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In the study of networks, it is often insightful to use algorithms to determine mesoscale features such
as ‘community structure’, in which densely connected sets of nodes constitute ‘communities’ that have
sparse connections to other communities. The most popular way of detecting communities algorithmi-
cally is to maximize the quality function known as modularity. When maximizing modularity, one com-
pares the actual connections in a (static or time-dependent) network to the connections obtained from a
random-graph ensemble that acts as a null model. The communities are then the sets of nodes that are
connected to each other densely relative to what is expected from the null model. Clearly, the process
of community detection depends fundamentally on the choice of the null model, so it is important to
develop and analyse novel null models that take into account appropriate features of the system under
study. In this paper, we investigate the effects of using null models that incorporate spatial information,
and we propose a novel null model based on the radiation model of population spread. We also develop
novel synthetic spatial benchmark networks in which the connections between entities are based on the
distance or flux between nodes, and we compare the performance of static and time-dependent versions
of the radiation null model to the standard (‘Newman–Girvan’) null model for modularity optimization
and to a recently proposed gravity null model. In our comparisons, we use both the above synthetic
benchmarks and time-dependent correlation networks that we construct using countrywide dengue fever
incidence data for Peru. Our findings illustrate the need to use appropriate generative models for the
development of spatial null models for community detection.
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1. Introduction

A network formalism is often very useful for describing complex systems of interacting entities [1,2].
Scholars in a diverse set of disciplines have studied networks for many decades, and network science
has experienced particularly explosive growth during the last 20 years [1].

The most traditional network representation is an ordinary graph, in which nodes represent entities
and edges represent pairwise connections between nodes. However, many networks are time-dependent
[3,4] or multiplex (i.e., they include multiple types of connections between nodes) [5,6]. Moreover, net-
work structure is influenced profoundly by spatial effects [7]. To avoid discarding potentially important
information (as that can lead to misleading results), it is thus crucial to develop methods that incorpo-
rate features such as time-dependence, multiplexity and spatial embeddedness in a context-dependent
manner [3,5,7]. Because of the newfound wealth of rich data, it has now become possible to validate
increasingly complicated network structures and methods using empirical data.

In the present paper, we study a mesoscale network feature known as community structure. A
‘community’ is a set of nodes with dense connections among themselves, and with only sparse con-
nections to other communities in a network [8,9]. Communities arise in numerous applications. For
example, social networks typically include dense sets of nodes with common interests or other char-
acteristics [10], networks of legislators often contain dense sets of individuals who vote in similar
ways [11] and protein interaction networks include dense sets of nodes that are related to functional
units [12]. The algorithmic detection of communities and the subsequent investigation of both their
aggregate properties and the properties of their component nodes can provide novel insights into the
relationship between network structure and function (e.g., functional groupings of newly discovered
proteins [13]).

Myriad community-detection methods have been developed [8,9]. The most popular family of meth-
ods entails the optimization of a quality function known as modularity [14,15]. To maximize modularity,
one compares the actual network structure to some null model, which quantifies what it means for a pair
of nodes to be connected ‘at random’. Traditionally, most studies have randomized only network struc-
ture (while preserving some structural properties) and not incorporated other features (such as spatial
or other information). The standard null model for modularity optimization is the ‘Newman–Girvan’
(NG) null model, in which one randomizes edge weights such that the expected strength distribution is
preserved [14,15]. It is thus related to the classical configuration model [1]. The NG null model is very
popular because of its simplicity and effectiveness, and it has been derived systematically through the
consideration of Laplacian dynamics on networks [16,17]. However, the NG null model is also a naive
choice, as it does not incorporate domain-specific information.

The choice of a null model is an important consideration because (1) it can have a significant effect
on the community structure obtained via optimization of a quality function and (2) it changes the inter-
pretation of communities [18–20]. The best choice for a null model depends both on one’s data set and
on one’s scientific question. In the present paper, we explore the issue of null-model choice in detail in
the context of spatially embedded and temporal networks.

Most existing research on community detection does not incorporate metadata about nodes (or
edges) or information about the timing and location of interactions between nodes. With the increasing
wealth of space-resolved and time-resolved data sets, it is important to develop community-detection
techniques that take advantage of the additional spatial and temporal information (and of domain-
specific information, such as generative models for human interactions [21]). Indeed, community detec-
tion in temporal networks has become increasingly popular [22–28], but the majority of methods use
networks that are constructed from either static snapshots of data or aggregations of data over time win-
dows. Few investigations of community structure in temporal networks have used methods that exploit
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temporal structure (see, e.g., [25,28]). There is also starting to be more work on the influence of space
on community structure [21,29–32], but much more research is necessary.

In the present paper, we use modularity maximization to study communities in spatially embed-
ded and time-dependent networks. We compare the results of community detection using two different
spatial null models—a gravity null model [21] and a new radiation null model—to the standard NG
null model using (1) novel synthetic benchmark networks that incorporate spatial effects via distance
decay or disease flux and (2) temporal correlation networks that we construct using time-series data of
recurrent epidemic outbreaks in Peru.

Our direct analysis of disease data in the present paper provides a complementary approach to the
majority of studies in epidemiology that use network methodology. These other studies often focus on
the importance of interpersonal contact networks on disease spread on an individual level, and their
methodology and perspective have become increasingly prevalent in the modelling of infectious dis-
eases [33]. Our work also complements other approaches, such as large-scale compartmental models
that incorporate transportation networks to link local populations. Such compartmental models have
been used to study large-scale spatial disease spread, and they have yielded insights into the influence
of features such as spatial location, climate and facility of transportation on phenomena such as disease
persistence and synchronization of disease spread [7,34–36].

The rest of our paper is organized as follows. In Section 2, we give an overview of networks and
community detection. We also discuss the gravity null model and introduce a new radiation null model.
We give our results for synthetic spatial networks in Section 3, and we give our results for correlation
networks that we construct from disease data in Section 4. We summarize our results in Section 5. In
the appendices, we include a comparison of the similarity measures that we use for spatial benchmarks
with a ground-truth partition, and we perform additional numerical experiments for these benchmarks.

2. Networks and community structure

A network describes a set of entities (called nodes) that are connected by pairwise relationships (called
edges). In the present paper, we study weighted networks that are spatially embedded; each node repre-
sents a location in space. One can represent a weighted network with N nodes as an N × N adjacency
matrix W , where an edge Wij represents the strength of the relationship between nodes i and j. We
seek to find communities, which are sets of nodes that are densely connected to each other but sparsely
connected to other dense sets in a network [8,9].

We wish to study the evolution of network structure through time. The simplest way to study tem-
poral data is through an ordered set of static networks, which can arise as snapshots at different points
in time or as a sequence of aggregations over consecutive time windows (which one can take either as
overlapping or non-overlapping). See [3,20,37] for further discussion.

Static networks provide a good starting point for the development and investigation of new
methods—which, in our case, entails how to incorporate spatial information into null models for com-
munity detection via modularity maximization. However, they do not take full advantage of temporal
information in data that changes in time. For example, it can be hard to track the identity of communities
in temporal sequences of networks [25].

To mitigate the problem of community tracking, we also use a type of multilayer network [5,6]
known as a ‘multislice network’ [25]. Such a network can be represented using an N × N × m adja-
cency tensor W̄ that has m layers and N nodes in each layer, and we suppose that each layer has a copy
of each node i (though this can be relaxed). The intralayer edges in the network are exactly the same as
they are for the sequence of static networks: the tensor element W̄ijs gives the weight of an intralayer
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edge between nodes i and j in layer s. Additionally, each node j is adjacent to copies of itself in consec-
utive layers s and r using interlayer edges of weight Cjsr. In this paper, we assume for simplicity that
Cjsr = ω ∈ [0, ∞) for all j, s and r, but one can also consider more general situations [5,38]. A multi-
slice network can have up to Nm multilayer nodes (i.e., node-layer tuples), each of which corresponds
to a specific (node, time) pair. Hence, this structure makes it possible to detect temporally evolving
communities in a natural way.

For our computations of community structure, we flatten the N × N × m adjacency tensor into an
(Nm) × (Nm) adjacency matrix (known as a ‘supra-adjacency matrix’ [5,39]), such that the intralayer
connections are on the main block diagonal and the interlayer connections occur in the off-block-
diagonal entries. We detect communities by maximizing modularity, which we use to describe the ‘qual-
ity’ of a particular network partition into communities in terms of its departure from a null model [14].
The null model amounts to a prior belief regarding influences on network structure, so it is important to
carefully consider the choice of null model [19,21,28].

For a weighted static network W , modularity is [40]

Q = 1

2w

∑
ij

(Wij − γ Pij)δ(ci, cj), (2.1)

where 2w = ∑
ij Wij is the total edge weight, ci denotes the community that contains node i, the Kro-

necker delta δ is 1 if ci = cj and 0 if ci �= cj, and Pij is the ijth element of the null-model matrix. One
can examine different scales of community structure by incorporating a resolution parameter γ [41,42].
Smaller values of γ tend to yield larger communities and vice versa.

For multislice networks, modularity is given by

Q̄ = 1

2w̄

∑
ijsr

[(W̄ijs − γ P̄ijs)δsr + δijCjsr]δ(c̄is, c̄jr), (2.2)

where 2w̄ = ∑
ijs W̄ijs, the quantity c̄is denotes the community that contains node i in layer s, and P̄ijs is

the ijth element of the null-model tensor in layer s [25].
To detect communities using modularity maximization, one searches the space of possible network

partitions for the one with the highest value of modularity. Because exhaustive search over all pos-
sible partitions is computationally intractable [43], practical algorithms use approximate optimization
methods (e.g., greedy algorithms, simulated annealing, spectral optimization and so on), and different
approaches offer different balances between speed and accuracy [8,9].

In the present paper, we maximize modularity using a two-phase iterative procedure similar to the
Louvain method [44]. (See [45] for the code.) We work with the modularity matrix B with elements
Bij = Wij − γ Pij for static networks and with the modularity tensor with elements B̄ijs = W̄ijs − γ P̄ijs for
multislice networks.

The employed Louvain-like algorithm [45] is stochastic, and a modularity landscape for empir-
ical networks typically includes a very large number of nearly optimal partitions [18]. For each of
our numerical experiments, we thus apply the computational heuristic 100 times to obtain a con-
sensus community structure [46] by constructing an association matrix Arep (where the entries Arep

ij
represent the fraction of times that nodes i and j are assigned to the same community in the 100 realiza-
tions) and then detecting communities in Arep by maximizing modularity using the uniform null model
PU

ij = 2w/[N(N − 1)] [28] and γ = 1. Using the uniform null model helps emphasize the most com-
monly occurring co-classifications (i.e., assignments of a pair of nodes to the same community) in the
association matrix.
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For multislice networks, we perform community detection and then consensus clustering using the
same basic procedure. This yields an assignment of each multilayer node (i.e., node-layer tuple) to a
community. We are also sometimes interested in community assignments of the original entities (i.e., a
partition of the set of nodes regardless of what layer they are in). For example, we might wish to com-
pare the result of algorithmic community detection to known partitions, such as grouping a ‘physical
node’ (i.e., province) by climate, population, administrative region, and so on. To do this, we perform
what we call province-level community detection, which proceeds in two stages: (1) we detect commu-
nities in a multislice network using any desired method (and any desired null model); and (2) we then
use this partition to construct an N × N province-level association matrix (i.e., a matrix Aprovince whose
entries Aprovince

ij represent the fraction of layers in which physical nodes i and j are classified together),
and we detect province-level communities by maximizing modularity on this association matrix using
a uniform null model. The goal of the optimization in stage (2) is to try to obtain the most temporally
persistent community structure in the association matrix (i.e., one that is often detected in multiple lay-
ers). We then use consensus community detection across 100 realizations of province-level community
structures.

