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We use topological data analysis to study “functional networks” that we construct from time-
series data from both experimental and synthetic sources. We use persistent homology with a
weight rank clique filtration to gain insights into these functional networks, and we use persis-
tence landscapes to interpret our results. Our first example uses time-series output from networks
of coupled Kuramoto oscillators. Our second example consists of biological data in the form of
functional magnetic resonance imaging data that were acquired from human subjects during a
simple motor-learning task in which subjects were monitored for three days during a five-day
period. With these examples, we demonstrate that (1) using persistent homology to study func-
tional networks provides fascinating insights into their properties and (2) the position of the fea-
tures in a filtration can sometimes play a more vital role than persistence in the interpretation of
topological features, even though conventionally the latter is used to distinguish between signal
and noise. We find that persistent homology can detect differences in synchronization patterns in
our data sets over time, giving insight both on changes in community structure in the networks
and on increased synchronization between brain regions that form loops in a functional network
during motor learning. For the motor-learning data, persistence landscapes also reveal that on
average the majority of changes in the network loops take place on the second of the three days
of the learning process. Published by AIP Publishing. [http://dx.doi.org/10.1063/1.4978997]

Computational topology is a family of methods that are
based on topological ideas (e.g., they often arise from
algebraic topology) and give insights into topological
invariants, such as connectedness or holes in high-
dimensional data sets.1–3 Such efforts have come to be
called topological data analysis, and a method known as
persistent homology (PH) has been particularly helpful
for understanding shapes and their persistence over mul-
tiple scales.4,5 Traditionally, PH has been applied to point-
cloud data, though it has also been applied to networks in
many applications, ranging from granular materials (see,
e.g., Ref. 6) to functional brain networks.7,8 We employ
these topological tools, which are designed to yield global,
“higher-order” insights that go beyond revelations from
pairwise connections (which are the norm in network sci-
ence), in a study of functional networks constructed from
both empirical and synthetic time-series data. We use per-
sistence landscapes to show that the topological tools can
(1) capture dynamics of networks constructed from the
data and (2) identify mesoscale features that we relate to
community structure9,10 in the associated functional net-
works. To help readers optimally understand these
insights, we also present an intuitive introduction to PH
and how to apply it to networks.

I. INTRODUCTION

The human brain consists of many billions of neurons,
whose major task is to receive, conduct, and transmit signals.

Analysis of neuronal networks is crucial for understanding the
human brain.11–16 Every neuron consists of a cell body and
one long axon, which is responsible for propagating signals to
other cells.17 Neurons or (on a larger scale) different brain
regions can be construed as nodes of a network, whose edges
represent either structural or functional connections between
those nodes. Examining neuronal data using a network-based
approach allows one to use mathematical tools from subjects
such as graph theory to better understand structural and func-
tional aspects of neuronal interactions, identify key regions in
the brain that are involved in physiological and pathological
processes, and compare the structure of neuronal interactions
with those of other complex systems. For example, data analy-
sis using network theory has led to the insight that the brain
has underlying modular structures, with small subunits that
are able to carry out specific functions while minimally
influencing other parts of the brain.11,14,18

The standard methods from network theory are based on
pairwise connections, which one can use to study the micro-
scale, mesoscale, and macroscale structures.19 An alternative
approach for studying networks20 is to use methods from com-
putational topology, which explicitly incorporates “higher-
order” structures beyond pairwise connections and includes
algorithmic methods for understanding topological invariants,
such as connectedness, loops, or holes in high-dimensional
data structures1–3(see Section II B). Although one can also
represent higher-order structures using formalisms such as
hypergraphs21 (see, e.g., a recent paper22 by Bassett et al.),
those other approaches may not be the most convenient means
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for optimally conveying information about the shape or scale
of mesoscale structures in a network. Other recent work con-
cerns clustering in networks using higher-order structures.23

Methods from computational topology enable one to
understand global low-dimensional structures in networks, and
they have led to insights in an increasingly large number of
applications5 in diverse topics, ranging from granular materi-
als6 and contagions on networks24 to path planning25 and col-
lective behavior in animals.26 In particular, persistent
homology (PH), a mathematical formalism to explore the per-
sistence of topological structures in data sets, has become
increasingly prominent in neuroscience in the last few years.7,8

Among other applications, it has been used to determine
differences in brain networks of children with hyperactivity
disorders and autism spectrum compared to normal situa-
tions,27 study the effect of the psychoactive component of
“magic mushrooms” (psilocybin mushrooms) on functional
brain networks of humans,28 analyze covariates that influ-
ence neural spike-train data,29 and study structural and
functional organization of neural microcircuits.30 Other
neuronal applications have included consideration of place
cells in the hippocampus of rats during spatial naviga-
tion,31–33 analysis of mathematical models of transient hip-
pocampal networks,34 and a demonstration that topological
features of networks of brain arteries in humans are corre-
lated with their age.35 We also note that PH is not the only
topological method that has been used to study the human
brain or time series. More than fifty years ago, for example,
Zeeman36 used tolerance spaces and Vietoris homology the-
ory to study aspects of visual perception. In the 1990s,
Muldoon et al.37 developed a method to study the topology
of manifolds that underlie time-series data.

In the present investigation, we use time-series data to
construct so-called functional networks11,12,38,39 (but note that
one can study coupled time series using a variety of different
approaches40–42). Functional brain networks consist of a set of
nodes (e.g., brain regions) and a set of weighted edges
between nodes, where the edge weights quantify the similarity
of the associated time series according to a chosen measure.
A functional network contrasts with a “structural network,”
which refers to the underlying physical connections (e.g., ana-
tomical connections) between nodes. For example, neurons
are connected to each other in structural networks, but one
can analyze the similarity in their firing patterns through func-
tional networks. We use the term “functional network” in a
more general way: by constructing a matrix of similarities
between coupled time series using some measure (and enforc-
ing the diagonal entries to be 0), one obtains a functional net-
work whose weighted adjacency matrix (sometimes also
called an “association matrix”) ~A ¼ ð~aijÞNi;j¼1 has elements
that indicate the similarity between the time series of entities
i and j. Studying functional networks is common in neurosci-
ence, and they are also used in a wealth of other applications
(e.g., finance,43 voting among legislators,44 and climate45).
Importantly, the time series can come either from empirical
data or from the output of a dynamical system (or stochastic
process), and the latter can be helpful for validating methods
for network analysis.46 In our paper, we will consider time
series either from coupled oscillators (i.e., as the output of a

dynamical system) or from a set of spatially distinct brain
regions defined by a fixed anatomical atlas. In the context of
functional brain networks, the adjacency-matrix element aij

arises as a measure of “functional connectivity” (i.e.,
behavioral similarity) between the time series for nodes
(i.e., brain regions) i and j. There are many different ways
to measure similarity of time series,12,47,48 and that can be a
major issue when it comes to interpreting results.
Comparing the networks that arise from different similarity
measures is beyond the scope of our work, so we will sim-
ply use two common measures (pairwise synchrony and
wavelet coherence) of time-series similarity. However, the
methods that we employ can be applied to functional net-
works that are constructed using any measure of similarity
between time series.

In many studies based on experimental data, functional
networks are used to construct binary graphs (i.e., unweighted
graphs).12 To do this, one typically applies a global threshold
n 2 Rþ to a weighted adjacency matrix to obtain a binary
adjacency matrix A ¼ ðaijÞNi;j¼1 associated with an unweighted
graph. The adjacency-matrix elements are then

aij ¼
1; if ~aij % n;
0; otherwise:

!
(1)

The choice of threshold has a strong influence on the result-
ing matrix, and it thereby exerts a major influence on the
structure of the associated graph.12 Some approaches to
address this issue include determining a single “optimal”
threshold, thresholding the weighted adjacency matrix at
different values,49,50 examining the network properties as a
function of threshold, or not thresholding at all and consider-
ing the weighted adjacency matrix itself.12,14 (One can also
threshold a weighted adjacency matrix by setting suffi-
ciently small entries to 0 but keeping the values of the
other entries.) If one is thresholding and binarizing data,
there is no guarantee that there exists an interval of thresh-
olds that yield networks with qualitatively similar proper-
ties, and arbitrarily throwing away data can be problematic
even when such intervals do exist. For example, parame-
ters such as graph size (i.e., number of nodes) need to be
taken into account when interpreting results on thresh-
olded, binarized networks.51 An advantage of using persis-
tent homology is that one can examine a graph “filtration”
(see Section II C) generated by multiple—ideally all—pos-
sible global thresholds and systematically analyze the per-
sistence of topological features across these thresholds.
Such a filtration can also be created using decreasing local
thresholds.

