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We measure polarization in the United States Congress using the network science concept of
modularity. Modularity provides a conceptually-clear measure of polarization that reveals both the
number of relevant groups and the strength of inter-group divisions without making restrictive as-
sumptions about the structure of the party system or the shape of legislator utilities. We show that
party influence on Congressional blocs varies widely throughout history, and that existing measures
underestimate polarization in periods with weak party structures. We demonstrate that modular-
ity is a significant predictor of changes in majority party and that turnover is more prevalent at
medium levels of modularity. We show that two variables related to modularity, called ‘divisiveness’
and ‘solidarity,’ are significant predictors of reelection success for individual House members. Our
results suggest that modularity can serve as an early warning of changing group dynamics, which
are reflected only later by changes in party labels.

1 Introduction

A great deal of recent research has been devoted to identifying and explaining polarization in the

United States. Indeed, there has been enough to fill the pages of two annual review articles in

the past half-decade (Layman et al. 2006, Fiorina & Abrams 2008). At its core, the polarization

debate began with an observation about the nature of partisanship in Congress. Starting in the

late 1970s, researchers began to notice increases in intra-party cohesion and decreases in inter-party

cooperation on roll-call votes (McCarty et al. 2007). This finding puzzled scholars because it ran

counter to empirical evidence for the weakening of partisanship in the electorate (Coleman 1996)

and the theoretical expectation that institutional incentives should drive parties to adopt similar
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(i.e., median) policy positions (Downs 1957a).

These puzzles form the fault lines of the two major conflicts in the literature on partisan

polarization. The first conflict attempts to locate the origins of partisan polarization either in

the electorate (McCarty et al. 2007), among political elites (Fiorina & Abrams 2008), or in a

combination of the two (Jacobson 2005, Jacobson 2006). The second attempts to explain the

relative influences of party and ideology on Congressional voting, and well-known publications have

argued for party effects (Cox & McCubbins 1993, Cox & McCubbins 2005, Smith 2007), ideological

effects (Krehbiel 1991), and interactions between the two (Rohde 1991, Aldrich & Rohde 2001). In

both instances, researchers have pondered how non-median party positions result from institutions

that in theory lend themselves towards moderation (Layman et al. 2006).

We argue that the polarization debate has been limited by its overemphasis on expectations

derived from spatial models of ideology. By contrast, we define polarization behaviorally—rather

than ideologically—based on the voting decisions made by the legislators and the way those decisions

divide them into distinct groups. To operationalize this definition, we use the tools of network

science. Suppose that each legislator is a ‘node’ in the network and that the level of agreement

between two legislators in roll-call voting indicates the strength of a ‘tie’ between them.1 In a highly-

polarized legislature, we reason that groups like parties contain strong ties between individuals

within the same group but relatively weak ties between individuals in different them. In the extreme

case of pure party-line voting, all members of the same party vote identically and therefore have

the strongest possible ties between each other. They also have the weakest possible ties to members

of the other parties. In contrast, individuals in a legislature with low polarization tend to have

ties both to individuals in their own group and to those in other groups, weakening the strength

of group divisions. Here, we utilize network modularity to first identify relevant ‘communities’

(tightly-knit groups) in Congress and then quantify the severity of such a division.
1As discussed in more detail in the online supplementary information, the ties between all pairs of legislators in

one legislative body (Senate or House of Representatives) in a single Congress are described by an adjacency matrix
A with elements

Aij =
1

bij

X
k

γijk , (1)

where γijk equals 1 if legislators i and j voted the same on bill k and 0 otherwise, and bij is the total number of bills
on which both legislators voted.
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In Section 2, we use insights from Downs’s (1957a) model of ideology to explain our critique of

spatial models as tools for measuring partisan polarization. In Section 3, we explain the intuition

behind our use of modularity and discuss its advantages over existing measures. In Sections 4 and

5, we present empirical evidence for the utility of modularity in predicting majority-party switches

Congress as well as the electoral fortunes of individual legislators. We conclude in Section 6 by

discussing the ongoing role for modularity in advancing our understanding of party polarization. In

online supplementary information, we provide further details of the network-science methodology,

additional figures and tables, and a descriptive example from the 19th century.

