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Networks give a powerful way to explore ecological complexity 
and have generated numerous insights into the understand-
ing of the structure, function, and dynamics of ecological 

systems1–7. Although ecological networks have become fundamen-
tal to ecological theory, they have for the most part been studied 
as disconnected from other networks, defined at a single point in 
space and time, and/or aggregated over multiple spatial locations 
and times. However, natural systems typically exhibit multiple fac-
ets of complexity, such as pollinators interacting with flowers in one 
season but not in another8 and the same plant species interacting 
with both pollinators and herbivores9,10. Despite the recognized 
need to generalize investigations of ‘monolayer’ networks10,11, there 
are challenges to doing so explicitly and within a unified framework. 
Specific examples include the detection of community structure in 
networks with edges representing different interaction types10,12 and 
the analyses of resource flows in temporal networks13.

Recent advances in the theory of ‘multilayer’ networks14,15 pro-
vide a promising approach. A mathematical framework for the 
analysis of multilayer networks has been developed only recently, 
although multilayer network structures, which encode differ-
ent types of interactions and/or entities as a single mathematical 
object, have a long history in subjects like sociology and engineer-
ing14,16. These recent advances, in concert with the growing avail-
ability of large ecological data sets, provide an exciting opportunity 
for their theoretical and practical integration into network ecology. 
In this Perspective, we define ecological multilayer networks, give 
examples of the kinds of insights that they can enable, and discuss 
challenges and future applications.

Ecological multilayer networks
Multilayer networks have two or more ‘layers’, which can represent 
different types of interactions, different communities of species, dif-
ferent points in time, and so on (Fig. 1). Dependencies across lay-
ers result from ecological processes that affect multiple layers. For 
example, dispersal of individuals between two patches affects the 
network structure of both patches17. A multilayer network consists 
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of (i) a set of ‘physical nodes’ representing entities (for example, 
species); (ii) a set of layers, which can include multiple ‘aspects’ of 
layering (for example, both time-dependence and multiple types of 
relationships); (iii) a set of ‘state nodes’, each of which corresponds 
to the manifestation of a given physical node on a specific layer; and 
(iv) a set of (weighted or unweighted) edges to connect the state 
nodes to each other in a pairwise fashion. The edge set includes 
both the familiar ‘intralayer’ edges and ‘interlayer’ ones, which con-
nect state nodes across layers. We provide a formal definition with a 
detailed example in Box 1.

Previous studies of ecological multilayer networks 
(Supplementary Table  1) have predominantly used multiple but 
independent networks of the same system, with interlayer edges for-
mally absent. In such cases, network diagnostics are calculated inde-
pendently for each layer. For instance, Olesen et al.8 reported—using 
a plant–pollinator system sampled over 12  years and represented 
with 12 individual networks—that connectance (that is, edge den-
sity) exhibits little variation over time despite significant turnover of 
species and interactions. By contrast, networks with explicit inter-
layer connectivity enable one to address questions about interac-
tions between the processes that operate within and between layers. 
To set the stage for ecological development, we identify the major 
types of layering that are relevant for ecological systems (Fig. 1 and 
Supplementary Table 1).

Layers defined across space or time. Early work on spatial and 
temporal networks focused primarily on how the composition of 
species changes in time (for example, across seasons) or over envi-
ronmental gradients, especially in food webs18–23. More recent stud-
ies have focused on studying spatial and temporal dissimilarities in 
species and interactions24–26. This variability has a natural represen-
tation using multilayer networks: one can define a monolayer net-
work at each point in space or time, and one can then use interlayer 
edges to connect each node to its counterparts in different layers. 
Layers in temporal multilayer networks are typically ordered (‘ordi-
nal coupling’; Fig. 1a), but the order of the layers is not important for 
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spatial networks (‘categorical coupling’; Fig. 1b). Another approach 
is to use a network of networks. For example, Gilarranz et  al.17 
defined a spatial network of plant–pollinator networks in which 
each community of plants and pollinators is a layer and in which 

interlayer edges represent species extinction and colonization. By 
considering a network of layers (see the inset of Fig. 1f), in which 
each layer is construed as a node, the authors demonstrated an asso-
ciation between the importance of communities (quantified with a 
measure of node betweenness centrality) and their architecture: 
communities with higher betweenness in the network of layers are 
also more nested, with potential consequences for the local stability 
of the communities27,28.

Layers defined by interaction type. Because the stability and func-
tion of ecological networks can depend on the way in which dif-
ferent interaction types are combined in communities, considering 
only a single interaction type can give an incomplete picture of 
system properties10–12,28–32. For instance, Bastolla et  al.29 illustrated 
that both the structure of mutualistic networks and competition for 
common resources can determine the number of co-existing species 
in a system. In another example, incorporating facilitative interac-
tions to a resource–consumer model affects total system biomass 
and hence the way that an ecosystem functions11,33. Finally, Rudolf 
and Lafferty34 showed that food webs that include edges represent-
ing ontogenetic shifts in addition to trophic interactions can change 
the robustness of systems to extinctions.

Ideally, one should simultaneously consider the structure of mul-
tiple interaction types, and this is achievable with multilayer net-
works. Some ecological networks have a common set of species (for 
example, a set of plants connected to their pollinators and herbi-
vores9). One can represent such data9,35,36 in a multilayer formalism 
using a ‘diagonally coupled’ multilayer network (Fig. 1c). Each eco-
logical interaction occurs in a different layer, and interlayer edges 
connect common species to their counterparts in other layers.

Another approach is to examine different interaction types 
between all species in a system using ‘node-aligned’ multilayer 
networks, in which all entities exist on all layers12,32,37,38 (Fig. 1d). 
Kéfi  et  al.12,32 used a highly resolved ecological community from 
the central intertidal coast of Chile to construct a multilayer net-
work in which each layer includes all species of the community but 
represents different interaction types: trophic, non-trophic positive 
(for example, refuge provisioning), and non-trophic negative (for 
example, predator interference). They found that the distribution 
of non-trophic edges throughout the food web was different from 
what would be expected by chance (by shuffling the non-trophic 
edges while fixing the trophic web), suggesting that there is a 
strong association between the different layers of the network32. 
Such structural patterns suggest the possibility of important 
dynamic constraints on the combined architecture of trophic and 
non-trophic interactions12,32.

Layers defined by different group identity. An intuitive way to 
describe and examine variation in individual-based interactions 
between populations of the same or different species is with an 
interconnected network in which each node appears only in one 
layer (Fig. 1e). In disease ecology, this representation can model 
interpopulation or interspecific disease transmission (when each 
layer is a population of a different species) at the same time that 
it considers underlying social networks39. For example, intralayer 
edges can represent the social structure of bat groups, and inter-
layer edges can represent transmission of a vector-borne disease 
between these populations. Moreover, interconnected networks 
are not limited to individual organisms. For example, one can 
define a multilayer network in which each layer represents a 
food web (with its own trophic interactions) and interlayer edges 
represent trophic interactions between species from different 
food webs40,41.

Layers defined by levels of organization. Biological processes at 
any given level of organization (for example, genes, individuals, 

Figure 1 | Multilayer networks in ecology. In these toy examples, layers are 
squares, solid black lines are intralayer interactions, and dashed blue arcs are 
interlayer edges. a, Temporal food webs. Nodes are connected to themselves 
across layers in an ordinal way (one layer follows another). b, Spatial food 
webs. Nodes are connected to themselves across all layers (via categorical 
interconnections). In panels a,b, it is permissible for species or intralayer 
interactions to appear in one layer but not in another. c, Networks with 
different interaction types that are connected through shared species. 
Layers are ‘diagonally coupled’, so interlayer edges occur only between 
shared species. d, One can represent different interaction types between 
species (for example, trophic and facilitative) using a node-aligned multiplex 
network, in which all nodes appear in all layers and each layer corresponds to 
a different interaction type. Nodes are connected to all of their counterparts 
across layers. e, Two interacting populations of different hosts. Nodes are 
individuals, and intralayer and interlayer edges are, respectively, social ties 
within and between populations. In this example, each node appears in 
one layer. f, A multilevel network representing a metacommunity. Layers 
are communities, and nodes are species. Intralayer edges are trophic 
interactions, and interlayer edges represent species dispersal between 
communities. A species can also disperse to a new community (represented 
by the yellow node). Communities are often associated with some space (for 
example, with different habitats or patches). In the inset, we illustrate that 
such networks are sometimes represented without explicit specification of 
interlayer edges. Interactions between species at a lower level automatically 
impose interactions between the communities.
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populations, etc.) can depend on processes at other levels42. For 
example, changes in species’ biomass can affect the stability of food 
webs in dynamical models based on allometry43. When the layers 
in a multilayer network represent different levels of organization, 
one has a ‘multilevel’ network, and interactions between nodes 
at a lower level automatically entail interactions at upper levels14. 
For example, a trophic interaction between two species from two 
different patches implies that there is an interaction between the 
patches. The simplest example is a two-level multilevel network, 
which can also be construed as a network of networks (Fig. 1f). In 
an analysis of a three-level multilevel network (population, com-
munity, and metacommunity), Scotti et  al.44 illustrated that the 
metacommunity was sensitive to population-level processes (for 
example, social dynamics) that cascaded through different levels. 
The identification of such dependencies is one of the values of a 
multilayer approach.

Analyses of ecological multilayer networks
To illustrate the kinds of insights that one can gain by taking a 
multilayer approach, we analyse examples of ecological multilayer 
networks in which layers are connected explicitly. We consider 
(i) maximum modularity, a structural property that is commonly 
studied in monolayer networks; and (ii) extinction cascades, a con-
sequence of structure that is common in robustness analyses of net-
works. We use both synthetic networks and networks constructed 
from empirical data.

