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Abstract

Every physical regime is some sort of approximation of reality. One lesser-known realm that is
the semiquantal regime, which may be used to describe systems with both classical and quantum
subcomponents. In the present review, we discuss nonadiabatic dynamics in the semiquantal
regime. Our primary concern is electronic–nuclear coupling in polyatomic molecules, but
we discuss several other situations as well. We begin our presentation by formulating
the semiquantal approximation in quantum systems with degrees-of-freedom that evolve at
different speeds. We discuss nonadiabatic phenomena, focusing on their relation to the Born–
Oppenheimer approximation. We present several examples—including Jahn-Teller distortion
in molecules and crystals and the dynamics of solvated electrons, buckyballs, nanotubes,
atoms in a resonant cavity, SQUIDs, quantum particle-spin systems, and micromasers. We
also highlight vibrating quantum billiards as a useful abstraction of semiquantal dynamics.
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1. Introduction

Every physical regime approximates reality in some form or another. In continuum mechanics,
one ignores the fact that a solid or fluid is composed of a finite number of discretely spaced
particles because it is not necessary to consider this at the scale under consideration. In
classical mechanics, one does consider discrete objects, but quantities such as energy and light
are permitted to vary continuously. Indeed, there are so many photons in this regime that one
would not notice the ensuing difference in illumination were a single one removed. In quantum
physics, these quantities are treated as discrete—they have been quantized—and one expresses
concepts such as position and momentum as operators rather than simply vectors. This regime
is an approximation of the even more finely grained domain of quantum field theory, which may
be in turn an approximation of even more intricate theories. Despite this outline, the picture is
far from complete, as there are several regimes not mentioned above as well as others that lie
at the borders between the regimes discussed above. For example, between the fully quantum
regime and the classical one lie the semiclassical, quasiclassical, and semiquantal regimes,
which—despite their nomenclature—are not the same. The semiclassical regime is a well-
studied physical approximation to quantum mechanics. It is the domain of methods such as the
WKB approximation and quantum chaology, the study of the quantum signatures of classical
chaos [1]. One obtains a semiclassical description from the fully quantal theory by taking the
well-defined asymptotic limit h̄ −→ 0 [2].

Less studied than the semiclassical regime is the semiquantal one. This latter description
of physics has been analysed far less than the semiclassical one in part because nobody has
found a completely satisfactory asymptotic procedure to pass from the fully quantized regime to
the semiquantal one. Nevertheless, there are several situations for which semiquantal physics
is appropriate. Such systems are characterized by a mixture of classical and quantum physics.
One may obtain a semiquantal description, for example, by coupling a classical system to
a quantum-mechanical one. Moreover, semiquantal systems arise naturally when one uses
the adiabatic or Born–Oppenheimer approximation [3], which provides a widely accepted
procedure for dividing a quantum-mechanical system into slow and fast subsystems. One
begins this approximation by quantizing the fast subsystem, which consists of the electronic
degrees-of-freedom (in the language of chemical physics). If one obtains well-separated
energy levels, then one may also quantize the slow subsystem, which consists of the nuclear
degrees-of-freedom (which can be either vibrational or rotational). If, however, the electronic
eigenenergies of a d-state system are close to each other, then one ignores the rest of the
spectrum, thereby obtaining a system described by d electronic energy levels (each of which
corresponds to the full contribution of a single eigenstate) that are coupled to a multitude
of nuclear states. The semiquantal approximation consists of modelling these nuclear states
as a continuum. That is, we treat the nuclear degrees-of-freedom of the present system as
classical degrees-of-freedom, thereby obtaining a system with coupled classical and quantum
components.

This breakdown of the Born–Oppenheimer approximation is a hallmark of nonadiabatic
phenomena, which are important in the study of inelastic atomic and molecular collisions
as well as in bound states of molecular systems. In particular, the Born–Oppenheimer
approximation breaks down in exactly this manner for excited electron states of polyatomic
molecules—often as a result of their symmetries. The near-degeneracy (and sometimes exact
degeneracy) of several states is a common phenomenon in molecules—especially at higher
energies. Both the energy spectrum and intramolecular dynamics can vary substantially
from those observed during adiabatic behaviour [4]. However, it is not easy to incorporate
nonadiabatic behaviour into simple models of molecular dynamics, in which the canonical
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portrait of nuclear motion is described on a single well-defined surface of potential energy near
the electronic degeneracy. Consequently, it is important to develop a semiquantal description
of such systems that incorporates essential features of the nonadiabatic coupling.

The purpose of the present paper is to give an elementary presentation of the semiquantal
approximation and some systems for which it is relevant. We focus on problems in
which chaotic behaviour can occur. We include few calculations and instead provide
references to papers and monographs that include them. We begin our discussion by framing
semiquantal physics in the context of the Born–Oppenheimer approximation before going into
a more detailed discussion of nonadiabaticity. We then discuss polyatomic molecules [3, 4],
crystals [5], solvated electrons [6, 7], carbon nanotubes [8, 9] and buckyballs [10, 11]. These
systems may be abstracted mathematically in terms of vibrating quantum billiards [12, 13],
which are amenable to a semiquantal description because the boundaries are classical and the
enclosed particles are quantum-mechanical [14]. We also survey other systems such as a two-
level system interacting with the electromagnetic field of a laser cavity [15], micromasers [16],
quantum particle-spin systems [17], SQUIDs [18] and nuclear collective motion [19].

2. The semiquantal approximation

At issue in nonadiabatic analysis is the extent to which ‘classical path’ (that is, functional
integration [20]) descriptions are relevant. In other words, one must consider how reasonable
is it to treat the nuclear (slow, heavy particle) degrees-of-freedom classically in an effective
potential determined by the quantum dynamics of the electronic (fast, light particle) degrees-
of-freedom. If one uses a path integral formulation of nonadiabatic scattering amplitudes, one
obtains a formal solution to this problem [21,22]. The exact (semiquantal) effective ‘potential’
is nonlocal in time, so it must be computed iteratively. Consequently, practical computations of
this quantity are almost impossible without approximations. Two ways of dealing with this are
the so-called ‘surface-hopping’ approach and the idea of self-consistent matrix propagation,
which resembles Feynman path integrals in spirit [3, 23].

Consider a system with nuclear degrees-of-freedom Q and electron degrees-of-freedom q.
The quantum dynamics of the full system may be expressed in integral form with a
propagator [2] (i.e., Green’s function) K as the kernel of the following integral equation:

ψ(q ′,Q′, t ′) =
∫

dqdQK(q ′,Q′, t ′|q,Q, t)ψ(q,Q, t). (1)

One may equivalently expand ψ in a basis of electronic states {ϕn(q)} to obtain the equation

ψ(q,Q, t) =
∑
n

χn(Q, t)ϕn(q, t) (2)

where the dynamics of the nuclear wavefunctions χn are determined using the reduced
propagator Kβα:

χβ(Q
′, t ′) =

∑
α

∫
dQKβα(Q

′, t ′|Q, t)χα(Q, t). (3)

(Note that equation (2) is valid asymptotically (that is, adiabatically) only when the electronic
and nuclear degrees-of-freedom can be separated from each other [3, 24].) The functional
Kβα(Q

′, t ′|Q, t) gives the probability amplitude for the quantum system to go from state α

to state β as the nuclear variables move from Q(t) to Q′(t ′). The probability of being in the
electronic basis state β at time t ′ is thus given by

Pβ(t
′) =

∫
dQ′|χβ(Q

′, t ′)|2 (4)
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where
∑

β Pβ(t
′) = 1 by conservation of probability. One may write the Green’s function Kβ

as a Feynman path integral, thereby expressing it as an integral over all paths Q̄
(
t̄
)

connecting
the two endpoints Q(t) and Q′(t ′). By assuming that the paths of the nuclear coordinates
with the biggest contribution are those of stationary phase R̃(t), one obtains a semiquantal
approximation of the reduced propagator. One integrates only over ‘classical’ (stationary
phase) paths rather than over every path and obtains equations of motion that must be solved
iteratively (due to temporal nonlocality). Indeed, the force on the trajectory at time t̄ depends
on both the forward and backward propagated wavefunctions, which can only be determined if
one knows the full trajectory R̃(t). One begins the iterative procedure by guessing a trajectory,
which specifies the electronic component of the Hamiltonian. One then integrates the time-
dependent Schrödinger equation both forwards and backwards from the appropriate boundary
states and uses mixed-state solutions to determine the force on the trajectory.

If the electronic state α is initially occupied, the initial wave vector at the outset is given
by the components

χi(Q(t), t) = 0 ∀ i �= α

χα(Q(t), t) = f (Q(t)) (5)

where f (Q(t)) is the shape of the initial nuclear wavefunction on the electronic surface α.
Hence, the components of the wavefunction at time t ′ are given by

χβ(Q
′, t ′) =

∫
dQKβα(Q

′, t ′|Q, t)f (Q). (6)

One subsequently uses a semiquantal approximation of the propagatorKβα in order to obtain the
semiquantal expression for the advanced nuclear wavefunction atQ′ moving over the electronic
state β. In principle, one can obtain the stationary phase paths using a root search, as they are
specified in terms of a boundary value problem. One considers initial velocities dQ̃/dt and
proceeds iteratively until one has found all convergent paths that reach the desired endpoint
Q′. Finally, one computes the wavefunction by integrating over all these path contributions
from each initial point.