2 Ideology, Information, and Polarization

Political scientists have focused intently on Downs’ median voter theorem (Downs 1957a) and

of the spatial model at its core. Scholars traditionally assume that individuals have complete,

transitive, single-peaked preferences over a small number of independent ideological dimensions,

which presumably represent correlative sets of issue positions (Poole & Rosenthal 1997). We argue

that these assumptions might not be appropriate to the study of Congressional polarization and

use insights from Downs’ conceptualization of ideology to motivate our critique (Downs 1957b).

Traditional assumptions follow the simple spatial model from which the classic median voter

result derives but gloss over Downs’ later observations on the nature of ideology. Particularly, Downs

argued that ideologies reduce information costs for voters primarily by highlighting differences

between parties. He concluded that ‘parties cannot adopt identical ideologies, because they must

create enough product differentiation to make their output distinguishable from that of their rivals

in order to entice voters to the polls’ (Downs 1957b:142). In a complex world, Downs reasoned,

voters demand a method to reduce information costs associated with making electoral decisions.

Motivated by the desire to increase vote shares (Mayhew 1974), the parties supply ideologies in

response to this demand.

In this scenario, ideology is a coordination device between the electorate and the parties. The

parties want to provide just enough information to appear stable and trustworthy to voters, and

voters want just enough information to make decisions between competing parties. If voters are
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unwilling or unable to demand or process more information (Popkin 1994), then parties will prefer

vague ideologies. Ambiguity allows competing intra-party factions to appear united to voters who

lack the necessary information to expose their contradicting positions, and it gives parties the

opportunity to pursue potentially divisive or polarizing policies while maintaining the guise of

ideological consistency. This helps explain, for example, why parties in Congress appear to be

radically divided even when the general public seems not to be so (Fiorina & Abrams 2008) and

why partisans in the electorate continue to support their representatives even when the rest of the

public has withdrawn its support (Jacobson 2005).

Given incomplete information, it seems that one should expect some level of polarization rather

than convergence to the median. Indeed, theoretical and empirical models show that median con-

vergence is quite fragile despite its normative appeal. In the Congressional case, adding influential

activists (Aldrich 1995) or rules favoring the majority party (Cox & McCubbins 1993, Cox &

McCubbins 2005) to the model results in ideological divergence of parties. In the presidential case,

empirical investigations show that parties alter the composition of the electorate by appealing to

core supporters; this allows them to maintain extreme positions (Holbrook & McClurg 2005). These

results challenge the expectation of median outcomes while maintaining strong assumptions about

the nature of ideology, especially as perceived by the electorate.

Finally, nearly all rational-choice models assume that actors are able to make better political

decisions when given more information (Poole 2005). Indeed, spatial models are rather extreme

in this respect: they assume that actors make perfect decisions when they have perfect infor-

mation (Krehbiel 1991). For politicians, one typically assumes that perfect decisions are those

that maximize reelection chances (Mayhew 1974). For voters, the story is different. Though an

incomplete-information setting encourages voters to rely on partisan, ideological, or other cues

(Popkin 1994), voters in a complete-information setting are capable in theory of associating poli-

cies with outcomes (rendering such cues unnecessary). In a complete-information setting, reelection

rates should hinge on the ability of politicians to effectively generate good public policy, ostensibly

by processing the maximal amount of policy information (Krehbiel 1991). This assumption is fun-

damental to dominant theories of committee organization in Congress (Shepsle & Weingast 1987).
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However, empirical investigations suggest that committees use information polemically as a way

of defending existing partisan positions while appealing to foundational assumptions among voters

about the utility of rational and scientific methods (Shulock 1998). In this case, even analyses of

scientific policy serve as low-information cues about the validity of what are essentially ideological

or partisan positions.

These critiques imply a world in which ideology is a necessary—but frustratingly imprecise—

tool of party competition. Nearly all studies treat Congressional polarization as an ideological phe-

nomenon and measure it using spatial models under traditional assumptions. Perhaps the most pop-

ular of these measures, defined by McCarty, Poole, and Rosenthal (MPR) (2007), gauges polariza-

tion by measuring the Cartesian distance between the mean DW-NOMINATE (which we hereafter

call ‘DW-NOM’) scores of political parties (Poole & Rosenthal 1997). Calculating these polarization

scores requires restrictive assumptions about the nature of ideology in Congress. DW-NOMINATE

assumes the existence of a low-dimensional space with consistent ideological dimensions over time.