Modularity. In monolayer networks, maximizing modularity can 
help quantify the extent to which a network is organized into groups 
(modules) of species that interact more strongly with each other 
than with other species45,46. To illustrate the distinction between 
studying a multilayer network and studying a collection of net-
works, we start with a synthetic example from Fontaine et al.10. In 

A ‘multilayer network’ is a quadruplet M = (VM,EM,V,L). Multilayer 
networks can have several ‘aspects’ of layering, and an ‘elementary 
layer’ is a single element in one aspect of layering. A ‘layer’ encom-
passes one choice of elementary layer for each type of aspect (see 
the figure for an example). We include such relationships using 
sequences L  =  {La}d

a=1 of sets La of elementary layers, where a 
indexes the d different aspects. Note that d = 0 for a monolayer 
network, d = 1 when there is one type of layering, and d = 2 when 
there are two types of layering (as in the figure). The set of entities 
(that is, physical nodes) is V. The set VM � V × L1 × ... × Ld of node-
layer tuples (that is, state nodes) encodes the manifestations of an 
entity v � V on a particular layer l � L̂ = L1 × ... × Ld.

The edge set EM � VM × VM, which includes both intralayer and 
interlayer edges, encodes the connections between pairs of state 
nodes. In a given layer, the intralayer edges encode connections 
of a specified type (for example, a certain type of interaction at a 

given point in time). A function w : EM →  ℝ  encodes weights on 
edges. A pair of node-layer tuples, (u,α) and (v,β), are ‘adjacent’ 
if and only if there is an edge between them. One places a 1 in 
the associated entry in an adjacency tensor (a generalization of a 
matrix that consists of a higher-dimensional array of numbers)14,16 
if and only if ((u,α),(v,β)) = 1. Otherwise, one places a 0 in the cor-
responding entry. One can ‘flatten’ such an adjacency tensor into a 
matrix, called a ‘supra-adjacency matrix’, with intralayer edges on 
the diagonal blocks and interlayer edges on the off-diagonal blocks 
(see Supplementary Fig. 1b).

Constraints on the above general definition restrict the struc-
ture of a multilayer network14. For example, ‘diagonal coupling’ (see 
Fig. 1c) is a constraint in which the only permissible type of inter-
layer edge is one between counterpart entities on different layers. See 
ref. 14 for additional definitions and important types of constraints 
on M that produce common types of multilayer networks.

Box 1 | Definition of multilayer networks.

Toy example of a multilayer network. a, The network has d = 2 aspects: (i) different types of ecological interactions (trophic interactions are in the blue 
layer (A), and host–parasite interactions are in the orange layer (B)); and (ii) space (X and Y represent different patches). The elementary-layer set for 
ecological interaction types is L1 = {A,B}, and the one for patches is L2 = {X,Y}. A layer consists of a tuple of elementary layers. For example, the layer 
(A,X) encodes trophic interactions in patch X. We show intralayer edges using solid arrows. We depict diagonal interlayer edges (for example, between 
node 2 on layer (A,X) and node 2 on layer (B,X)) with dotted lines; such edges encode the extent to which a parasitized species is more susceptible to 
predation than a non-parasitized one. Interlayer edges between patches represent dispersal; we show them with dashed arcs. b, The ‘supra-graph’ that 
corresponds to the multilayer network in panel a. Each node in this graph is a node-layer tuple (that is, a state node) in the corresponding multilayer 
network. See Supplementary Fig. 1 for an example of how to represent a similar multilayer network as a supra-adjacency matrix. Figure adapted with 
permission from ref. 14, Oxford Univ. Press.
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this example, a plant–herbivore network and a plant–root-parasite 
network (so there are two layers) interconnect via a common set of 
species, which are the plants (Fig. 2a). Interlayer edges connect each 
plant species to its counterpart in the other layer (Figs 1c and 2c,d) 
and represent the extent to which parasitism affects herbivory. Thus, 
each plant appears in both layers and has two instances correspond-
ing to different ‘state nodes’, which can be assigned to different 
modules. See Supplementary Note 1 for details on how we calculate 
multilayer modularity and assign state nodes to modules.

The propensity of a state node to belong to distinct modules 
depends on the relative weights of interlayer and intralayer edges47,48. 
Ecologically, it depends on the extent to which processes in one layer 
affect those in other layers. Consider the three conceptual scenarios 
that follow.

(1) When the interlayer edge weights are 0, the two networks 
in this example are independent entities. The instances of plants in 
different layers must belong to different modules, and modules are 
defined separately for herbivory and parasitism. Hence, herbivory 

has no effect on parasitism (and vice versa), and no perturbation 
can pass from one layer to another (Fig. 2b).

(2) At the other extreme, interlayer edge weights are much larger 
than intralayer ones. (They are infinite in the limiting case.) In this 
scenario, herbivory and parasitism always affect each other, imply-
ing that herbivory always renders plants more susceptible to para-
sites, and vice versa. (Note that it does not imply that each plant is 
always parasitized and preyed upon.) Consequently, each of the two 
instances of a plant always belongs to the same module. Note that 
modules can contain species from any of the three guilds and from 
either interaction type (Fig. 2d).

(3) Interlayer and intralayer edge weights have comparable val-
ues (that is, they are on similar scales). In this scenario, herbivory 
has some effect on the propensity of a plant to be parasitized, and 
vice versa. A plant can therefore interact strongly with a given set of 
herbivores in one layer and with a given set of parasites in another 
layer. Each of the two instances of a plant can belong to different 
modules. Modules can contain species from any of the three guilds 
and either interaction type, but the identity of the modules can be 
rather different from those in the previous two cases (Fig. 2c).

This example illustrates that defining community organization 
in multilayer networks depends strongly on the extent to which the 
ecological processes that operate in the different layers affect each 
other (in our example, the relationship between parasitism and her-
bivory). Another insight is that considering intermediate values of 
interlayer edge weights provides a possible means to identify the 
plants that can buffer perturbations: the two instances of such plants 
may be assigned to different modules (Fig. 2c).

One challenge is to quantify the weights of interlayer edges. In 
this example, one way to measure the extent to which herbivory and 
parasitism affect each other is to conduct a series of experiments in 
which one group of plants of a given species is exposed to herbi-
vores while a second group of the same species (control) is not. For 
example, if a plant exposed to a given herbivore species is infected 
by twice the number of parasites compared with the control plant, a 
reasonable choice for the value of the interlayer edge is 2.

Several studies outside of ecology have illustrated that modu-
lar (and other mesoscale) network structures can change over 
time47,49,50. In ecology, such network variation was considered in a 
study based on the analysis of multiple disconnected networks51. 
Time-dependent modular structure, including changes in module 
composition over time, can also be examined by studying a multi-
layer network. As an example, consider a network representing the 
infection of 22 small mammalian host species by 56 ectoparasite 
species during 6 consecutive summers in Siberia (1982–1987)52,53, 
yielding a multilayer network with 6 layers. We quantify intralayer 
edge weights as the prevalence of a given parasite on a given host. 
Interlayer edges connect instances of the same species across con-
secutive time points (Fig. 1a), representing the relative changes in 
abundance between two consecutive summers. For example, if a 
host has an abundance of 10 in one year and 5 in the next, then the 
value of the interlayer edge is 5/10 = 0.5 (Supplementary Note 3). 
The idea behind this way of determining interlayer edge values is 
that temporal fluctuations in abundance affect the availability of 
hosts to parasites and parasite pressure on hosts, and these factors 
in turn affect host–parasite interactions at any given time. (That is, 
they affect the intralayer edges; see equation (3) in Supplementary 
Note 3.)

In a temporal network, a given species can interact strongly with 
some species at one time and with other species at other times. 
Consequently, each state node can belong to a different module at 
different times, and modules can vary in size over time47,48 (Fig. 3). 
We define ‘host adjustability’ and ‘parasite adjustability’ as the pro-
portion of hosts and parasites, respectively, that change module 
affiliation at least once. We observe non-negligible values of this 
measure: about 47% of the hosts and about 35% of the parasites 

ω = 1,000ω = 0.5

ω = 0
a b

dc

Figure 2 | Modularity maximization in a diagonally coupled multilayer 
network. a, An example network (from ref. 10) that does not have interlayer 
edges. b–d, Network with two layers, which interconnect via a common set 
of nodes (indicated with thick borders in the central columns). Interlayer 
edges (in blue) connect the two instances of a node. In panels b–d, we test 
three different scenarios. In each panel, nodes of the same colour belong 
to the same module. We construe the left set of nodes as the root-parasite 
guild, the middle set with thick borders as plants, and the right set as 
herbivores. For our calculations, we use ω = 1,000 to approximate interlayer 
edge weights of ∞. In panel b we obtain a maximum modularity of 
Q–B ≈ 0.667, each layer has three modules, and no plant state nodes appear 
in the same module. In panel c, Q–B ≈ 0.651 and the network is partitioned 
into a mean of n ≈ 3.04 modules. On average, 4.6 (that is, approximately 
51%) of the plants are assigned to more than one module. In panel d, 
Q–B ≈ 0.99, we obtain a mean of n–B ≈ 3.38 modules, and state nodes of each 
plant belong exclusively to a single module. See Supplementary Notes 1 
and 2 for the details of our calculations. Panel a adapted with permission 
from ref. 10, Wiley-Blackwell.
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change their module affiliation at least once, and a module’s size also 
changes over time (Supplementary Figs 2,3). One interpretation of 
this pattern is that the same species is functionally different at dif-
ferent times. For example, one ecological characteristic of a host is 
the extent to which it supports populations of different parasite spe-
cies in a community. Fluctuations in the abundance of different host 
species (encoded in the interlayer edges) can lead to fluctuations in 
the availability of hosts to parasites. Additionally, there are tempo-
ral changes in interaction patterns of other species in the network 
(encoded in the intralayer edges). These mechanisms lead to a time-
dependent distribution of parasites in hosts, in which the same host 
species supports populations of different parasites at different times. 
This variation is expressed as the assignment of the same host species 
to different modules in different layers.