The surface-hopping method has been applied to scattering problems, for which
nonadiabatic effects are usually localized. One assumes that a trajectory evolves on a single
manifold of adiabatic potential surfaces for every nuclear configuration except those near
electronic degeneracies. One then calculates the probability that the trajectory jumps to a
nearby surface, on which the evolution proceeds adiabatically. Many systems, however,
are constantly in regions of near-degeneracy, so one requires a dynamical description of
nonadiabatic evolution. It is desirable, moreover, to have a scheme with which to analyse the
nonadiabatic behaviour of bound and quasibound molecular states. If the nuclei in such states
are localized in regions of electronic degeneracy (or near-degeneracy), one may use effective-
path methods that couple classical nuclear motion self-consistently with quantum electronic
motion [4]. One may assume that the classical nuclear motion is determined by its interaction
with the electronic system in a self-consistent manner. Using the vibrational and rotational
(rovibrational) coupling terms in the molecular Hamiltonian, one obtains a time-dependent
electronic Hamiltonian, which causes transitions in the molecule’s electronic states because
of its dependence on the nuclear degrees-of-freedom. Time-dependence in these electronic
states leads to a time-dependent nuclear potential, because the molecular Hamiltonian depends
on the nuclear coordinates. Simple examples of this sort of self-consistent coupling may be
abstracted and studied as vibrating quantum billiards, in which the enclosed particle (fast
subsystem) is coupled to the surrounding wall (slow subsystem) [13, 25]. This abstraction
is very useful, as it is easily generalized and may also be applied to the study of systems in
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chemical physics (such as polyatomic molecules, solvated electrons, Jahn-Teller distortions
and chemical nanostructures).

We now continue our discussion of path integral methods. Consider a system with one
nuclear degree-of-freedom that includes a localized crossing of two adiabatic potentials. It
is requisite that the two potentials have similar slopes in the crossing region and that the
nuclear kinetic energy is large compared to the difference between the two potentials in
the interaction region [3]. Moreover, one needs the electronic states to be close enough to
each other energetically so that the nuclear degrees-of-freedom may be approximated as a
continuum. The nuclear mass is assumed to be large relative to the electronic mass, so the
nuclear energy levels are more finely grained than the electronic eigenenergies. If the nuclear
energy levels are sufficiently close together, they are well-approximated by a continuum. The
separation of these energy levels becomes smaller both as a result of larger nuclear masses
and as a consequence of closeness of electronic energy levels. Hence, one requires some
combination of sufficiently large nuclear mass and sufficiently degenerate electronic energy
levels in order to approximate the nuclear degrees-of-freedom as classical.

Although this type of self-consistent coupling of classical and quantum dynamics has
appeared often in the chemical physics literature, there remain conceptual difficulties and
inconsistencies in the semiquantal approximation. Consider a system that is asymptotically
in a two-state electronic superposition. The nuclei undergo some sort of averaged dynamical
motion that does not correspond to that determined by either of the two adiabatic surfaces,
despite the fact that one could argue by physical reasoning that the latter is the expected
behaviour. A way to surmount this difficulty is the classical electron picture, which facilitates
treatment of resonant processes such as electronic-vibrational and electronic-rotational energy
transfer [26]. This method has been applied successfully to several systems describing
nonadiabatic collisions, including charge transfer in Na + I collisions, the quenching of
the fluorine atom F ∗(2P 1

2
) via collisions with H+ or Xe and collinear and three-dimensional

systems. Fully quantal calculations are available for some of these systems, and the semiquantal
analyses produce cross sections and transition probabilities that are consistent with these
studies. Additionally, the semiquantal calculations provide a correct description of resonant
features [3].

3. The Born–Oppenheimer approximation and nonadiabatic phenomena

It is more difficult to find electron orbits in molecules than in atoms because the effective
potential felt by the electrons is no longer well-approximated as spherically symmetric. One
pictures the molecular nucleus as having classical equilibrium positions about which it slowly
oscillates. The electrons travel rapidly around the nucleus and are affected by the oscillations
of the latter. This perspective is effective because a nucleus (with mass M) is much more
massive than electrons (each of which have mass m). The mass ratio m/M is typically about

m

M
≈ 10−5 or 10−4 (7)

so the magnitude of the zero-point motion of the nucleus is much smaller than that of the
electrons. (Zero-point motion describes the minimal motion due to Heisenberg’s uncertainty
principle.)

From the perspective of an electron, the nucleus is practically stationary. As long as the
electronic energy levels are sufficiently far apart, the only effect of the slow nuclear vibrations
is to adiabatically deform the electronic eigenstates. A molecule with typical radius a has
electrons with approximate momenta h̄/a, so the energetic spacing of these electrons is about
h̄2/ma2.
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From the nuclear point of view, the electrons are a blurry cloud. The electronic
wavefunctions distort as the nuclei move, thereby causing small changes in the electronic
energies. Additionally, the nuclei tend to move towards positions of minimum electronic
energy, as if they were immersed in an elastic medium formed of electrons [24]. Molecular
nuclei thus oscillate about energy minima, a phenomenon captured by the vibrating quantum
billiard model of electronic–nuclear coupling [13]. One can estimate the frequency ω of
nuclear oscillations by assuming that the nucleus resides in a harmonic potential Mω2r2/2,
where r is the displacement of the nucleus from equilibrium. If this displacement is given by
the distance a, then the electronic energy experiences a change of about h̄2/2ma2. As a rough
approximation,

Mω2a2

2
≈ h̄2

2ma2
(8)

so the nuclear frequency is given by [24]

ω ≈
√

m

M

h̄

ma2
. (9)

The nuclear vibration energies h̄ω are consequently a factor of
√
m/M smaller than the

electronic excitation energies and are on the order of tenths or hundredths the size of an
electron volt.

The zero-point nuclear energy in a harmonic potential is

P 2

2M
≈ h̄ω

2
(10)

so its corresponding zero-point momentum is

P ≈
(
M

m

) 1
4 h̄

a
(11)

which is about ten times larger than the momentum of an electron. A typical nuclear velocity
is thus

vN = P

M
≈

( m

M

) 3
4 h̄

ma
. (12)

The nuclear deviation from equilibrium δ satisfies

Mω2δ2

2
≈ h̄ω

2
(13)

so (
δ

a

)2

≈ h̄ω

Mω2a2
≈ EN

Ee

≈
√

m

M
(14)

which implies that [24](
δ

a

)
≈

( m

M

) 1
4 ≈ 1

10
. (15)

In addition to vibrations, one may consider the rotation of the entire molecule about its
centre-of-mass, although the energy due to such excitations is very small since the molecule
does not experience much distortion as a result of this motion. If the angular momentum of
the rotational motion is h̄l, then its accompanying energy is

Erot ≈ h̄2l(l + 1)

2Ma2
≈ m

M
Ee. (16)
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In general, a molecular excited state can be decomposed into electronic, vibrational and
rotational excitations. Two examples of vibrational motion are pulsing (as in vibrating quantum
billiards [14]) and ‘bouncing’ of the centre-of-mass (as has been proposed as a mechanism
for energy transfer in buckyballs [10]). Together, the vibrational and rotational excitations
comprise the nuclear (or rovibrational) contribution to the energy. The total energy is given
by the sum of the contributions from its three components:

E = Ee + EN + Erot . (17)

Let us formalize the preceding discussion (which was based on the presentation of
Baym [24]). We supplement the above analysis by applying the Born–Oppenheimer
approximation to the Schrödinger equation. This scheme provides a widely accepted procedure
for dividing quantum systems into slow and fast subsystems. The first step in this approximation
is to quantize the fast (electronic) subsystem. If this results in energy levels with sufficient
separation (because the electronic energy levels are sufficiently far apart for the given nuclear
and electronic masses), then one can also quantize the slow (nuclear) subsystem in order to
perform a fully quantum analysis. This results in a familiar spectrum describing the coupling
between the electronic and nuclear subsystems. (In the language of physical chemistry,
we think of the fast system as describing particles such as electrons and the slow system
as describing nuclear variables.) If, however, the electronic energy levels are sufficiently
close together, the situation is more complicated. One uses a semiquantal approximation by
modelling as a continuum the vibrational states that are coupled to the d electronic states.
Such systems are (d + s) degree-of-freedom (dof) Hamiltonian systems, where d of the dof are
quantum-mechanical and the other s are classical.

The number of classical degrees-of-freedom of such molecular systems (in other words,
the number of nuclear dof) is known as the degree-of-vibration (dov) of the system [13]. In
semiquantal systems, many of which may be abstracted mathematically as vibrating quantum
billiards, one often observes a form of quantum chaos known as semiquantum chaos, where the
nomenclature reflects the fact that it occurs in the semiquantal regime [14,25,27]. Another form
of quantum chaos, called quantized chaos or quantum chaology, is studied in the semiclassical
and high quantum-number regimes [1, 28]. This latter behaviour may be observed by fully
quantizing the motion of the molecular systems we have been describing. Part of the value of
the semiquantal setting is that one may observe chaos even in low energy systems, such as nuclei
that have been coupled to two-level electronic systems consisting of the ground state and the
first excited state of appropriate symmetry. In the setting of quantum chaology, one observes
chaos only in states with high energy [1]. In other words, one must pass to the semiclassical
or high quantum-number limits in order to observe chaotic behaviour. The ground state is
not encompassed by these limits, so the semiquantal regime is important for capturing chaotic
dynamics of low-energy states. Such behaviour has been observed experimentally [3].

Let us now consider the relation of the Born–Oppenheimer approximation to nonadiabatic
phenomena. In so doing, we largely follow the presentation of Whetten, Ezra and Grant [3].
They use the so-called effective path method, in which the electronic degrees-of-freedom are
treated in the same manner as the nuclear degrees-of-freedom. One analyses the nuclear
motion classically to derive an effective Hamiltonian describing the evolution of the electronic
states. An abstraction of this type of system is a vibrating quantum billiard [13], in which
one derives evolution equations that may be treated as a classical Hamiltonian system. For
a symmetric two-level system in that context, the dynamics of the quantum variables occur
on the Bloch sphere [29]. (Alternatively, one can describe the quantum dynamics of the
system using action-angle variables.) After ignoring the quantum setting during numerical
simulations, one must later interpret one’s results in this context. This reinterpretation leads
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to interesting mathematical and physical phenomena. For example, bound states of molecules
may exhibit nonadiabatic behaviour. If the nuclei are localized near a degeneracy, effective
path methods that couple classical nuclear motion with quantum-mechanical electronic motion
provide a self-consistent (though possibly approximate) treatment of the effects of nonadiabatic
coupling. One situation to which this has been applied is the Jahn-TellerE×e system, in which
a doubly degenerate electronic state is coupled to a doubly degenerate vibrational mode [4].