2.1 Null models for community detection

The choice of null model is vital for the detection of communities using modularity maximization [18,
19,28]. The most common choice is the NG null model, which randomizes a network such that the
expected strength sequence of nodes is preserved [15,47]. For static weighted networks, the NG null
model is

PNG
ij = kikj

2w
, (2.3)

where ki =
∑

j Wij is the strength (i.e., weighted degree) of node i and 2w = ∑
ij Wij is the total edge

weight in the network.
For multislice networks, the NG null model is [25]

P̄NG
ijs = k̄isk̄js

2w̄
, (2.4)

where k̄is = ∑
j W̄ijs is the intralayer strength of node i in layer s and 2w̄ = ∑

ijs W̄ijs.
Despite its popularity and demonstrated effectiveness in many situations, the NG null model is naive

in the sense that it only takes node strengths into account. It does not incorporate problem-specific
information (such as spatial embeddedness). It is often important to incorporate additional (domain-
specific or even problem-specific) information, and what one considers to be connected ‘at random’
depends fundamentally on the research question of interest. Consequently, the NG null model is not
always suitable.

2.1.1 Spatial null models: gravity model. In many spatially embedded networks, proximity has a
strong effect on the connections between nodes, as (all else held equal) neighbouring nodes are more
likely to be connected to each other (and their connections are likely to have larger weights) than nodes
that are far away [7,21]. Moreover, proximity can mask other underlying influences. Consequently,
incorporating the expected influence of proximity on edge weights into null models for community
detection should make it possible to discover new and important types of structures.
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Expert et al. [21] proposed a spatial null model that was inspired by the ‘gravity model’ of human
mobility [48–52]. A gravity model assumes that the interaction between two locations is proportional
to their importance (e.g., population) and that it decays with distance.

In the standard gravity model, the interaction between locations i and j (with respective populations
ni and nj) that are a distance dij apart is

Gij = nα
i nβ

j f (dij), (2.5)

where the ‘deterrence function’ f (d) describes the effect of space on node interactions. Common choices
for the deterrence function include inverse proportionality to distance (i.e., f (dij) = 1/dij), inverse pro-
portionality to squared distance (i.e., f (dij) = 1/d2

ij), exponential decay (i.e., f (dij) = e−dij ) and other
interactions of the form f (dij) = dκ

ij [7]. It is common to estimate the parameters α, β and κ using
regression. Gravity models have been employed successfully during the past half century to model
spatial interactions such as population migration [7,53,54], trade [55] and disease spread [36].

The simplest form of a gravity-like interaction in Equation (2.5), with α = β = 1 and κ = −1, was
incorporated into a gravity null model [21] to give

Pgrav
ij = IiIjf (dij), (2.6)

where Ii is the importance of node i. One estimates the deterrence function

f (d) =
∑

{k,l | dkl=d} Wkl∑
{k,l | dkl=d} (IkIl)

(2.7)

for each distance d for all node pairs that are separated by distance d. Expert et al. [21] used the
population ni of province i as their measure of node importance. We briefly experimented with several
variations, such as using population density or a logarithm of the population [i.e., Ii = log(ni)] on the
disease data sets, and we observed no significant qualitative differences in community structure. When
incorporating population into a null model, we thus adopt the choice of Expert et al. Another simple
choice for importance is node strength (i.e., Ii = ki =

∑
j Wij), though the null model then becomes very

similar to the usual NG null model [21]. If f (d) does not depend on distance, then the gravity null model
reduces to the NG null model.

In most data sets, distances arise from a discretization of a continuous set of values, so one needs
to bin distance data to ensure that there are enough nodes for each distance bin to construct a mean-
ingful deterrence function f (d) in Equation (2.7). Possible binning methods include binning into equal-
distance bins (e.g., every b elements, where b is a parameter) and equal-sized bins (i.e., each bin contains
a elements, where a is a parameter). We tested the choice of binning procedure on the benchmark net-
works, applied the gravity null model to empirical data and observed qualitatively similar partitions.
Thus, we only report results for equal-distance bins, which we make sufficiently large to ensure that
there are always five or more elements in each bin.

For the benchmark networks, we also discuss the influence of bin size on the similarity of algorith-
mic partitions to planted community structure. We give the specific bin sizes for spatial benchmark and
dengue fever correlation networks in the sections in which we discuss the associated experiments.

Combining Equations (2.6) and (2.7) allows us to write the gravity null model as

Pgrav
ij = IiIj

∑
{k,l | dkl=dij} Wkl∑

{k,l | dkl=dij} (IkIl)
. (2.8)
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Expert et al. used the null model (2.8) to uncover a linguistic partition of a network of Belgian mobile
phone calls into the French and Flemish speaking parts of Belgium. This partition was obscured by
geographical communities when using the NG null model [21].

In the present paper, we generalize the gravity null model to a multislice setting by calculating a
separate contribution to the gravity null model for each layer s. The resulting multislice gravity null
model is

P̄grav
ijs = IiIj

∑
{k,l | dkl=dij} W̄kls∑
{k,l | dkl=dij} (IkIl)

, (2.9)

where we have assumed that the population of each province is constant across time. If one has reliable
information about changes in population with time, one can incorporate such information into the null
model (2.9) by substituting Ii with an analogous quantity Iis that depends both on the node i and on the
layer s.

2.1.2 Spatial null models: radiation model. Gravity models include multiple parameters that one
needs to estimate from data or choose in some other way (e.g., arbitrarily). Moreover, by construction,
gravity models are unable to predict different fluxes between locations that are the same distance apart
but which have regions with different population densities between them. For example, one would
expect a higher flux of infectious disease between two locations that are separated by a space with high
population density than between locations that are separated by a space with low population density
(because of the higher availability of susceptible hosts in the former case) [56]. By contrast, one would
expect a smaller commuting flux between a pair of locations in the latter case. This could occur, for
example, if there are numerous nearby jobs, as this would reduce peoples’ willingness to commute over
longer distances [57].

The radiation model [57] was developed to attempt to address these issues. It was designed for
population flows and has subsequently been applied successfully in several situations [58,59]. Because
the radiation model is designed to capture human mobility between populations and the long-distance
spread of many infectious diseases—including dengue fever—is believed to be due largely to long-
distance mobility [60], the radiation model may provide a useful-but-idealized description for the spread
of disease across space. In this section, we use it to construct a new spatial null model for modularity
maximization that we believe may be well-suited for studying the long-distance spread of dengue fever.

The mean commuting flux predicted by the radiation model for locations i and j with populations ni

and nj, respectively, is

Tij = Ti
ninj

(ni + rij)(ni + nj + rij)
, (2.10)

where rij is the population between locations i and j, and Ti is the number of commuters in location i. A
simple way to calculate rij is to use the population qij in the circle of radius dij centred at i and subtract
the total of the populations at the origin and destination; that is, rij = qij − (ni + nj).

Although the radiation model was introduced relatively recently [57], several modifications to it
have already been proposed. These include incorporating a normalization for finite systems [59] and
the development of a general framework that includes ideas from the radiation, gravity and intervening-
opportunities models [61].

We propose a novel null model for modularity maximization based on the original formulation of the
radiation model [57]. We use a similar formulation to Equation (2.8) to incorporate both the expected
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distance-dependent flux and the actual network structure. To avoid creating a directed network, we use
a symmetrized predicted flux

T̂ij = (Tij + Tji)/2 (2.11)

between nodes i and j.1

We thereby construct the radiation null model

Prad
ij = T̂ij

∑
{k,l | dkl=dij} Wkl∑
{k,l | dkl=dij} T̂kl

. (2.12)

In Section 4, we will study community structure in empirical data from several years of dengue fever
occurrences in Peru. Because we do not possess detailed data on the commuting patterns in Peru (see
the description of our data in Section 4.1), we assume that commuters are distributed uniformly across
space. We can then simplify Equation (2.10) by substituting Ti = Tf ni, where Tf is the fraction of the
population that commutes. Because the quantity Tf is present in both the numerator and denominator
of Equation (2.12), we can now cancel it out. However, if one possesses commuting data, it would be
desirable to use it to improve the radiation null model.

We also extend the radiation null model to a multislice setting in an analogous manner to the gravity
null model. The multislice radiation null model is

P̄rad
ijs = T̂ij

∑
{k,l|dkl=dij} W̄kls∑
{k,l|dkl=dij} T̂kl

. (2.13)

Again, one can incorporate temporal data about population sizes and thereby replace T̂ij with T̂ijs to
improve the null model.

2.1.3 Spatial null models: other models. The incorporation of spatial information into null models
for community detection is an important problem, and several other ideas have been proposed recently.
For example, Cerina et al. [29] focused on disentangling the correlation between node attributes and
space, so they used exponential decay: f (dij) = e−dij/d̄ , where d̄ is the mean distance between nodes
in a network. Shakarian et al. [31] focused on finding geographically disperse communities, so they
introduced a decay constant θ such that f (dij) = e−dij/θ

2
. Another recently proposed null model was

used to attempt to find geographically proximate communities [30].
As the exact nature of the influence of spatial proximity on interactions in dengue fever transmission

is unclear, we choose to focus on null models that include a contribution from the data, rather than using
null models with an arbitrarily chosen functional dependence. Thus, we do not test these null models in
the present paper.

1 Although the directionality of fluxes is an important factor to study, we wish to keep our null models as simple as possible to
help focus instead on the effect of incorporating space into them. Additionally (and again for simplicity), we construct our disease-
correlation networks using Pearson correlations (see Section 4.2), and we thereby study the community structure of undirected
networks. If one instead constructs a directed network—e.g., by including a time delay when measuring the similarity of time
series, by considering ideas such as Granger causality, or by otherwise measuring similarity in a way that produces a directed
network (see, e.g., Ref. [62])—then it would also be desirable to construct a directed version of the radiation null model. Clearly,
this is an interesting future direction, but it is beyond the scope of our study.
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3. Synthetic benchmark networks

To test the performance of the spatial null models, we develop novel synthetic benchmark networks that
represent idealized spatially embedded networks with planted community structure.

In what we call the distance benchmark, the probability of an edge between two nodes depends
only on the geographical distance between nodes and on their community assignments. We assign N
nodes uniformly at random to positions on the square lattice {1, 2, . . . , l} × {1, 2, . . . , l}, and we assign
a population ni to each node i (which is an idealized ‘city’). We create two versions of the distance
benchmark: the ‘uniform-population distance benchmark’ and the ‘random-population distance bench-
mark’. The uniform-population version corresponds to the benchmark in Expert et al. [21]; we assign
the same population (ni = 100) to each node. In the random-population benchmark, we assign an integer
population uniformly at random from the set {1, . . . , 100}.