Constructing and analysing a temporal network also allows one 
to consider hypotheses on the effect of intralayer and/or interlayer 
connectivity on community structure. This approach dominates 
studies of monolayer ecological networks. In such studies, one often 
compares the structure of an observed network to those of networks 
in an ensemble that has been generated from shuffling the network 
in particular ways4,54 (or to networks constructed using a generative 
random-graph model45,46). The added value of the generalization 
of this approach to multilayer networks is that it allows one to test 
hypotheses that relate directly to the temporal structure of a com-
munity. For example, one can shuffle the interlayer edges between 
each pair of consecutive layers (separately for hosts and parasites) to 
test the hypothesis that the modular structure is a result of random 
temporal changes in species abundances (Supplementary Note 3). 
The observed network has higher maximum modularity than the 
shuffled networks (Q–B

observed ≈ 0.55 versus Q–B
shuffled ≈ 0.21; P < 0.001). 

Additionally, it has about 6 (respectively, 15) times fewer modules 
than in networks in which the interlayer host edges (respectively, 
parasite edges) have been shuffled. All hosts and parasites change 
modules at least once in the shuffled networks. These observations 
lead us to reject the above hypothesis. One can also hypothesize that 
the modular structure of the community is (i) a result of random 
associations between hosts and parasites in any given layer and 
(ii) independent of the temporal order in which hosts and parasites 
are observed (Supplementary Note 3). We reject these hypotheses as 
well (Supplementary Tables 4,5). The rejection of the three hypoth-
eses improves understanding of the functional groupings of species 
by demonstrating that host–parasite interactions are structured 
non-randomly in time and depend both on how species interact in 
a given time period and on their persistence in time (as measured by 
changes in species abundance). Consequently, altering host–para-
site interactions or the survival probability of species (for example, 
by applying parasite control programs) can strongly affect temporal 
community organization.

Any assessment of such questions by studying each layer sepa-
rately would necessarily be incomplete. Modules in individual layers 
of multilayer networks without interlayer edges are dis connected 
from (and thus independent of) each other. Hence, one cannot 
directly address the effect of interlayer phenomena on modular 
structures (Supplementary Notes 1,3). In the host–parasite network 
without interlayer edges, species assignment to modules in any 
given layer contains, on average, only about 35% of the information 
on species assignment to modules in the interconnected temporal 
network (Supplementary Note 3.3).

As an alternative to using a multilayer network, ecologists can 
aggregate species and interactions (for example, across space or 
time). Aggregation may be necessary when species interactions 
(intralayer edges) are sampled sparsely in time. However, data 
aggregation entails a set of (usually implicit) assumptions14,55, and 
different aggregation methods can lead to qualitatively different con-
clusions. By calculating ‘reducibility’56 (Supplementary Table  2) in 
the host–parasite network, one can quantify whether some layers 

contain overlapping information and can therefore be aggregated. 
We find that all 6 layers are necessary to describe the complexity of 
the system. Consistent with this finding, the affiliation of species to 
modules in the aggregated network provides only about 52% of the 
information on their affiliation to modules in the multilayer network 
(Supplementary Note 3.3).

Taken together, our computations illustrate that multilayer net-
works are natural for asking questions about time-dependent phe-
nomena13,47–49. Temporal variations in the size and composition of 

0

1

2

3

4

M
od

ul
e 

siz
e

Layer
1 2 3 1 2 3 1 2 3

a

Time 1

Time 2

Time 3
b

2

3

4

5

6
5

6

1

2

1 4

3
5

6

2

1 4

3

c

6

5

4

3

2

1

Sp
ec

ie
s

Layers

Figure 3 | A toy example of temporal modularity maximization. The figure 
illustrates that species can change their module affiliation across time 
points. We represent six species with numbers and indicate three different 
modules using different colours. a, The toy temporal network has three 
layers, and each layer has a bipartite structure. All species occur in all 
layers. For clarity, we represent interlayer edges using blue dashed lines for 
two species. b, Modules can change in size (that is, the number of species 
that they include) across layers. For example, the green module does not 
exist at time point 3, and the purple module does not exist at time point 1. 
c, Representation of the module affiliation of each species in different 
layers. For example, species 1 does not change modules, whereas each of 
the other changes switches once.
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modules may be relevant to phenomena such as species coevolu-
tion, coexistence, and community stability4,10,57. For instance, hosts 
assigned to more than one module may provide important bridges 
for transmission of ectoparasites across years and/or groups of 
strongly connected hosts. These hosts can change their ecological 
function in a system53, and such flexibility in community structure 
may contribute to system robustness in the face of perturbations.

Robustness to perturbations. Network structure can affect the sta-
bility of ecological communities7,27,28. To illustrate how multilayer 
networks can contribute to studies of stability, we use a network 
with two layers, plant–flower-visitors and plant–leaf-miner parasi-
toids35, that are interconnected via the same set of plants (Fig. 1c, 
Supplementary Note 4). We investigate the patterns of parasitoid 
extinctions in two scenarios: (i) direct secondary extinctions due 
to plant removal (that is, a monolayer scenario) and (ii) tertiary 
extinctions due to the removal of pollinators, which causes plant 
secondary extinctions that, in turn, result in parasitoid tertiary 
extinctions (that is, a multilayer scenario) (Supplementary Table 6). 
A plant (respectively, a parasitoid) goes extinct when it becomes 
completely disconnected from flower visitors (respectively, flowers). 
We find that parasitoid extinctions occur more slowly in the multi-
layer network than when separately examining the plant–parasitoid 
layer as a monolayer network. Additionally, allowing plant extinc-
tions in addition to flower visitors extinctions in scenario (ii) leads 
to nontrivial extinction patterns (Fig. 4). Therefore, considering the 
multilayer nature of the network changes the qualitative conclu-
sions about the robustness of parasitoids to extinctions. This kind of 
analysis can be extended in many ways (see Supplementary Note 4) 

and is valuable for understanding the interplay between different 
interaction types and their effect on system robustness.

Limitations and challenges
Whether a multilayer approach is more appropriate than a mono-
layer one obviously depends on the specific research question. 
Collecting the necessary data for questions requiring multilayer 
networks can be resource-intensive, as the data needs to be gath-
ered from multiple places, at multiple times, and/or with different 
observational methods to capture different types of interactions. 
Measuring interlayer edge weights may require additional sampling 
efforts that are different from those used for collecting data on intra-
layer edges. Fortunately, data sets are already becoming available 
(Supplementary Table 1), but they are scattered in the literature and 
need to be curated.

One challenge is to define the meaning (and measure the values) 
of interlayer edges, and the choice of definition can itself play a sig-
nificant role in analyses. For example, interlayer edges that connect 
species in two different communities may relate to species dispersal 
or changes in a species’ state (for example, abundance). Furthermore, 
intralayer and interlayer edges can represent ecological processes at 
different scales, and it is not always clear how to define the relative 
weight(s) of interlayer edges with respect to intralayer edges. How 
to choose appropriate values for interlayer edges remains a topic of 
active research in the study of multilayer networks. For some appli-
cations (for example, transportation), there already exist principled 
ways to choose values. In ecology, this issue is uncharted territory. 
Where possible, it is best to measure interlayer edges directly58. An 
ad hoc approach, which has been very insightful for several applica-
tions outside of ecology48–50,59, is to systematically sweep through a 
set of values. For example, one can ask how the relative relationship 
between two interaction types affects the dynamics of an ecological 
system. For this theoretical question, one would measure a quan-
tity of interest (for example, some network diagnostic) for different 
interlayer edge weights. We also note that different types of interac-
tions can also involve different ‘currencies’. For example, pollination 
is measured differently than dispersal, and it is important to consider 
discrepancies in the scales of the two edge types.

Just as prior advances in network ecology2,4,60 used (and adapted) 
methods from monolayer network theory61, one can borrow and 
adapt techniques from applications of multilayer networks to other 
disciplines14,15 (Supplementary Table  2). It is important, however, 
to determine which existing methods are best suited for ecological 
applications and to develop methods and diagnostics with ecology 
specifically in mind. These methods include multilayer versions of 
common network diagnostics (for example, vulnerability and gen-
erality), null models to test hypotheses about network structure59,62, 
and mathematical models for dynamical processes. Availability of 
software57,63,64 has played an important role in the accessibility of 
monolayer network analyses, and it is important for the same to 
become the norm for the analysis and visualization of multilayer 
networks (by developing well-described and easy-to-use tools). 
Several software packages are already available (Supplementary 
Table 3), although these are not yet as mature as those for monolayer 
ecological networks.