Important manifestations of nonadiabatic behaviour may be observed in simple examples
of symmetry-based electronic degeneracy. Without such degeneracy, one may approximate the
molecular wavefunction using the Born–Oppenheimer (adiabatic) approximation. Using this
scheme, the wavefunction is expressed as a product of electronic and nuclear wavefunction.
One expands the wave in a d-dimensional electronic basis when one is near a d-fold degeneracy.
Such degeneracies are common in the space spanned by nuclear (vibrational) coordinates [3].

The stationary and spinless Schrödinger equation for a single molecule is

[TN + He(q,Q)]ψd(q,Q) = Edψd(q,Q) (18)

where TN is the nuclear kinetic energy operator and

He(q,Q) ≡ Te + Uee + UeN + UNN + V (19)

is the electronic Hamiltonian. Because of the coupling, He depends (continuously) on the
nuclear coordinates Q. Its components are the particle (electronic) kinetic energy Te, the
interelectron repulsion potential Uee, the electron–nuclear attraction UeN , the internuclear
repulsion UNN and an external potential V . The nuclear kinetic energy TN is proportional
to 1/M , so it is a small term in the total Hamiltonian. The Born–Oppenheimer scheme is to
calculate the eigenenergies and eigenstates of the total molecular Hamiltonian by treating TN

as a small perturbation whose expansion parameter is (m/M)
1
4 , the ratio of nuclear vibrational

displacement to the spacing between nuclei.
The molecular Hamiltonian H , given by

H = TN + He (20)

is the sum of its nuclear and electronic components. In the vibrating quantum billiard
model [13], an abstract example of a semiquantal system, the nuclear kinetic energy is simply
the kinetic energy of the billiard boundary:

TN ≡ P 2

2M
(21)

whereP is the momentum of the boundary andM is its mass. The only electronic Hamiltonians
that have been considered in this abstract situation are ones without interelectron repulsion,
electron–nuclear attraction and internuclear repulsion. In other words, the particle’s electronic
Hamiltonian He is given by the sum of its kinetic energy component Te and the external
potential V :

He ≡ Te + V (22)

where

Te ≡ K = − h̄2

2m
∇2 (23)

and m is the mass of the confined particle. One would add an interelectron repulsion potential
when considering a billiard with more than one enclosed particle. Similarly, one would add
an electron–nuclear attraction term if considering vibrating quantum billiards with rebound.

The particle confined within the billiard is constrained to collide elastically against the
billiard boundary, so one applies Dirichlet boundary conditions to the billiard walls of a priori
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unknown shape. (This is an example of a free-boundary problem [30].) The billiard resides
in a potential V , which adds a second component to the electronic Hamiltonian. Harmonic
potentials have been considered most often, although quartic ones have been studied a bit as
well [31]. One observes bifurcations in the dynamics as one alters the potential [31]. In these
studies, the potentialV depends on the vibrational coordinatesQ, which represent the boundary
components undergoing oscillations. (For the radially vibrating spherical quantum billiard,
for example, the oscillating portion of the boundary is simply the radius a.) Moreover, when V

depends implictly on time (via the nuclear coordinates), it is considered part of the boundary
conditions of the problem. In this situation, the Hamiltonian inserted into the Schrödinger
equation is just the kinetic energy K . If, however, the potential V depends explicitly on the
spatial variables (x, y, z) or on time, the Hamiltonian inserted into Schrödinger’s equation is
instead K + V . Finally, note that the electronic variables in vibrating quantum billiards may
be parametrized by either action-angle variables or Bloch variables [3, 13, 29].

In general, one may derive coupled vibrational equations in two different manners. One
way is to use the so-called diabatic basis. The molecular wavefunction is given by

ψd(q,Q) =
∑
k

ϕk(q;Q0)χk(Q) (24)

where the orthonormal electronic states ϕk are calculated by solving the electronic Schrödinger
equation at a chosen reference configuration Q0:

He(Q0)ϕk(q) = E0
kϕk(q). (25)

One then determines the vibrational wavefunctions χk by a set of coupled equations with
Hamiltonian matrix elements given by

Hkk′ = TNδkk′ + 〈ϕk|He(Q)|ϕk′ 〉. (26)

The nuclear kinetic energy TN is diagonal in this basis, yielding a condition that must be
satisfied by any physical problem that the present analysis is purported to model. One continues
to expand the matrix elements of the electronic Hamiltonian He(Q) to obtain

Hkk′ = (TN + E0
k + ,UNN)δkk′ + 〈ϕk|,UeN |ϕk′ 〉 (27)

so that each diagonal element defines an effective vibrational Hamiltonian. This Hamiltonian
is the sum of the nuclear kinetic energy operator TN and the Hellman–Feynman potential for
nuclear motion [3,32], which contains a term from internuclear repulsions UNN as well as one
from attraction to the electronic charge distribution ϕk ∗ ϕk . Such a vibrational Hamiltonian
neglects any response that the electronic state may have to the changing nuclear configuration.
The off-diagonal coupling terms that have been neglected arise from the ,UeN term. Hence,
it is the change in the potential describing electronic–nuclear attraction as a function of the
changing nuclear configuration that induces mixing in diabatic basis states. This yields both
adiabatic and nonadiabatic coupling of electronic and nuclear motion [3].

Alternatively, one may expand ψd(q,Q) using a basis of adiabatic electronic states:

ψd(q,Q) =
∑
m

ϕm(q;Q)χm(Q) (28)

where ϕm(q;Q) is a solution of the electronic Schrödinger equation

He(Q)ψm(q;Q) = Em(Q)ψm(q;Q) (29)

which depends on the nuclear coordinates Q. This is the approach that has been followed
in the study of vibrating quantum billiards [13, 14, 25]. Equation (28) is the Born–Huang
expansion, which consists of the Born–Oppenheimer expansion plus the diagonal nuclear
nonadiabatic coupling [4]. The electronic eigenvalues (which are different for different nuclear
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configurations) determine the adiabatic potential surfaces, which change with the nuclear
configuration because of the dependence of the eigenenergies on the nuclear variables Q.
One derives equations of motion for the adiabatic vibrational amplitudes χm in which the
electronic–nuclear interaction is now due to the off-diagonal matrix elements of the nuclear
kinetic energy.

Translating to mathematical language, we derive a d-mode Galërkin projection [33], where
the integer d refers to the assumption of a d-level electronic system (corresponding to a d-
fold near-degeneracy). For vibrating quantum billiards, this Born–Oppenheimer expansion
corresponds to performing an eigenfunction expansion in the wavefunction as though one had
a stationary boundary (such as a sphere of constant radius if one has spherical symmetry) and
then reinserting the time-dependence in the resulting eigenstates and normalization factors.
For example, this expansion would be performed using spherical Bessel functions if one were
considering the radially vibrating sphere [13]. We note that diabatic expansions are often
more convenient for practical calculations because they correspond to fixed electronic states.
Adiabatic expansions (and associated potential energy surfaces), on the other hand, arise
naturally from quantum chemistry calculations and are also amenable to a dynamical systems
approach.

The analysis of molecular bound states is a particular example relevant to the above
discussion. In this situation, the adiabatic potential has minima corresponding to nuclear
equilibria [3]. (This set of minima is not unique, because the system is invariant under spatial
translations of the molecule as well as rotations about its centre-of-mass.) To describe nuclear
motion, one has to separate the vibrational degrees-of-freedoms from the translational and
rotational ones. (This can be formalized mathematically as a reduction procedure [34].) The
potential energy has minima in the vibrational coordinates so obtained. One expands the
potential about the equilibrium nuclear separations in order to calculate the energies associated
with nuclear vibration. The vibrational part of the Schrödinger equation ultimately becomes
a set of coupled harmonic oscillators, which one then studies using normal mode expansions.

Finally, note that geometric phase (‘Berry phase’) often occurs in the context of the Born–
Oppenheimer approximation. For the present discussion, we (mostly) follow the presentation
of Zwanziger, Koenig and Pines [35]. Consider a Hamiltonian with two or more variables that
depend slowly on time. Thus, we require a 2+ dof Hamiltonian system in which at least one of
the degrees-of-freedom is slow. Semiquantal problems such as those described in the present
paper fit into this framework. At each instant, define a smoothly varying (and single-valued)
basis of eigenstates {|ψk[x(t)]〉} as solutions to the eigenvalue equation

H [x(t)] |ψk[x(t)]〉 = λk[x(t)] |ψk[x(t)]〉 . (30)

With the adiabatic approximation, a system beginning in the state |ψk [x(0)]〉 evolves to
the state |ψk〉 ≡ |ψk [x(t)]〉, which specifies the state at time t up to a phase. However, one
must still compute the phase at this time relative to that at time zero. In determining this phase,
one must satisfy the relation〈

ψn

∣∣∣∣dψn

dt

〉
= 0 (31)

which can be met at any specific time but which is not necessarily satisfied simultaneously at
every point in space [35]. (In the language of geometry, equation (31) yields the requirement
for parallel transport of the connection A, which is a gauge shift [34–37].) That is, this choice
of phase may be different at different points in space. Because of this complication in defining
the phase of the basis {|ψ [x(t)]〉} globally, there necessarily exists a phase factor due to the
geometry of configuration space rather than simply the dynamical equations. In order to study
such geometric phases, Sir Michael Berry considered a cyclic evolution of period T in the
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position variables. The initial and final eigenspaces are hence the same, and the problem of
comparing the phases at times 0 and T is well-posed.