We plant two equal-sized communities, and we randomly assign each node to one these two com-
munities by selecting nodes uniformly at random without replacement. In the distance benchmarks, the
probability pdist

ij that an edge is placed between nodes i and j, which are separated by distance dij, is
inversely proportional to the distance:

pdist
ij = λ(ci, cj)

Z1dij
, (3.1)

where ci is the community that contains node i, the set cj is the community that contains node j, and the
function λ(ci, cj) = 1 if nodes i and j are in the same community and λ(ci, cj) = λd otherwise. The ‘inter-
community connectivity’ λd controls the amount of mixing between communities. When λd = 0, only
nodes in the same community are adjacent to each other; when λd = 1, there are no distinct communities.
The normalization constant Z1 ensures that

∑
i>j pdist

ij = 1. There are a total of L = μN(N − 1)/2 edges.
We consider edges one by one, and we place a given edge between nodes i and j with a probability of
pdist

ij . Thus, it is possible for multiple edges, which we interpret as weights, to occur between a given pair
of nodes. The parameter μ � 0 determines the network’s edge density. We normalize the edge weights
in the network to [0, 1] by dividing each edge weight by the maximum edge weight in the network.

In what we call a flux benchmark, we aim to mimic the spread of disease on a network. We allocate
edge weights depending on the mean flux between pairs of nodes that is predicted by the radiation
model. We place N nodes uniformly at random on the square lattice {1, 2, . . . , l} × {1, 2, . . . , l}, and we
assign populations and communities in the same manner as for the distance benchmark. As with the
distance benchmark, we consider both uniform-population and random-population versions of the flux
benchmark. Now, however, the edge-placement probability pflux

ij is directly proportional to the mean

predicted radiation-model flux T̂ij (which in turn is inversely proportional to the distance dij) between
nodes i and j. This yields

pflux
ij = λ(ci, cj)T̂ij

Z2
, (3.2)

where Z2 is a normalization constant that ensures that
∑

i>j pflux
ij = 1.

In Table 1, we summarize the four types of synthetic benchmark networks that we have just intro-
duced.

Using our distance-based and flux-based constructions, we create both static (i.e., single-layer) and
multilayer benchmark networks. The static benchmarks enable us to study the performance of modular-
ity maximization using any chosen null model in a simple setting without the additional complications
of a multilayer network. However, the multilayer benchmarks are ultimately more appropriate for dis-
ease data because they can incorporate temporal evolution.
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Table 1 Primary characteristics (i.e., population and edge probability) for the distance and flux
benchmarks for static networks. The notation rand({a, . . . , b}) signifies that we select a number uni-
formly at random from the set {a, a + 1, . . . , b}. Additionally, λ(ci, cj) = 1 if nodes ci and cj are in the
same community and λ(ci, cj) = λd if they are in different communities, dij is the distance between nodes
i and j in space, and Z1 and Z2 are normalization constants

Benchmark Population pij

Distance, uniform population 100 pdist
ij = λ(ci, cj)

Z1dij

Distance, random population rand({1, . . . , 100}) pdist
ij = λ(ci, cj)

Z1dij

Flux, uniform population 100 pflux
ij = λ(ci, cj)T̂ij

Z2

Flux, random population rand({1, . . . , 100}) pflux
ij = λ(ci, cj)T̂ij

Z2

The first step in generating multilayer benchmarks involves placing nodes in space and assigning
populations in the same manner as for the static benchmarks. We then assign nodes uniformly at random
into one of two communities, and we extend this structure into a multilayer planted community structure
with m layers. For the ‘temporally stable’ multilayer benchmarks, the planted community structure is the
same for each layer. For the ‘temporally evolving’ multilayer benchmarks, we change the community
assignment of a fraction p of the nodes. For each of these nodes, we select a layer uniformly at random,
we assign the node in that layer to a community uniformly at random, and we also change the community
of the node in each subsequent layer to that community. (The community assignments for that node in
the prior layers are untouched.)

We then generate the edges for each layer independently in the same manner as we generate a static
benchmark and using identical parameter values (N , l, μ, λd) for each layer (see Fig. 1). Independent
generation of each layer using the same parameter values represents differences between observations
due to noise and experimental variation.

For each of the above types of multilayer benchmarks, we set the (uniform) weight of the interlayer
edges between corresponding nodes in consecutive layers to be Cjrs = ω ∈ [0, ∞). Because we normal-
ize the intralayer edge weights by the maximum weight (separately in each layer), we obtain synthetic
multilayer benchmark networks in which the relative magnitudes of interlayer edges and intralayer
edges are comparable with those in the disease-correlation networks.

We report community-detection results that we obtain using the following pipeline. First, we
consider r1 = 50 independent instances of a benchmark using the same values of the parameters
(N , l, μ, λd), (γ , ω), and (when relevant) p. For each of these instances, we perform community detec-
tion r2 = 50 times to obtain a consensus community structure. For each of the r1 consensus community
structures, we calculate a summary statistic [such as normalized mutual information (NMI), which we
define in Appendix A and briefly discuss soon], and we report the mean of these values.

We evaluate the performance of the NG, gravity and radiation null models on our benchmarks by
comparing algorithmic partitions with the planted community structure using NMI [63]. NMI is an
information-theoretic similarity measure (see Appendix A for its definition) that is relatively sensitive
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Fig. 1. Construction of a temporally stable multilayer spatial benchmark network. We assign N nodes uniformly at random to
positions on an l × l square lattice (which we show in layer 1) and partition them into two equal-sized communities (black and
white), whose constituent nodes we choose uniformly at random. Node i has a population of ni, and each layer has the same set of
nodes. For each layer, we allocate edges uniformly at random according to a probability distribution that depends on the type of
benchmark. (For details, see the text and Table 1.) We interpret multiple edges as weights, and we visualize these weights using
edge thickness. We connect copies of nodes in adjacent layers using interlayer edges of uniform weight ω (dashed lines).

to small differences in partitions, such as the move of a single node from one community to another,
compared with pair-counting measures such as the Rand coefficient and z-Rand scores [64]. This sen-
sitivity makes it suitable for assessing performance on benchmarks that are based on well-defined,
ground-truth planted partitions. Additionally, normalization of NMI to lie in the interval [0, 1] facili-
tates interpretation and comparisons.

We obtain the same qualitative conclusions as for NMI when we use variation of information (VI)
[65], which is a different normalized measure of similarity, and with z-Rand scores (see Section 4.3),
which is a diagnostic that allows us to compare the coarse structure of disease communities with manual
spatial and temporal partitions. See Appendix A for our comparisons using VI and z-Rand scores.

3.1 Results on static benchmarks

To emphasize the difference between the gravity and radiation null models, we take N = 50 and l = 10
to obtain a relatively densely filled lattice. (See Appendix B for the results for synthetic networks with
N = 10 and N = 90.) We compare our results with these parameter values to results that we obtain using
the parameter values N = 100 and l = 100 (which are the parameter values that were used in [21]). We
test different bin sizes in uniformly spaced bins using the parameter values b ∈ {10−4, 10−3, 10−2, 0.1} ∪
{1, 2, . . . , 10}, l = 10 and b ∈ {1, 2, . . . , 100}, l = 100. We find that bin size makes a large difference for
both the distance and the flux benchmarks: b = 1 produces the highest NMI scores (i.e., it has the ‘best
performance’), and increasing bin width leads to a decrease in performance for both spatial null models
(see Fig. 2). This effect is especially pronounced for the gravity null model.

The spatial null models have similar performances at the bin sizes that give the highest NMI for
each parameter regime for both l = 10 and l = 100, so we henceforth use the l = 10 benchmark with
b = 1 to use less memory and computational time. We stress, however, that one needs to keep the strong
influence of bin size on algorithm results in mind.

We also study the performance of the three null models for modularity maximization for sev-
eral values of the resolution parameter γ ∈ {0.5, 0.75, 1, 1.25, 1.5} and inter-community connectivity
λd ∈ {0, 0.01, . . . , 0.99, 1} on static benchmark networks with N = 50 nodes and lattice-size parameter
l = 10. Smaller values of γ tend to yield larger communities and vice versa. Considering larger λd

increases the amount of mixing between the communities and makes it more difficult to successfully
detect planted communities. For simplicity, we fix the edge-density parameter to be μ = 100. As we
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Fig. 2. Uniform-population static benchmarks: normalized mutual information (NMI) scores between algorithmically detected
and planted community structures in static uniform-population distance benchmarks for (left) l = 10, N = 50 and (right) l = 100,
N = 100 with edge-density parameter μ = 100, uniform populations of 100 and different bin sizes (coloured curves). For each
plot, the horizontal axis is the inter-community connectivity λd ∈ [0, 1]. We detect communities by maximizing modularity using
the (top) NG, (middle) gravity and (bottom) radiation null models.

discuss in Appendix C, the value of μ has little effect on the results of community detection when it is
above a certain minimum.

For the uniform-population distance benchmark, the only factor that influences edge placement is
the distance between nodes. For this benchmark, the gravity null model has the best performance; it is
able to find the correct partitions for λd � 0.82 (see Fig. 3). The radiation null model has the second best
performance and is able to find partitions that are broadly similar to the planted partitions for λd � 0.74,
above which we observe a plateau of ‘near-singleton’ partitions in which most nodes are placed into
singleton communities. (We use the term ‘singleton partition’ to refer to a partition in which every node
is assigned to its own community.) The NG null model, which does not incorporate spatial information,
does much worse than either of the spatial null models; it suffers a sharp decline in performance above
λd ≈ 0.4.
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Fig. 3. Static benchmarks: NMI scores between algorithmically detected and planted community structures in static benchmarks
with l = 10, N = 50, μ = 100 and (columns 1 and 2) uniform populations of ni = 100 and (columns 3 and 4) populations ni

determined uniformly at random from the set {1, . . . , 100}. We plot NMI for different values of the resolution parameter γ

(coloured curves) as a function of inter-community connectivity λd ∈ [0, 1]. We examine both distance benchmarks (in columns 1
and 3) and flux benchmarks (in columns 2 and 4). We detect communities by maximizing modularity using the (top) NG, (middle)
gravity and (bottom) radiation null models.

For the uniform-population flux benchmark—in which we include the population density in
the region between two nodes in the estimation of flux (so the population density influences edge
structure)—the radiation null model outperforms the other null models. The gravity null model comes
in second place, and the NG null model is a distant third.

For the random-population distance benchmark, we observe a fast deterioration in quality of the
detected communities for λd � 0.4 for all null models, and all null models reach a ‘near-singleton’
regime by λd ≈ 0.6. The NG null model has the best performance among the three null models for λd �
0.43. For λd � 0.43, the gravity null model has the best performance, although the partitions consist
largely of singletons for λd � 0.6.