Future directions and applications
We have argued that multilayer networks provide a versatile and 
powerful framework for investigations of community ecology. This 
is also true for biogeography, where networks that include species 
dispersal or colonization/extinction dynamics as interlayer edges 
can help one understand how spatial dynamics affect community 
structure and stability17. A multilayer formalism can address not 
only correlations between geographic distance and beta diver-
sity of species and interactions (which to date have been studied 
using multiple disconnected networks; see, for example, ref. 26), but 
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Figure 4 | Network robustness to species removal in a multilayer network 
of plant–flower-visitors and plant–leaf-miner parasitoids. a,b, The 
proportion of surviving (a) leaf-miner parasitoids and (b) plants as a 
function of the proportion of species removed in three scenarios. Scenario 1 
simulates a monolayer case, where we remove plants from the plant–leaf-
miner parasitoid layer (orange curves). This results in a linear decrease in 
the proportion of plants surviving (in panel b). In scenario 2, we remove 
flower visitors and quantify secondary extinctions (the proportion of 
surviving species) in plants and concomitant tertiary extinctions of leaf-
miner parasitoids (brown curves). Scenario 3 is the same as 2, but with 
additional plant removal (which is independent of the secondary plant 
extinctions) with probability 0.3 (purple curves) or 0.8 (green curves). We 
detail the algorithms for each of the removal scenarios in Supplementary 
Table 6. There is an overlap between the curves for scenarios 2 and 3 with 
low probability, so we separated them slightly for clarity. In panel a, we note 
a ‘transition’ in the proportion of species that survive in scenario 3. Although 
discerning whether this is a general feature of extinction processes in 
ecological multilayer networks requires further research, a plausible 
explanation is that when there is a high probability of random independent 
extinctions of plants, the system reaches a threshold in which too many 
plants have become extinct and thus can no longer sustain the community.
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also the mechanisms behind such correlations. Another open area 
concerns the effect of space on the stability of ecological commu-
nities65. One could use a multilayer network that explicitly incor-
porates different instances of the same species at different locations 
instead of a matrix of interactions for a single community in space. 
Habitat alteration is a growing concern, and it would be interesting 
to explore the stability of ecological networks with different spatial 
connectivity patterns (encoded in the interlayer edges).

The framework of ecological multilayer networks is new, and it 
would benefit from the development of theoretical models to help 
provide a basis for comparisons with data. The framework provides a 
way to consider, for example, multiple interaction types when mod-
elling the dynamics of interacting populations, which are typically 
modelled in networks with a single interaction type29,31. Interlayer 
edges in such models encode coupling between different dynamical 
processes and provide a way to describe the relative importances 
of different interaction types in processes such as species’ popula-
tion dynamics. For example, a key question in disease ecology is 
assessing the roles that different types of host–parasite interactions 
play in disease transmission (for example, the contact patterns of 
individuals66 or the trophic web within which parasites and hosts are 
embedded67). Using a multilayer network with three layers—contact 
network, trophic web, and host–vector interactions—Stella et al.38 
modelled the relative importance of vectors for diseases that can be 
transmitted both via trophic interactions and via vectors by vary-
ing the coupling between the trophic and the vector layers. They 
reported that transmission that spreads only on the trophic layer 
hinders the infection of host populations.

Multilayer networks can also advance metacommunity theory, 
where interlayer edges provide a way to develop spatially-explicit 
models to investigate how species move between local communi-
ties, thereby creating spatial structure in the regional species’ pool. 
For example, one can study spatial structure in resource and species 
flow in interconnected food webs, such as those of lakes or ponds 
that are interconnected via common sets of animals. In such exam-
ples, interlayer edge values can represent dispersal17 or biomass flows 
between patches. One can also use a temporal food web to explore 
bioenergetic flows across food webs—an area that remains largely 
unexplored13. Layers can represent temporal instances of a given food 
web, and interlayer edges can represent changes in species biomass 
with time.

Another key question in food-web theory is the effect of parasit-
ism on food-web structure and stability67–69. For example, parasit-
ism may have different effects than trophic interactions on a given 
species. Parasitized hosts can be more susceptible to predation, but 
it is unclear how the structure of host–parasite networks affects the 
trophic interactions between hosts. One way to model such systems 
is by coupling a host–parasite network and a food web (Box 1 and 
Supplementary Fig. 1). Multilayer networks also provide a possible 
approach for analysing disease transmission when there are multiple 
hosts and parasites39,70, which to date has been difficult to study.

In animal behaviour, one can explore networks in which intra-
layer edges between individuals represent reproduction and inter-
layer edges represent movement (and hence gene flow) to study 
genetic relatedness between individuals as a function of both dis-
persal and intra-group social behaviour. In movement ecology, 
multilayer networks can help model relationships between a net-
work of social interactions and a network of movement patterns to 
examine moving decisions. Understanding movement has conse-
quences for conservation biology, where one can represent differ-
ent connectivity scenarios using a multilayer network in which each 
layer describes the movement patterns of a different species. Such 
models should be helpful for informing decision-makers on which 
land-use designs are best-suited for the movement of a diverse set 
of species. Multilayer networks can also help improve the identifi-
cation of keystone species. A simple notion of a keystone species 

arises from calculating a ‘centrality’ measure of species in a food web 
(where keystone species have the highest values of that centrality)71, 
but more nuanced definitions of centralities—and hence of keystone 
species—can incorporate participation in several interaction types58, 
as well as temporal and spatial dependencies.

Finally, multilayer networks can be used to study reciprocal 
effects between ecological and non-ecological systems. For example, 
Baggio et al.72 represented three indigenous Alaskan communities 
using a multiplex network in which each layer is a unique combina-
tion of ecological resources and social relations. They reported that 
changes to the social relations have a larger impact on the robust-
ness of the networks (and hence on the human communities) than 
depletion of ecological resources (for example, removal of marine 
species that are used as food).

Conclusions
The simultaneous expansion in the availability of ecological data 
and the tools to analyse multilayer networks14,15,70,73–75 provides a 
timely and valuable opportunity for ecologists to explore the multi-
layer nature of ecological networks. The strength of a multilayer 
approach lies in its ability to formulate and analyse complex sys-
tems in a way that explicitly incorporates processes operating both 
within and across layers (as well as interactions between these pro-
cesses). Formulating systems as multilayer networks also allows 
one to address questions that are not feasible using monolayer net-
works. Working within the same framework facilitates comparisons 
of results across ecological systems and network types because of 
consistency in technical terms and methodology. A unified frame-
work should also further encourage collaboration with scientists 
from other disciplines. Other fields of study, in turn, will benefit 
from methodology and theory developed for ecological multilayer 
networks, as has been the case for monolayer ecological networks76. 
In closing, the integration of multilayer network theory into ecology 
offers novel perspectives, with the potential to provide new theo-
retical and empirical insights, into the architecture and dynamics of 
ecological systems.

Data availability. The raw data for the example temporal network 
are in Supplementary Data 1 and deposited in Figshare (https://
dx.doi.org/10.6084/m9.figshare.3472646.v2). The code for general 
procedures to prepare data, manipulate networks, post-process 
modularity-maximization calculations, and analyse network 
robustness are written in R, and they are available at https://dx.doi.
org/10.6084/m9.figshare.3472664.v1. The code for examination of 
modular structure is written in MATLAB and available at https://
dx.doi.org/10.6084/m9.figshare.3472679.v1.
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Networks are a powerful way to explore ecological complexity 
and have generated numerous insights into the understand-
ing of the structure, function and dynamics of ecological 

systems1–7. Although ecological networks have become fundamen-
tal to ecological theory, they have for the most part been studied 
as disconnected from other networks, defined at a single point in 
space and time, and/or aggregated over multiple spatial locations 
and times. However, natural systems typically exhibit multiple fac-
ets of complexity, such as pollinators interacting with flowers in one 
season but not in another8 and the same plant species interacting 
with both pollinators and herbivores9,10. Despite the recognized 
need to extend the investigation of monolayer networks10,11, there 
are challenges to doing so explicitly and within a unified framework. 
Specific examples include the detection of community structure in 
networks with edges representing different interaction types10,12 and 
the analyses of resource flow in temporal networks13.

Recent advances in the theory of ‘multilayer networks’14,15 pro-
vide a promising approach. A mathematical framework for the 
analysis of multilayer networks has been developed only recently, 
although multilayer network structures, which encode different 
types of interactions and/or entities as a single mathematical object, 
have a long history in subjects like sociology and engineering16,14. 
The recent advances, in concert with the growing availability of 
large ecological data sets, provide an exciting opportunity for their 
theoretical and practical integration into network ecology. In this 
Perspective, we define ecological multilayer networks, give exam-
ples of the kinds of insights they can enable, and discuss challenges 
and future applications.

Ecological multilayer networks
Multilayer networks encompass two or more ‘layers’, which can rep-
resent different types of interactions, different communities of spe-
cies, different points in time, and so on (Fig. 1). Dependency across 
layers results from ecological processes that affect multiple layers. 
For example, dispersal of individuals between two patches affects 
the network structure of both patches17. A multilayer network 

The multilayer nature of ecological networks
Shai Pilosof1*, Mason A. Porter2,3,4, Mercedes Pascual1,5 and Sonia Kéfi6

Although networks provide a powerful approach to study a large variety of ecological systems, their formulation does not typ-
ically account for multiple interaction types, interactions that vary in space and time, and interconnected systems such as 
networks of networks. The emergent field of ‘multilayer networks’ provides a natural framework for extending analyses of eco-
logical systems to include such multiple layers of complexity, as it specifically allows one to differentiate and model ‘intralayer’ 
and ‘interlayer’ connectivity. The framework provides a set of concepts and tools that can be adapted and applied to ecology, 
facilitating research on high-dimensional, heterogeneous systems in nature. Here, we formally define ecological multilayer 
networks based on a review of previous, related approaches; illustrate their application and potential with analyses of existing 
data; and discuss limitations, challenges, and future applications. The integration of multilayer network theory into ecology 
offers largely untapped potential to further address ecological complexity, to ultimately provide new theoretical and empirical 
insights into the architecture and dynamics of ecological systems.

consists of (i) a set of physical nodes representing entities (for exam-
ple, species); (ii) a set of layers, which can include multiple aspects 
of layering (for example, both time-dependence and multiple types 
of relationships); (iii) a set of state nodes, each of which corresponds 
to the manifestation of a given physical node on a specific layer; and 
(iv) a set of (weighted or unweighted) edges to connect the state 
nodes to each other in a pairwise fashion. The edge set includes both 
the familiar intralayer edges and the interlayer ones, which connect 
state nodes across layers. We provide a formal definition with a 
detailed example in Box 1.