The eigenstate at time T is given by

|ψn [x(T )]〉 = e−i
∫ T

0 λn[x(t)]dteiγn(C) |ψn [x(0)]〉 (32)

where C denotes the closed path traversed in configuration space. The dynamical phase is

ςn =
∫ T

0
λn [x(t)] dt (33)

and the geometric phase is γn(C). Using the Schrödinger equation, we find that Berry’s phase
is given by

γn(C) =
∫
C

A · dx (34)

where

A = 〈ψn|i∇xψn〉 (35)

is the gauge shift.
The geometric phase γn(C), which is a real quantity, depends only on the initial

eigenstate, the geometry of the path C, and whether or not C surrounds a singularity. If the
configuration space is simply connected and |ψn[x(t)]〉 may be smoothly chosen to be real-
valued everywhere, then the geometric phase is zero. We remark that equation (34) involves
the matrix element (35) that causes the adiabatic theorem (31) to break down [35]. One sees
this immediately by applying the Chain Rule:〈

ψm

∣∣∣∣dψm

dt

〉
=

〈
ψm

∣∣∣∣∇xψm · dx

dt

〉
= 〈ψm |∇xψm 〉 · dx

dt
. (36)

Also note that one may derive Berry’s phase using a path integral formulation. To consider the
relevance of geometric phase to adiabatically evolving systems, we remove the exp[iγn(C)]
factor via a gauge transformation. This adjusts our Hamiltonian by adding a vector potential
term given by equation (35). A system with nonvanishing Berry phase may thus be treated
using an effective Hamiltonian obtained via the transformation

∇ �→ ∇ − iA. (37)

With equation (37), the geometric phase is absorbed into the dynamical phase ςn, even though
its ultimate source is the geometry of configuration space.

The gauge potential just discussed is Abelian, like the one that occurs in
electromagnetism [20]. Although it occurs in an abstract space, one may still observe its
effects. As in more familiar situations, it arises from ambiguities in the description of a
system. In the present case, these ambiguities reflect the variety of manners in which one
may select eigenstate phases. Such an ambiguity in assigning relative coordinates occurs
whenever a problem may be separated into two subcomponents. In the present context, one
has a natural separation into fast (electronic) and slow (nuclear) dynamics. In principle, one
may therefore derive a geometric phase for any vibrating quantum billiard. Such analyses have
already been performed for similar molecular models such as the E × e Jahn-Teller system.
One computes a geometric phase γ (C) of value −π , yielding a phase factor of −1. Hence,
if one specifies a basis of single-valued eigenstates, Berry’s phase imposes a sign change and
double-valued behaviour. One may treat this example as a special case of a three-dimensional
problem such as a spin 1/2 particle in a planar magnetic field. (That is, the particle may move
in three-space, but the field is planar.) The mathematical distinction between this perspective
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and the previous one is that analysing the problem in two-dimensions forces a topological
interpretation of the sign change—whereas considering a third dimension permits a geometric
interpretation of the sign change. Interpreted topologically, the sign change arises from the
fact that the configuration space (R2 −{0}) is not simply connected. Interpreted geometrically,
the configuration space becomes curved because it deviates from the plane. In exchange, it is
now simply connected. This geometric perspective illustrates a similarity between molecular
spectroscopy and spin in a magnetic field [35]. Both the Jahn-Teller E × e problem and the
spin 1/2 particle in a planar magnetic field are described by real, symmetric 2 × 2 matrices, so
the fundamental similarities between these systems are ultimately due to the commonality of
their Lie structure [34]. One may think of the magnetic field as representing the semiclassical
limit of a localized packet of nuclear configurations, and the corresponding molecular problem
may be generalized to three dimensions by analysing molecules whose nuclear configurations
have higher symmetries. One may thus construct an analogy between vibrations in molecules
and crystals and the problem of a spin 1/2 particle in a magnetic field. Additionally, one may
construct analogies with other spin systems. For example, the triply degenerate electronic
state of a T × (e + t2) system is related to a spin 1 particle in combined magnetic and electric
quadrupole fields. This idea of analysing systems based on their common symmetries is a
hallmark of the field of geometric mechanics [34], which may prove very useful to the study
of molecular dynamics.

4. Molecules and crystals

In the present section, we discuss why polyatomic molecules are appropriately described
semiquantally. We hinted at this description earlier, but we now consider it at length. Before
beginning this discussion, however, it is important to recall that—in addition to the modern
results reviewed in the present paper—molecules and crystals can also be studied using well-
known techniques such as the Bloch theorem [2, 38, 39].

Earlier in this work, we noted that polyatomic molecules may be abstracted as vibrating
quantum billiards. This abstraction arose initially by considering one-dimensional vibrating
quantum billiards as a model for diatomic molecules [12]. More generally, a d-mode Galërkin
expansion of a vibrating quantum billiard corresponds to a d-term quantum system coupled in a
time-dependent, self-consistent fashion to r classical degrees-of-freedom. These classical dof
correspond to the dov of the quantum billiard. Taking d = 2 and r = 1, one obtains a system
precisely analogous to a diatomic molecule (such as NaCl) with two electronic states (of the
same symmetry) coupled nonadiabatically by a single internuclear vibrational coordinate. Such
symmetry, which can be expressed in terms of symmetry conditions in a superposition state’s
quantum numbers [13,14], is one possible cause of the electronic degeneracy discussed earlier.
That is, degeneracy and near-degeneracy of electronic energy levels are often a consequence
of a system’s inherent symmetries. (It is important to note that there are also many systems in
which the near-degeneracy of electronic eigenenergies is not caused by symmetry.)

Vibrations in more complicated molecules can have more nuclear degrees-of-freedom,
although because of constraints, they might not all be independent. Thus, only polyatomic
molecules of certain forms are describable directly as vibrating quantum billiards. Others may
be described in terms of other semiquantal models that depart somewhat from the vibrating
billiard abstraction. These models nevertheless retain a semiquantal formulation analogous to
that of vibrating quantum billiards. Additionally, there exist molecular systems for which the
vibrating quantum billiard model is apt without adjustment. A two dov quantum billiard such
as one with rectangular geometry with length a and width b, for example, may be used to model
nonadiabatic dynamics in a linear triatomic molecule with respective nuclear displacements
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a(t) and b(t) between the centre atom and the two atoms to which it is bonded. Requiring
left and right symmetry for all time—represented by the constraint a(t) ≡ b(t)—yields the
quantum vibrating square, which has one dov [27]. An r dov quantum billiard may likewise
be used to model nonadiabatic coupling between the nuclear and electronic states of a linear
molecule consisting of a chain of (r+1) atoms. Perhaps more physically relevant would be using
an r dov quantum billiard as a model for the coupling between electronic states and r normal
modes in a polyatomic molecule such as benzene. One can complicate the situation further
by considering the coupling of polyatomic molecules by intermolecular forces such as van der
Waals interactions. Such systems are describable as coupled vibrating quantum billiards and
hence as coupled Schrödinger equations with time-dependent boundary conditions. To our
knowledge, these systems have yet to be studied in this fashion.

For electronic–nuclear coupling, it is simplest to consider two-fold degeneracies, for which
one uses two-mode Galërkin expansions. An example of such a degeneracy occurs in the Jahn-
Teller E × e trigonal molecule, in which one doubly degenerate vibrational mode (e) interacts
with a (symmetry-induced) double electronic degeneracy (E). This system has been analysed
by Whetten, Ezra and Grant [3] and by Zwanziger, Grant and Ezra [4]. Let us back up a
bit, however, and give a physical discussion of why Hamiltonian models of electronic–nuclear
coupling are good qualitative approximations of reality. Note again that there are some systems
for which even the abstract vibrating quantum billiard formulation (which is a toy model) is
useful in this fashion.

The easiest situations to understand are ones in which the degenerate electronic energy
levels are isolated energetically from other states. That way, one may neglect these other
states, providing justification for the use of low-mode Galërkin expansions. Additionally, we
assume that the molecule under consideration possesses strong restoring forces that prevent
large-amplitude nuclear motions. Systems with these properties ordinarily arise from single-
hole or single-electron degeneracies. One then examines the system quantum-mechanically in
order to study the coupling of electronic, vibrational and rotational motion. One can examine
the distribution of energy levels, for example, by considering correlation functions and limiting
situations.

A hallmark of electronic degeneracy is the extreme sensitivity of rovibrational states to
perturbations. The nuclear motion of a molecule and its coupling to electronic motion may
be influenced heavily by the surrounding environment. Hence, in order to study individual
rovibrational states (rather than the bulk properties of nonadiabatic systems of bound states),
one must isolate the molecule of interest. This is a highly nontrivial proposition. Moreover,
strong nonadiabaticity is rare in the lower rovibrational levels of ground-state electronic terms
of most easily isolated molecules [3]. For example, the ground states of stable molecules
contain an even number of electrons with electronic components that are ordinarily fully
symmetric. Open-shell polyatomic molecules with sufficient symmetry often also exhibit
electronic degeneracies, but it is difficult to prepare such systems. Many transition metals
have degenerate ground terms, although they are usually only observed in solutions or solids.
At higher energies, such as those near the thresholds for chemical reactions or molecular
dissociation, one expects to observe strong rovibrational motion. These situations, however, are
not highly symmetric. They are also infested by complex, large-amplitude nuclear oscillations.
Consequently, one cannot expect to examine the ground terms of stable molecules in order to
experimentally observe few-state nonadiabatic motion.

Another situation worth considering involves excited molecular valence states, which
display strong interactions between two or more electrons or holes. Many of the symmetric
situations contain degenerate (or nearly degenerate) electronic energy levels. Spectroscopic
examination of such systems often reveals degenerate molecular orbitals, so the excited states
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contain four or more related terms (of which two are degenerate). One can thus describe this
electronic–nuclear coupling with a superposition state of four or more terms. One can similarly
consider the ground states of molecules such as cyclobutadiene and cyclo-octatetraene, in which
the two electrons of highest excitation arise from the same degenerate molecular orbital [3].