In our topological analysis, we focus on “loops” in a net-
work. For our purposes, a loop in a graph is a set of at least
four edges that are connected in a way that forms a topologi-
cal circle.52 Loops are thus 1-dimensional topological fea-
tures. We choose to focus on loops rather than features with
dimension 0, which correspond to connected components of
a graph, are topologically simpler, and can be studied using
many other approaches (e.g., through the number of 0 ele-
ments in the spectrum of the combinatorial graph
Laplacian21). It has been demonstrated in other applications
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(e.g., contagions on networks24) that loops are important
topological features of graphs, and a recent study53 demon-
strated the importance of loops (and related higher-
dimensional objects) in structural neuronal networks.
Structural and functional neuronal networks are related and
share some network features,11 so we expect loops to provide
interesting insights.

The remainder of our paper is organized as follows. In
Section II, we give a brief and intuitive introduction to persis-
tent homology, the weight rank clique filtration (WRCF), and
persistence landscapes. In Section III, we introduce our first
example, the Kuramoto model of nonlinearly coupled oscilla-
tors; and we present results from our application of persistent
homology to time-series data produced by coupled Kuramoto
oscillators. In Section IV, we introduce and analyze our second
example, which consists of time-series functional magnetic
resonance imaging (fMRI) data from experiments of humans
performing a simple motor-learning task. We present our con-
clusions in Section V, and we provide a mathematical intro-
duction to persistent homology in the Supplementary Material.

II. PERSISTENT HOMOLOGY

Persistent homology (PH)1–3 is a method from computa-
tional topology that quantifies global topological structures
(e.g., connectedness and holes) in high-dimensional data.
One can think of PH as looking at the “shape” of data in a
given dimension using a set of different lenses. Each lens
conveys topological features inside data at a different resolu-
tion. One then construes structures that persist over a range
of different lenses to represent one or more significant fea-
tures of the data. Structures that are observed only through a

small number of lenses are commonly construed as
noise,54,55 especially in settings in which the data are sam-
pled from a manifold. For empirical data, the relationship
between low persistence of a feature and whether it consti-
tutes noise in a data set rather than signal has not yet been
verified statistically, but we will illustrate a situation in
which some short-lived structures represent important fea-
tures and possibly genuine geometrical (not just topological)
features of data in Sections III and IV.

In this section, we provide an intuitive introduction to
the mathematical concepts behind PH. In the Supplementary
Material, we give a mathematically rigorous introduction
(including precise definitions).

A. Simplicial complexes

One can study the properties of a topological space56,57

by partitioning it into smaller and topologically simpler
pieces, which when reassembled include the same aggregate
topological information as the original space. The most triv-
ial topological space X ¼ f;; xg consists of the empty set ;
and a single point x. If we want to simplify the description of
the topological properties of X, we would simply choose a
single node to represent it. However, a node or even a collec-
tion of nodes does not allow one to capture the topological
properties of more complicated spaces, such as a 2-sphere or
the surface of the earth. In such cases, one needs a simple
object that carries the information that the space is connected
but also encloses a hole. For example, one could use a tetra-
hedron, which is an example of a mathematical object called
a simplex.

The building blocks that one uses to approximate topologi-
cal spaces are called k-simplices, where the parameter k indi-
cates the dimension of the simplex. Every k-simplex includes
kþ 1 independent nodes: a point is a 0-simplex, an edge is a
1-simplex, a triangle is a 2-simplex, and a tetrahedron is a
3-simplex (see Fig. 1). Observe that the lower-dimensional sim-
plices are contained in the higher-dimensional simplices. This
allows one to build higher-dimensional simplices using lower-
dimensional ones. The lower-dimensional simplices form the
so-called faces of the associated higher-dimensional objects.

One combines different simplices into a simplicial com-
plex to capture different aspects of a topological space. For
every simplex that is part of a simplicial complex, we

(a) (b) (c) (d)

FIG. 1. Examples of (from left to right) a 0-simplex, a 1-simplex, a
2-simplex, and a 3-simplex. [Figure adapted from Ref. 3.]

(a) (b) (c) (d)

FIG. 2. Panels (a)–(c) give examples of simplicial complexes, and panel (d) gives an example of an object that is not a simplicial complex. The blue color indi-
cates a 2-simplex. Example (a) illustrates that simplicial complexes are not necessarily also simplices. The three edges do not form a 2-simplex; instead, they
form a simplicial complex that consists of 1-simplices. In examples (b) and (c), all 1-simplices and 2-simplices are connected to each other via 0-simplices
(i.e., the intersections of all present simplices are 0-simplices). Example (d) is a collection of simplices that violates the definition of a simplicial complex,
because the intersection between the two triangles does not consist of a complete edge that is shared by both simplices (as it includes only approximately 75%
of the base edge of the upper triangle). Note that any combination of the three simplicial complexes (a), (b), and (c) is also a simplicial complex.
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demand that all of its faces are also contained in the simpli-
cial complex. Additionally, two simplices that are part of a
simplicial complex are allowed to intersect only in common
faces. In Fig. 2, we show several examples of simplicial
complexes and one example that is not a simplicial complex.

We take the dimension of a simplicial complex to be the
dimension of its highest-dimensional simplex. One can use
simplicial complexes to represent topological spaces if and
only if there exists a continuous deformation that can stretch
and bend the simplicial complex into the topological space,
and only then are topological properties of the topological
space preserved by the simplicial complex.

B. Homology and Betti numbers

If one is interested in the nature of a simplicial complex
of dimension k, one can either consider the full complex,
which can be very large, or one can examine different sub-
sets of simplices that are contained in the complex. For
example, the set of all 1-simplices consists of a collection of
edges, some of which may be connected or even form a
loop. However, one can consider a range of different topo-
logical features—e.g., in some cases, a collection of edges
surrounding a hole or void could be more interesting than
individual edges—and one typically seeks features that are
invariant if one squeezes or stretches the edges. Homology is
a formal way to quantitatively detect topological invariants
in a given dimension to give insight into the nature of a topo-
logical space. By using homology, one can, for example, dis-
tinguish a 2-sphere from a torus. For a simplicial complex of
dimension k, one can define a vector space known as the pth
homology group for every dimension p 2 f0;…; kg. In
dimension 1, for example, the elements of the homology
group are called “loops.” The elements of the homology
group can be divided into different homology classes, which
each represent a hole in the topological space. For instance,
in dimension 1, loops in the same homology class all sur-
round the same 1-dimensional hole. We give an example of
two loops that surround the same hole in Fig. 3. The homol-
ogy classes yield a family of vector spaces, whose dimen-
sions are called Betti numbers, associated to a simplicial
complex. One can interpret the first three Betti numbers, b0,
b1, and b2, to represent, respectively, the number of con-
nected components, the number of 1-dimensional holes, and
the number of 2-dimensional holes in a simplicial complex.
As we pointed out in Section I, we focus on the number of
loops (i.e., on b1) in our network analysis rather than on b0,
which corresponds to the number of connected components
in a graph. One can study connected components in graphs
using many other approaches, such as by calculating the
number of 0 eigenvalues in the spectrum of the combinato-
rial graph Laplacian.21

C. Filtrations

Although homology gives information about a single
simplicial complex, it typically is more relevant to study the
topological features across sequences (called filtrations) of
simplicial complexes. A filtration2,54,55 of a simplicial com-
plex R is a sequence of embedded simplicial complexes,

; ¼ R0 & R1 & R2 &… & Rk ¼ R; (2)

starting with the empty complex and ending with the entire
simplicial complex. One can use homology to study topolog-
ical features (e.g., loops) in every step of the filtration and
determine how persistent they are with respect to a given fil-
tration. A topological feature h is born at Rm if the homology
group of Rm is the first homology group to include the fea-
ture. Similarly, a topological feature dies in Rn if it is present
in the homology group of Rn'1 but not in that of Rn. One
then defines the persistence p of the topological feature as

p ¼ n' m:

Persistence was first used as a measure to rank topological
features by their lifetime1 in a filtration in R3.

There are many ways to define simplicial complexes
and filtrations on weighted graphs, and the choice of filtra-
tion tends to be motivated either by the type of questions to
be answered or by consideration of computation time.

1. Weight rank clique filtration

Although we focus on network data, we note that PH
has been applied much more often to data in the form of
point clouds.54,55 The simplest way to create a sequence of
embedded graphs (e.g., a filtration) from a weighted network
is to filter by weights.58 To do this, one creates a sequence of
embedded (binary) graphs by ranking all edge weights !t in
descending order. In filtration step t, one retains an edge if
and only if its weight is at least !t. To construct the filtration,
one repeats this procedure until the graph is complete in the

FIG. 3. Example of a loop in a simplicial complex. The green and the blue
loops both surround the same 1-dimensional hole and are therefore consid-
ered to be representatives of the same homology class.
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last step. Using this method, one is able to study 0-simplices
(i.e., nodes) and 1-simplices (i.e., edges). The weight rank
clique filtration (WRCF),59 which we will use in our analysis
and which has been applied previously for examining
weighted neuronal networks,28,33,59 extends this definition to
include higher-dimensional simplices. One constructs a
WRCF as follows:

1. Define filtration step 0 as the set of all nodes.
2. Rank all edge weights f!1;…; !endg, with !1 ¼ !max and
!end ¼ !min. (We will use s to denote the number of dis-
tinct weights in a graph.)