Previous studies of ecological multilayer networks 
(Supplementary Table  1) have predominantly used multiple but 
independent networks of the same system, with interlayer edges 
formally absent. In such cases, network diagnostics are calculated 
independently for each layer. For instance, Olesen et al.8 reported—
using a plant–pollinator system sampled over 12 years and repre-
sented with 12 individual networks—that connectance (that is, edge 
density) exhibits little variation over time despite significant turno-
ver of species and interactions. By contrast, networks with explicit 
interlayer connectivity enable one to address questions about inter-
actions between the processes that operate within and among layers. 
To set the stage for ecological development, we identify the major 
types of layering that are relevant for ecological systems (Fig. 1 and 
Supplementary Table 1).

Layers defined across space or time. Early work on spatial and 
temporal networks focused primarily on how the composition of 
species changes in time (for example, across seasons) or over envi-
ronmental gradients, especially in food webs18–23. More recent stud-
ies have focused on studying spatial and temporal dissimilarities in 
species and interactions24–26. This variability finds a natural repre-
sentation in multilayer networks: one can define a monolayer net-
work at each point in space or time, and then use interlayer edges 
to connect each node to its counterparts in different layers. Layers 
in temporal multilayer networks are typically ordered (‘ordinal cou-
pling’; Fig. 1a), but the order of the layers is not important for spatial 
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a

b
Host–parasiteFood web

Supplementary Figure 1: An ecological multilayer network with
two interaction types. a, The network depicts (light blue layer) an
aquatic food web and (light orange layer) a host–parasite network. Species
that occur in both layers are interconnected with dashed blue interlayer
edges. Note that one parasite appears in both layers and can therefore play
a role as a prey and/or a parasite for the pelican. b, A supra-adjacency
representation of the network in panel a. Coloured blocks correspond to the
network layers. We show intralayer and interlayer edges, respectively, with
black and blue matrix cells. Species that appear in two layers also appear
twice in the matrix. These are different state nodes of the same physical
node.
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Supplementary Figure 2: Yearly variation in module size. We ex-
amine modular structure in a network that represents the infection of small
mammalian hosts by fleas and mites. Because species can switch modules
across years (i.e., across layers), we observe variation in module size. For
example, module 1 maintains a relatively large size across years, whereas
module 4 exists only in four of the six layers. This figure depicts a particu-
lar example among 100 instantiations of the generalized Louvain algorithm1

for multilayer modularity maximization of the host–parasite network). This
instantiation is the one with the maximum value of the maximum modular-
ity. See Supplementary Note 1 for details about our calculations.

3

© 2017 Macmillan Publishers Limited, part of Springer Nature. All rights reserved.

NATURE ECOLOGY & EVOLUTION | DOI: 10.1038/s41559-017-0101 | www.nature.com/natecolevol 3

SUPPLEMENTARY INFORMATION



Module

Ho
st
s

Pa
ra
si
te
s

Pa
ra
si
te
s

Supplementary Figure 3: Module affiliation of species across years
for the host–parasite network examined in the main text. We rep-
resent different modules using different colours. We show community assign-
ments for a particular example (the one with the highest value of maximum
modularity QB) among 100 instantiations of applying the generalized Lou-
vain algorithm1 for multilayer modularity maximization. The figure illus-
trates that species can change their module affiliation across years. Missing
data points indicate that a species is not present in a particular year.
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Supplementary Figure 4: Distribution of the values of interlayer
edges of a host–parasite temporal network. We calculate interlayer
edge weights as the relative changes in abundance of a species during the
time window t → t+ 1. Each histogram gives the distribution of values for
a given time window of the network (there are 6 layers and hence 5 time
windows). See the main text and Supplementary Note 3 for details on the
calculation of interlayer edge weights.
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Supplementary Figure 5: Network robustness to species re-
moval for the plant–flower-visitors and plant–leaf-miner para-
sitoids diagonally-coupled multilayer network. The curves indicate
the proportion of (blue curve) surviving plants and (orange curve) surviv-
ing plants and parasitoids as a function of the proportion of flower visitors
that have been removed. In each scenario, we remove flower visitors in the
same order, which is by increasing intralayer node degree (that is, we first
remove the lowest-degree flower visitors, and we proceed accordingly). See
Supplementary Note 4 for more details.
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Supplementary Figure 6: Reducibility of a host–parasite tempo-
ral network. a, Following De Domenico et al.2, we compute the Jensen–
Shannon distance Djs between each pair of layers as a proxy for layer re-
dundancy. b, We perform hierarchical clustering on the resulting distance
matrix. The output is a dendrogram whose leaves represent the initial layers
and whose internal nodes indicate layer merging. c, At each step, we aggre-
gate the clustered layers corresponding to the smallest value of Djs, and we
quantify the quality of the resulting network in terms of distinguishibility
from the aggregated graph (i.e., a graph which includes all physical nodes
and in which edges are the sum of intralayer edges across all layers) by a
global quality function q. (See De Domenico et al.2 for details on how to
calculate q.) An ‘optimal’ partition (which need not be unique) is one for
which q is maximal. In this example, we obtain maximal q from the partition
(indicated by the dashed red line) in which the 6 layers are separate.
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Supplementary Table 3: Available software for analyzing multilayer
networks

Software Interface Uses Link

MuxViz70

Graphical user
interface (but
may require
some knowl-
edge of R and
Octave)

Visualization, interlayer cor-
relations, network centrality,
reducibility, modularity, node
and edge statistics, motifs.

http://muxviz.net

Multilayer
Networks
Library

Python
Provides data structures for
multilayer networks and basic
methods for analysing them.

http://www.plexmath.
eu/wp-content/
uploads/2013/11/
multilayer-networks-library_
html_documentation/

GenLouvain1 Matlab

Code for examining network
community structure in mul-
tilayer networks with diagonal
coupling.

http://netwiki.amath.unc.
edu/GenLouvain/GenLouvain;
in the SI, we include code
(modified from the original)
for the case in which layers
have a bipartite structure.

LocalCommunityMatlab
Local community-detection
method used in ref.60.

https://github.com/LJeub/
LocalCommunities

Infomap61
Stand-alone
web interface

Community detection using
flow-based ideas.

http://www.mapequation.
org/code.html

Betalink
package23,71

R
Quantify dissimilarity between
ecological networks.

https://github.com/
PoisotLab/betalink

timeordered
package22,72

R Analyze temporal networks.
https://cran.r-project.
org/web/packages/
timeordered/index.html

Multiplex
package73

R

Algebraic procedures for the
analysis of multiplex networks.
Create and manipulate multi-
variate network data with dif-
ferent formats.

http://cran.r-project.org/
web/packages/multiplex/
index.html

We specify websites to download the software. When relevant, we also in-
clude citations to associated references.
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Supplementary Table 4: Community structure of the host–parasite
temporal network for three examples of interlayer edge weights.

Ecological
Community

network type
Interlayer
edge weights

QB

Number
of Mod-
ules (n)

Host adjustability,
parasite adjustabil-
ity

Layer 1 monolayer 0 0.46 6.47 N/A
Layer 2 monolayer 0 0.43 5.63 N/A
Layer 3 monolayer 0 0.40 6.22 N/A
Layer 4 monolayer 0 0.49 4.16 N/A
Layer 5 monolayer 0 0.35 4.49 N/A
Layer 6 monolayer 0 0.56 5.88 N/A
Whole network multilayer 1000 0.99 2.96 0 , 0

Whole network multilayer
Relative
change in
abundance

0.55 6.30 0.474, 0.351

Each of the values of maximized modularity (QB), the number of modules
(n), and the fraction of hosts and parasites that are assigned to more than
one module (i.e., host and parasite ‘adjustability’, respectively) is a mean
over 100 instantiations of the generalized Louvain algorithm1,59. We adjust
the null model in the multilayer modularity objective function from Mucha
et al.59 to make it suitable for layers with a bipartite structure. In mono-
layer networks, it is not possible to compare modules across layers without
resorting to an ad hoc approach, so we place a value of N/A in the table.
We use the interlayer edge weight ω = 1000 for our calculations near the
extreme case ω = ∞.

11

© 2017 Macmillan Publishers Limited, part of Springer Nature. All rights reserved.

NATURE ECOLOGY & EVOLUTION | DOI: 10.1038/s41559-017-0101 | www.nature.com/natecolevol 11

SUPPLEMENTARY INFORMATION



S
u
p
p
le
m
en

ta
ry

T
a
b
le

5
:
C
om

p
ar
is
on

of
th
e
ob

se
rv
ed

h
os
t–
p
ar
as
it
e
n
et
w
or
k
w
it
h
w
ei
gh

te
d
in
tr
al
ay
er

an
d
in
te
rl
ay
er

ed
ge
s

to
th
re
e
nu

ll
m
od

el
s.