A related application is the analysis of Jahn-Teller systems. In the presentation below,
we borrow material from Vibronic Interactions in Molecules and Crystals by I B Bersuker
and V Z Polinger [5]. The Jahn-Teller theorem, which may be treated mathematically using
the language of algebra and functional analysis, states that if the adiabatic potential of a
system (which is a formal solution to the electronic part of the Schrödinger equation) has
several crossing sheets, then at least one of these sheets has no extremum at the crossing point.
Hence, degenerate (and even near-degenerate) electronic energy levels cannot be analysed
using the Born–Oppenheimer (adiabatic) approximation. As this approximation breaks down,
one obtains nonadiabatic coupling between nuclear and electronic terms. That is, near such
degeneracies and near-degeneracies, it is appropriate to use the semiquantal regime in order
to study the dependence of the electronic eigenenergies on the system’s nuclear degrees-
of-freedom. According to the semiquantal approximation, this dependence is treated as a
continuum.

It may be apt to use the Jahn-Teller effect as a synonym for nonadiabatic coupling between
nuclear and electronic systems, but it is conventional to apply this term more specifically.
Hence, although vibrating quantum billiards exhibit behaviour like the Jahn-Teller effect, it
is not directly labelled as such. Additionally, we note that in the case of electronic near-
degeneracies, the term pseudo-Jahn-Teller effect is sometimes used. Situations in which Jahn-
Teller deformations have been observed include vibrations in crystals, numerous types of
spectroscopy (NMR, Raman, etc.), multipole moments, the stereochemistry and instability of
molecules, mechanisms of chemical reactions, and catalysis. Crystals that exhibit the Jahn-
Teller effect (such as ferroelectric crystals) contrast strikingly with those that do not. For
example, their structural phase transitions and elastic properties are different [5].

Effects analogous to Jahn-Teller distortion have been observed in other physical systems,
including the pion-nucleon interaction in quantum field theory, the α-cluster description of
light nuclei, and the resonant interaction of light with matter. The formal analogy between
pion-nucleon interaction in the static model of the nucleon [40] and the Jahn-Teller problem
is used to apply the methods and ideas of scattering theory to Jahn-Teller distortions [5]. One
can also apply this analogy in reverse to study semiquantum chaos and nonadiabatic dynamics
in pion-nucleon interactions, a special form of Yukawa coupling in quantum chromodynamics
(QCD) [20]. To our knowledge, this has not yet been done. Indeed, any system that exhibits
Jahn-Teller deformation is expected to exhibit semiquantum chaos. If the system has three or
more degrees-of-freedom, it may also exhibit semiquantum diffusion [41, 42].

Jahn-Teller systems exhibit equivalent minima of adiabatic surfaces which correspond to
several distorted nuclear configurations of equivalent symmetry. For example, a molecule of
type ML6 with a double electronic degeneracy in the regular octahedral configuration becomes
elongated along one of its four-fold axes of symmetry C4 because of the Jahn-Teller effect.
There are three equivalent distortions because there are three axes with C4 symmetry. (The
set Cm denotes the group of rotational symmetries of the m-gon [39, 43]. Its elements are
rotations by angle 2π/m, which are denoted cm.) The Jahn-Teller theorem does not apply to
double electronic spin degeneracies (Kramers degeneracies) or linear molecules. However,
linear molecules with degenerate electronic eigenenergies are unstable with respect to bending
distortions, which produces nonadiabatic behaviour known as the Renner effect. Additionally,
one dov quantum billiards may be used to describe nonadiabatic dynamics in diatomic (and
hence linear) molecules. Though related to the Jahn-Teller effect, this nonadiabatic behaviour
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is not precisely the same. It is more accurately termed the inverse Jahn-Teller effect because
of the inverted dependence on the interatomic distance a. This leads to degeneracy in the
adiabatic sheets at a = ∞ rather than at a = 0 as in the Jahn-Teller effect. The consequences
of this degeneracy may be observed in diatomic molecules when their interatomic displacement
is large. As we have been stressing, electronic near-degeneracies are as important as actual
degeneracies. In these near-degeneracies, two potential surfaces almost intersect but do not
actually cross each other because of some sort of weak interaction near the point of closest
approach. The observation that such near-degeneracies are prevalent in diatomic molecules
has been captured by the one dov quantum billiard model. An example of this phenomenon
is in the near-intersection between the lowest ionic and covalent states of alkali halides. In
NaCl, this near-degeneracy occurs at large interatomic distances—which is consistent with our
predictions. When the sodium and chloride ions are far apart from each other, the resonance
integral for electron transfer between them is small. Hence, the smallness of the cross-term
H12 in the Hamiltonian is caused by the large difference in the electron distribution in the two
electronic states. Analogous situations occur in more complicated polyatomic molecules [44].

Jahn-Teller effects are classified according to their tensorial construction, which describes
their (nuclear and electronic) symmetries and degeneracies. The E term refers to an orbital
doublet (electronic double degeneracy). The canonical E × e Jahn-Teller effect describes
the interaction of doubly-degenerate electronic states of representation Ek term with doubly-
degenerate nuclear vibrations of representation E2k [5]. (The representation Em has basis
functions with the transformation properties ψ±m ∼ exp(±imϕ), where ϕ is an arbitrary
rotation about the symmetry axis.) The simplest polyatomic systems in which this occurs are
triangular molecules X3, tetrahedral molecules ML4 and octahedral molecules ML6. The
presence of nuclear degeneracies of this type leads to multimode E × (e + · · · + e) systems,
where the number of factors of e corresponds to the number of vibrational modes of type E.

Another orbital-doublet Jahn-Teller system is denoted E × (b1 + b2) and occurs when
electronic states transform as ψ±m ∼ exp(±imϕ/4) in polyatomic systems with Cm or Sm

(m = 4k) axes of symmetry. (The set Sm denotes the group of rotary reflections in the m-
gon. Its elements are given by sm ≡ σhcm = p0c2cm, where p0 represents parity (spatial
inversion) and σh is mirror reflection in the horizontal plane [39]. Rotary reflections are
examples of improper rotations.) In the present situation, the active Jahn-Teller modes are
the singlet low-symmetry displacements (one-dimensional representations) of type B1 and B2.
Each Bi represents an independent, nondegenerate vibrational mode. The simplest examples
of E× (b1 +b2) distortions occur in square planar and pyramidal molecules ML4. One special
case of interest, denoted E × b, occurs when the vibronic coupling to one of the B vibrational
modes is neglible. The motion along the coordinate decoupled from the electronic dof consists
of simple harmonic vibrations near the completely symmetric nuclear configuration.

The T × (e + t2) Jahn-Teller distortion refers to the coupling of a triple electronic
degeneracy T with a doubly-degenerate nuclear vibration of type E and a triply-degenerate
nuclear mode of type T . The simplest cubic molecule that can exhibit such a distortion is
ML6, whose symmetry group is Oh. (The octahedral group Oh = O × Ci describes the
full symmetry of a cube. The group O, consisting of 24 rotations, is the set of rotational
symmetries of cubes and regular octahedrons. The group Ci consists of the parity operator p0

and the identity I .) Some important special cases are the T ×e, T × t2, T ×d, and P ×d Jahn-
Teller distortions. The adiabatic potential in the T2 subspace has O ∼= Td symmetry, where Td

represents the full symmetry group of a tetrahedron. Type D nuclear distortions describe the
case of equal coupling of the electronic dof to the E and T2 nuclear modes at equal forcing
ω ≡ ωE = ωT when the molecular Hamiltonian (describing the coupling between electronic
and vibrational degrees-of-freedom) possesses S0(3) symmetry. (The parameter ω2 denotes
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the force constant of the normal vibration.) The type P triple electronic degeneracy exhibits
more symmetries than the type T degeneracy. Therefore, the P × d distortion is a highly
symmetric special case of T × (e + t2) Jahn-Teller molecules. It occurs in cubic polyatomic
systems in which the cubic splitting of the D mode of nuclear vibrations is negligible [5].
That is, the P configuration refers to three-fold degenerate p-orbitals (l = 0,m ∈ {0,±1}),
and the D configuration represents five-fold degenerate d-orbitals (l = 2,m ∈ {0,±1,±2}).
(Recall that l andm denote the orbital and azimuthal quantum numbers, respectively [38].) The
P × d Jahn-Teller distortion then represents a quintuply degenerate nuclear vibration coupled
to a three-dimensional electronic manifold in spherical symmetry. In going from spherical
symmetry to octahedral symmetry, the d orbitals split into (e + t2). The same coupling to e

and t modes would then indicate a remnant of higher (spherical) symmetry [39].
Other Jahn-Teller effects include the >8 × (e + t2) distortion and its special cases.

Quadruplet terms (such as >8) occur in icosohedral systems as well as in cubic systems
with spin-orbital coupling. (The term >8 is the double-valued irreducible representation of
the double group Ō2 of the rotation group of regular octahedrons O. Double groups are
obtained by treating rotations by the angles α and (α + 2π) as different quantities even though
they describe physically identical rotations [39].) The simplest situations with electronic
quadruplets (corresponding to four-mode Galërkin expansions) occur in cubic polyatomic
molecules with an odd number of electrons. Icosohedral systems can also exhibit vibronic
coupling of nuclear quadruplets and quintuplets (of types u and v, respectively) with electronic
quintuplets and quintuplets (of types U and V , respectively). One possible interaction of these
terms is U × (u + v), in which a quadruply degenerate electronic state is coupled both to
quadruply and quintuply degenerate nuclear modes [5].

One can consider arbitrarily complicated Jahn-Teller distortions, even the simplest of
which are dynamically interesting. Multiple distortions can occur in the same molecule
or crystal. The individual distortions need not possess the same symmetry. Systems that
exhibit multiple sets of Jahn-Teller distortions of a given symmetry are called multimode Jahn-
Teller systems. Multiple distortions can occur, for example, in crystals with point defects, as
their energy spectra contain discrete near-degenerate electronic eigenenergies well-separated
from other energy levels. One can also observe multiple Jahn-Teller centres interacting with
each other. Systems that exhibit such behaviour are known as polynuclear clusters. For
example, two octahedral complexes of type ML6 can form a double-centre Jahn-Teller system
(a bioctahedron) in three different ways with the two central atoms lying on the common axes
of symmetry of the second, third, or fourth order.