For the random-population flux benchmark, the radiation null model has the best performance of
the three null models. It has the slowest decrease in NMI scores as λd increases. The gravity null model
has the second-best performance, and the NG null model has trouble even when there is no mixing
between the two planted communities (see Fig. 3). However, even the best performance is worse for the
random-population benchmarks than it is for the uniform-population benchmarks. Including population
information into the edge-placement probability by taking pdistpop

ij = ninjλ(ci, cj)/(Z3dij) (which yields a
‘distance-and-population benchmark’), where Z3 is a normalization constant, brings back the advantage
for the gravity null model (see Appendix D).

Different values of γ can result in rather different performances from the partitions that
we obtain from maximizing modularity. Among the parameter values that we consider (γ ∈
{0.5, 0.75, 1, 1.25, 1.5}), the value γ = 1 appears to give the best results (i.e., the largest NMI scores).

375NULL MODELS FOR COMMUNITY DETECTION IN TEMPORAL NETWORKS

 by M
ason Porter on A

ugust 31, 2016
http://com

net.oxfordjournals.org/
D

ow
nloaded from

 

http://comnet.oxfordjournals.org/


In the near-singleton regime, γ = 1.5 outperforms γ = 1 slightly in terms of NMI scores (see Fig. 3),
although the partition that γ = 1.5 yields is still rather different from the planted partition. As expected,
the value of γ that corresponds to the best performance changes with the number of planted communi-
ties. Unsurprisingly, the best-performing value of γ tends to become larger as we consider benchmark
networks in which we have planted a larger number of smaller communities.

These results demonstrate that, although incorporating spatial information is interesting and poten-
tially beneficial, using a null model that incorporates population information to study community struc-
ture in networks whose structure does not depend on population can decrease the performance of com-
munity detection. That is, incorporating spatial information is important, but it needs to be done intelli-
gently.

3.2 Results on multilayer benchmarks

We now study the influence of the community-detection parameters γ and ω on the community quality
of multilayer benchmark networks.

We first study the performance of the NG, gravity and radiation null models for temporally stable
uniform-population benchmarks (see Fig. 4) with parameter values N = 50, l = 10 and m = 10 layers
using γ ∈ {0.5, 0.75, 1, 1.25, 1.5} and ω ∈ {10−3, 0.1, 0.25, 0.5, 0.75, 1}. We want to compare the influ-
ence of the resolution parameter γ on our ability to detect planted community structure with the respec-
tive results for static networks. Furthermore, for larger values of ω, we expect it to become more com-
mon for a node to be assigned to the same community as its counterparts in other layers. This should
hinder the detection of our planted communities. However, we observe very little difference in results
(and the differences are barely discernible in some plots) across different values of ω for the temporally
stable benchmarks. (As we discuss later, we do observe noticeable differences for other benchmarks.)

In Fig. 4, we show experiments on multilayer benchmarks in which we vary γ and use ω = 0.1. Our
results on multilayer benchmarks are consistent with our findings for the static benchmarks. Once again,
we find that the choice of γ has a large influence on the quality of the partitions that we obtain using
modularity maximization, and (as with our findings for static benchmarks) γ = 1 seems to yield the best
performance (i.e., the highest NMI scores) in most cases. The exception is the high-λd regime, in which
γ = 1.5 outperforms it slightly. We also observe similar results for random-population benchmarks (see
Appendix E) and for both smaller and larger fixed values of ω.

We then examine the NMI between algorithmic versus planted partitions on temporally stable mul-
tilayer benchmarks for fixed γ = 1 and different values of ω and λd . As we show in Fig. 5, we find that
the value of ω usually has little effect on our ability to detect the planted communities via modularity
maximization on benchmarks with a temporally stable community structure. This suggests that perhaps
the small interlayer variation from the independent creation of layers does not allow one to observe
the influence of ω on community detection, and it is thus important to examine temporally evolving
benchmarks.

We then study the performance of the three null models on temporally evolving uniform-population
benchmarks (see Fig. 6) with N = 50 nodes, a lattice parameter of l = 10, a fraction p = 0.4 of
nodes that change community during the timeline, and m = 10 layers. We show results for γ ∈
{0.5, 0.75, 1, 1.25, 1.5} with ω = 0.1 and for ω ∈ {10−3, 0.1, 0.25, 0.5, 0.75, 1} with γ = 1; compare Fig. 6
with the left panels of Figs. 4 and 5. For temporally evolving benchmarks, varying ω makes a qualitative
difference (in contrast to our results for the temporally stable benchmarks). The community structures
for ω � 0.1 for the gravity null model and ω � 0.5 for the radiation null model are the most similar to
the planted partitions. This is consistent with our expectation that algorithmically detected community
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Fig. 4. Uniform-population multilayer, temporally stable benchmarks: NMI between algorithmically detected and planted com-
munity structures in uniform-population (ni = 100 for all i) multilayer, temporally stable spatial benchmarks with N = 50, l = 10,
m = 10 and μ = 100 for ω = 0.1 and various values of γ (coloured curves) as a function of λd ∈ [0, 1] for (left) the distance bench-
mark and (right) the flux benchmark. We detect communities by maximizing modularity using the (top) NG, (middle) gravity and
(bottom) radiation null models.

structure becomes overly biased towards connecting counterparts of nodes across layers above some
critical value of ω (that depends on network structure).2

We also perform a ‘province-level’ community detection on the multilayer benchmarks. We seek
assignments of nodes (regardless of what layer they are in) to communities and compare these assign-
ments with planted communities. This experiment is meant to model trying to detect spatiotemporal
community structure in a disease that persists over time; this is relevant, for example, when one seeks to
determine the influence of features like climate on disease patterns. As a simple example, we consider

2 It is worth comparing our observations with the phase transition in the eigenvalues of a multilayer Laplacian that was reported
by Radicchi & Arenas [66] (and has been explored further in subsequent papers).
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Fig. 5. Uniform-population multilayer, temporally stable benchmarks: NMI between algorithmically detected and planted com-
munity structures for uniform-population (ni = 100 for all i) multilayer, temporally stable spatial benchmarks with N = 50, l = 10,
m = 10 and μ = 100 for γ = 1 and different values of interlayer edge weights ω (coloured curves) as a function of λd ∈ [0, 1] for
(left) the distance benchmark and (right) the flux benchmark. We detect communities by maximizing modularity using the (top)
NG, (middle) gravity and (bottom) radiation null models.

the temporally stable multilayer benchmark networks. (One can also consider more stringent bench-
marks.) We successfully detect the planted communities, and we obtain similar performance results as
with the multilayer communities that we discussed above. (See Appendix F for additional discussion.)

Our results on synthetic benchmark networks suggest that using a spatial null model when detect-
ing communities in a spatial network does not necessarily ensure better performance either in terms of
NMI or in more general terms. The quality of results with different null models depends strongly on the
network and on the choice of parameter values. In particular, we observe for random-population bench-
marks that incorporating population information into the null model causes modularity maximization
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Fig. 6. Uniform-population multilayer, temporally evolving benchmarks: NMI between algorithmically detected and planted
community structures in uniform-population (ni = 100 for all i) multilayer, temporally evolving distance benchmarks with N = 50,
l = 10, m = 10 and μ = 100 for (left) ω = 0.1 and different values of the resolution parameter γ (coloured curves) and (right)
γ = 1 and different values of the interlayer weights ω (coloured curves) as a function of λd ∈ [0, 1]. We detect communities by
maximizing modularity using the (top) NG, (middle) gravity and (bottom) radiation null models.

to fail to find the planted partitions for a benchmark in which edge placement is independent of node
population.

The level of influence of different node properties or events (such as the effect of disease flux
on edge placement) and the extent of mixing between communities is unknown for networks that are
constructed from real data. For empirical networks, we recommend trying both spatial and non-spatial
null models for a wide range of parameter values and studying the results carefully in light of any other
known information about the networks. In Section 4, we present an example of using such a procedure
to study the community structure of correlation networks that are created from time series of dengue
fever cases.

379NULL MODELS FOR COMMUNITY DETECTION IN TEMPORAL NETWORKS

 by M
ason Porter on A

ugust 31, 2016
http://com

net.oxfordjournals.org/
D

ow
nloaded from

 

http://comnet.oxfordjournals.org/


4. Application to disease data

In this section, we assess the performance of the NG, gravity and radiation null models on mul-
tilayer correlation networks that we construct from disease incidence data that describe the spa-
tiotemporal spread of dengue fever (a tropical, mosquito-borne viral infection) in Peru from 1994
to 2008.

Disease dynamics are strongly influenced by space, and the distance between regions affects the
migration of both humans and mosquitos [56]. Because of the temperature dependence of the mosquito
life cycle [67], the dynamics of dengue are also affected by climate. Additionally, different regions
of Peru have substantially different climates. Because of such strong spatial effects, it is important to
examine and evaluate the performance of different spatial null models when examining communities in
networks that are constructed from disease data. We consider dengue fever in the present paper, but this
statement holds for disease dynamics more generally.

4.1 The disease and the data

Dengue fever (also called simply ‘dengue’) is a human viral infection that is prevalent in most tropical
countries and is carried primarily by the Aedes aegypti mosquito [68]. The dengue virus has four strains
(DENV-1–DENV-4). Infection with one strain is usually mild or asymptomatic, and it gives immunity
to that strain, but subsequent infection with another strain is usually associated with more severe ill-
ness [68]. Although dengue was considered to be nearing extinction in the 1970s, increases in human
mobility and mosquito abundance have led to its resurgence in many countries—often as recurrent epi-
demics with an increasing number of cases and severity of disease over time.

Peru is located on the Pacific coast of South America. Its population of about 29 million people
is distributed heterogeneously throughout the country. The majority live in the western coastal plain,
and there are much smaller population densities in the Andes mountains in the centre and the Amazon
jungle in the east. The climate varies from dry along the coast to tropical in the Amazon and cold in the
Andes.

Climate heterogeneities influence dengue epidemiology, as increased temperature and humidity
increase transmission [69]. The jungle forms a reservoir of endemic disease; from there, the disease
occasionally spreads across the country in an epidemic [67]. Additionally, as Ae. aegypti typically only
travels short distances, human mobility can contribute significantly to the transmission of dengue at all
spatial scales [60].

Our dengue data set consists of 15 years of weekly measurements of the number of disease cases
across 79 provinces of Peru (which has a total of 195 provinces) and were collected by the Peruvian
Ministry of Health [70] between 1994 and 2008. These data were previously analyzed by Chowell et al.
to study the relationship between the basic reproductive number, disease attack rate, and climate and
populations of provinces [67].

Until 1995, the DENV-1 strain dominated Peru; it mostly caused rare and isolated outbreaks [71].
The DENV-2 strain was first observed in 1995–1996 when it caused an isolated large epidemic [72].
DENV-3 and 4 entered Peru in 1999 and led to a countrywide epidemic in 2000–2001 [73], and subse-
quently there was sustained yearly transmission [71]. The data contains a total of 86,631 dengue cases;
most of them are in jungle and coastal provinces (47% and 49%, respectively), and only 4% of the cases
occur in the mountains. Disease data was collected in all 195 provinces. A total of 79 provinces reported
dengue incidence during the period covered by the data set, but the incidents of disease are never in the
data in all 79 provinces at once.
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4.2 Network construction

Our data set D consists of N = 79 time series of weekly disease counts {D1, D2, . . . , DN } for T = 780
weeks. The quantity Di(t) denotes the number of disease cases in province i at time t. See Fig. 7 for a
plot of the number of cases versus time. We create networks from these data by calculating the Pearson
correlation coefficient between each pair of time series.3

We seek to study the temporal evolution of the correlations by constructing separate networks for
different time windows. We do two different types of constructions: (1) a sequence of static networks
and (2) a multislice network. To create these networks, we divide each of the time series into m time
windows by explicitly defining a set of starting times, τ = {τ1, τ2, . . . , τm}, for each time window. We use
Δ to denote the width (i.e., number of time points) of a time window, though the final time window in a
multislice network can be shorter than Δ because one can run out of time. Additionally, we use τ1 = 1.

