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We construct a prime symmetry relation for integers that is equivalent to Goldbach’s
conjecture and show that numerical computations of this prime symmetry property
strongly resemble a chaotic sequence. We define and examine the notions of global and
local prime quasientropies. Finally, we employ the fact that the prime number sequence
satisfies the property of deterministic randomness to consider its utility for the field of
quantum computation.
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Goldbach’s conjecture (L. Euler, personal communication, 1742) states that
any even integer greater than or equal to six may be written as the sum of two primes.
An equivalent statement was given by Erd¨os (1945) in terms of Euler functions:

φ(q)+ φ(r ) = 2n (1)

Namely, for any positive integern there exist integersq andr such that Eq. (1) is
satisfied. [The Euler functionφ(m) is defined as the number of positive integers
y ≤ m with y relatively prime tom (Dummit and Foote, 1991).] A generalization
of Goldbach’s conjecture given by Vinogradov (1937) states that any “sufficiently
large” odd integer may be written as the sum of three primes. A number of the-
orems and statements related to this conjecture may be found in the collection
compiled by Yuan (1984).

An additional equivalent of Goldbach’s conjecture is a statement ofprime
symmetry. Namely, for any positive integerx ≥ 2, there exists integer1 < x such
that x ±1 are prime numbers. The function1(x) ≥ 0 represents the minimum
number with this property. A vector representation of the parameters of (2a, b)
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Fig. 1. Vector representation of the parameters in Eq. (2).
This representation requires that the inside angle between
x and+1 be obtuse.

is shown in Fig. 1. A numerical computation of1(x) is noted to have a property
characteristic of a chaotic sequence. Namely, a periodic pattern of this computation
at smallx degenerates into a mixed, aperiodic pattern at largerx. The concept of
global and localprime quasientropyis defined. Local prime entropy vanishes
for “twin primes.” Thus, the existence of infinitely many twin primes (an open
question) is equivalent to the statement that the local prime quasientropy vanishes
infinitely often. Global prime entropy is noted to increase.

Note additionally that for any two primes,p1 ≥ p2, there exist nonnegative
integers1, x such that1 ≤ x, x > 0, and

x +1 = p1,
(2)

x −1 = p2.

Additionally,

2x = p1+ p2,

21 = p1− p2,
(3)

p2
1 − p2

2 = 4x1,

x2−12 = p1 p2.

Numerical plots of1(x) for x ≤ 400 reveal a symmetric structure when
x ≤ 50. However, this structure is lost at higher values (Fig. 2). With Eq. (2), we
note that

1(x) = 0 at x = p1 = p2 (4)
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Fig. 2. Read-outs for (a) 0≤ x ≤ 100, (b) 100≤ x ≤ 200, (c) 200≤ x ≤ 300, (d) 300≤ x ≤ 400.

so that the zeros of1(x) occur at prime values ofx. The property that there are
arbitrarily large gaps in the series of primes (Niven and Zuckerman, 1990) applies
equally to the intervals between the zeros of1(x). Furthermore, the segmented
periodic form of these curves at smallx and aperiodic structure at higher values of
x is characteristic of chaotic development of a dynamical system in time. Here, one
imagines that thex axis is the measure of a discrete time sequence. From Fig. 2.
one notes that a chaotic structure (Haake, 2001; Reichl, 1992) of1(x) enters for
x ' 90. As1(x) is related to prime numbers, the chaotic character of this function
is consistent with the quasichaotic property of the prime-number sequence (Liboff
and Wong, 1998). This quasichaotic property describes the fact that a histogram
of the interval between nearest-neighbor primes very roughly follows the Wigner
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distribution. Data is said to be “quasichaotic” if its plot is well-approximated by
either a Wigner or Poisson distribution (Haake, 2001; Liboff and Wong, 1998;
Reichl, 1992).

With this link to the Wigner distribution, there is an accompanying connec-
tion to quantum chaos and random matrix theory. Quantum chaos of a system
may be described in terms of the theory of Gaussian distributions of random ma-
trices and the spectral statistics of the spacing of eigenvalues of these matrices
(Berry and Tabor, 1977; Haake, 2001; Liboff and Seidman, 1993; Mehta, 1967;
Porter, 1965; Reichl, 1992). In the formalism stemming from symmetries of the
given system, three classes of matrices emerge: real symmetric, Hermitian, and
real quaternion, which in turn may be diagonalized by orthogonal, unitary, and
symplectic similarity transformations, respectively. Corresponding distributions
of nearest-neighbor eigenvalues carry the acronyms: GOE, GUE, and GSE. The
first of these (Gaussian orthogonal ensemble) is also called the Wigner–Dyson
(Dyson, 1962; Wigner, 1967) or, simply, the Wigner distribution. A histogram of
nearest-neighbor increments of eigenvalues which roughly resembles any of these
distributions reflects a nonintegrable system whereas a Poisson-like distribution
is indicative of an integrable system. Thus for example, nearest-neighbor incre-
ments of the energy spectrum of the circular quantum billiard gives a Poisson-like
histogram whereas the energy spectrum of chaotic billiards such as the stadium or
Sinai billiard give Wigner-like histogram (Bohigaset al., 1984; Liboff and Wong,
1998; McDonald and Kaufman, 1979).