Both theoretical and experimental analyses have been vital to the study of nuclear-
electronic coupling in molecules. Treatments with few active modes—that is, low-mode
Galërkin projections—have been particularly useful, as they ease the analytical difficulty
of the theory. One may then consider a fully quantum variational treatment of the nuclear
part of the Hamiltonian, so that model parameters can be fit to experimental data. (One
molecule for which this has been done is sym-triazine [3].) As one increases the order
of the Galërkin approximation, however, the procedure becomes increasingly difficult both
analytically and computationally. Hence, treating these situations in the fully quantum regime
becomes untenable rather quickly. It is consequently useful to develop semiclassical and
semiquantal techniques even for few-term superposition states in order to analyse molecular
systems.

The present work describes a semiquantal technique, but a semiclassical theory (using
the h̄ −→ 0 asymptotic formalism) of several-mode nuclear motion is worth studying as
well. (Recall that the semiquantal regime is a semiclassical regime but not the ‘semiclassical’
regime that is traditionally studied as part of the quantum mechanics curriculum.) If one
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considers this situation abstractly in terms of vibrating quantum billiards, then a semiclassical
procedure does exist in principle. One quantizes the motion of the billiard boundary to obtain
an example of quantum chaology (for which one uses the semiclassical limiting procedure).
To our knowledge, however, this process has not actually been carried out for billiards with
oscillating boundaries or for the physical situations described in the present paper.

5. Solvated electrons

Vibrating quantum billiards may also be useful for the study of electron solvation, which
describes the nonadiabatic process of the relaxation of excess electrons in fluids. In this
discussion, we adapt the work of Space and Coker to this perspective [6, 7]. The equilibrium
structure of electron solvation in numerous fluids involves the localization of excess electrons
into a roughly spherical cavity within the solvent. This cavity is the boundary of our billiard,
so describing the present situation with the radially vibrating spherical quantum billiard may
be especially apt. The electron is treated quantum-mechanically, whereas the motion of the
solvent is approximated as classical. Such systems are hence in the confines of the semiquantal
regime. Short-range, repulsive electron-solvent interactions prevent solvent molecules from
penetrating the billiard boundary into the region occupied by the electron.

There are a wide variety of relevant fluid types. Among the possibilities are simple
hard-sphere liquids such as helium and exceptionally polar solvents like water and ammonia.
Calculations have explored the dynamical rearrangements that solvent atoms must make in
order to accommodate an injected electron as well as how the electron and solvent couple to
provide various relaxation pathways. This description is consistent with recent analyses of
vibrating quantum billiards [13, 14, 25, 27].

Equilibrium excess electronic states possess fairly well-defined symmetry [7], but solvated
electronic states in an unperturbed fluid are more disordered and delocalized, as there is no well
sufficiently deep to serve as an equilibrium trap. The electron has numerous near-degenerate
local minima, so the system’s eigenstates are combinations of functions centred in several
different wells. States may thus have a positive density in more than one cavity, although
the ground electronic state is usually in an s-like state of a single cavity. Recall that the
canonical vibrating billiard model assumes boundary fluctuations that preserve some or all
of the symmetries of the billiard. We thus surmise that such a model may be appropriate for
equilibrium fluctuations, because in that situation one has a single cavity with many symmetries.
The simplest model to use in this event would be the radially vibrating spherical quantum
billiard. In order to account for the observed asymmetry prior to equilibrium, one may be able
to extend the model by considering multiple-well potentials, higher-term Galërkin projections
(which would account for larger degeneracies), multiple degrees-of-vibration and—perhaps
most importantly—coupled vibrating quantum billiards. All except the latter may be inserted
into the model for a single vibrating billiard to obtain a more complicated single-cavity
configuration. One would need to consider coupled billiards in order to capture the notion
of multiple cavities.

When a solvated electron in the ground state of a solvent cavity is excited by light
(‘photoexcited’) into various electronic states, one obtains nonadiabatic relaxation, which
is suitably described using the semiquantal approximation. One may also explore the
nonadiabatic relaxation that occurs when an excess electron is injected into various excited
states of unperturbed fluid configurations. With such analysis, one may study the dynamical
trapping processes that are responsible for the formation of the localized equilibrium state (in
other words, the quantum billiard system).

As with polyatomic molecules, one uses the Born–Oppenheimer approximation to produce



1182 M A Porter

a semiquantal analysis. One obtains trajectories by solving classical equations of motion for
the cavity. These evolution equations include forces due to the charge distribution of the
currently occupied electronic state. Space and Coker [6] have shown that at least two types
of nonadiabatic processes are important for solvated electron relaxation in simple fluids. The
first of these processes is highly diabatic and may be illustrated by a pair of weakly coupled
p-like orbital states in the same solvent cavity. Suppose that a py state has a higher energy
than a px state because the cavity is not quite spherical. The cavity will then begin to elongate
in the y-direction because of the influence of the charge distribution, which causes the energy
gap between the two states to decrease. If the two states are weakly coupled, they mix only
for small separations of their energy levels. Hence, appreciable mixing between these states
occurs only in a small region of nuclear (solvent) configuration space. Consequently, the
manifestation of this behaviour is brief. In the present example, the diabatic transition occurs
when the two adiabatic basis states (the two different types of p-orbitals) rotate into each other
rapidly, which causes the occupied electron to hop between the two states. As a result, the
occupied electron state, which is still causing the solvent cavity to expand in the y-direction,
is now less energetic than the unoccupied px-orbital. There is never any drastic change in the
electronic charge distribution.

Now consider highly diabatic relaxation in a more general context [7]. There is typically
a nonzero electron density in more than one cavity in the fluid. This density exerts an outward
force on the surrounding solvent. Additionally, distinct states are coupled nonadiabatically
(because they each have a density in the same trap). The nuclear velocities are initially
uncoupled to the electronic forces, so the electron rapidly explores several closely-related
regions before localizing in a single equilibrium density fluctuation. In a surface-hopping
calculation, the excess electron hops between eigenstates that change fairly quickly with the
solvent configuration (as the wells in the fluid are almost degenerate). The transitions in
question are ordinarily not simple diabatic ones in which state identities change. Instead, they
are strongly nonadiabatic, as the wavefunctions become a dynamically changing mixture of
several states in closely-related solvent regions. This is a consequence of the lack of symmetry
in the configuration space and phase space of the initial unperturbed solvent. Once the electron
is localized to a single cavity, its transitions tend to be diabatic. It pushes out the surrounding
solvent to an equilibrium state where the solvent–solvent and electron–solvent forces nearly
balance. At this point, the canonical vibrating quantum billiard model is especially appropriate,
as one now has the requisite symmetry preservation.

A second important nonadiabatic process occurs when two interacting electronic states
are strongly coupled by the solvent dynamics. Suppose, for example, that the py solvated-
electron charge distribution considered above has continued its expansion of the solvent cavity
along the y-axis. Simultaneously, solvent atoms near the cavity walls around the node in
the py wavefunction have begun to push into the cavity, which pinches off the middle region
of the ground-state wavefunction, thereby causing it to increase in energy (since the relevant
displacement parameter of the billiard is smaller when this happens). These two electron states
occupy similar regions of space and are strongly coupled by the motion of the cavity boundary.
The two associated energy levels may thus switch their ordering, as they can mix strongly
even when there is a large energy disparity. When this occurs, the excess electronic potential
due to the deforming cavity looks like a fluctuating double well. When the distorted s and p

orbitals mix strongly, the solvated electron may be localized on either the left or right side of
the double-well cavity. Eventually, either a left-well or right-well localization predominates,
and the electron hops into a ground-state s-orbital.

The crux of the matter is that solvated electrons exhibit transient relaxation dynamics
before they reach their equilibrium behaviour. The canonical vibrating quantum billiard
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model may be useful for the equilibrium oscillations, whereas more complicated extensions
of the model (especially coupled vibrating quantum billiards) may be appropriate to help
describe several phases of the transient behaviour. At short times, the occupied electron state
is embedded in a continuum, so if the fluid density is sufficiently low, the electron can leak
through the solvent and hop from state to state. At this point, the excess electronic absorption
is characterized by a low-energy band. Once the solvated electron is in a particular cavity
for a sufficiently long time, the diameter of the cavity increases rapidly, thereby localizing
the solvated electron in a deeper well. The wall of the cavity still oscillates, but it is now
reasonable to assume that its geometry is preserved under these vibrations, so that simple toy
models such as vibrating quantum billiards may be useful.

6. Buckyballs and nanotubes

6.1. Buckyballs

It is well-known that the motion of electrons through quantum dots may be altered substantially
by energy-level quantization and the charging of a single electron. Studies of electron transport
have recently been extended to the realm of chemical nanostructures such as nanocrystals
and nanotubes. A group of scientists at Lawrence Berkeley National Laboratory fabricated
unimolecular transistors by connecting buckyballs to gold electrodes [10]. Buckyballs, Time
Magazine’s molecule of the year in 1991, are C60 molecules shaped like a soccer ball. The
LBNL researchers studied the nanomechanical vibrations of these buckyball transistors. They
performed transport measurements that demonstrated coupling between the (nuclear) motion of
the centre-of-mass of the buckyball and the hopping of the single electron (electronic motion).
This conduction mechanism was not observed previously in quantum dot studies, although
such electronic–nuclear coupling is a hallmark of nonadiabatic motion in molecular dynamics
and the vibrating quantum billiard model.