3. In filtration step t, threshold the graph at weight !t to cre-
ate a binary graph.

4. Find all maximal c-cliques for c 2N, and define them to
be c-simplices.

This is a valid simplicial complex: every ðcþ 1Þ-clique
in the graph guarantees the existence of a c-face on that cli-
que, because cliques are closed under both intersection and
taking subsets. Consequently, they satisfy the requirements
for a simplicial complex. This type of simplicial complex on
a graph is called a clique complex.

One can visualize the persistence of homology classes
of a filtration of a simplicial complex using barcodes.54

A barcode for a given dimension is a collection fbl; dlgm
l¼1

of interval endpoints, where every interval (bl, dl) repre-
sents a topological feature l of the given dimension (exam-
ples of such features include connected components and
loops), bl denotes the birth time of feature l with respect to
the filtration step, and dl denotes its death time. The length
dl ' bl of the bar measures the persistence of the feature. In
Fig. 4, we show an example of a WRCF and its correspond-
ing barcode.

D. Persistence landscapes

As an alternative topological summary to barcodes, one
can use persistence landscapes,60,61 which consist of

piecewise-linear functions in a separable Banach space. For
a given barcode interval (b, d), one defines the function

f b;dð Þ ¼

0; if x 62 b; dð Þ;

x' b; if x 2 b;
bþ d

2

" #
;

'xþ d; if x 2 bþ d

2
; d

" $
:

8
>>>>><

>>>>>:

(3)

For a barcode fbl; dlgm
l¼1 and q % 0, the q-th persistence

landscape is given by the set of functions

kq : R! R;

kqðxÞ ¼ qth-largest value of ffðbl;dlÞðxÞg
m
l¼1: (4)

If the qth-largest value does not exist, then kqðxÞ ¼ 0. One
can think of the 0th persistence landscape as being the out-
line of the collection of peaks created by the images of the
collection of functions f associated to a barcode. To obtain
the 1st persistence landscape, one peels away this topmost
“layer” of peaks and then considers the outline of the
remaining collection of peaks. This gives the 1st persis-
tence landscape, and one continues in this manner to obtain
subsequent persistence landscapes. The persistence land-
scape k of the barcode fbl; dlgm

l¼1 is then defined as the
sequence fkqg of functions kq (where kq is the qth layer of
the landscape).

Even though persistence landscapes visualize the same
information as barcodes for an individual filtration and one
can construct a bijective correspondence between the two
objects, the former have distinct advantages over the latter.
For example, one can calculate a unique “average landscape”
for a set of persistence landscapes from several filtrations by
taking the mean over the function values for every landscape
layer (see Fig. 5). This is not possible for barcodes, as they
are not elements of a Banach space. For an average land-
scape, it is thus not possible to find a corresponding average

FIG. 4. Example of a weight rank clique filtration (WRCF) and the corresponding 0-dimensional and 1-dimensional barcodes. The barcode of dimension 0
indicates the connected components in every filtration step. When two components merge into one connected component, one of the bars that represent the
original components dies in the barcode; the other continues to the next filtration step and now represents the newly-formed component. In filtration step 0,
every node is a separate component, resulting in 12 bars in the barcode. The nodes are joined to become two components in filtration step 1, and they then
become a single component in step 2. In dimension 1, we observe that as more edges are added to the filtration, the loop surrounding the blue hole born in fil-
tration step 2 is divided first into two holes and subsequently into three holes before it is completely covered by 2-simplices and dies in filtration step 7. The
colors of the bars indicate which loop they represent.
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barcode. We show a schematic illustration of how to obtain
an average persistence landscape in Fig. 5.

One can also define an Lp distance between two land-
scapes (either individual ones or average ones) and thereby
use a variety of statistical tools.60 This allows one to com-
pare multiple groups of landscapes (and thereby also com-
pare groups of barcodes) by calculating a measure of
pairwise similarity between landscapes. Persistence land-
scapes have been used to study conformational changes in
protein binding sites,62 phase separation in binary metal
alloys,63 and music audio signals.64

E. Computational tools

For our PH calculations, we use MATLAB code that we
construct using Javaplex,65,66 a software package for persis-
tent homology. For the WRCFs, we also use a maximal
clique-finding algorithm from the Mathworks library67 that
is based on the Bron–Kerbosch algorithm, which is the most
efficient algorithm known for this problem. For statistical
analysis and interpretation of our barcodes, we apply the
Persistence Landscapes Toolbox.61

III. EXAMPLE I: COUPLED KURAMOTO OSCILLATORS

A. The Kuramoto model

The Kuramoto model68–72 is a well-studied model for a
set of coupled phase oscillators whose natural frequencies are
drawn from a prescribed distribution. The model was devel-
oped in the 1970s to understand synchronization in a large
system of oscillators. It has subsequently been used as a toy
model by many neuroscientists (as well as scholars in many
other areas), as some of the characteristics of its synchroniza-
tion patterns resemble some of the ones in neuronal communi-
ties.73–76 The Kuramoto model and its generalizations have

also been applied to numerous other applications in chemis-
try, biology, and other disciplines.70,71,77

When all oscillators are coupled to each other, the
Kuramoto model is most commonly written as69,71

dhi

dt
¼ xi þ

K

N

XN

j¼1

sin hj ' hi
% &

; i 2 1;…;Nf g; (5)

where hi denotes the phase of oscillator i, the parameter xi

is its natural frequency, K % 0 parametrizes the coupling
strength between different oscillators, and N is the number
of oscillators in the model. The normalization factor 1

N
ensures that the right-hand side of Eq. (5) is bounded as
N !1. The distribution from which the frequencies xi are
drawn is usually assumed to be unimodal and symmetric
about its mean frequency, which can be set to 0 due to the
rotational symmetry of the model (because Eq. (5) is invari-
ant under translation of hi). The parameter xi then denotes
the deviation from the mean frequency.

We also adapt Eq. (5) to examine a network of N oscilla-
tors with uniform coupling between the oscillators.40,46,70,71,78

We consider the following generalized version of Eq. (5):

dhi

dt
¼ xi þ

XN

j¼1

jAij sin hj ' hi
% &

; i 2 1;…;Nf g; (6)

where j % 0 denotes the normalized coupling strength and
the entries of the coupling matrix A ¼ ðAijÞNi;j¼1 indicate
whether oscillators i and j are coupled. That is, A is an
unweighted adjacency matrix, and Aij¼ 1 for coupled oscil-
lators and Aij¼ 0 for uncoupled oscillators. The coupling
matrix A thereby imposes a “structural network” between the
oscillators. One can further generalize Eq. (6) by using

FIG. 5. Visualization of the relationship between barcodes and an average persistence landscape. To obtain a landscape from a barcode, one replaces every bar
of the barcode by a peak, whose height is proportional to the persistence of the bar. In the landscape, we translate all peaks so that they touch the horizontal
axis. The persistence landscape consists of different layers, where the qth layer corresponds to the qth-largest function values in the collection of peak func-
tions. One creates an average of two landscapes by taking the mean over the function values in every layer.
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heterogeneous coupling strengths jij or by considering func-
tions other than sine on the right-hand side.

We divide the oscillators into 8 separate communities79

of 16 distinct oscillators each, and we suppose that every
oscillator has exactly 14 connections, 13 of which are with
oscillators in the same community and 1 of which is to an
oscillator outside the community. As in Bassett et al.,46 we
choose a coupling strength of j ¼ 0:2, consider a network
with N¼ 128 oscillators, and suppose that the ith natural fre-
quency is xi ( N ð0; 1Þ. (That is, we draw natural frequen-
cies from a Gaussian distribution with mean 0 and standard
deviation 1.) However, our network architecture differs
somewhat from that in Bassett et al.,46 where every oscillator
had at least 13 connections inside its community and at least
1 connection outside its community.

We simulate the Kuramoto model [Eq. (6)] using the
Runge–Kutta MATLAB solver ODE45 (with an integration
time interval of ½0; Tmax*, where Tmax ¼ 10).80 We observe
the system for M¼ 500 time steps in total (including
the initial time step) and obtain time series T ðiÞ ¼
ðhiðt0Þ;…; hiðt499ÞÞ as the output of the model for each
oscillator hi. Kuramoto oscillators with a similar imposed
community structure were demonstrated previously to ini-
tially synchronize rapidly within their communities, fol-
lowed by a phase of global synchronization in an entire
network.46 (There have also been other studies of commu-
nity structure via synchronization of Kuramoto oscilla-
tors.78,81) To study the dynamics of the coupled Kuramoto
oscillators, we follow the approach of Bassett et al.46 and
partition the time series into two time regimes, which we
denote by k̂ ¼ 1 and k̂ ¼ 2. In our example, these time
regimes each consist of 250 time steps. (The authors of
Ref. 46 also split their time series into two equal parts, but
their time series consist of 100 time steps in total rather
than 500.)