S
h
u
ffl

e
d

Q
B

N
u
m
b
e
r

o
f

m
o
d
u
le
s
( n

)
H
o
st

a
d
ju

st
a
b
il
it
y

p
a
ra

si
te

a
d
ju

st
a
b
il
-

it
y

N
on

e
(o
b
se
rv
ed

)
0.
55

6.
3

0.
47

4
0.
35

1
In
tr
al
ay

er
ed

ge
s

0.
41

(P
<

0
.0
01

)
4.
9
(P

<
0.
00

1)
0.
37

2
(P

<
0.
00

1)
0.
44

8
(P

<
0.
00

1)

In
te
rl
ay

er
ed

ge
s:

h
os
ts

0.
21

(P
<

0
.0
01

)
38

.6
(P

<
0.
00

1)
1
(P

<
0.
00

1)
0.
92

8
(P

<
0.
00

1)

In
te
rl
ay

er
ed

ge
s:

p
ar
as
it
es

0.
21

(P
<

0
.0
01

)
94

.6
(P

<
0.
00

1)
1
(P

<
0.
00

1
)

0.
92

8
(P

<
0.
00

1)

P
er
m
u
te
d
or
d
er

of
la
ye

rs
0.
55

(P
≈

0.
52

)
17

.1
(P

<
0
.0
01

)
0.
44

6
(P

<
0
.0
01

)
0.
39

5
(P

<
0.
00

1)

E
ac
h
of

th
e
va
lu
es

of
m
ax

im
iz
ed

m
od

u
la
ri
ty

(Q
B
),

th
e
nu

m
b
er

of
m
od

u
le
s
(n
),

an
d
th
e
fr
ac
ti
on

of
h
os
ts

an
d
p
ar
as
it
es

th
at

ar
e
as
si
gn

ed
to

m
or
e
th
an

on
e
m
od

u
le

(i
.e
.,
h
os
t
an

d
p
ar
as
it
e
ad

ju
st
ab

il
it
y,

re
sp
ec
ti
ve
ly
)
is
a
m
ea
n
ov
er

10
0
in
st
an

ti
at
io
n
s
of

th
e
ge
n
er
al
iz
ed

L
ou

va
in

al
go

ri
th
m

1,
59
.
W
e
ad

ju
st

th
e
nu

ll
m
od

el
in

th
e
m
u
lt
il
ay
er

m
od

u
la
ri
ty

ob
je
ct
iv
e
fu
n
ct
io
n
fr
om

M
u
ch
a

et
al
.5
9
to

m
ak
e
it

su
it
ab

le
fo
r
la
ye
rs

w
it
h
a
b
ip
ar
ti
te

st
ru
ct
u
re
.
W
e
ca
lc
u
la
te

th
e
p
-v
al
u
es

P
(i
n
p
ar
en
th
es
es
)
by

co
m
p
ar
in
g

th
e
m
ea
n
of

10
0
in
st
an

ti
at
io
n
s
of

th
e
ob

se
rv
ed

n
et
w
or
k
to

10
0
sh
u
ffl
ed

n
et
w
or
ks

(s
ee

S
u
p
p
le
m
en
ta
ry

N
ot
e
3
fo
r
d
et
ai
ls

on
h
ow

w
e
sh
u
ffl
ed

n
et
w
or
ks
).

12

© 2017 Macmillan Publishers Limited, part of Springer Nature. All rights reserved.

NATURE ECOLOGY & EVOLUTION | DOI: 10.1038/s41559-017-0101 | www.nature.com/natecolevol 12

SUPPLEMENTARY INFORMATION



Supplementary Table 6: Algorithms for examining network robustness
to species extinctions.

Removal scenario Algorithm Ecological reason-
ing/comments

Monolayer: Remove
plants and follow par-
asitoids’ secondary ex-
tinctions.

1. Remove the plant with the lowest de-
gree in the plant–parasitoid layer (in case
of ties we order extinctions by species
name). 2. Remove all intralayer edges
of the plant. 3. Remove any parasitoids
in the layer that remain disconnected (i.e.,
have degree 0). 4. Record the proportion
of surviving parasitoids in the layer as a
function of the proportion of plants that
have been removed. 5. Repeat until all
parasitoids are extinct in the layers.

1. Work only on the plant–
parasitoid layer. 2. We use pro-
portions, because it allows us to
compare the different scenarios.

Multilayer: Remove
flower visitors and fol-
low parasitoids’ ter-
tiary extinctions.

1. Remove the flower visitor with the low-
est degree (in case of ties we order extinc-
tions by species name). 2. Remove all in-
tralayer edges of the flower visitor. 3. Re-
move any plants in the layer that remain
disconnected (i.e., have degree 0). 4. Re-
move any parasitoids that remain discon-
nected. 5. Record the proportion of sur-
viving plants and the proportion of surviv-
ing parasitoids (separately) as a function of
the proportion of flower visitors that have
been removed. 6. Repeat until all para-
sitoids are extinct in the layers.

1. A removal of a plant from the
flower-visitor layer entails immedi-
ate removal of a plant from the par-
asitoid layer. 2. We use propor-
tions, because it allows us to com-
pare the different scenarios.

Multilayer: Remove
flower visitors and fol-
low parasitoids’ ter-
tiary extinctions; we
also include uniformly
random plant removal

1. Remove the flower visitor with the low-
est degree (in case of ties we order extinc-
tions by species name). 2. Remove all
intralayer edges of the flower visitor. 3.
Remove any plants in the layer that re-
main disconnected (i.e., have degree 0). 4.
Select a plant from the surviving plants
uniformly at random and remove it with
a probability of prand. 5. Remove any
parasitoids that remain disconnected. 6.
Record the proportion of surviving plants
and the proportion of surviving parasitoids
(separately) as a function of the proportion
of flower visitors that have been removed.
7. Repeat until all parasitoids are extinct
in the layers.

1. Same as in the previous scenario
but incorporates a uniformly ran-
dom plant extinction with proba-
bility prand (we consider examples
with prand = 0.3 and prand = 0.8)
to acknowledge the fact that ex-
tinctions can happen not only from
removal of flower visitors but also
from other processes that operate
directly on plants. 2. Because of
the random plant extinctions, we
average results over 100 instantia-
tions.
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1 Supplementary Note 1: Multilayer Modularity

Maximization

We detect communities using a multilayer modularity quality functionQmultislice
59.

Consider a (weighted or unweighted) unipartite multilayer network whose

only interlayer edges are diagonal (i.e., interlayer edges only connect nodes

to their counterparts across layers). With the standard (Newman–Girvan)

null model, multilayer modularity is59

Qmultislice =
1

2µ

∑

ijsr

[(
Aijs − γs

kiskjs
2ms

)
δsr + δijωjsr

]
δ(gis, gjr) , (1)

where Aijs is the weight of the intralayer edge between nodes i and j on layer

s (for an unweighted network, the weight is exactly 1 if there is an edge), the

tensor element ωjsr gives the weight of the interlayer edge between node j

on layer r and node j on layer s, the resolution-parameter value on layer s is

γs, the quantity kis is the intralayer strength (i.e., weighted degree) of node

i on layer s (and kjs is defined analogously), 2ms is the total edge weight

in layer s, the set gis is the community that includes node-layer (i, s) (and

gjs is defined analogously), we denote the Kronecker delta between indices

x and y by δxy (which is equal to 1 for x = y and equal to 0 for x ̸= y),

and 2µ =
∑

ijsAijs. In an ordinal multilayer network (e.g., for the usual

multilayer representation of a temporal network), ωjsr can be nonzero only

when s and r are consecutive layers.

For our calculations, we need to adjust the null-model contribution

Pijs = γs
kiskjs
2ms

, which gives the expected number of interactions between

nodes i and j in layer s, to consider the bipartite structure of a host–parasite

network. That is, hosts are only allowed to be adjacent to parasites, and par-

asites are only allowed to be adjacent to hosts. (See refs.74–76 and references
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therein for discussions of null models for multilayer modularity maximiza-

tion.) To do this, we adapt Eq. (15) from Barber et. al77 and write a

bipartite multilayer modularity as

QB =
1

2µ

∑

ijsr

[(
Aijs − γs

kisdjs
ms

)
δsr + δijωjsr

]
δ(gis, gjr) , (2)

where kis is the strength of host i on layer s and djs is the strength of para-

site j on layer s. We modify theGenLouvain code1 from http://netwiki.

amath.unc.edu/GenLouvain/GenLouvain (see Supplementary Table 2 and

theMatlab code in https://dx.doi.org/10.6084/m9.figshare.3472679.

v1) by changing the null model Pijs. We use the default resolution-parameter

value of γ = 159,74.

We maximize the quality function (2) using a generalized Louvain-like

locally greedy algorithm1 (see74 for details on the generalized Louvain al-

gorithm and78 for the original Louvain algorithm), which also determines

module affiliation59,74. As with all other algorithms for maximizing modu-

larity in monolayer networks79–81, the Louvain algorithm is a heuristic, and

it yields a network partition that corresponds to a local maximum of modu-

larity (and, importantly, we note that the modularity landscape has a very

large number of “good” local maxima)82. It is also a stochastic algorithm, so

different results can (and generally do) yield different module assignments

and somewhat different modularity values. We thus average the values of

the maximized modularity QB and the number n of modules across 100 in-

stantiations of the algorithm and present results for the mean modularity

QB and mean number n of modules.

The generalized Louvain algorithm1 receives as input a modularity ma-

trix, which is calculated according to the supra-adjacency matrix of a net-
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work. (See Eq. (2), and Supplementary Fig. 1b for an example of a supra-

adjacency matrix.) Given any supra-adjacency matrix that represents a

diagonally-coupled multilayer network, we have a viable input for optimiz-

ing multilayer modularity of that network. The output of one instantiation

of the generalized Louvain algorithm1 algorithm is a value for QB and an

assignment of each state node to a module.