The C60 molecule is a fullerine that—like a soccer ball—has a surface consisting of twenty
hexagons and twelve pentagons. Its geometry is thus more complicated than those that have
been used in the study of vibrating quantum billiards, but it exhibits a similar type of nonadia-
batic electronic–nuclear coupling. However, one can obtain a simpler model by approximating
the buckyball as a sphere in order to study the coupling between its bouncing and the electronic
motion. Perhaps one could then use perturbation theory to account for the more complicated
geometry. Controlling such motion (and other types of motion!) in nanoscale objects is an
important issue in the field of nanotechnology. Macroscopically, one may ignore the coupling
of a rigid wall to a ball bouncing against it, but at sufficiently small scales one can no longer
do this, a fact which is at the heart of the present review. In other words, when one studies
objects at ‘new’ scales (such as microscales and nanoscales), one must examine couplings
between types of systems that have not traditionally been treated together as subcomponents
of a single entity. Electronic–nuclear coupling heavily influences molecular motion, even
though the electron mass is a small fraction of the molecular mass. The mechanical control of
nanoscale objects (‘NEMs’) will allow smaller, faster and more efficient versions of existing
micro-electro-mechanic structures (MEMs) [11]. A single-electron current can both detect
and excite mechanical oscillations in a buckyball. For example, an electron with surplus en-
ergy precisely equal to the vibrational energy of the buckyball causes the buckyball to begin
bouncing due to spontaneous emission of this energy. Furthermore, the electron continues to
hop on and off the molecule. Electronic devices in which the electro-mechanical motion is so
coupled could function as ‘electron turnstiles’ that allow electrons to pass one at a time.

The various devices studied by Park et al exhibited a universal quantized excitation with
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an energy of about 5 meV. Such an excitation energy can arise in several possible manners in
a single C60 transistor. One hypothesis, which has been invoked in other nanosystems, is that
this excitation energy is a result of highly excited electronic states of the buckyball. However,
this possibility was dismissed for several reasons. The observed excitation energy was the
same for both types of charge states of C60, multiple excitations with the same spacing were
observed, and this mechanism is not consistent with theoretical calculations of the electronic
states of Cn−

60 ions.
A better explanation involves coupling between vibrational excitations of the buckyball

with electronic tunnelling on and off C60. That is, the authors proposed a nonadiabatic
semiquantal system in which squishing couples to electronic hopping. In this nuclear mode,
the buckyball deforms (‘squishes’) a little bit like a ball being pressed against the ground. With
this mechanism, the observation of multiple ∂I/∂V features with identical spacing would then
result from the excitation of integral numbers of vibrational quanta. These vibrational modes,
moreover, would be identical for both charge states of the buckyball. However, there are some
problems with this explanation as well. The internal vibrational mode of lowest energy is
about 35 meV, so we require a different explanation. The lowest pulsing internal mode, like
what occurs in the radially vibrating spherical quantum billiard, is even more energetic.

A possible resolution involves another type of electronic–nuclear coupling. One
hypothesizes a mechanism in which oscillations of the buckyball’s centre-of-mass within a
confinement potential bind it to a gold surface, thereby predicting a vibrational energy of
about 5 eV (as was observed experimentally). Hence, the following nanomechanical motion
is predicted: an electron jumps onto a Cn−

60 molecule, which causes an attraction between the
additional electron and its image charge on the gold. This electrostatic interaction pulls the
buckyball ion closer to the gold surface and results in mechanical motion of C60, like that of
a soccer ball bouncing against the ground. Although slightly different from the mechanisms
we have been discussing (which correspond more closely to the second hypothesis), this third
hypothesis also predicts nonadiabatic electronic–nuclear coupling, for which a semiquantal
description is appropriate. It is amenable to the same type of analysis that have been performed
on vibrating quantum billiards, but the relevant Hamiltonian takes a slightly different form.

The dynamical situation in the bouncing buckyball is reminiscent of the Franck–Condon
process that occurs in electron transfer and light absorption in molecules. In these situations,
the electronic motion is accompanied by vibrational excitation. The transport measurements
discussed above may be used both to probe and to excite molecular motion. In particular, the
buckyball transistor that was studied behaved as a high-frequency nanomechanical oscillator.
The electronic component of its oscillations may be quantized so that the system is treatable
in the semiquantal regime. This sort of coupling between quantized electronic (fast) and
unquantized mechanical (slow) degrees-of-freedom should become important for electron
transport through nanomechanical systems such as buckyballs and carbon nanotubes. The
difference between this system and a vibrating quantum billiard of appropriate geometry is that
the nuclear motion is described by a ‘bouncing’ of the centre-of-mass rather than a pulsing of
the billiard boundary. One can obtain a reasonable toy model with an appropriate Hamiltonian.

More generally, one can consider the bouncing mode in addition to the buckyball’s internal
modes. If one considers only bouncing, one obtains a one dof Hamiltonian. This nuclear
degree-of-freedom, which describes the height of the ball, is coupled to a single electronic
state. In this exactly-solvable model, one treats the nucleus as a point mass. The nuclear
Hamiltonian consists of the harmonic potential plus a second term which contributes nothing
when the electron is off the buckyball and shifts the oscillator when it is on it. That is, the
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nuclear Hamiltonian HN takes the form

HN = 1

2
k(z − z0)

2 + eEzn̂ (38)

where k is a spring constant, z is the displacement of the buckyball, z0 is a reference
displacement, e is the charge of an electron, E is the electric field, and the operator n̂ is 1
when the electron is on the buckyball and 0 when it is not. The electronic Hamiltonian is

He = E0 − eEz (39)

where E0 is the energy of the electron without the coupling. One can then complicate
matters by modelling the geometry of the buckyball as spherical. Internal nuclear modes
then yield additional nuclear dof, and their coupling to multiple electronic states is also
relevant. That is, when considering the internal modes of the buckyball, it becomes important
to consider multiple electronic states of the molecule rather than just one. When treating the
buckyball as a point mass, it was sufficient to consider only the ground state in the analysis
of its bouncing because the excited states are not energetically close. Nevertheless, a study
considering multiple-term superposition states of a zero-dimensional bouncing ball might still
be illuminating. When the buckyball is three-dimensional rather than zero-dimensional, its
(nuclear) deformation can lead to smaller separations in its electronic eigenenergies, thereby
forcing one to consider Galërkin projections of more than one electronic state. However,
the number of states that should be considered is open to debate. To answer this question,
one must consider the buckyball’s electronic spectrum. Moreover, the appropriate number
of electronic states will depend on the internal (Jahn-Teller) distortions under consideration.
One can complicate matters further by considering the buckyball’s true soccer ball geometry
rather than a spherical approximation. Unlike a stationary spherical quantum billiard, a billiard
shaped like a soccer ball is no longer completely integrable, which leads to a marked increase in
the complexity of the system’s internal dynamics [14]. It is important to note that these internal
Jahn-Teller modes can be studied without the bouncing dynamics—which essentially become
an extra degree-of-freedom. A buckyball is expected to exhibit nonadiabatic behaviour even
without the bouncing mode.

6.2. Nanotubes

Carbon nanotubes have been studied extensively during the past decade from both scientific
and engineering perspectives, as they offer numerous potential technological applications [8].
These compounds may be described as cylinders with very large aspect ratios. That is, their
length is much larger than their cross-sectional radius, so there are some respects in which they
can be viewed as one-dimensional objects. However, nanotubes also have hemispherical caps,
so they are not truly cylindrical objects (although they possess the same reflection and rotation
symmetries). For now, we ignore this and treat them as cylinders. We will briefly revisit this
issue later and discuss the utility of studying carbon nanotubes using the more accurate ‘pillbox’
geometry. Carbon nanotubes may be studied as quantum billiards because, like quantum
dots, they exhibit ballistic electron transport [45–47]. In particular, there is evidence that
electrons may traverse the length of some single-walled carbon nanotubes ballistically without
significant scattering. Such devices may thus be treated as resonant cavities for electrons in
which the nanotube acts as a waveguide. Additionally, the contacts between the nanotube and
the electrodes act as weakly reflecting barriers [46].

Under the assumption of a cylindrical geometry, every nanotube is specified by its diameter
and the chirality of the rows of carbon atoms relative to the axis of the cylinder. Their lengths
range from the micrometer to millimeter scales, and the length of a given nanotube may
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undergo oscillations. Nanotube diameters, which may also vibrate, range from about 0.7 to
1.6 nm. (In contrast, buckyballs have a diameter of about 0.72 nm.) Because of these radial and
longitudinal vibrations and the relevance of the semiquantal regime to the present situation,
carbon nanotubes are potentially describable as two dov vibrating quantum billiards [14, 27].
That is, they have two nuclear degrees-of-freedom that couple to electronic motion. This
description of nanotubes has not yet been studied, and it may prove beneficial to do so. Another
vibrational mode produces distortions reminiscent of plucking a guitar string in which the entire
nanotube oscillates back and forth while retaining its shape.

Another possible model of carbon nanotubes is a quantum billiard shaped like a pillbox,
whose geometry consists of a cylinder adjoined to two spherical caps. Thus, unlike the
cylindrical quantum billiard, this system is not globally separable [14]. Even a stationary
pillbox quantum billiard, whose longitudinal cross section is a stadium quantum billiard [48],
experiences quantum signatures of classical chaos (‘quantum chaology’), much like the
quantum Sinai billiard [1, 25, 28, 49]. Therefore, there is a tangible difference between this
model and the cylindrical quantum billiard, as the latter is integrable unless the boundary
oscillates. Analogous to the situation with buckyballs, one can treat the pillbox geometry as a
perturbation of the cylindrical one.

One aspect of nanotube dynamics that has been studied is nonlinear resonance effects
and their relation to positional instability [8]. Such resonances provide evidence that the
upper and lower limits of nanotube diameters may be affected significantly by the system’s
internal dynamics. Sufficiently chaotic motion during the attempted formation of a nanotube
could preclude organization into such a well-formed structure. As with other polyatomic
molecules, one may study the nonlinear dynamics of carbon nanotubes using the classical
trajectory method. It has been shown that onset of unstable motion occurs rapidly when
certain vibrational modes are coupled. This large-amplitude motion is caused by low-order
nonlinear resonances. The dynamics of the nanotubes were observed to depend sensitively
on the length of their diameters. It was also observed that the dependence of the positional
stability on the diameter was correlated with the length of the nanotube, thereby implying a
dependence of the onset of large-amplitude motion on the aspect ratio of the device. As in
many other fields of science [50], these dependencies obey scaling laws.