To quantify the pairwise synchrony of two oscillators i
and j, we use the local measure46,78

/k̂
ij ¼ hj cos ðT k̂

ðiÞ ' T
k̂
ðjÞÞji; (7)

where the angular brackets indicate that we take a mean over
20 simulations. We use the absolute value both to facilitate
comparison with Arenas et al.78 and Bassett et al.46 (by mak-
ing the same choice that they made) and to avoid negative
values, which can complicate interpretation and pose other
difficulties in network analysis.43,47,82

In each simulation, we choose the initial values for the
phases hi from a uniform distribution on ð0; 2pÞ and draw the
natural frequencies xi from N ð0; 1Þ. We apply the same
underlying coupling matrix A ¼ ðAijÞNi;j¼1 for all 20 simula-
tions and then use the values /ij to define the edge weights
in the fully connected, weighted network of Kuramoto oscil-
lators for each time regime. We also study a network based
on one full time regime that consists of 500 time steps. In
analogy to neuronal networks, we call these networks
“functional networks.” In Fig. 6, we illustrate our pipeline
for creating a functional network from the output of a simu-
lation of the Kuramoto model.

B. Null models for the Kuramoto data

To assess whether our observations illustrate meaningful
dynamics of the Kuramoto model or whether they can be
explained by a random process, we consider two different
null models based on the time-series output. In the first null
model, which we call the “simple null model,” we indepen-
dently reassign the order of the time series of each oscillator
according to a uniform distribution before computing the
similarity measure with Eq. (7). The second null model,
which we call the “Fourier null model,” is based on creating
surrogate data using a discrete Fourier transformation. This
approach83 has the advantage of preserving not only the
mean and the variance of the original time series but also the
linear autocorrelations and cross correlations between the
different time series.

To construct the Fourier null model, we start by taking
the discrete Fourier transform

T̂ n ¼
1
ffiffiffi
l
p
Xl'1

m¼0

T me
2pinm

l (8)

FIG. 6. We construct a structural net-
work for coupled Kuramoto oscillators
by grouping the oscillators into 8 sepa-
rate communities. Oscillators are cou-
pled predominantly to other oscillators
in their community, and they are cou-
pled only very sparsely to oscillators
outside their community. We use the
time-series output of a simulation of
the Kuramoto model to create a func-
tional network based on the similarity
of the time series of individual oscilla-
tors. We use the measure of similarity
in Eq. (7).
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of a time-series vector T (with components T m) of length l.
In our case, l¼ 250 or l¼ 500, depending on whether we
are examining two different time regimes or just one. We
then construct surrogate data by multiplying the Fourier
transform T̂ n by phases an chosen uniformly at random from
the interval ð0; 2pÞ, aside from the constraint that they must
satisfy the following symmetry property: for every n + l,
there exists ~n such that an ¼ 'a~n . This symmetry ensures
that the inverse Fourier transform yields real values. The sur-
rogate data r ¼ ðr1;…; rlÞ are thus given by

rm ¼
1
ffiffiffi
l
p
Xl'1

n¼0

eian T̂ ne'
2pinm

l : (9)

Both the simple null model and the Fourier null model
were used previously on time-series output of coupled
Kuramoto oscillators, and they exhibit different dynamics
from those of the oscillators.22,46

C. Persistent homology applied to the Kuramoto
model and null models

We apply the WRCF to functional networks created
from the output of two time regimes of the Kuramoto model,
one time regime (i.e., the full time-series output) for the
Kuramoto model, the simple null model, and the Fourier null

model. We run the filtrations up to filtration step 1800 for the
first time regime and up to 2000 for the second; we go up to
filtration step 1100 for cases in which we only consider one
time regime. The total number of edges in the network, and
thus the total number of possible filtration steps, is 8128. The
number of filtration steps thereby corresponds to respective
edge densities of 0.22, 0.25, and 0.14 for the three examples
above; in each case, this amounts to a threshold that is
approximately in the middle of the range of the edge-weight
values. The Masters thesis of Stolz,84 which is a precursor to
the present paper, also applied PH to networks created from
the Kuramoto model, and such an example was subsequently
also studied using Betti curves by other authors.85

As we described in Section I, we focus our analysis on
topological features in dimension 1, so we examine loops in
the network. In the first row of Fig. 7, we show the
1-dimensional barcodes for the networks constructed from
time regime 1 (i.e., the first 250 time steps of the dynamics)
and time regime 2 (i.e., time steps 251–500 of the dynamics)
for the WRCF of the Kuramoto model. The barcode for
each time regime includes several very short-lived bars
between filtration steps 50 and 300. For the second time
regime, we find more short bars for a longer filtration range
at the beginning of the barcode. The loops that correspond
to these short bars are all formed within the strongly syn-
chronized communities. In fact, in time regime 1, the first

Time Regime І Time Regime ІІ

FIG. 7. Dimension-1 barcodes and persistence landscapes for the WRCF for the two time regimes (time steps 1–250 and time steps 251–500) of time-series
output of the Kuramoto model. The horizontal axis represents the filtration steps in both the barcodes and the landscapes. The vertical axis in the persis-
tence landscape captures the persistence of the features in the barcode. In the first row, we show the barcodes for dimension 1. In the second row, we show
persistence landscapes (although we ignore infinitely-persisting bars in the barcodes). The short peaks early in the filtration in the persistence landscapes
that are indicated by the red ellipses represent loops formed within communities. The most prominent difference between the two landscapes is the occur-
rence of high peaks in the second time regime; these peaks correspond to persistent inter-community loops in the network that are formed between
communities.
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44 bars in the barcodes represent intra-community loops; in
time regime 2, only 2 of the first 28 bars represent intra-
community loops. As strong intra-community edges are
added to the simplicial complexes, they start to cover the
loops with triangles (i.e., 2-simplices), and the loops disap-
pear from the filtration.

In the second row of Fig. 7, we show the persistence
landscapes that we construct from the 1-dimensional barco-
des. We ignore infinitely-persisting bars in the barcode. (We
also studied persistence landscapes that include the infinite
bars as features with a death time that corresponds to the
maximum filtration value but did not obtain any additional
insights that way.)

As expected, the landscapes have a group of small
peaks early in the filtration for both time regimes. This fea-
ture occurs in a longer filtration range in the second time
regime before more-persistent loops appear. In the second
time regime, some of the peaks that occur early in the filtra-
tion appear to almost double their heights to values of about
100. In contrast, in the first time regime, peaks at a similar
location are about half as high (i.e., they are less
persistent).

The persistence landscapes reveal more persistent loops
in the second time regime (i.e., between time steps 251 and
500) than in the first (i.e., between time steps 1 and 250), and
the second time regime also appears to reveal a clearer sepa-
ration between a group of very early short peaks and a group
of medium-sized peaks towards the end of the filtration. For
this second group of medium-sized peaks, we observe a
larger absolute increase in persistence in the second time
regime than for the shorter peaks early in the filtration.
These observations reflect the dynamics of the two time
regimes in the Kuramoto model.46 In time regime 1, there is
strong synchronization within the communities, and such
dynamics are reflected by the appearance of short-lived
intra-community loops (corresponding to the short peaks in
the persistence landscapes) early in the filtration. In the sec-
ond time regime, the amount of global synchronization is
more prominent than in the first time regime. Moreover, in
addition to intra-community loops, some of the peaks early
in the filtration now represent inter-community loops, which
are more persistent than the loops within communities.
Additionally, as some of the peaks that correspond to inter-
community loops have shifted to earlier parts of the filtra-
tion, there is an increase in the gap between the initial group
of peaks and the group of medium-sized peaks at the end of
the filtration. In general, we observe increased persistence of
the peaks in the landscapes due to the stronger synchroniza-
tion between the communities. These observations are much
easier to visualize using persistence landscapes than using
barcodes.

We calculate pairwise L2 distances between all
dimension-1 persistence landscapes, and we note that L2 dis-
tance has been used previously to compare persistence land-
scapes in an application to protein binding.62 The L2 distance
between the two time regimes is 27078. (Here, and in subse-
quent discussions, we round the L2 distances to the nearest
integer.) Given the length of the support of the landscapes
and the function values that the landscapes attain, this is a

large distance, which captures the aforementioned visible
differences between the landscapes. The L2 distance is
unable to capture the fact that the peaks that appear early in
the filtration in the first time regime correspond to loops
between nodes within one community, whereas they corre-
spond to loops that form between nodes of different commu-
nities in the second time regime. Consequently, this feature
does not contribute to the value of the distance.