The starting point τt and window width Δ define a time window that we use to select a portion
of the disease time series. For example, for the time series of disease cases in province i, the time-
series portion Ei = {Di(τt), Di(τt + 1), . . . , Di(τt + Δ − 1)} represents the numbers of disease cases in
province i at times τt, τt + 1, . . . , τt + Δ − 1. One can use such time series to construct either a sequence
of static networks or a multislice network.

To construct a static network, we define a set {1, 2, . . . , N} of N nodes, where node i corresponds to
province i. The edge weight

Wij = 1
2 (ρij + 1) − δij (4.1)

represents the similarity between the time series Ei and Ej, and the Kronecker delta δij removes self-
edges. The quantity ρij is the Pearson correlation coefficient between the disease time series (in a given
window) for provinces i and j. In a given time window, we let Wij = 0 if either node i or node j has
no disease cases during that period. For each time window, our construction yields a network W with
elements Wij ∈ [0, 1] that is fully connected among the nodes that experience disease. (If one of these
Wij values happens to equal 0, then it is technically almost fully connected.) Identifying each time
window according to its starting time, we let N̂(τt) denote the number of provinces in which the disease
occurs during the time window with starting time τt. When studying static networks, we use the set
τ = {1, 2, . . . , T − Δ} of starting times to form a set of T − Δ static networks with overlapping times.

To construct a multislice network, we use the set τ = {1, 1 + Δ, 1 + 2Δ, . . . , 1 + Δ × (�T/Δ	 − 1)}
of starting times to create �T/Δ	 non-overlapping time windows. The intralayer edge weights are

Wijs = 1
2 (ρijs + 1) − δij (4.2)

for each layer s. We let Wijs = 0 if either node i or node j has no disease cases in layer s. Any interlayer
edges associated with a disease-free node in layer s also have weights of 0. If node i has disease cases
in a pair of consecutive layers, r and s ∈ {r − 1, r + 1}, we connect node i in the rth time window to
its counterparts in the contiguous time windows using an interlayer edge of weight Cjsr = ω ∈ [0, ∞),
which is uniform across j, s, and r. (Layer r = 1 has interlayer edges only to r = 2, the last layer has
interlayer edges only to the layer just before it, and all other layers have interlayer edges to both the
previous and the next layer.) This yields a weighted multislice correlation network. The case ω = 0 in
the multislice network corresponds to a sequence of non-overlapping static networks. See Fig. 7 for a
schematic that shows the construction of a multislice network.

3 Reference [62] compared several methods with calculate similarity networks from time-series data. Our focus in the present
paper is on generalizing and evaluating null models, so we use Pearson correlations for simplicity.
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Fig. 7. Construction of a multislice correlation network from disease time-series data. The top panel shows the dengue fever time
series for 79 provinces in Peru. We colour the provinces by climate: coastal provinces are in black, mountainous provinces are
in brown and jungle provinces are in green. Observe the large epidemics in 1996 (focused in the jungle Utcubamba province)
and 2000–2001 (countrywide, but primarily on the northern coast) and the recurrent post-2001 epidemics (which affect various
jungle and coastal provinces). The bottom panel shows an example of the multislice network construction for nine nodes with
τ = {1, 209, 417, 625} and Δ = 208. (The time points correspond to 1 January 1994, 27 December 1997, 22 December 2001 and
17 December 2005). The nodes represent provinces, and each intralayer edge weight is given by a Pearson correlation between a
pair of single-province time series during a given time window. One set of correlations gives one temporal layer, and we connect
copies of each node in neighbouring layers using interlayer edges of uniform weight ω ∈ [0, ∞) (dotted lines). The case ω = 0
yields a set of non-overlapping static networks.

Similar constructions of (both static and multislice) networks from time series have been employed
for systems such as functional brain networks [28,74], currency exchange-rate networks [23] and polit-
ical voting networks [25,75,76].

Many features, such as the number of layers and the mean and variance of the Pearson correlation
values, depend on the parameters that we use in constructing our networks. For example, it is impor-
tant to consider the choice of the time-window size Δ. There is a trade-off between using sufficiently
many layers to obtain a good temporal resolution of events and ensuring that we construct each layer
using enough time points to be confident of the statistical significance of the similarity values in the
layers of the adjacency tensor [74]. Larger values of Δ yield smaller variations in mean correlation over
time and lessen the effects of small, regional epidemics on the number of cases and on the correlation
between disease profiles in different provinces. Therefore, we want to use a sufficiently large value of
Δ so that we can examine long-term, recurrent disease patterns. Studies based on random matrix the-
ory (RMT) suggest an additional constraint of Δ/N > 1, because correlation matrices generated from
time series that are no longer than the number of time series being analysed (i.e., than the number of
nodes) are indistinguishable from the correlations that one calculates from short, uncorrelated sequences
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of noise [77]. However, choosing a value of Δ that is too large risks over-smoothing data and losing
important information.4 Unless we state otherwise, we use Δ = 80 for the (overlapping) static networks
and Δ = 60 for multilayer networks (which never have more than 59 nodes with a positive number of
disease cases in any single layer) in order to obtain meaningful correlation matrices while preserving
interesting disease patterns. In both cases, each time window contains at least one epidemic season
(which occurs yearly during the summer, when the disease is present in the coast and is strengthened in
the jungle) to ensure that the networks capture long-term patterns in disease cases.

4.3 Community structure in disease-correlation networks

It is well-known that geographical distance has an important influence on disease spread [60,79,80].
Additionally, climate exerts a significant influence on dengue, and it is also necessary to consider Peru’s
particular topography (as its mountains form a barrier to disease spread) [67,71]. Therefore, we expect
community structure in the disease-correlation networks to be strongly geographical when using the NG
null model. Applying spatial null models is intended to remove (or at least reduce) the effect of space
on community structure, and it may uncover additional effects.

We also expect to observe large changes in community structure at certain time points—such as
when the introduction of the new disease strains near 1999 led to large epidemics and the onset of
yearly countrywide epidemics [71]. In this section, we explore the similarity of algorithmically detected
community structures to spatial and temporal groupings of nodes across a range of parameter values.

To compare the algorithmic partitions of the correlation networks versus manual partitions, we use
the z-score of the Rand coefficient (i.e., the so-called ‘z-Rand score’) [64]. (See Appendix A for the
definition of the z-Rand score.) We use z-Rand scores instead of NMI because the former measure is
good at detecting similarities in coarse structure [10,64] but is less sensitive to minor changes such as
a small number of nodes changing community assignment (see Fig. A1.) For example, suppose that
we start with a partition in which provinces are classified by topography into jungle, mountainous and
coastal regions. If a small number of jungle nodes later experience different disease patterns than the
majority of jungle nodes so that they are now no longer assigned to the jungle community (e.g., they
could now be assigned to a second jungle community or to a set of singleton communities), then a z-
Rand score that compares the first partition with the new partition would find the two partitions to be
rather similar to each other because a large number of the jungle nodes are still assigned to the same
community.

For the disease data, we do not possess ground-truth partitions as we did for our synthetic bench-
mark examples, so we seek to evaluate broad organizational similarities in the algorithmic and manual
partitions rather than attempting to conduct a fine-grained evaluation of community structure versus a
planted partition. We thereby aim to inform our understanding of structural influences on spatiotemporal
patterns of disease spread. One could also aim to search for spatial clustering in community structure
without comparing with a manual partition by using, for example, measures of spatial autocorrelation
(e.g., Moran’s I) [81] or local clustering (e.g., Kuldorff’s spatial-scan statistic) [82].

To examine spatial community structures in the static and multilayer networks, we use z-Rand scores
to compare our algorithmic partitions to manual partitions. In our ‘climate partitions’, we group nodes
according to the topography of their associated provinces. We start with a ‘broad climate partition’
that consists of jungle, coastal and mountainous provinces. To obtain a ‘detailed climate partition’, we
then subsequently divide the coastal and mountainous communities into northern, central and southern

4 See an analogous discussion of time-window choice in Ref. [78] in the context of financial networks.
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(a) (b) (c)

Fig. 8. Visualization of three different spatial partitions of Peru’s provinces on a map. (a) Broad climate partition into coast (green;
northwest), mountains (yellow; centre) and jungle (purple; northeast); (b) detailed climate partition, in which we start with the
broad partition and then further divide the coast and mountains into northern coast, central coast, southern coast, northern moun-
tains, central mountains and southern mountains; and (c) the administrative partition of Peru. We obtained province boundaries
from [83] and plot the maps in Matlab.

provinces [see Fig. 8(a, b)]. In the 19-community ‘administrative partition’, we assign each node to
its associated administrative region [see Fig. 8(c)]. To study spatial features in the disease dynamics,
we compare each static network to the detailed climate partition and the administrative partition. For
the multilayer networks, we compare each algorithmic partition to a manual partition in which the
community assignment of any given node (i.e., province) is the same across all layers.

We use the term ‘spatial partitions’ to describe partitions that have high z-Rand scores in com-
parison to the manual climate or administrative partitions. For multilayer networks, we also com-
pare algorithmic partitions to partitions that contain a planted temporal change in community struc-
ture. For these comparisons, we group the multilayer nodes into ones that occur before or after a
‘critical’ time tc (i.e., partitions into a ‘pre-tc’ community and a ‘post-tc’ community). We test the
set τ = {1, 1 + Δ, 1 + 2Δ, . . . , 1 + Δ × (�T/Δ	 − 1)} of times that we use to create a multilayer net-
work, and we report the time with the highest z-Rand score as the critical time tc. We also test
for pairs of critical times (yielding a partition into three communities) by examining all possible
pairs of critical times, tc1 and tc2 , in the same manner. We use the term ‘temporal partitions’ to
describe algorithmic partitions of the disease-correlation networks that yield high z-Rand scores in these
comparisons.