2 Supplementary Note 2: Analysis of a Synthetic

Network with Two Interaction Types

The network in Fig. 2 has a ‘planted’ modular structure of 3 modules

in each layer. We use a binary (i.e., unweighted) form of the network,

in which intralayer edges have a value of 1 if they exist and 0 if they do

not35. For simplicity, we assume that all interlayer edges have the same

weight. To present the results of the optimization procedure, we report

mean values (QB, n), which we obtain by averaging over 100 instantiations

of the modularity-maximization algorithm, for multilayer modularity QB

and the number n of modules.

3 Supplementary Note 3: Analysis of a Temporal

Network

3.1 Interlayer Edge Weights on a Comparable Scale as In-

tralayer Edges.

We examine a temporal network that encodes the infection of 22 small mam-

malian host species by 56 ectoparasite species (mites and fleas) during six

consecutive summers in Siberia (1982–1987), giving 6 different layers (see
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Refs.27,83 for more details on data). Not all species occur in all years. The

data set also includes the number of host specimens collected in the field

and the number of parasites recovered from each host specimen. We use

these individual-level estimates of host and parasite abundances determine,

respectively, the weights of intralayer and interlayer edges. The weight of an

intralayer edge between host i and parasite j at time t is Aijt = mt
ij = ptij/a

t
i,

where Aijt denotes an intralayer edge weight in layer t, the quantity ptij is

the number of parasite specimens of species j recovered from all of the spec-

imens of host i at time t, and ati is the number of specimens of host i at time

t. The interlayer edge that connects host species i at time t to its coun-

terpart at time t + 1 has a weight ωit,t+1 = nt→t+1
i = at+1

i /ati given by the

relative change in host abundance between the time points. An interlayer

edge from node i in layer r to node i in layer s has weight ωirs, where we

have included a comma in the subscript between r = t and s = t + 1 for

clarity and where we take ωirs = ω = constant in the synthetic network

example (see Fig. 2 in the main text). Analogously, the interlayer edge that

connects parasite species j at time t to its counterpart at time t + 1 has a

weight ωjt,t+1 = nt→t+1
j = pt+1

j /ptj given by the relative change in the total

abundance of the parasite (across all hosts). We do not include an interlayer

edge between corresponding species in layers t and t+ 1 when (i) a species

occurs in layer t but not in layer t+ 1 or (ii) when a species does not occur

in layer t but occurs in layer t+ 1.

The above formulation of edge weights is ecologically meaningful, as

the weights reflect temporal dynamics in species abundances. It results in

nonuniform interlayer edge weights that are on a similar scale than that of

intralayer edges and allows one to model how changes in species abundances

across time affect host–parasite interactions in each time point. For example,

17

© 2017 Macmillan Publishers Limited, part of Springer Nature. All rights reserved.

NATURE ECOLOGY & EVOLUTION | DOI: 10.1038/s41559-017-0101 | www.nature.com/natecolevol 17

SUPPLEMENTARY INFORMATION



the future infection of a host i with parasite j depends on the interlayer edges

and abundance values as follows:

mt,t+1
ij =

pt+1
ij

at+1
i

=
pt+1
ij

nt→t+1
i ati

=
nt→t+1
j ptj

nt→t+1
i ati

. (3)

Although we do not use the information in Eq. (3), it may be helpful for re-

searchers who are interested in various questions. For example, one can ask

how does reducing the abundance of a given host (e.g., by control programs)

will affect future interactions of the host with parasites, or, more generally,

network architecture. The formulation of edge weights gives nonzero weights

to non-diagonal interlayer edges, which was done previously (and very effec-

tively) for temporal networks of disease propagation in Valdano et al.84.

It will also be instructive, for the sake of comparison with the two ex-

treme scenarios ω = 0 and ω = ∞ (see Supplementary Note 3.2), to indicate

the numerical values of the weights of interlayer edges, which vary between

0.02 and 10.33. We show the distribution of the interlayer edge values in

Supplementary Fig. 4.

For simplicity, in all of our calculations of the host–parasite temporal

network, we follow previous studies and assume that the intralayer and

interlayer59,74,85 edges are undirected. It will be interesting to relax this

assumption in future studies of multilayer temporal networks with interlayer

connectivity.

We remark that we have chosen one specific clustering method to illus-

trate multilayer community detection in temporal-network data, but one

can also use others, such as stochastic block models63,86, methods based on

nonnegative tensor factorization87, methods based on random walks60,61 or

others. Each of these methods entails its own advantages and drawbacks.

18

© 2017 Macmillan Publishers Limited, part of Springer Nature. All rights reserved.

NATURE ECOLOGY & EVOLUTION | DOI: 10.1038/s41559-017-0101 | www.nature.com/natecolevol 18

SUPPLEMENTARY INFORMATION



As we discuss in the main text, the inclusion of interlayer edges allows us

to predict two processes at the same time (those that operate within and

between layers), which is not possible in methods that treat each layer sep-

arately. It also directly incorporates the fact that these individual layers are

not independent from each other.

3.1.1 Testing Hypotheses About the Modular Structure

We now compare the modular structure in the observed network to that ob-

tained from three different null models88,89. For each null model, we test the

hypothesis that the most modular partition of the observed temporal net-

work is more modular than the most modular partition of shuffled networks,

and we calculate the significance of the modularity QOBS
B of the observed

network’s most modular partition as the proportion of the 100 shuffled net-

works that have a lower maximized modularity than that of the observed

network85. We also calculate the number of modules and the ‘adjustabil-

ity’ of hosts and parasites as the proportion of nodes of a given type that

change modules at least once. For comparative applications of adjustability,

we take into account the total number of temporal layers. We compare our

results with shuffled networks to the values that we obtain for the observed

network using one-sample t-tests88.

In the test with the first null model, we shuffle the intralayer edges in

each layer to test the hypothesis that modular structure over time depends

on temporally-local interaction patterns. In each layer, we first shuffle the

total number of parasites that are on a given host. We use the r0 both

algorithm from the vegan package90 in R. The algorithm shuffles the val-

ues and position of the matrix entries within each row, while preserving

the total sum of the matrix. It therefore conserves both the number of

19

© 2017 Macmillan Publishers Limited, part of Springer Nature. All rights reserved.

NATURE ECOLOGY & EVOLUTION | DOI: 10.1038/s41559-017-0101 | www.nature.com/natecolevol 19

SUPPLEMENTARY INFORMATION



parasite species that infect a given host and the mean abundance of those

species. We then divide each matrix entry of each shuffled matrix by the

host abundance in that particular layer (i.e., year) to transform the abun-

dance to prevalence values. We find statistically significant support for the

hypothesis (see Supplementary Table 5). Additionally, the observed net-

work differs in a statistically significant way from the shuffled networks with

respect to both number of modules and host and parasite adjustability (see

Supplementary Table 5).

In the second test, we shuffle the interlayer edges between each pair of

consecutive layers to test the hypothesis that the modular structure depends

on the identity of hosts and parasites that change in abundance. To con-

struct this null model, which is equivalent to the ‘nodal’ null model from

Bassett et al.88, we separately permute the orders of node labels of hosts and

parasites. We permute the node labels separately in each layer so that node

identity is not preserved. In the bipartite structure of a given layer, this is

akin to permuting the order of rows (for hosts) or columns (for parasites)

in each layer. We find that (i) the most modular partition of the observed

network is more modular than the most modular partition of the shuffled

networks (see Supplementary Table 5) and (ii) their temporal structures

differ. Specifically, the most modular partition of the observed network has

approximately 6 times fewer modules than when shuffling the order of hosts

and approximately 15 times fewer modules than when shuffling the order

of parasites. Additionally, in the shuffled networks, almost all hosts and

parasites switch modules at least once (see Supplementary Table 5).

In the third test, we permute the order of the layers to test the hypothesis

that the order of time affects the network’s modular structure. To construct

this null model, which is equivalent to the ‘temporal’ null model of Bassett
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et al.88, we draw a uniformly random permutation of the sequence {1, . . . , 6}

(e.g., (4,3,2,5,1,6)) to give a new ordering of the layers. We thereby destroy

the temporal identity of the layers. Note that the interlayer edges are not

shuffled. We find that the most modular partition of the observed network is

not more modular than the most modular partition of the randomized net-

works (see Supplementary Table 5), but that the observed and randomized

networks have different temporal structures. The most modular partition

of the observed network has about 2.5 times fewer modules than those of

the randomized networks, and it also has different proportions of hosts and

parasites that switch modules (see Supplementary Table 5).

3.2 Interlayer Edge Weights of 0 or Infinity

We compare the modular structure of the network with weighted intralayer

and interlayer edges to the modular structure of two versions of the same

network but in which interlayer edge values are set to either 0 or are very

large. We perform these computations in the same manner as we did for the

interlayer-weighted network that we discussed in detail in Supplementary

Note 3.1. We again use the generalized Louvain algorithm from Jutla et al.1

and Mucha et al.59. As a proxy for the scenario with infinitely large interlayer

edge weights using numerical calculations, we set ω = 1000. Technically, we

are thus approximate in our exploration of this extreme situation. To ex-

plore the scenario with 0 interlayer edge weights, we examine 6 independent

modularity matrices (corresponding to the 6 layers). We also provide the

code for these computations.

Very large interlayer edge weights. When the weight of all interlayer

edges is very large, processes that govern interactions across contiguous lay-
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ers (e.g., species persistence, survival, or changes in abundance) have a much

larger effect on community structure than those that govern interactions

within layers. Because the effect of species connectivity across time is much

stronger than that of the intralayer processes, we expect species to remain

in the same module over time. In the limit of infinite-weight interlayer edges

for all species, all state nodes that correspond to a given species must al-

ways be assigned to the same module. In our computation with interlayer

edge weights of ω = 1000, we obtain QB ≈ 1, and the maximum-modularity

partition of the network has n = 3 modules. By construction, no species

changes its module affiliation across time (see Supplementary Table 4).