This assumption is made in in order to estimate dynamic ideology scores. W-NOMINATE relaxes

this restriction while maintaining the spatial modeling assumptions (Poole 2005). In both methods,

measuring the distance between political party means also requires a researcher to assume a partic-

ular party-system structure. We compare the modularity measure to polarization scores calculated

using both DW- and W-NOMINATE (see Section 4 for more discussion).

While we acknowledge the utility of NOMINATE-based measures for fitting individual roll-call

decisions, we question the value of aggregating ideal-point estimates into measures of system-

wide polarization. In these situations, we reason, it is prudent to also employ measures that hew

more closely to observed behaviors without imposing assumptions about their rationality or spatial

structure. We argue that the polarization debate should be more concerned with the identification

of relevant political groups and the evaluation of the divisions between them. By moving to a

network framework, we can use the tools of community detection and the diagnostic known as

modularity to perform both of these tasks using more plausible assumptions.
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3 The Modularity Measure

When studying a network, it is often useful or convenient for analysis to partition it into groups.

Network scientists have recently developed a measure called modularity (Newman & Girvan 2004,

Newman 2006a) that uses information about the ties between each pair of individuals in a network

to compare the total strength of ties lying within each group to the total tie strength between

individuals from different groups. Previous work has used modularity to study cohesive groups

(typically called communities) in legislation cosponsorships networks in Congress (Zhang et al.

2008), committee membership networks in the House of Representatives (Porter et al. 2005, Porter

et al. 2007), and a large variety of other real-world and computer-generated networks (Porter et al.

2009, Fortunato 2010). Other applications of network analysis have also flowered in the political

science literature (see, e.g., Huckfeldt 1987, Fowler 2006a, Fowler 2006b, McClurg 2006, Baldassarri

& Bearman 2007, Koger et al. 2009, Park et al. 2009, Lazer 2011, Ward et al. 2011).

‘Modular’ networks contain groups that have many ties within them but few between them.

Network scientists call such groups ‘communities’ because they form strongly connected subnet-

works that, in the extreme, can be nearly separate from other parts of the network (Porter et

al. 2009, Fortunato 2010). Networks with stronger ties within groups and weaker ties between

groups are thereby more modular. Conceptually, this is exactly what one means when claiming

that groups are polarized. This operationalization of polarization in roll-call votes allows us to

quantify the number of cohesive groups (i.e., communities) in a legislature, quantify the strength of

division between such blocs, identify which individuals are likely to belong to each cohesive group,

and quantify the position of individuals within their groups.

We employ multiple community-detection algorithms to identify groups that maximize modular-

ity for each roll-call network for both the Senate and the House of Representatives in the 1st–109th

Congresses.2 Curiously, we find several periods in American history—most notably, during the

75th–95th Congresses from 1937 to 1979—in which a large discrepancy exists between formal party

divisions and real voting coalitions. We hypothesize that such discrepancies, and the corresponding

changes in maximum modularity, might serve as an early warning signal for changes in the partisan
2We briefly discuss these procedures in Section 7.2 of the online supplementary information.
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composition of Congress (perhaps due to a failure of parties to coordinate with voters on the defi-

nition of ideology). As a preliminary test of this hypothesis, we use modularity values in Congress

t to predict changes in the majority party for Congress t+1. We find a non-monotonic relationship

between modularity and the stability of the majority party in both chambers of Congress. At low

levels of modularity, there appears to be little impetus to coordinate a change in majority control;

at high levels, there is little the minority can do to overcome the majority’s cohesion. In both of

these cases, majority-party switches are infrequent. However, at medium levels of modularity, there

is a mix of impetus and relaxed majority cohesion, yielding a party system that is significantly less

stable. We call this interpretation the ‘partial polarization’ hypothesis.

Importantly, our analysis helps us begin to explain why partially-polarized Congresses exhibit

the greatest instability. Using individual-level diagnostics associated with modularity, we identify

the legislators who are most polarizing (via a quantity that we call ‘divisiveness’) and those who

align most closely with their group (via a ‘solidarity’ diagnostic). We show that divisiveness has

a negative impact on individual reelection chances but that the effect is mitigated for polariz-

ing legislators who exhibit strong solidarity with their group. This, in turn, yields instability in

partially-polarized Congresses. Our analysis corroborates previous findings that legislators must

balance partisan and constituency interests in order to remain in office (Canes-Wrone et al. 2002),

while also providing insight into legislators’ group affiliations that are not reflected in formal party

labels.