4.3.1 Modularity maximization using the NG null model. We first study community structure in the
700 overlapping static networks formed by taking τ = {1, 2, . . . , 700} and using Δ = 80. (There are
779 time points in total.) The community structures that we obtain from maximizing modularity have
a strong spatial organization, as suggested by the high z-Rand scores when compared with climate
partitions. As one can see in Fig. 9(a), in which we plot the z-Rand scores versus the centres of the
time windows that correspond to the static networks, spatial organization is especially evident starting
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(a) (b) (c)

Fig. 9. Properties of algorithmic community structure that we obtain by maximizing modularity using the NG null model for
dengue fever static correlation networks that we construct with a time-window size of Δ = 80. (a) A box plot of the z-Rand scores
versus the detailed climate partition for γ ∈ {0.1, 0.2, . . . , 2.9, 3} for the 700 static networks that cover the entire time period.
(b) Partition with the highest z-Rand score when compared with the detailed climate partition. The resolution-parameter value is
γ = 1, the layer is 293 (which is centred at December 1999), and the z-Rand score is 8.85. (c) Partition with the highest z-Rand
score when compared with the administrative partition. The resolution-parameter value is γ = 1.2, the layer is 453 (which is
centred at October 2002), and the z-Rand score is 8.76. In panels (b, c), we use a map of Peru in which we colour provinces
according to their community assignment. White provinces are ones in which our data does not include any reported cases of
dengue fever in the indicated time window. In panel (a) of the present figure, as well as in our subsequent figures, time points that
we indicate on the axes correspond to the centres of the associated time windows.

in the year 2000. In our subsequent figures as well, the time points that we indicate on the axes again
correspond to the centres of the associated time windows.

As one can see from a plot of the number of epidemic cases over time (see Fig. 7), this transition
seems to occur near the time of the largest countrywide epidemic in the data, and the subsequent period
includes recurring yearly epidemics that were linked to climatic patterns in prior studies [71]. There
are two periods of significantly spatial partitions: one corresponds to the 2000–2001 epidemic, and it
contains the spatial partition that has the highest z-Rand score versus climate [see Fig. 9(b)]; the second
occurs in 2002–2004, and it contains the spatial partition that has the highest z-Rand score versus an
administrative partition [see Fig. 9(c)]. The z-Rand scores of the spatial partitions decrease starting in
2004 despite the continuing yearly dengue epidemics.

In Fig. 9(b, c), we plot the partitions that have the highest z-Rand scores with respect to the manual
climate and administrative partitions. We observe that the high-scoring climate partition includes a
large community that is dominated by the jungle (see the red community that includes the northeastern
regions) and a large community that is dominated by the coast (see the pink community that includes
the northwestern regions), whereas the high-scoring administrative partition is composed of seven small
communities. The jungle nodes form the largest communities in each of these spatial partitions. There
was a dengue epidemic in most of the provinces in these large communities during the depicted time
periods.

We now consider community structure in the multilayer disease network with non-overlapping lay-
ers that we construct using the time points τ = {1, 61, . . . , 721} and a time-window width of Δ = 60.
We compare algorithmically computed community structure of the dengue fever multilayer disease-
correlation network to manual partitions for several values of the parameters ω and γ in the domain
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(a) (b) (c)

Fig. 10. Algorithmic partitions, which we obtain by maximizing modularity using the NG null model, of the dengue fever mul-
tilayer disease-correlation network that we construct using the time-window width Δ = 60. (a) An example of a consensus com-
munity structure that we obtain for γ = 1 and ω = 0.1 across 100 realizations of community detection. We plot layer numbers on
the horizontal axis, and we indicate the nodes on the vertical axis. We use colour to represent the community assignment of the
nodes. We observe several times at which communities die and new ones are born. (b, c) Results of varying the parameters γ

and ω. We show the z-Rand scores for similarity to (b) spatial partitions by climate and (c) temporal partitions before and after a
critical time tc. (For this figure and for each set of parameter values, we select the highest scoring tc; in the majority of cases, tc
corresponds to January 2002.)

[0, 3] × [0, 3] (see Fig. 10). For γ � 1, all nodes are in one community. For γ ∈ [1, 1.2] and ω � 1, the
algorithmically detected partitions have a relatively high z-Rand score when compared with the tempo-
ral partition [see Fig. 10(c)]. As we illustrate in Fig. 10(a), the partitions exhibit a mixture of spatial and
temporal features.

When studying the qualitative features of the partitions for γ ∈ [1, 1.2] (where the endpoints of this
interval are approximate) and ω � 1, we observe that multilayer modularity maximization repeatedly
finds 2001 as the single critical time, and 2001 and 2005 as the most common pair of critical times tc (i.e.,
the strongest change points in temporal community structure). These results agree with visual inspection
of Fig. 10(a). These outputs from community detection suggest that a strong shift in the patterns of
disease correlations occurred around these times. Indeed, Peru experienced a large countrywide dengue
epidemic in 2000–2001, and this period also marks the onset of new yearly epidemics [71]. Thus, our
method recovers the most important biological event in this data set in addition to providing additional
information about spatial influences on disease spread. We also observe several other times when new
communities are born, but we do not know the biological significance of these dates. Notably, in this
parameter regime, multilayer modularity maximization using the NG null model does not identify the
large epidemic in the jungle Utcubamba province in 1996 (see Fig. 7), which is the other large event in
the time period covered by this data set.

The community structure that we detect depends heavily on parameter values. In many parameter
regimes (especially when γ � 1 and ω � 0.5) communities appear to be predominantly spatial, and we
find high z-Rand scores when compared with the climate and administrative partitions [see Fig. 10(b)].
The strong influence of spatial proximity on community structure is unsurprising, as geographic distance
exerts an important influence on disease spread [60,80]. Previous studies [21,84,85] have also noted
that geographic factors strongly influence the partitions that one obtains by maximizing modularity in
(static) spatial networks. We also find that the community structures detected by maximizing modularity
using a correlation null model that is designed specifically for networks generated by measuring cor-
relations in coupled time series [19] exhibit a similar structure and extent of spatial organization as in
the NG null model for both static and multislice networks. This underscores that the disease-correlation
network includes strong spatial effects, as even using a null model designed for correlation structure
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misses salient features of the data. Indeed, other ingredients that help shape community structure in the
multilayer dengue fever correlation network may be obscured by the strong influence of spatial prox-
imity. However, it is conceivable that we may be able to reveal such effects by using a null model that
incorporates spatial effects. We pursue this idea in Section 4.3.2.

4.3.2 Modularity maximization using spatial null models. In this subsection, we maximize modular-
ity in the dengue fever correlation networks using spatial null models. We obtained province locations
from the Geonames.org website [86], and we obtained their populations from the Peruvian Instituto
Nacional de Estadística e Informática (INEI) [70]. We were only able to obtain the 1994 and 2007
populations; because of the limited range of data and the several changes in Peruvian administrative
structures between 1994 and 2007, our calculations use only the 2007 populations.

The maximum inter-province distance in Peru is about 1300 km. We report numerical experiments
using a bin size of 400 km after testing the spatial deterrence for several other sizes (ranging between
50 km and 500 km) in the same manner as in Ref. [21]. That is, we study the shape of the deterrence
function [see Equation (2.5) and the nearby discussion] versus distance for different bin sizes, and we
then examine the community structures that we obtain using these different bin sizes. Although bin sizes
do affect the shape of the deterrence function—smaller sizes tend to give smoother results—all of the
bin sizes that we tested produce very similar partitions for both the gravity and radiation spatial null
models. We select the smallest bin size that guarantees that there are at least five pairs of nodes in each
bin to ensure that the averaging that is necessary for calculating the deterrence function uses at least
five elements. From a practical perspective, we recommend testing the bin-size parameter and studying
both the shape of the deterrence function and the resulting community structure for several suitable bin
sizes. Based on our results for spatial benchmarks in Fig. 2, we expect bin size to influence the results
of community detection in situations in which there is an underlying structure that is masked by spatial
proximity. As suggested by Expert et al. [21], one could select a ‘representative’ structure by comparing
the partitions for different bin sizes using a similarity measure such as NMI.

Recall from Section 4.1 that only 79 of the 195 provinces include reported cases of dengue fever in
our data, so we use location and population data only for those provinces.

We first study community structure for static disease-correlation networks by maximizing modular-
ity using the gravity and radiation null models. Both null models seem to remove most of the spatial
organization of the community structures (including the temporal variation in the spatial correlations),
as indicated by low values and low variation of spatial z-Rand scores (not shown). For both the grav-
ity and radiation null models, we observe a broad similarity in community structure across time for a
variety of values of the resolution parameter γ [see Fig. 11(a)]. In particular, these structures consist of
one dominant community, which contains the majority of nodes at any given time, and several singleton
communities [see Fig. 11(b)]. The singleton communities tend to be the most populous provinces.

We also examine community structure in multilayer correlation networks by maximizing modular-
ity using spatial null models. We again obtain partitions that include one large community with most
of the provinces [see Fig. 12(a, b)], although several of the most populous provinces are assigned to
communities that consist only of the given province and its counterparts across time. We refer to such
a community as a ‘single-province community’. This situation occurs for all of the tested parameter
values. Additionally, we do not observe any clear pattern in the z-Rand scores across different values of
γ and ω.

Our findings suggest that the use of a spatial null model for modularity maximization may remove
the majority of the variation in the correlation structure of the dengue fever correlation networks, such
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(a) (b) (c)

Fig. 11. Properties of algorithmic community structure that we obtain by maximizing modularity using the gravity null model
for dengue fever static correlation networks that we construct with a time-window size of Δ = 80. (a) NMI between contiguous
layers for γ ∈ {0.9, 1, 1.1}. (b) Maximum community size (blue dashed curve), which indicates the number of provinces in the
largest community, and number of communities (orange solid curve) for γ = 1. (c) Community structure that has the highest
z-Rand score versus climate among the dengue fever static correlation networks that we construct using Δ = 80. (The resolution-
parameter value is γ = 2.9, the layer is centred at January 1996, and the z-Rand score is 4.94.) We show the community structure
on a map of Peru, and we colour provinces according to their community assignment. White provinces are ones in which our
data does not include any reported cases of dengue fever in the indicated time window. Observe the single giant community that
contains almost all of the nodes except the Lima province (which is a singleton that includes 41% of the population).

(a) (b)

Fig. 12. Consensus community structure that we obtain by maximizing modularity for 100 realizations using (a) the gravity null
model and (b) the radiation null model of the dengue fever multilayer disease-correlation network that we construct using a time-
window size of Δ = 60. We use a resolution-parameter value of γ = 1 and an interlayer coupling strength of ω = 0.1. We indicate
dates (where each date corresponds to the centre of a time window) on the horizontal axes, and we indicate nodes on the vertical
axes. We colour nodes according to their community assignment.

that the influence of population size may be the only major factor that remains. There are only five
provinces whose populations are over 500,000, and these provinces are often assigned to singleton
communities or to single-province communities when we use a spatial null model. This suggests that
they have different disease patterns from the other provinces. One could speculate whether this has any
relation to a minimum population size required for sustained disease transmission, which for dengue
has been estimated to lie between 10,000 and 500,000 [67,87].

4.3.3 Province-level multilayer communities. We further examine relationships between the disease
patterns in provinces by examining ‘province-level communities’ in multilayer dengue fever correlation
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(a) (b) (c)

Fig. 13. Province-level algorithmic community structure, which we obtain by maximizing modularity, in static and multilayer
dengue fever correlation networks. We colour the provinces according to their community assignment. White provinces are ones
in which our data does not include any reported cases of dengue fever in the indicated time window. In panels (a, b), we show
the results of using an NG null model in a fully aggregated network (i.e., τ = 1 and Δ = 779) with a resolution-parameter value
of (a) γ = 1 and (b) γ = 1.1. In panel (c), we show the province-level communities that we obtain using a time-window width of
Δ = 60, the NG null model, γ = 1, and ω = 0.1.

networks. (Recall from Section 2 that ‘province-level communities’ are sets of physical nodes—i.e., the
provinces—rather than node-layer tuples, which describe provinces during a specified time window.)
The simplest approach is to construct a single static network from the entire length-T time series and
then detect communities in that network. However, our multilayer approach allows us to aggregate data
less severely. This, in turn, allows us to lose less information when examining similarities in disease
patterns among the provinces.