The fact that spectral densities of chaotic systems reflect level repulsion leads
to physical intepretations of the prime number sequence. For example, studies of
nuclear resonances inU238 under neutron bombardment exhibit a level repulsion
related to the Wigner distribution (Gutzwiller, 1990). Studies addressing the ap-
plicability of prime numbers to physics have also suggested a relation between
prime-number sequences and the spectra of excited nuclei (Cipra, 1996; Michell
et al., 1991). This example was discussed by Liboff and Wong (1998).

The present description of the primes is reminiscent of exponential diver-
gence in chaotic dynamical systems. In this context, one may define a global
“quasientropy” of primesσ on the interval [2,a] by

σ = ln
[

max
x∈[2,a]

1(x)
]

(5a)

or, equivalently,

σ = ln

[
max

x∈[2,a]

[ p1(x)− p2(x)]

2

]
(5b)

This quasientropy increases monotonically as the system evolves in “time” (i.e., as
a increases). This increase corresponds to the increase in the maximum increment
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p1− p2 in the interval [2,a] with growth ofa and is consistent with the notion of
global disorder in the primes.

As has been demonstrated numerically for the interval (0, 1035) (Liboff and
Wong, 1998), the most prevalent interval between nearest-neighboring primes is
six. Over a subsequent interval, this value jumps to a larger interval, etc. (M. V.
Berry, personal communication, 1999). We use the notation1pm to label prevalent
nearest-neighbor increments andLm to label the relevant covering interval. A
corresponding form may be defined for the probability of finding1pm in a random
sampling of nearest-neighbor increments in the covering incrementLm. This form
is given by

P(1p) = exp (−|1p−1pm|), p ∈ Lm. (6)

The functionP satisfiesP ≤ 1, with equality holding when1p = 1pm.
Recall that the entropySof a system composed ofÄ states is given by Callen

(1963)

S= k lnÄ, (7)

wherek is a constant. It follows that the entropy of two systems with respective
state variablesÄ1 andÄ2 is given by

S= k ln (Ä1Ä2) (8a)

= k lnÄ1+ k lnÄ2 (8b)

= S1+ S2 ≥ 0. (8c)

In the case of global prime quasientropy, the number of statesÄ is represented by

Ä = max
x∈[2,a]

[ p1(x)− p2(x)]

2
(9)

Thus, prime quasientropy is an additive, positive function. Casting the present
situation in the language of state variables as in (9) also allows one to consider
the combined quasientropy of sets of two primesx, y, wherex ∈ {2, . . . , a} and
y ∈ {2, . . . , b}. The prime quasientropy of a system vanishes if and only if each
subsystem contains exactly one state. That is,Ä1 = Ä2 = 1 andS= 0.

σ̄ = ln

[
p1(x)− p2(x)

2

]
(10)

If p1 > p2+ 2, then ¯σ > 0 andσ̄ = 0 if and only if p1(x)− p2(x) = 2, which
is the case of “twin primes.” The open conjecture that there are infinitely many
twin primes is hence equivalent to the statement that the local prime quasientropy
vanishes infinitely often. Note also that for the degenerate casep1(x) = p2(x) = x,
(i.e.,1 = 0), σ̄ is not defined, as quasientropy is a positive entity.
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Returning to Fig. 2, we remark that one of its most striking features is its
resemblance to time-series of chaotic trajectories in classically chaotic systems
(see, for example, Murray and Dermott, 1999, pp. 305, 412). Moreover, as one
requires an exponentially long algorithm to factor numbers (and hence to deter-
mine if a number is prime) with a classical computer, the prime number sequence
is also consistent with the notion of chaos as “deterministic randomness” (Ford
and Ilg, 1992; Ford and Mantica, 1992). As a quantum computer can be used to
factor numbers (Shor, 1994), it can likewise be used to resolve the prime number
sequence. In this spirit, it seems that a quantum computer could also be used to re-
solve the exponential sensitivity of chaotic systems and hence to make long-time
predictions for systems that currently defy predictability after some “Liapunov
time” (Strogatz, 1994).

In sum, we presented a prime symmetry relation that is equivalent to
Goldbach’s conjecture. Numerical computations of this prime symmetry prop-
erty of integers were found to strongly resemble a chaotic sequence. The con-
cept of global and local “prime quasientropies” were defined. A local form of
this entity was found to be zero for the case that the prime increment has the
value 2. With this property, an equivalent statement to the twin prime conjecture
was given. Finally, we used the fact that the prime number sequence satisfies the
property of deterministic randomness to consider its utility for the field of quantum
computation.
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