We remark that considering infinite interlayer edge weights produces

in general different results from aggregating a multilayer network into a

monolayer network. This is true not only for temporal networks.

Interlayer edge weights of 0. At the other extreme is a multilayer net-

work in which all of the interlayer edges have a weight of 0, which is akin

to maximizing modularity separately in each of the layers. In this case, the

modules that one finds in different layers are independent of each other,

as they reflect only the internal structure of each layer59,74. This is the

same situation as calculating modularity for two disconnected networks in

the toy example (see Fig. 2b). From an ecological perspective, one cannot

understand the effect of interlayer phenomena (e.g., temporal changes in

species abundance or in network architecture) on modular structure in a di-

rect manner if one has exclusively 0 interlayer edge weights. Although some

quantification of module evolution may be possible91, such a quantification

does not simultaneously encompass processes that occur within and between

layers. For example, if a species interacts strongly with a given set of species
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in layer t but with another set of species in layer t + 1, one can argue that

this is a change in the modular structure over time. However, even though

it is possible, it need not be true, because the modules have been calculated

independently for two distinct networks. Moreover, if a community splits

in time, including nonzero interlayer edges provides a natural way to track

which nodes leave to form a new community and which remain part of the

original community.

When all interlayer edge weights are 0, we find that both QB and n vary

among the 6 layers. (See Supplementary Table 4 for the exact values.) It

is not possible to calculate changes in module composition (including host

and parasite adjustability) in an unambiguous way, because modules are

defined separately in a layer. One can, of course, attempt ad hoc analyses

of modular structure changes in time even when interlayer edge weights are

0.

3.3 Calculation of Normalized Mutual Information

To support the claim that modularity maximization in a multilayer network

provides additional information about the assignment of species to modules

compared to independent computations in all individual layers, we quantify

the amount of novel information from the addition of interlayer edges for the

assignment of species to modules. To do this, we use a measure of normalized

mutual information (NMI) based on information theory. This quantity has

been used previously to evaluate methods that assign nodes to modules92,93,

including for multilayer networks61. For each of the six layers, the value of

NMI is 1 if the composition of modules is identical in the monolayer and the

multilayer networks, and it is 0 if they are completely uncorrelated. That is,

a value of 1 means that one has complete information on the assignment of
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species to modules in the temporal network from independent computations

with the corresponding layer. In that case, the interlayer edges have not

given any additional information. In contrast, a value of 0 means that

observing a single layer at a time provides no information whatsoever on

the assignment of species to modules in the multilayer representation of the

temporal network. Naturally, the only way to know if one gets the same

answer is to perform the multilayer calculation in the first place. We find

that across layers the mean NMI (± standard deviation) is 0.35 ± 0.12.

(The range of values is 0.19 − 0.51, and we recall that there are M = 6

layers.) Hence, the calculation of modularity of each layer by itself contains,

on average, only about 35% of the information on species assignment to

modules in the multilayer network with the interlayer edges. Combined

with the fact that we can use the interlayer edges at time t− 1 to calculate

the intralayer edges at time t (see Eq. 3), this gives compelling evidence

that including interlayer edges provides new information on the temporal

organization of the network.

We also calculate the amount of information that is contained in the

assignment of species to modules in an aggregated network compared to

module assignments in any individual layer. We use two versions of an

aggregated multilayer network: (i) we sum the intralayer edge weights (i.e.,

interaction values) across the 6 layers; and (ii) we take the mean of the edge

weights across the 6 layers. We find on average that the correlation in the

information is about 0.521 ± 0.029 and 0.517 ± 0.032 for the two types of

aggregated networks, respectively. Consequently, the affiliation of species

to modules in either of these aggregated networks provides only about 52%

of the information on their affiliation to modules in the multilayer network

(which includes interlayer edges).
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3.4 Reducibility of the Host–Parasite Network

To examine if we need all 6 layers in the host–parasite network to accu-

rately describe structure in the host–parasite network, we calculate the re-

ducibility of the network2. Briefly, reducibility is a measure of the struc-

tural redundancy of different layers with respect to an aggregated network

G = G[1]+G[2]+· · ·+G[M ], where {G[1], G[2], . . . , G[M ]} is the set of adjacency

matrices from the M individual layers of a multilayer network. Intuitively,

if all of the layers are the same, then there is complete redundancy, and a

single layer includes all of the information about intralayer structure. How-

ever, if each layer includes different intralayer edges, then we need to retain

all layers to fully describe structure in a multilayer network, and aggregation

leads to loss of information.

From our computation, we see for our temporal network that we need

all 6 layers to accurately describe its structure (see Supplementary Fig. 6).

More generally, temporal interaction dynamics are accompanied by a tem-

poral ordering of interactions, which are also often bursty, so aggregating

temporal layers into a time-independent network (especially if done naively,

as is common) removes all information about the ordering of interactions

and can lead to qualitatively incorrect conclusions94,95.

4 Supplementary Note 4: Further Details on Ro-

bustness Analysis

We use empirical data from Pocock et al.36, who assembled a network com-

posed of 10 layers, which are connected to each other mostly via plants.

Layers in the original network include interactions of plants with granivo-

rous birds, rodents, butterflies and other flower visitors, aphids, granivorous

25

© 2017 Macmillan Publishers Limited, part of Springer Nature. All rights reserved.

NATURE ECOLOGY & EVOLUTION | DOI: 10.1038/s41559-017-0101 | www.nature.com/natecolevol 25

SUPPLEMENTARY INFORMATION



insects, and leaf-miner parasitoids. For simplicity, we select a subset of the

10 layers and form a diagonally-coupled multilayer network with two layers.

Our network describes two interconnected mutualistic interactions, although

the mutualism in the leaf-miner parasitoid layer is indirect. The network

includes 189 flower visitors, 60 leaf-miner parasitoids, and 17 plants. For

simplicity, we use a binary version of the original data.

Pocock et al.36 studied the effect of plant removal on the simultaneous

co-extinction of the species that are interconnected to them. However, they

did not study how disturbance percolates through plants, and they thus did

not explore how the multilayer structure of their network affects cascading

perturbations. In the context of our example, extinction of pollinators en-

tails co-extinction of plants, and extinction of plants entails co-extinction

of leaf-miner parasitoids. We modify an established approach for examin-

ing co-extinctions36,96 so that we can use it with multilayer networks (see

Supplementary Table 6).

Because an extinction of plants in one layer automatically implies their

extinction in the second layer, we assume that the weights of interlayer edges

are infinity. This enforces perfect correspondence between the plant states

in the two layers. However, by relaxing this assumption, one can model for

instance, changes in plants abundance as a function of changes in abundance

of flower visitors or leaf-miner parasitoids. This can be done, for example,

using a dynamical system (described by a set of ordinary differential equa-

tions, as has been done recently in the study of a meta-foodweb model97)

on each layer, and by using the values of the interlayer edges to couple these

processes.

We explore another option to compare the robustness of a plant–parasitoid

monolayer network (which is essentially one layer of the multilayer network)
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to that of a flower visitor–plant–parasitoid multilayer network. Unlike in

the main text, we remove (in the same order) the same set of nodes (flower

visitors) in the monolayer network and in the multilayer network, and we

track the total proportion of species that remain in each of these networks.

Specifically, in the monolayer network, we remove flower visitors in order

of increasing degree and then compute the proportion of plants that re-

main. In the multilayer network, we remove the same flower visitors in the

same order and then track the proportions of both plants and parasitoids

that remain. In the multilayer network, we find that the total proportion

of surviving species is larger and that the pace of extinction is slower (see

Supplementary Fig. 5).

Like standard simple approaches for studying network robustness98, our

calculations have the flavour of a percolation process. See Nagler et al.99

for an example of a percolation-based robustness study of an ecological mul-

tilayer network. Multilayer networks allow one to examine a much richer

variety of percolation processes than in monolayer networks64,68,69, and that

in turn allows increasingly nuanced analyses of species robustness in ecolog-

ical networks in a wealth of scenarios.
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39. Sauve, A. M. C., Fontaine, C. & Thébault, E. Structure-stability relationships in

networks combining mutualistic and antagonistic interactions. Oikos 123, 378–384

(2014).

30

© 2017 Macmillan Publishers Limited, part of Springer Nature. All rights reserved.

NATURE ECOLOGY & EVOLUTION | DOI: 10.1038/s41559-017-0101 | www.nature.com/natecolevol 30

SUPPLEMENTARY INFORMATION



40. Lurgi, M., Montoya, D. & Montoya, J. M. The effects of space and diversity of

interaction types on the stability of complex ecological networks. Theor. Ecol. 1–11

(2015).

41. Rudolf, V. H. W. & Lafferty, K. D. Stage structure alters how complexity affects

stability of ecological networks. Ecol. Lett. 14, 75–79 (2011).

42. Bauer, S & Hoye, B. J. Migratory animals couple biodiversity and ecosystem func-

tioning worldwide. Science 344, 1242552 (1–8) (2014).

43. Sander, E. L., Wootton, J. T. & Allesina, S. What can interaction webs tell us about

species roles? PLoS Comput. Biol. 11, e1004330 (2015).

44. Genrich, C. M., Mello, M. A. R., Silveira, F. A. O., Bronstein, J. L. & Paglia,

A. P. Duality of interaction outcomes in a plant–frugivore multilayer network. Oikos

(2016).
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