When we aggregate the time series over the entire time range to construct a single similarity net-
work (i.e., we choose τ = 1 and Δ = 779), the community structures that we obtain via modularity
maximization with the spatial null models all consist of a single large community and a few singleton
communities (see Fig. G1 in Appendix G). Only the NG null model is able to detect meaningful-looking
communities, which we show for γ = 1 and γ = 1.1 in Fig. 13(a,b). For γ = 1, we find three commu-
nities; one is a single jungle province, one consists almost exclusively (15 of its 17 nodes) of northern
coastal provinces, and the third contains the remainder of the provinces. This partition has a z-Rand
score versus climate of about 7.3. For γ = 1.1, maximizing modularity using the NG null model yields
28 communities, and many of them are small. The nodes that are assigned to the community of northern
coastal provinces are still assigned to the same community for γ = 1.1. These are the provinces of Peru
that were most strongly involved in the 2000–2001 dengue epidemic; 15 of the nodes in this community
experienced this epidemic, whereas only two other nodes experienced it.

When detecting communities, data aggregation across all time in the coupled time series results
in the 2000–2001 epidemic dominating all other events. By detecting communities in a temporarily
evolving multilayer network and examining province-level structure, we hope to obtain more interesting
partitions (as this will involve milder data aggregation).

We also study the structure of province-level communities that we obtain from modularity maxi-
mization using the uniform null model (with γ = 1 only) on an association matrix Aprovince. As we dis-
cussed in Section 2, we create this matrix by tracking how frequently provinces are classified together
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(a) (b)

Fig. 14. Structure of the consensus province-level communities that we compute by maximizing modularity in multilayer dengue
fever networks for γ = 1 and ω = 0.1 using the Newman–Girvan null model. (a) Climate composition of the communities. The
horizontal axis gives a numerical label for each community. (b) Time series for disease occurrences in the provinces that belong
to each of those communities.

(i.e., assigned to the same community) across layers in a multislice network, and we then detect commu-
nities in the association matrix. When maximizing multilayer modularity in these experiments, we use
the parameter values γ = 1 and ω = 0.1. We do 100 realizations of the above procedure to obtain 100
different association matrices Aprovince. We detect communities in each of these association matrices,
and we form another association matrix based on the fraction of times that the provinces are classified
together during this step. We then obtain consensus province-level communities by detecting commu-
nities in this second association matrix by again maximizing modularity using the uniform null model
(with γ = 1).

Comparing the province-level communities that we obtain by maximizing modularity using the NG
null model to the broad topographical categories of coast, mountain and jungle reveals a large-scale cor-
relation between climate and disease patterns. More than 40 nodes are assigned to one large community
that includes central coast, northwestern and southern jungle, and eastern jungle; and coastal north nodes
form smaller, strongly spatial communities. [See Fig. 13(c) and Fig. 14.] When we study province-level
communities, we observe both distinct types of disease incidence patterns in each community (such as
provinces with year-round versus summer infections) and distinct forms of long-term temporal dynam-
ics (such as provinces affected before the large 2000–2001 epidemic and those only affected afterwards).

5. Conclusions

In this paper, we examined time-dependent community structure and the effect of different null models
that incorporate spatial information on the results of modularity maximization. We conducted our com-
putational experiments using both novel synthetic benchmark spatial networks and correlation networks
constructed from spatiotemporal dengue fever incidence data in provinces of Peru (a situation that is
influenced strongly by spatial effects). We compared our results for the standard NG null model versus
two null models that incorporate spatial information: a gravity null model [21] and a novel radiation
null model.

390 M. SARZYNSKA ET AL.

 by M
ason Porter on A

ugust 31, 2016
http://com

net.oxfordjournals.org/
D

ow
nloaded from

 

http://comnet.oxfordjournals.org/


Our results indicate that it is very important to incorporate problem-specific features, such as spa-
tial information, into the null models for community detection. Our results also illustrate that there are
many nuances to consider. That is, it is not simply a matter of incorporating spatial information in an
arbitrary way; instead, it is necessary to develop spatial null models that are motivated by application-
appropriate generative models. For example, the NG null model performs better than the spatial null
models (which both use population data) on the random-population distance benchmark, in which pop-
ulations vary but edge weight does not depend on them. However, when we remove the variation in
population information or modify the benchmark to include population in edge-placement probabilities,
we find (as expected) that the gravity null model has the best performance among the null models that
we considered.

Parameter choices can also be extremely important, as demonstrated by the strong influence of bin
size (when binning distances for the spatial null models) on the results of community detection, our
failure to find meaningful communities with any of the null models at low edge densities, and the strong
influence of the resolution parameter γ on the results.

To summarize, one needs to consider seriously what features influence the connections in a system,
which of those features one wants to try to incorporate into a null model, be careful about including
spurious information and test how results change when one changes parameter values. Finally, not
incorporating space at all can be more appropriate than incorporating it in a manner that is overly naive.
See, for example, our results on the random-population benchmark networks.

In our consideration of dengue fever data, we observed for static networks that maximizing mod-
ularity using the NG null model finds structures that are strongly spatial—especially after the onset of
yearly epidemics in 2000. In our study, we observed that spatial partitions are often dominated by large
communities of neighbouring jungle nodes that experience local epidemics during the time window.

On a multilayer network, maximizing modularity using the NG null model can result in either spatial
or temporal partitions (depending on the parameter regime). Temporal partitions successfully find the
most important time point in the history of the disease—namely, the introduction of a new disease strain
that caused a large epidemic in 2000–2001 and a subsequent change in disease patterns—and several
other potentially interesting time points and periods of high spatial correlation.

When studying province-level connectivity, we illustrated that detecting consensus province-level
communities in an association matrix that we constructed by examining communities in a multilayer
network across time is a better approach than complete data aggregation. When aggregating into a static
network, maximizing modularity using any of the tested null models except the NG null model failed
to detect any meaningful communities. Modularity maximization using the NG null model was able
to reveal the large 2000–2001 epidemic. Aggregating networks results in loss of information, which
can be very undesirable when attempting to discern meaningful patterns [3,5]. When we constructed
multilayer networks and computed consensus communities, we found ‘spatial’ multilayer partitions and
province-level partitions that highlight the importance of climate to the disease patterns of dengue.
In these partitions, the jungle provinces are assigned to distinct communities from most mountainous
and coastal provinces. This is sensible, as the yearly epidemic patterns tend (on average) to exhibit an
earlier epidemic onset in the jungle [67,71], and the jungle climate is rather distinct from the climates in
coastal and mountainous provinces. The main climatic difference between jungle provinces and other
provinces is temperature, and the influence of temperature on dengue transmission [69,88] and attack
rate and persistence has been documented [67,89].

When we attempted to take into account the influence of space by using the gravity and radiation
null models, we obtained one large community that contains all but the highest-population provinces
(which are assigned to singleton communities for static networks and single-province communities in
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multilayer networks). This is different from the Belgian mobile-phone example in Ref. [21], in which
maximizing modularity using a spatial null model based on the gravity model revealed a linguistic
partition that the authors were not able to detect when using the NG null model. Our results suggest that
the incorporation of space into the null model for modularity maximization can sometimes account for
the majority of the structure in the disease correlation networks that we studied. The spatial structure that
we incorporated directly into the null model likely includes the structure that corresponds to the climatic
variation that leads to different epidemic patterns in the jungle, coastal and mountainous provinces.
Province population is the only feature that we were able to identify as associated with community
structure when using spatial null models: the highly populated (and typically coastal) provinces formed
singleton (and single-province) communities. These populous provinces are local economic centres;
many people travel there from other provinces and can thereby play a role in disease transmission [60].

The highly populated provinces can also be the seeds of epidemics in other coastal and mountainous
provinces, and two studies have in fact reported (so-called) ‘hierarchical’ transmission of dengue from
populous regions to those with low populations in both Peru and Thailand [67,90]. This situation could
lead to high positive correlations across distances that are atypically long, which could in turn cause
populous provinces to be assigned to singleton (and single-province) communities. Additionally, it is
known that population size strongly influences dengue transmission: the basic reproductive number R0

(i.e., the mean number of secondary cases per infected individual) and disease persistence (as measured
by the fraction of weeks that include disease cases) are positively correlated with population size, and
mosquito attack rates are negatively correlated with population size [67,71].

The incorporation of spatial information into null models for community detection is both interest-
ing and desirable. As we have illustrated in the present paper, however, there are many nuances that
are important to consider. We have also demonstrated that it is important to develop null models that
incorporate generative mechanisms for human mobility and flux. We expect that domain-dependent,
mechanistic null models will also be crucial in many other applications.
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Appendix A. Spatial benchmarks: quantifying the similarity of community structures using nor-
malized variation of information and z-Rand scores

One can use many different diagnostics to measure the amount of similarity between planted partitions
and algorithmically detected partitions. In our discussion of spatial benchmarks in Section 3, we used
NMI to evaluate similarity. NMI is one of many normalized versions of mutual information (MI) [93].
Both MI and NMI are based on the concept of information entropy, which is a measure of uncertainty.
MI measures the amount of information that one can predict about one random variable (which in
the present paper is a partition of a network into communities) based on another one. For a partition
X = {X1, X2, . . . , XK} with K communities and a partition Y = {Y1, Y2, . . . , YL} with L communities, MI
is defined as

I(X , Y) =
K∑

k=1

L∑
l=1

P(k, l) log2

[
P(k, l)

P(k)P(l)

]
, (A.1)

where P(k) and P(l) are the marginal probabilities of observing communities k and l in partitions
X and Y , respectively, and P(k, l) is the joint probability of observing communities k and l simul-
taneously in partitions X and Y . MI takes values between 0 and min{H(X ), H(Y)}, where H(X ) =
−∑K

k=1 P(k) log2 P(k) is the entropy of X .
NMI is given by the formula [63]

NMI(X , Y) = I(X , Y)√
H(X )H(Y)

∈ [0, 1]. (A.2)

The normalization to lie within the range [0, 1] facilitates interpretation and comparisons.
In this appendix, we repeat our examination of the static uniform-population distance spatial bench-

marks using normalized variation of information (NVI) [93] and z-Rand scores instead of NMI. In
contrast to NMI, variation of information (VI) and NVI are metrics in the mathematical sense, and this
is clearly desirable in some situations. See the discussions in Refs. [64,65,93]. VI and NVI are related
to mutual information. For the partitions X and Y , VI is defined as

VI(X , Y) = H(X ) + H(Y) − 2I(X , Y) = H(X , Y) − I(X , Y), (A.3)

where H(X , Y) = H(X ) + H(Y) − I(X , Y) is the joint entropy. VI is equal to 0 if the partitions X and
Y are identical, and VI(X , Y) � log2 N , where N is the number of nodes in the whole network. We
normalize VI to yield NVI [65]:

NVI(X , Y) = 1 − I(X , Y)

H(X , Y)
∈ [0, 1]. (A.4)

We compare NMI and NVI with the z-score of the Rand coefficient [64], which is the diagnostic that
we used for comparing algorithmic partitions of the disease-correlation networks to manual partitions.
The z-Rand scores are good at detecting similarities in coarse structure [10,64], but (by design) they are
not intended for discerning minor differences, such as one node changing community assignment. The
Rand coefficient is

R = (w11 + w00)/M , (A.5)
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Fig. A1. (Left) Normalized mutual information (NMI), (centre) normalized variation of information (NVI) and (right) z-Rand
scores (on a base-10 logarithmic scale) between algorithmically detected partitions, which we obtain by maximizing modularity,
and planted partitions in the static uniform-population distance spatial benchmarks with N = 50 cities, an l × l grid with l = 10,
and a density parameter of μ = 50. We examine the partitions for different values of the resolution parameter γ as a function of
inter-community connectivity λd using the (top) NG null model, (middle) gravity null model and (bottom) radiation null model.
For the z-Rand scores, we show a significance cutoff of zR = 1.96 (i.e., the 95% significance cutoff) for guidance. We do not plot
values of ‘Not a number’ for partitions in which all nodes are assigned to one community.

where w11 is the number of node pairs that are assigned to the same community in both partitions, w00 is
the number of node pairs that are assigned to different communities in both partitions and M is the total
number of node pairs. Calculating a z-score of the Rand coefficient then yields a standardized measure
of similarity [64].