We also compare the Kuramoto model with the two
null models that we discussed in Section III B. To do this,
we construct a functional network by considering a single
time regime that consists of 500 time steps. In Fig. 8, we
show the weighted adjacency matrices of the three func-
tional networks, and we also show their corresponding per-
sistence landscapes based on WRCFs of the functional
networks. One can observe clearly that there is stronger
intra-community synchronization for the Kuramoto time
series than for the null models, as there is a very distinct
group of short peaks early in the filtration (which, as we dis-
cussed above, is also the case for the Kuramoto model
when performing separate calculations in the two time
regimes).

Again, the corresponding loops occur within communi-
ties. The peaks in the Kuramoto landscape appear to be sepa-
rated from a second group of short peaks further along in the
filtration. Between the two groups of peaks, there are two
strikingly higher peaks that correspond to persistent loops
that appear to be formed by connections between different
communities. For both null models, we also observe groups
of short peaks early in the filtration, but these are less persis-
tent and separated less clearly from other peaks than for the
Kuramoto model. Indeed, we do not see any separation at all
for the Fourier null model, which exhibits a much weaker
intra-community synchronization than the simple null model.
Moreover, the persistence landscape for the Fourier null
model appears to be “noisier,” as the majority of the peaks in
the landscape have similar persistences and appear in similar
regions of the filtration.

The peaks in the landscapes of the null models appear to
have a very different distribution along the filtration than is
the case for the Kuramoto model. They also possess more
medium-sized and long persisting features than we observe
in the Kuramoto data. These features occur in parts of the fil-
tration in which the Kuramoto data have a smaller number of
peaks. They consist of inter-community loops and are a
symptom of the weaker intra-community and stronger inter-
community synchronization. The null models thus appear to
have more topological features in the form of loops than is
the case for the Kuramoto data. This is consistent with previ-
ous examinations of null models in other studies.33,53,59 The
fact that there are fewer persistent loops in the Kuramoto
model than in the null models implies that there are more
high-dimensional simplices (e.g., triangles and tetrahedra) in
the corresponding network than in the networks constructed
from the null models.

To distinguish between the three landscapes, we calcu-
late the L2 distances between them. The L2 distance between
the Kuramoto landscape and the Fourier null-model land-
scape is 13540; the L2 distance between the two null-model
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landscapes is 13263; and the L2 distance between the
Kuramoto landscape and the simple null-model landscape is
11703. Again considering the support of the landscapes and
the magnitudes of the function values, we see that three dis-
tances can be construed as large.

We find that PH can detect Kuramoto-model dynamics
and that the persistence landscapes are rather different for the
Kuramoto model and the null models. The L2 distances
between landscapes underscore these differences. We are also
able to distinguish between the two null models using persis-
tence landscapes. In contrast to conventional wisdom,54,55 we
do not find for our examples that only the persistence of topo-
logical features distinguishes signal from noise. In fact, the
short bars early in the filtration of the Kuramoto model carry
important information about the dynamics, and the medium-
sized persistent peaks in the Fourier null model are a symptom
of the weaker intra-community and stronger inter-community
synchronization in that model. We therefore assert that the
position of features in the barcode is as important as persis-
tence length for their interpretation in our examples; this pro-
vides an important point to consider for future studies. Note
that persistence landscapes alone do not provide enough infor-
mation to assess a system’s dynamics. It is only by combining
them with information about nodes that form loops (which are
represented by certain groups of peaks) that we are able to
obtain conclusions about intra-community and inter-
community synchronization.

IV. EXAMPLE II: TASK-BASED fMRI DATA

A. Human brain networks during learning of a simple
motor task

We use a data set of functional brain networks from
experiments that were first analyzed by Bassett et al.86 The
data set was collected to study human subjects during learn-
ing of a simple motor task, and a full description of the
experiments conducted is available in Ref. 86. We apply a
WRCF to the functional networks, and we compare our find-
ings with previous studies on these and similar net-
works.86–88 The functional networks are based on functional
magnetic resonance imaging (fMRI) time series89,90 from 20
healthy subjects who undertook a motor-learning task on
three days (during a five-day period). During the imaging of
the subjects, an “atlas” of 112 brain areas was monitored
while they were performing a simple motor-learning task
(similar to a musical sequence), which they executed using
four fingers of their non-dominant hand. For each subject
and for each day of the study, the fMRI images are inter-
preted as 2000 time points for each monitored brain region.
The brain regions and their time series were used subse-
quently to construct functional networks based on a func-
tional connectivity measure known as the coherence of the
wavelet scale-2 coefficients. This measure was applied to the
time series to determine edge weights between each pair of
brain regions in the network. The weighted adjacency

FIG. 8. (Top row) Functional networks for (left) the Kuramoto model, (center) the simple null model, and (right) the Fourier null model. (Bottom row)
Dimension-1 persistence landscapes for the WRCF of (left) the Kuramoto model, (center) the simple null model, and (right) the Fourier null model using one
time regime and ignoring infinitely-persisting bars. The persistence landscapes illustrate differences in the occurrence of loops in the three different networks.
Most prominently, these differences manifest in the heights and distributions of the peaks in the landscapes, which appear to exhibit a stronger separation along
the filtration between groups of peaks of different heights for the Kuramoto model than in the two null models.
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matrices for the functional networks were then corrected for
a false-discovery rate, as matrix elements under a certain
threshold (which represents a coherence amount that one
expects to occur at random) were set to 0. The other matrix
elements were retained.

The functional networks that we just described were
studied previously using community detection by Bassett
et al.,86 whose results suggest that there is a significant
segregation of the nodes in the functional networks into a
small number of different communities with strongly-
weighted connections inside the communities and weakly-
weighted connections to nodes in other communities.
Within these communities, certain nodes appeared to
remain in the same community, whereas others (the
“flexible” ones) often switched between different
communities.

There have also been studies of networks from a simi-
lar experiment that examined medium-term learning
(instead of short-term learning) and included training ses-
sions.87,88 These networks have a noticeable core–periphery
organization, with the sensimotor and visual regions of the
brain grouped into a temporally “stiff” core of nodes, whose
community memberships (in contrast to flexible, peripheral
nodes) do not change much over the course of the learning
task.87 It was also shown subsequently that the interaction
of the primary and secondary sensorimotor regions with the

primary visual cortex decreases as the regions (presumably)
become more autonomous with task practice.88

Because we observed short-lived loops early in the fil-
trations for the Kuramoto model in a simulated setting with
community structure in oscillator connectivity, we will
explore whether the fMRI data exhibit similar features dur-
ing the three observation days.

B. Persistent homology applied to the task-based fMRI
data

We run the WRCF until filtration step 2600, which
is when 42% of the edges are present in the network. (Note
that using more filtration steps leads to very long computa-
tional times.) We again focus our analysis on topological
features in dimension 1. We construct persistence landscapes
for dimension 1 (omitting infinitely-persisting loops). In Fig.
9, we summarize our results for one particular subject and
for the whole data set. We use this subject to illustrate a rep-
resentative example of the particular landscape features that
we observe in the data.

Similar to the Kuramoto oscillators in Section III, we
find a group of small peaks early in the filtration (between
filtration steps 1 and 200). We can see this group very
clearly by magnifying both the landscape of individual sub-
jects and the average landscape, whose peak heights are
slightly smaller than the heights of the peaks in the

FIG. 9. Persistence landscapes for dimension 1 of the WRCF applied to the human brain networks. (First row) Persistence landscapes for subject 9 based on
filtration steps 1–2600 for days 1, 2, and 3. (Second row) Persistence landscapes for subject 9 based on filtration steps 1–200 for days 1, 2, and 3. (Third
row) Average persistence landscapes over all subjects for days 1, 2, and 3. We observe on average that short peaks occur in the first 200 filtration steps of
the landscapes.
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individual landscape that we show. This feature of the
heights indicates that a group of short peaks arises early in
the filtration in the majority of the barcodes. We also con-
sider the standard deviation from the average landscapes in
the first 200 filtration steps. For all three days, it is very
small: it is 127 for the first day, 167 for the second day, and
126 for the third day.

We expect the observed short peaks early in the filtra-
tion to be associated with network communities, which
have been observed previously using other methods.86 We
observe, in particular, that these short peaks undergo
changes on day 2: during filtration steps 20 to 60, some of
the peaks that are present in the landscapes for days 1 and 3
vanish, and a larger number of persistent peaks occur for
day 3 than for the other two days between filtration steps
80 and 200. This appears to suggest that there is a change
in community structure that takes place on day 2, with
either (1) very strong synchronization in some of the com-
munities, leading to very short-lived loops; or (2) very
strong individual differences between the subjects, leading
to the vanishing of peaks in the average landscapes for the
first 50 filtration steps. The particularly persistent peaks on
day 2 could represent either persistent inter-community
loops or loops that occur due to sparse intra-community
connections.

