the back-propagation training in the top panel of Fig. 6d. We also show an example output
that lasts 1.5 s.

Details for Figs. 6d–f and Supplementary Fig. 6. To demonstrate that gain modulation can
provide effective smooth control of movement speed for multiple initial conditions of the neuronal
activity, we train networks to generate a pair of target movements in response to a corresponding
pair of orthogonal initial conditions (see the above description of Supplementary Figs. 5h–j) at
fast and slow speeds and also at each of 5 intermediate, evenly-spaced speeds in between these
extremes. To do this, we parametrize the gain pattern of speed index s (with s 2 {1, . . . , 7}) as
a convex combination of a gain pattern gs=1 for fast movements and a gain pattern gs=7 for slow
movements, with interpolation coefficients of �s (with gs = �sgs=1 + (1 � �s)gs=7, �1 = 1,
and �7 = 0). We optimize (using back-propagation, as discussed above) over gs=1, gs=7, the 5
interpolation coefficients �s (with s 2 {2, . . . , 6}), and a single set of readout weights. For a given
speed s, we use the gain pattern gs for both movements.

We plot the 7 learned gain patterns in Fig. 6e, and we plot their corresponding outputs for both
initial conditions in Supplementary Fig. 6. (We call this collection of 7 trained gain patterns the
‘speed manifold’.) We show the linear version of the speed manifold (i.e., interpolating between
the fast and slow gain patterns) in Supplementary Fig. 6b. Interpolating between the fast and slow
gain patterns accurately generates both movements at any intermediate speed. (See the bottom
panel of Fig. 6d.). For both initial conditions, we plot outputs at 5 evenly-spaced speeds by linearly
interpolating between the fast (gs=1) and slow (gs=7) gain patterns in Fig. 6f.

Simulation details for Fig. 7

We simultaneously train gain patterns for controlling different movements (i.e., different move-
ment shapes) and their speed. We train a recurrent neuronal network (using back-propagation, as
we discussed previously) to generate each of 10 different movement shapes at 7 different, evenly-
spaced speeds (ranging from the fast variant to the slow variant) using a single fixed initial condi-
tion x0. To jointly learn gain patterns that control movement shape and speed, we parametrize each
gain pattern as the element-wise product of a gain pattern that encodes shape (which we use at each
speed for a given shape) and a gain pattern that encodes speed (which we use at each shape for a
given speed). We again parametrize (see our details for Figs. 6d–f) the gain pattern that encodes
the speed index s (with s 2 {1, . . . , 7}) as a convex combination of two common endpoints, gs=1

(which we use for the fast-movement variants) and gs=7 (which we use for the slow-movement

8

variants). We thus optimize over 10 gain patterns for movement shape, 2 gain patterns each for
fast and slow movement speeds, 5 speed-interpolation coefficients (see above), and a single set of
readout weights.

In Fig. 7b, we plot the gain patterns that we obtain for controlling the movement speeds at each
of the 7 trained speeds. In Fig. 7c, we show the mean error between the network output and the
target over the 10 target movements when generating gain patterns for movement speed by linearly
interpolating between the trained fast (gs=1) and slow (gs=7) gain patterns. In Fig. 7d, we plot the
outputs of 6 of the 10 gain patterns for movement shape at each of 5 interpolated speeds between
the fast and the slow gain patterns. In rightmost panel of Fig. 7a, we plot 2 example movement
shapes at 3 interpolated speeds.

Simulation details for Fig. 8 and Supplementary Fig. 7

For these figures, we use the 10 trained gain patterns for movement shapes, as well as the speed
manifold from Fig. 7 (see our simulation details for Fig. 7). Using our learning rule from Eqns. (8)
and (9), we train 10 coefficients c1, . . . , c10 (with one for each shape-specific gain pattern; see
Fig. 8a) to construct a new gain pattern that, together with the speed manifold, generates a new tar-
get movement at the fast and slow speeds. Specifically, we replace the gains gi (for i 2 {1, . . . , N})
with the coefficients ci (for i 2 {1, . . . , 10}) in Eqns. (8) and (9). We use the mean of the errors at
the fast and slow speeds. To generate the network output at the fast and slow speeds, respectively,
we calculate the element-wise product between the newly-constructed gain pattern and the fast
and slow gain pattern, respectively, on the speed manifold. We independently train, using 10, 000
training iterations, the coefficients c1, . . . , c10 on each of the 100 target movements that we used
for Fig. 4. In Supplementary Fig. 7, we plot histograms of the errors over the 100 target move-
ments after training for both the fast and slow speeds. We plot the mean error (see the black curve)
over all 100 target movements at interpolated speeds in Fig. 8c. For the output that produces the
50th-smallest summed errors from fast and slow speeds, we plot the error in red in Fig. 8c. As a
control, we calculate the mean error between the network output and the target over the 100 tar-
get movements when choosing one of the 100 newly-learned gain patterns uniformly at random
without replacement. (See the grey curve in Fig. 8c.)

Additionally, instead of learning to combine gain patterns using the method that we described in
the previous paragraph, we determine coefficients c1, . . . , c10 using a least-squares regression by
fitting the 10 learned movements to each of the 100 target movements at the fast and slow speeds
simultaneously and requiring that cj � 0 for all j and

P10
j=1 cj = 1. (See the black dashed curve

in Fig. 8c.)

Finally, we plot the Pearson correlation coefficient between pairs of target movements versus the
Pearson correlation coefficient between corresponding pairs of learned coefficients c1, . . . , c10. In
our visualization, we plot only 1, 000 of the 4, 950 data points. (We choose these points uniformly
at random.) Note that we are unlikely to observe correlation values close to �1 between pairs of
combination coefficients because the coefficients c1, . . . , c10 are likely to sum to approximately 1

9

(see our discussion of Fig. 4); in fact, we calculate the mean sum of the coefficients to be approxi-
mately 0.91.

REFERENCES
1. D. E. Rumelhart, G. E. Hinton, and R. J. Williams, “Learning representations by back-

propagating errors,” Nature, vol. 323, no. 6088, pp. 533–536, 1986.

2. G. Hennequin, T. P. Vogels, and W. Gerstner, “Optimal control of transient dynamics in bal-
anced networks supports generation of complex movements,” Neuron, vol. 82, no. 6, pp. 1394–
1406, 2014.

3. M. M. Churchland, J. P. Cunningham, M. T. Kaufman, J. D. Foster, P. Nuyujukian, S. I. Ryu,
and K. V. Shenoy, “Neural population dynamics during reaching,” Nature, vol. 487, no. 7405,
pp. 1–8, 2012.

4. D. Sussillo and L. F. Abbott, “Generating coherent patterns of activity from chaotic neural
networks,” Neuron, vol. 63, no. 4, pp. 544–557, 2009.

10