As one should expect (given the relationship between the definitions) and one can see in Fig. A1,
NMI and NVI give very similar results. The NMI and NVI values both change rather sharply at values
of λd once the algorithmic partitions start to differ significantly from the planted partitions. In contrast,
the z-Rand scores continue to construe the algorithmic partitions as similar to the planted partitions for
larger values of inter-community connectivity λd until the deterioration of algorithmic partitions into
singletons.
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Fig. B1. Uniform-population static benchmarks: NMI scores between algorithmically detected partitions, which we obtain by
maximizing modularity, and planted partitions in static uniform-population distance benchmarks with l = 10, a density parameter
of μ = 100, and uniform populations of 100 for different numbers of cities. (Because l = 10, the space in which we place the
cities is the same in the two cases.) The numbers of cities are (left) N = 10 and (right) N = 90. We use the (top) NG, (middle)
gravity and (bottom) radiation null models. See Fig. 3 in the main text for plots with N = 50.

Appendix B. Spatial benchmarks: varying the number N of cities

We now vary the number N of cities in benchmarks on an l × l grid with l = 10, a density parameter of
μ = 100 and a uniform population of 100 people in each city. In Fig. B1, we plot the NMI of algorith-
mic partitions versus planted partitions for several values of the resolution parameter γ for modularity
maximization using the NG null model and both spatial null models. In combination with Fig. 3 in the
main text, which has N = 50 cities, we observe no qualitative changes in NMI aside from an expected
increase in variability when N is small.

Appendix C. Varying the edge-density parameter µ

We now present results of varying the edge-density parameter μ in static benchmarks. Edge density
has a strong effect on the ability of modularity maximization to detect communities. For μ � 5, we
obtain smaller NMI scores than we do for larger μ values. (See Figs. C1 and C2.) Thus, our calculations
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Fig. C1. NMI between algorithmically detected partitions, which we obtain by maximizing modularity with γ = 1, and planted
partitions for static uniform-population spatial benchmarks with N = 50, a lattice-size parameter of l = 10, uniform city popula-
tions of 100 and several values of inter-community connectivity λd . We plot the NMI scores as a function of the edge-density
parameter μ for (left) the distance benchmark and (right) the flux benchmark.

perform better on the benchmark networks for larger values of μ. To follow the choice that was used
for the benchmark networks in Ref. [21], we used μ = 100 in the main text.

Appendix D. ‘Distance-and-population’ benchmark

In Fig. 3 in the main text, we observed that the gravity null model for modularity maximization has
the best performance among the null models for the uniform-population distance benchmark, but the
NG null model performs better than spatial null models for the random-population distance bench-
mark because the edge placement in that benchmark does not include population information. We now
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Fig. C2. NMI between algorithmically detected partitions, which we obtain by maximizing modularity with γ = 1, and planted
partitions for static random-population spatial benchmarks with N = 50, a lattice-size parameter of l = 10, city populations n
selected uniformly at random from {1, . . . , 100} and several values of inter-community connectivity λd . We plot the NMI scores
as a function of the edge-density parameter μ for (left) the distance benchmark and (right) the flux benchmark.

study the effects of incorporating population into edge probabilities in what we call a ‘distance-and-
population’ benchmark.

We construct our new type of benchmark network in the same manner as the distance bench-
mark in Section 3, but we now incorporate population into the edge-placement probability by taking
pdistpop

ij = ninjλ(ci, cj)/(Z3dij), where we recall that ni and nj are the populations of nodes i and j, the
quantity dij is the distance between nodes i and j, the set ci is the community that contains node i, the
set cj is the community that contains node j, and the function λ(ci, cj) = 1 if nodes i and j are in the
same community and λ(ci, cj) = λd otherwise. We also recall that the inter-community connectivity λd
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Fig. D1. NMI between algorithmically detected community structure, which we obtain by maximizing modularity, and planted
community structure in ‘distance-and-population’ static spatial benchmarks with (left) uniform populations and (right) random
populations. As in our prior examples, the population of each node is 100 in the uniform case, and it is drawn uniformly at random
from the set {1, . . . , 100} in the random case. We use N = 50, l = 10, m = 10, μ = 100 and γ = 1 for various values of ω (coloured
curves) as a function of λd . We detect communities by maximizing modularity using the (top) NG, (middle) gravity and (bottom)
radiation null models.

controls the amount of mixing between communities. When λd = 0, only nodes in the same community
are adjacent to each other; when λd = 1, there are no distinct communities. The normalization constant
Z3 ensures that

∑
i>j pdistpop

ij = 1.
As expected, the gravity null model outperforms the other null models for the distance-and-

population benchmark, which we recall was also the case for the uniform-population distance bench-
mark. (Compare Fig. D1 with Fig. 3 in the main text.) The radiation null model has the second-best
performance on this benchmark, and its performance is better than it is on the random-population dis-
tance benchmark. However, it does not do as well as it does on the random-population flux benchmark
(see Fig. 3).
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Fig. E1. NMI between algorithmically detected community structure, which we obtain by maximizing modularity, and planted
community structure in multilayer random-population, temporally stable spatial benchmarks. We choose the population of each
of the N = 50 cities uniformly at random from the set {1, . . . , 100}. We consider various values of the resolution parame-
ter γ , and the other parameter values are l = 10, m = 10, μ = 100 and ω = 0.1. We plot NMI as a function of λd for (left)
the distance benchmark and (right) the flux benchmark using the (top) NG, (middle) gravity and (bottom) radiation null
models.

Appendix E. Community detection in multilayer random-population, spatial benchmarks

We now study the influence of the parameters γ and ω on community structure in multilayer random-
population, temporally stable benchmarks. We first compare the results with our findings from static
benchmarks by varying γ and λd for fixed values of ω. We study the performance of modularity
maximization with the NG, gravity and radiation null models on random-population benchmarks with
N = 50 nodes, a lattice parameter of l = 10, and m = 10 layers using γ ∈ {0.5, 0.75, 1, 1.25, 1.5} and
ω ∈ {0.1, 0.25, 0.5, 0.75, 1}. We only show plots for ω = 0.1, as the values of ω do not noticeably influ-
ence the results.
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Fig. E2. NMI between algorithmically detected community structure, which we obtain by maximizing modularity, and planted
community structure in multilayer random-population, temporally stable spatial benchmarks. We choose the population of each
of the N = 50 cities uniformly at random from the set {1, . . . , 100}. We consider various values of the parameter ω, and the other
parameter values are l = 10, m = 10, μ = 100 and γ = 1. We plot NMI as a function of λd for (left) the distance benchmark and
(right) the flux benchmark using the (top) NG, (middle) gravity and (bottom) radiation null models.

We obtain results that are similar to the results that we showed for the corresponding static bench-
marks in Fig. 3. Once again, we find that the choice of γ has a large influence on the quality of algo-
rithmic partitions, and (as with our findings for static benchmarks) that γ = 1 seems to yield the best
performance (i.e., the largest NMI scores) for low values of λd , whereas larger values of γ perform
better for larger λd (see Fig. E1). In these experiments, the effect of varying γ is most pronounced when
using the radiation null model on flux benchmarks.

We now examine the NMI of algorithmic versus planted partitions in multilayer temporally stable
benchmarks for fixed γ = 1 while varying ω and λd . As we show in Fig. E2, we find that the value of ω

usually has very little effect on our ability to detect planted communities via modularity maximization.
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Fig. F1. NMI between algorithmically detected province-level community structure, which we obtain by maximizing modularity,
for uniform-population (ni = 100 for all i), temporally stable multilayer spatial benchmarks with m = 10 layers. Each layer has
a single-layer planted partition with N = 50 cities, a lattice-size parameter of l = 10 and a density parameter of μ = 100. We
use ω = 0.1 and consider various values of the resolution parameter γ , and we plot NMI as a function of the inter-community
connectivity λd for (left) the distance benchmark and (right) the flux benchmark.

We observed the same scenario for the multilayer uniform-population, temporally stable benchmarks
(see Fig. 5 in the main text). However, ω is important for the random-population, temporally evolving
multilayer benchmarks, which is also what we observed in the main text for uniform-population bench-
mark networks. See Fig. 6 in the main text for an illustration in the uniform-population case. We do not
show an analogous figure for the temporally evolving case.

Appendix F. Province-level communities for multilayer benchmarks

In Fig. F1, we present our results for province-level community structure on multilayer uniform-
population, temporally stable benchmarks. As one can see by comparing these results to those in Fig. 4
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(a) (b)

Fig. G1. Algorithmically detected community structure, which we obtain via modularity maximization (with a resolution-
parameter value of γ = 1), in static dengue fever correlation networks that we construct using the entire set of time series (i.e.,
we use τ = 1 and Δ = 779). We show partitions from using (a) the gravity null model and (b) the radiation null model. We colour
provinces on a map of Peru according to their community assignment. White provinces are ones in which our data does not
include any reported cases of dengue fever.

in the main text, we obtain similar NMI scores for the performance of community detection for province-
level communities as we did for ordinary community detection in multilayer networks.

Appendix G. Community structure in aggregated dengue fever data

In Fig. G1, we show additional results of community detection on fully aggregated networks (i.e., we use
τ = 1 and Δ = 779) from the dengue fever time series. In Section 4.3.3 of the main text [see Fig. 13(a)],
we showed the results of modularity maximization using the NG null model. We now show our results
for this type of experiment by maximizing modularity using the gravity and radiation null models. The
gravity and radiation null models yield one large community and a few small communities. Because of
the aggregation, we have lost the rich set of information that we were able to study using multilayer
community detection.
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