We calculate pairwise L2 distances between each pair of
dimension-1 persistence landscapes. We create distance
vectors, which we use as an input for k-means clustering
(with k¼ 3) and average linkage clustering (until we obtain
3 groups), and we obtain the same qualitative result for both
methods. We find that 9 of the 20 distance vectors that corre-
spond to persistence landscapes from day 1 are assigned to a
common group (together with a small number of landscapes
from days 2 and 3), whereas 11 and 10 landscapes from days
2 and 3, respectively, are assigned together to a separate
group. We summarize our results in Table I.

We also consider the average dimension-1 landscapes
for WRCF steps 1–2600 and calculate the L2 distances
between them. We show the results of these calculations in
Fig. 10.

The distances between the average landscape for day 1
and the subsequent days of the experiment indicate that the
WRCFs on average are able to detect changes in the func-
tional networks across the filtration range. Based on the
distances, we observe that most of these changes occur
between the first and second days. However, the standard
deviations from the average landscapes are a factor of
about 4 larger than the distances between the landscapes,
and one therefore needs to be cautious about interpreting

the results of these calculations. In a permutation test with
10000 regroupings of the landscapes, we do not find the
distances to be statistically significant. We obtain p-values
of about 0.4 for the distance between the average land-
scapes of day 1 and day 2, about 0.85 for the distance
between the average landscapes of day 2 and day 3, and
about 0.6 for the distance between the average landscapes
of day 1 and day 3.

We also find that the primary peak in the average land-
scapes in Fig. 10 shifts to the left over the course of the
three days. This implies that the edge weights (between the
brain regions) that give rise to persistent loops increase on
average over the three days (presumably due to stronger
synchronization). This can imply either that loops present
on the first day consist of edges with higher edge weights
on days 2 and 3 (i.e., the same brain regions synchronize
more on the latter two days) or that new loops that appear
on days 2 and 3 consist of edges with higher weights than
those of day 1 but involve different brain regions than on
day 1 (i.e., different brain regions exhibit stronger synchro-
nization than what occurs on day 1). Brain regions that
synchronize in a loop in a network may be an indication of
an interesting neurobiological communication pattern that
in this case also becomes stronger over the course of the
learning process. To analyze the most frequently occurring
edges involved in these loops, we extract “representatives”
for all loops in dimension 1 across all subjects and days.
(See Fig. 3 for an illustration of two different representa-
tives of a loop in a network.) For each day, we construct a
network, which we call an “occurrence network,” using the

TABLE I. Results for k-means clustering and average linkage clustering of

pairwise L2 distance vectors of persistence landscapes for k¼ 3. Each value
in the table indicates the number of landscapes in a cluster.

Cluster 1 Cluster 2 Cluster 3

Day 1 9 6 5

Day 2 5 4 11

Day 3 5 5 10

FIG. 10. Visualization of average persistence landscapes for days 1, 2, and 3
of task-based fMRI networks. The distance between the landscape for day 1
and the other two landscapes is larger than that between the landscapes for
days 2 and 3. (The L2 distances between them are 5243 between days 1 and
2, 4957 between days 1 and 3, and 3543 between days 2 and 3.) The stan-
dard deviations from the average landscapes are larger than the calculated
distances, so these values need to be interpreted cautiously. We also observe
a shift to the left of the landscape peak during the three days, indicating that
the particularly persistent loops in these networks arise earlier in the filtra-
tion for the later days. In other words, they are formed by edges with higher
edge weights, indicating that there is stronger synchronization between the
associated brain regions.
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same nodes (i.e., brain regions) that we used before and
assign every edge an edge weight that is equal to the num-
ber of occurrences of that edge in loops in the subjects on
the given day. We then perform a WRCF on the three
occurrence networks and study the representative loops
that we obtain. In Table II in the Appendix, we list the
brain regions that we find in loops consisting of edges that
occur at least 50 times in functional networks in the sub-
jects. We now examine loops in the occurrence networks.
These particular loops may not correspond exactly to loops
in associated functional networks. For example, individual
edges with high edge weights that are part of a loop in the
occurrence network may be part of a variety of different
loops in associated functional networks, rather than part of
one specific loop that occurs in many of the functional net-
works. Nevertheless, it is very likely that such loops are
also loops in a functional network. One also needs to con-
sider that the representative loops given by the software
JAVAPLEX are not necessarily chosen optimally or are
“geometrically nice”91 representatives of the loop.66 We
address the issue of JAVAPLEX’s choice of representatives
to some extent by using PH on occurrence networks, but
even then we cannot rule out possible artifacts. There exist
loops in the occurrence networks that remain stable across
the three days, although other loops occur on only one or
two days. There also seem to be more loops that occur at
least 50 times in the functional networks on days 2 and 3
than on day 1. It would be useful to study the brain regions
(see Table II in the Appendix) involved in these loops to
investigate their biological role(s) in motor-learning tasks.

Finally, we also apply WRCF to the average networks
for each of the three days. To create an average network, we
take the mean of the edge-weight values over all 20 subjects

for each day separately and study the resulting network. We
show the corresponding landscapes in Fig. 11.

As with the average landscapes, we find that the land-
scapes for the average networks have very short peaks early
in the filtration. There are more-persistent features (e.g.,
larger peaks) on day 1 and day 3 than on day 2, and we even
find (as in the average landscapes) that the larger peaks
appear earlier (at about filtration step 400) in the filtration on
day 3 than on day 1 (where they appear at about step 900).
Additionally, on day 2, we observe many short peaks, espe-
cially in the later stages of the filtration. This is not the case
for day 1 and day 3, so the day-2 landscape is strikingly dif-
ferent visually from the other two landscapes. When calcu-
lating L2 distances, we again find that the landscape distance
between days 1 and 2 and that between days 1 and 3 are
larger than the landscape distance between days 2 and 3.
From visual inspection, we see that this arises from the fact
that the day-1 landscape appears to have a clearer separation
of short and high peaks than the landscapes for the later
days. Taken together, the results for the landscapes of the
average networks mirror our prior results for the average
landscapes.

V. CONCLUSION AND DISCUSSION

We have illustrated applications of persistent homology
to functional networks constructed from time-series output
of the Kuramoto model, null models constructed from the
Kuramoto time series, and task-based fMRI data from
human subjects. In all cases, we observed that non-
persistent loops occur early in the filtrations. Although such
non-persistent features are commonly construed as noise in
topological data analysis,54,55 we observed that these fea-
tures appear to be consistent with prior segregations of the
studied networks into communities of densely-connected
nodes. In one case (the Fourier null model), we even found
that particularly persistent features appear to be linked to a
network with a weak intra-community synchronization.
These very persistent features in the null model may thus
represent noise. In other studies of PH using (different) null
models,33,53,59 it was also observed that the null models
often exhibit a richer topological structure than the empiri-
cal data. One could thus perhaps interpret the persistent fea-
tures in the Fourier null model as features of the null model
rather than as noise. Our results on the importance of non-
persistent features resemble previous observations for syn-
thetic examples with barcodes that consist of short intervals
(which are commonly construed as noise), but the differ-
ences between the corresponding persistence landscapes for
the various spaces are nevertheless statistically significant.92

Our results are also consistent with the findings of a study
on protein structure using PH that reported that bars of any
length in the barcodes were equally important.93 For
weighted networks, we suggest that when using a filtration
based on edge weights, one needs to consider the actual
birth and death times of filtration features (such as loops) in
addition to their persistence to be able to determine whether
they should be construed as noise or part of a signal. In par-
ticular, in the present paper, we observed that the early

FIG. 11. Visualization of persistence landscapes based on average func-
tional networks on days 1, 2, and 3 of the motor-learning task. The dis-
tance between the landscape for day 1 and the other two landscapes is
larger than that between the landscapes for days 2 and 3. (The L2 distances
between them are 18285 between the first and second days, 16513
between the first and third days, and 19321 between the second and third
days.) We find short peaks early in the filtration for all three landscapes,
and larger peaks begin earlier in the filtration on day 3 than on day 1.
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appearance of loops in a filtration is an important distin-
guishing feature of these data. They may also yield impor-
tant insights on the geometry92 of data.94

We also found—both by calculating average persistence
landscapes and studying landscapes of average networks—
that persistence landscapes for dimension 1 of the weight rank
clique filtration (WRCF) are able to capture changes in the
studied functional brain networks during the process of learn-
ing a simple motor task. Because we did not consider
infinitely-persisting features and only included filtration steps
1–2600 when creating the landscapes, our result also suggests
that the medium-lived (when compared with the full filtration
length) persistent loops are able to capture changes in the net-
works, so it is not always necessary to consider a full WRCF
to study the dynamics of a system. This observation is similar
to a finding of Bendich et al.,35 who observed in their study
that medium-scale barcode features were able to distinguish
human brain artery networks from different age groups. This
again suggests that persistence length should not be the only
measure of signal versus noise when applying PH. We also
found that the persistent features that dominate the middle
part of the filtrations appear in earlier filtration steps on days 2
and 3 of the experiment than they do on day 1, which suggests
that interesting dynamics in synchronization patterns are cap-
tured by medium-lived bars in the middle of a barcode.