Positional instability may arise from strong coupling between longitudinal and radial
(‘ring-breathing’) modes. Sumpter and Noid [8] found that the two modes had a 1:2 frequency
ratio, which is sometimes called Fermi resonance and is one of the stronger forms of nonlinear
coupling. Such resonances have been attributed to the onset of readily manifested energy
transfer in several polyatomic and macromolecules. In the present situation, rapid energy
transfer between low-frequency modes (which retain their energy because of resonant transfer
between longitudinal and radial motion) causes small-diameter carbon nanotubes to become
unstable in the sense that they exhibit large-amplitude motion. Additionally, nanotubes
are expected to exhibit Jahn-Teller distortions that can significantly affect their electronic
structure, [9] so a (nonadiabatic) semiquantal description should be appropriate to study the
dynamics of these devices. Quantum billiards may also be useful to study other devices such
as the horn-shaped nanobugles (that are also carbon-based) and the silicon-based nanocages
that can be formed surrounding a metal ion.

7. Other applications

There are numerous other systems in which semiquantum chaos occurs. For example, consider
a collection of atoms in a resonant cavity interacting self-consistently with the electromagnetic
field within the cavity [12]. Berman, Bulgakov and Zaslavsky [15] studied this system
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quasiclassically to show that the quasiclassical approximation may break down in a shorter
time frame for a system whose classical limit (h̄ = 0) is chaotic than it does for one whose
limit is integrable. In the quasiclassical regime, the quantity

h̄

I
� 1. (40)

(The variable I is a characteristic action of the problem.) For integrable systems, the
approximation breaks down for time τh̄ given by

τh̄ = C/h̄ (41)

where C is a constant. For chaotic systems, however, the breakdown time is instead about

τh̄ = C ln

(
C

h̄

)
. (42)

Ideally, one studies the dynamics of atoms in a resonant cavity by analysing two electronic
states (i.e., using a two-mode Galërkin expansion). Suppose that the electromagnetic field has
a single mode whose frequency equals the transition frequency of the atoms. (This situation is
encompassed by a model attributed to Dicke.) This system was approximated quasiclassically
using a resonance approximation, which provides a basis for understanding the dynamics of
many problems involving the interaction of atoms and fields. (One can also treat this system
semiquantally.) In their analysis, Berman, Bulgakov and Zaslavsky constructed a theory to
obtain the quantum corrections for the dynamics of this resonant cavity system. In particular,
they derived equations of motion for the quantum-mechanical expectation values and quantum
correlation functions. They demonstrated numerically that the nature of the growth of the
quantum corrections depends very strongly on whether the classical limit is integrable or
chaotic. This underscores a very important aspect of quantum chaos: one obtains systems
that behave in a fundamentally different manner depending on whether one has quantized a
classically chaotic or classically integrable system.

Another situation in which the semiquantal approximation can be used to analyse
nonadiabatic dynamics is in collective nuclear motion [19]. Near level-crossings, in which
the relative energy between two eigenstates changes sign, there are several effects that can
occur during the time evolution of the slow (nuclear) variables. Among them are Landau-
Zener transitions, the molecular Aharanov-Bohm effect, and geometric phase, a non-integrable
quantum phase that we discussed previously. Moreover, the concepts of quantum chaos and
level crossings go hand in hand, which the reader may have already gathered from prior
discussions in this review. Traditional studies of large-amplitude collective motion do not
discuss phenomena such as Berry phase, despite the fact that microscopic computable quantities
such as potential energies vary rapidly (or may even be singular or nearly so) when sufficiently
close to level crossings. Bulgac [19] analysed a simple model to illustrate the effects of level
crossings on bound nuclear collective motion.

Another relevant system is a quantum spin �σ interacting with the motion of a particle [17].
The Hamiltonian of one such system is

H = Bσz + Cxσx +
p2

2m
+ V (x) (43)

where the first term is the spin Hamiltonian, the last two terms are the particle Hamiltonian,
and the second term represents the interaction between particle and spin. This system has been
explored in both the fully quantum and semiquantum regimes.

Nonadiabatic coupling in semiquantal physics is also relevant to the study of
micromasers [16]. Consider a single two-level atom in a cavity that is coupled to a ‘high
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Q’ cavity mode. (High Q regimes are ones in which the cavity has a small number of modes
interacting with the atomic system.) This regime is relevant, for example, to superconducting
microwave cavities and extremely high finesse optical resonators.) Suppose that an atom,
initially in an excited state e, interacts with an initially empty cavity for a time T before
exiting. Moreover, suppose that another excited electron enters the cavity before the resultant
field from the previous electron has had time to relax. This second electron is consequently
affected by both the field and the cavity. Suppose that this process continues ad infinitum. In a
steady-state operation, the field in the cavity results from competition between relaxation and
the interaction with successive electrons. The system so obtained is a micromaser, which is
easily seen to be amenable to a semiquantal description.

Finally, consider radio frequency superconducting quantum-interference-device (SQUID)
magnetometers [18]. Such systems consist of a superconducting weak link ring and an LC

oscillator circuit (a tank circuit), which is driven by an external source of current (ordinarily at
radio frequencies). The current leads to a magnetic flux in the inductor, which interacts with
the SQUID ring via a mutual inductance M . This coupled magnetic flux induces a screening
current in the ring that is also coupled to the tank circuit. This model exhibits chaotic dynamics,
which has also been reported in experimental rf-SQUID systems. To incorporate quantum-
mechanical information into this model, one quantizes the motion of the ring. One thereby
obtains a semiquantal system with a quantum component (the ring) coupled to a linear classical
oscillator (the tank circuit). This system has been shown to exhibit semiquantum chaos.

8. Conclusions

Every physical regime is an approximation of reality in some form or another. One lesser-
known regime is the semiquantal one, which may be used to describe systems with both classical
and quantum subcomponents. In the present review, we discussed nonadiabatic dynamics in
the semiquantal regime. We focused on the arena of electronic–nuclear coupling in molecular
dynamics, but we also included examples from several other situations. We formulated the
notion of semiquantal physics and then discussed nonadiabatic phenomena, concentrating on
their relation to the Born–Oppenheimer approximation. We also discussed several systems in
which such behaviour can occur.

Acknowledgments

I would like to thank Greg Ezra for carefully reading an early version of this manuscript,
helping me correct several mistakes, and improving my understanding of physical chemistry
with explanations and references to numerous journal articles. I would also like to thank
Paul McEuen for useful discussions during the preparation of this manuscript. Additionally,
Greg Colyer alerted me to the study of chaotic dynamics in SQUIDs. Finally, the referees
made several excellent suggestions that improved the exposition in this paper.

References

[1] Gutzwiller M C 1990 Chaos in Classical and Quantum Mechanics (New York: Springer)
[2] Sakurai J J 1994 Modern Quantum Mechanics revised edn (Reading, MA: Addison-Wesley)
[3] Whetten R L, Ezra G S and Grant E R 1986 Ann. Rev. Phys. Chem. 36 277
[4] Zwanziger J W, Grant E R and Ezra G S 1986 J. Chem. Phys. 85 2089
[5] Bersuker I B and Polinger V Z 1989 Vibronic Interactions in Molecules and Crystals number 49 (Springer Series

in Chemical Physics) (New York: Springer)



Nonadiabatic dynamics in semiquantal physics 1189

[6] Space B and Coker D F 1991 J. Chem. Phys. 94 1976
[7] Space B and Coker D F 1992 J. Chem. Phys. 96 652
[8] Sumpter B G and Noid D W 1995 J. Chem. Phys. 102 6619
[9] Menon M, Richter E and Subbaswamy K R 1996 J. Chem. Phys. 104 5875

[10] Park H et al 2000 Nature 407 57
[11] Kouwenhoven L 2000 Nature 407 35
[12] Blümel R and Esser B 1994 Phys. Rev. Lett. 72 3658
[13] Liboff R L and Porter M A 2000 Chaos 10 366
[14] Porter M A and Liboff R L 2001 Vibrating quantum billiards on Riemannian manifolds Int. J. Bifurcation Chaos

to be published
[15] Berman G P, Bulgakov E N and Zaslavsky G M 1992 Chaos 2 257
[16] Haroche S 1992 Cavity quantum electrodynamics Fundamental Systems in Quantum Optics ed J Dalibard,

J-M Raimond and J Zinn-Justin (Amsterdam: Elsevier) pp 767–940
[17] Ballentine L E 2001 Phys. Rev. E 63 1
[18] Diggins J et al 1994 Phys. Rev. E 49 1854
[19] Bulgac A 1991 Phys. Rev. Lett. 67 965
[20] Peskin M E and Schroeder D V 1995 An Introduction to Quantum Field Theory (Cambridge, MA: Perseus

Books)
[21] Pechukas P 1969 Phys. Rev. 181 166
[22] Pechukas P 1969 Phys. Rev. 181 174
[23] Coker D F and Xiao L 1995 J. Chem. Phys. 102 496
[24] Baym G 1990 Lectures on Quantum Mechanics (Lecture Notes and Supplements in Physics) (Reading, MA:

Perseus Books)
[25] Porter M A and Liboff R L 2001 Discrete and Continuous Dynamical Systems (Proc. Int. Conf. Dynamical Syst.

Differential Equations, Georgia, 2000) p 310
[26] Meyer H-D and Miller W H 1979 J. Chem. Phys. 70 3214
[27] Porter M A and Liboff R L 2001 Quantum chaos for the vibrating rectangular billiard Int. J. Bifurcation Chaos

to be published
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