As in other biological contexts, where PH has been
applied successfully and has lead to new insights,28,30–33,35

we find that PH can lead to fascinating insights about the
dynamics of a system. We were able not only to detect
symptoms of previously observed community segregation,
but we also found notable differences between a setup with
strong community structure (in the coupled Kuramoto
oscillators) and weakly synchronized communities (in the
associated null models). For the task-based fMRI data, we
found that we can detect symptoms of community structure
over the three days (in the short peaks early in the land-
scapes) of the data as well as changes in the loops that we
observe in the average persistence landscapes of the func-
tional networks. On average, most of these changes appear
to take place on day 2 of the learning task. In particular,
brain regions that yield loops in the functional networks on
days 2 and 3 seem to exhibit stronger synchronization on
average than those that yield loops on day 1. We obtained
this observation both by calculating average persistence
landscapes of the WRCF performed on individual func-
tional networks and by calculating persistence landscapes
based on the WRCF performed on average networks for
each day. Although the landscape distances between the
average landscapes are not statistically significant, our
similar observations in both of our approaches suggest that
our observations indeed reflect the average dynamics of the
system. Our findings on loops thereby provide novel
insights that complement previous studies of synchroniza-
tion in functional brain networks. Of course, it is desirable
to repeat our study using larger data sets.

There is a known relation between homology and graph
Laplacians,95 and an interesting possible direction for future
research would be to study the possible connections between

graph Laplacians (and, more generally, spectral graph theory)
and our results on barcodes and persistence landscapes.

Using methods from topological data analysis for
studying networks has the important benefit of being both
mathematically principled and generalizable. However, for
biological interpretation, it is necessary to include informa-
tion on the specific nodes that are part of topological fea-
tures such as loops. Moreover, the interpretation of the
results and importance of persistence versus position of a
topological feature in a barcode can differ depending on
which type of filtration is employed. Different topological
features can also have different levels of relevance for dif-
ferent dynamical systems. For example, the occurrence of
many medium-sized persistent features in the persistence
landscape for the Fourier null model is a symptom of the
weak synchronization in the communities, whereas the
medium-sized persistent bars capture increasing synchroni-
zation in loops for the task-based fMRI data. It would be
interesting to apply WRCF (and other types of filtrations) to
different synthetic networks with underlying communities
(e.g., using stochastic block models) to investigate such
ideas further. Importantly, one should include both the per-
sistence and the position of topological features in analysis
of PH. It would also be beneficial to combine topological
tools with additional methods, such as persistence images,96

to determine the exact topological features that are respon-
sible for the detected differences between the persistence
landscapes of the different networks.

In conclusion, we have shown that persistent homology
and persistence landscapes can be applied successfully to
functional networks (from either experimental data or time-
series output of models), and that they can lead to fascinating
insights, such as segregation of a network into communities
and changes of network structure over time.

SUPPLEMENTARY MATERIAL

See Supplementary Material for additional mathematical
background, definitions, examples, and theorems.

ACKNOWLEDGMENTS

The experimental data were collected originally by
Nicholas F. Wymbs and Scott T. Grafton through funding
from the Public Health Service Grant No. NS44393, and we
thank Nicholas and Scott for access to the data. We thank
Danielle S. Bassett for help in providing the data, use of her
MATLAB code when we were debugging our code, and
helpful discussions. We also thank Pawel Dłotko for useful
discussions, his help with the Persistence Landscapes
toolbox, and providing us with new versions of his code
during our work. We also thank Alex Arenas and Nina Otter
for helpful comments. B.J.S. thanks the Berrow foundation
for funding during her M.Sc. degree, and she also gratefully
acknowledges the EPSRC, MRC (Grant No. EP/G037280/1),
and F. Hoffmann–La Roche AG for funding her doctoral
studies. H.A.H. acknowledges funding from EPSRC
Fellowship No. EP/K041096/1.

047410-14 Stolz, Harrington, and Porter Chaos 27, 047410 (2017)



APPENDIX: TABLE OF OFTEN-OCCURRING BRAIN REGIONS IN LOOPS

In Table II, we indicate the brain regions that occur often in loops.
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I. TOPOLOGICAL BACKGROUND AND DEFINITIONS

We give a brief introduction to the mathematical concepts behind persistent homology

(PH). For our presentation, we adapt and summarize the discussion from B. Stolz’s masters

thesis1.

A. Simplicial complexes

One can represent the underlying structures of a topological space by partitioning the

space into smaller and topologically simpler pieces, which carry the same aggregate topo-

logical information as the original space when they are assembled back together. One can

choose either either a small number of complicated pieces or a large number of simple pieces.

From a computational point of view, the latter is preferable2.

A simple example for such a construction is the tetrahedron in Euclidian space. The

tetrahedron consists of four triangular faces that are each bounded by three edges (which

each connect two points). One can view the tetrahedron as a simplified version of a 2-sphere,

as it carries the same topological properties (e.g., connectedness and the enclosure of a hole)

as the sphere. Similarly, one can imagine using triangles as building blocks to build more

complicated constructions (e.g., ones that resemble a torus or some other manifold).

To mathematically grasp these concepts, we need a few definitions. For concreteness, we

frame our discussion using the space Rd with dimension d 2 N.

Definition I.1 (a�ne combination and a�ne hull). Let U = {u0, u1, . . . , uk} be points in

Rd. A point x 2 Rd is an a�ne combination of the points ui 2 U , with i 2 {0, . . . , k}, if
there exist �i 2 R such that

i. x =
Pk

i=0 �iui ;

ii.
Pk

i=0 �i = 1 .

The set of all a�ne combinations of U is called the a�ne hull of U .

To ensure uniqueness of the a�ne combination, we introduce the following definition.

Definition I.2 (a�nely independent). Let U = {u0, u1, . . . , uk} be points in Rd. The k + 1

points in U are said to be a�nely independent if the vectors {ui � u0 : i 2 {0, . . . , k}} are

linearly independent.
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For example, any two distinct points in R2 are a�nely independent. Similarly, any three

points in R2 are a�nely independent as long as they do not lie on the same straight line.

Convex combinations and hulls are a special case of a�ne combinations.

Definition I.3 (convex combination and convex hull). An a�ne combination x =
Pk

i=0 �iui

is a convex combination if �i � 0 for all i 2 {0, . . . , k}. The set of all convex combinations

of the points in U is called the convex hull of U .

Example I.1. A triangle spanned by three points u0, u1, u2 2 R2 is the convex hull of these

points.

We can now define a k-simplex.

Definition I.4 (k-simplex ). A k-simplex � = [u0, u1, . . . , uk] is the convex hull of the k+ 1

a�nely independent points u0, u1, . . . , uk 2 Rd. One calls k the dimension of the simplex.

Example I.2. In Fig. 1, we show examples of simplices for the first few dimensions: a

point is a 0-simplex, an edge is a 1-simplex, a triangle is a 2-simplex, and a tetrahedron is

a 3-simplex.

FIG. 1. From left to right, we show examples of a 0-simplex, a 1-simplex, a 2-simplex, and a

3-simplex. [We adapt these examples and the figure from [2].]

The lower-dimensional simplices from example I.2 are contained in the higher-dimensional

simplices, because subsets of a�nely independent points are also a�nely independent. The

lower-dimensional simplices form so-called faces of the higher-dimensional objects.

Definition I.5 ((proper) faces and cofaces). A face ⌧ of a k-simplex � is the convex hull of

a subset V ✓ U . Additionally, the face is proper if the subset relationship is a proper one.

If ⌧ is a (proper) face, then � is called a (proper) coface of ⌧ .
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(a) (b) (c) (d)

FIG. 2. Panels (a), (b), and (c) give examples of simplicial complexes. The collection of simplices

in panel (d) is not a simplicial complex. We use colors to indicate 2-simplices.

Remark 1. We use the notation ⌧  � to denote a face of �, and we use ⌧ < � to denote

a proper face of �.

Recalling the building blocks that we described at the beginning of this Supplementary

Information, we can ask whether it is only possible to build shapes using 2-simplices (i.e.,

triangles) or whether one one can also combine these simplices with higher-dimensional or

lower-dimensional simplices. A (permissible) shape built from a combination of simplices is

called a simplicial complex. To construct a simplicial complex, one needs to follow a set of

minimal rules:

Definition I.6 (simplicial complex ). A simplicial complex is a finite collection of simplices

⌃ such that

i. if � 2 ⌃ and ⌧  �, then ⌧ 2 ⌃ ;

ii. if �, �̃ 2 ⌃, then the intersection of both simplices is either the empty set or a face of

both.

In Fig. 2, we show several examples of simplicial complexes and one example that is not a

simplicial complex. Example (a) illustrates that simplicial complexes are not necessarily the

same as simplices. The three edges do not form a 2-simplex, but they do form a simplicial

complex that consists of 1-simplices. In examples (b) and (c), all 1-simplices and 2-simplices

are connected by 0-simplices. Example (d) is a collection of simplices that violates the

definition of a simplicial complex, because the intersection between the two triangles does

not consist of a complete edge. Note that any combination of the three simplicial complexes

(a), (b), and (c) is also a simplicial complex.

We take the dimension of ⌃ to be the dimension of its highest-dimensional simplex. One

can use simplicial complexes to represent topological spaces if there exists a homeomorphism
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between the simplicial complex and the topological space. Only then can one be sure that

topological properties such as connectedness are preserved.

B. Homology and Betti numbers

Homology is a formal way of quantitatively detecting holes in topological spaces. These

holes are quantified by classifying the space that surrounds them. For example, one measures

1-dimensional holes in a torus by considering loops on its surface. One then classifies them

into di↵erent types according to whether or not they can be deformed into each other by

bending and stretching. In this way, one can distinguish a 2-sphere from a torus by capturing

the fact it that is possible to contract any loop on the sphere to a point, whereas there are

two distinct loops on the torus surface that cannot be deformed continuously into each other.

These loops also cannot be contracted to a point, because they surround di↵erent holes.

Although homology is not the only formalism that can be used for distinguishing two

shapes, it currently has the fastest algorithms for computing it2. Homology groups, which

are topological invariants of a space, and Betti numbers (which are derived from them) play

a key role in computing homology. Homology groups detect holes in a topological space,

and Betti numbers give a way to count the number of holes or distinct loops in that space.

We start constructing homology groups by looking at formal sums of simplices.

Definition I.7 (p-chain). Let ⌃ be a simplicial complex, let p be a given dimension, and

let G be an Abelian group. A p-chain

c =
X

i2I

ai�i (1)

is a so-called “formal sum”3 of p-simplices in ⌃, where ai 2 G are coe�cients, �i are p-

simplices, and I is an index set.

In computational topology, the employed commutative group G is usually Z/2Z, which has

the advantage that one can regard p-chains as subsets of the set of all p-simplices in ⌃ by

assigning the coe�cient 1 to simplices that form part of the subset and the coe�cient 0 to

those that are not in the subset. Moreover, because Z/2Z is also a field, one can also think

of p-chains as elements of a vector space. We use Cp = Cp(⌃) to denote the set of all p-chains

of a simplicial complex ⌃.
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One defines the summation of two p-chains, c =
P

i2I ai�i and c

0 =
P

i2I bi�i, on ⌃ in a

componentwise manner:

c+ c

0 =
X

i2I

(ai + bi)�i . (2)

It then follows that p-chains form an Abelian group. When working with coe�cients from

Z/2Z, the sum of two p-chains results in summing all p-simplices in which the two original

p-chains di↵er. The p-simplices that the two p-chains have in common are present in the

sum twice, and these contributions vanish by the properties of addition on Z/2Z.
The following definition will help relate the di↵erent p-chain groups of a simplicial com-

plex.

Definition I.8 (boundary of a p-simplex). The boundary @p� of a p-simplex � = [u0, u1, . . . , up]

is the formal sum of its (p� 1)-dimensional faces:

@p� =
pX

j=0

[u0, . . . , ûj, . . . , up] , (3)

where ûj denotes the point that is not included when spanning the simplex.

We can extend this definition to p-chains in a natural way by defining the boundary of a

p-chain c =
P

i2I ai�i as @c =
P

i2I ai@�i.

We can now construct a family of boundary homomorphisms @p between the di↵erent

groups of p-chains of a simplicial complex by mapping p-simplices to their boundaries:

. . .

@p+2�! Cp+1
@p+1�! Cp @p�! Cp�1

@p�1�! . . .

@1�! C0 ,
c 7�! @c .

By construction, taking the boundary of a p-chain satisfies the property @p(c + c

0) = @pc +

@pc
0. Therefore, @p is a homomorphism. Such a sequence of chains and homomorphisms

is called a chain complex. One can show2,4 that the following theorem holds for boundary

homomorphisms in a chain complex:

Theorem I.1. Let d 2 Cp+1. It follows that

@p@p+1d = 0 . (4)

For simplicity, we often denote the boundary homomorphism by @. In other words, we

omit the specification of p. Two subgroups of (Cp,+), together with boundary homomor-

phisms and their property from Theorem I.1, form the main ingredients in constructing the

homology group of a simplicial complex.

6



Definition I.9 (p-cycle). A p-cycle is an element of Zp = ker @p, where ker @p denotes the

kernel of @p.

We denote the set of p-cycles as Zp, and we observe that (Zp,+) is a subgroup of (Cp,+).

Definition I.10 (p-boundary). A p-boundary is an element of Bp = Im @p+1, where Im @p+1

denotes the image of @p+1.

We denote the set of p-boundaries as Bp, and we observe that (Bp,+) is a subgroup of

(Cp,+).

Using Theorem I.1, one can now relate the cycle and boundary subgroups to each other.

From Theorem I.1, it follows that @p(Im @p+1) = 0, so Bp ✓ Zp. One can then show that Bp

is indeed a subgroup of Zp.

We start with p = 1 and note that 1-dimensional loops (i.e., 1-loops, which are called

simply “loops” in the main text) behave di↵erently from other edges. Edges are mapped to

their end nodes by @1, but every node in a a a loop occurs as the boundary of two edges and

thus sums to 0 over Z/2Z.

We now have come very close to our goal of being able to count holes of a topological space

using p-dimensional loops (i.e., p-loops). Thus far, we have identified that the boundary

subgroup B1 has 1-loops, but more generally Bp can also include the boundaries of higher-

dimensional chains. To isolate p-loops from p-boundaries for any dimension p, we define the

pth homology group of a simplex.

Definition I.11 (pth homology group). The pth homology group Hp of a simplicial complex

⌃ is the quotient group of the group of p-cycles (Zp) modulo the group of boundaries (Bp).

That is,

Hp = Zp/Bp .

An element of Hp is called a p-dimensional loop (i.e., a p-loop).

Two p-cycles in the pth homology group are construed as di↵erent if they di↵er by more

than just a boundary. Otherwise, the quotient group treats them as belonging to the same

homology class. Every hole of dimension p in a simplicial complex is surrounded by at least

one p-loop in the homology group. Counting the number of classes in Hp thus gives an

estimate of the number of p-loops of a simplicial complex. However, p-loops that surround
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the same hole are counted separately. A solution is to count the minimal number of elements

that are needed to generate the group. This motivates the definition of pth Betti number.

Definition I.12 (pth Betti number). The pth Betti number �p of a simplicial complex is

�p = rank Hp .

Recall that we are working with coe�cients from Z/2Z. This turns the set of p-cycles

into a vector space, so we can think of the homology group Hp as a quotient vector space.

The pth Betti number is then given by the dimension of this vector space. One can interpret

the first three Betti numbers (�0, �1, and �2) to represent, in turn, the number of connected

components, the number of 1-dimensional holes, and the number of 2-dimensional holes in

a simplicial complex.

C. Filtrations

We first define what we mean by a “subcomplex” of a simplicial complex ⌃.

Definition I.13 (subcomplex of a simplicial complex). A subcomplex of a simplicial complex

is a subset of simplices that satisfy the properties of a simplicial complex.

We can now build sequences of simplicial complexes that form subcomplexes of each other.

Definition I.14 (filtration). A filtration of a simplicial complex ⌃ is a nested sequence

of subcomplexes starting with the empty complex ; and ending with the entire simplicial

complex:

; = ⌃0 ✓ ⌃1 ✓ ⌃2 ✓ · · · ✓ ⌃k = ⌃ . (5)

Observe that one can define natural inclusion maps ij : ⌃j ,�! ⌃j+1 along the filtration. The

inclusion maps induce maps i⇤j : Hp(⌃j) ! Hp(⌃j+1).

In a filtration, one is interested in determining (1) when prominent features (e.g., a

homology class) first appear and (2) if and when those features disappear.

Definition I.15 (birth and death of a homology class, persistence). A homology class h 2
Hp(⌃) is born at ⌃m if h is an element of Hp(⌃m) but is not in the image of the map

i

⇤
m�1 : Hp(⌃m�1) ! Hp(⌃m).
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A homology class g 2 Hp(⌃) dies entering ⌃n if g is an element of Hp(⌃n�1) but is not in

the image of the map i

⇤
n�1 : Hp(⌃n�1) ! Hp(⌃n) (i.e., i⇤n�1(g) = 0).

Let mh denote the filtration step at which h is born, and let nh denote the filtration step at

which h dies. One then defines the persistence of a homology class h 2 Hp(⌃) as

ph = nh �mh .
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