3.1 Modularity Defined

We begin with a common assumption about the nature of roll-call votes: Congressmen who vote

with one another are more similar than those whose votes conflict. We further assume that two

Congressmen are more similar when they agree on more roll-call decisions. These assumptions

underly all investigations of roll-call voting blocs (Anderson et al. 1966) from Rice’s (1927) identi-

fication of blocs in small political bodies to Truman’s (1959) case study of the 81st Congress, early

investigations of policy dimensions by MacRae (1958) and Clausen (1973), and more quantitative

analyses by Poole and Rosenthal (1997) and others (Clinton et al. 2004).
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The method of identifying communities that we employ is philosophically similar to the cluster

analyses employed by Rice and Truman, but those authors had limited computing power at their

disposal and lacked an objective method for evaluating the quality of the communities that they

obtain. However, because of a wealth of conceptual and algorithmic advances from the past decades

(and especially from the past 10 years; Porter et al. 2009, Fortunato 2010), we have not only an

appropriate measure (modularity) but also good computational algorithms to partition networks

into communities in order to maximize it. In the remainder of this section, we define modularity

and describe the methodology that we use to generate modularity scores.3

Using roll-call data compiled by Poole and Rosenthal (1997, 2011), we generate a network in the

form of an adjacency matrix (Wasserman & Faust 1994) that describes voting similarities among

legislators in a single Congress of the House of Representatives or Senate.4 This is done in similar

fashion to the assembly of agreement score matrices in Poole (2005). We study the 1st–109th

Senates and Houses, so we consider 218 networks in total. We represent each of these networks

by an n × n matrix A, where n equals the number of legislators in the body and each element

Aij gives the proportion of votes on which two legislators agreed. The value of Aij represents the

weighted strength of connection between legislators. Having generated the adjacency matrices, we

can calculate modularity values for any given partition of these roll-call networks into specified,

non-overlapping communities (Porter et al. 2009).

Modularity relies on the intuitive notion that communities in networks should consist of nodes

with more intra-community than extra-community ties (Newman & Girvan 2004, Porter et al.

2009). This mirrors our conceptualization of polarization described in Section 2. For a given

partition of the network into communities, the modularity Q represents the fraction of total tie

strength contained within the specified communities minus the expected total strength of such ties.

The expected strength depends on an assumed null model. Here we use the standard Newman-

Girvan null model that posits a hypothetical network with the same expected degree distribution

as the observed network (Newman 2006a, Newman 2006b). This standard null model implies that
3We provide more details of this process in Section 7.2 of the online supplementary information.
4Defined in footnote 1 and discussed in detail in Section 7.1 of the online supplementary information.
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modularity is given by the formula

Q =
1

2m

∑
ij

[
Aij −

kikj

2m

]
δ(gi, gj) ≡

1
2m

∑
ij

Bijδ(gi, gj) , (2)

where m = 1
2

∑
i ki is the total strength of ties in the network, ki =

∑
j Aij is the weighted degree

(i.e., the strength) of the ith node, gi is the community to which i is assigned (and similarly for

gj), and δ(gi, gj) = 1 if i and j belong to the same community and 0 if they do not. In equation

(2) we have defined a modularity matrix B with components Bij = Aij − kikj

2m .

Modularity evaluates the quality of community partitions, implying that partitions with higher

modularity are, by our conceptualization, more polarized. However, it remains for us to determine

the community partition that maximizes modularity for each Congress. We call this the ‘maximum-

modularity partition’, though strictly speaking no partition can ever be proven to be the global

optimum without computationally-prohibitive exhaustive enumeration (modularity maximization

is an NP-hard problem; Brandes et al. 2008). As discussed in the online supplementary information,

we consider a variety of computational heuristics in our optimization of modularity.

3.2 Modularity at the Individual Level

We also consider individual-level diagnostics associated with modularity: divisiveness can be used to

identify the extent to which individual legislators potentially contribute to system-wide modularity

(polarization), and solidarity can be used to measure the alignment of individual legislators to

their communities. Calculating divisiveness and solidarity allow us to explore hypotheses about

the relationship between the behavior of individual legislators and outcomes of interest (such as

reelection rates).

Mathematically, the divisiveness |xi| of legislator i is obtained from (Newman 2006a)

|xi|2 =
p∑

j=1

(
√
λjUij)2 , (3)

where p is the number of positive eigenvalues λj of the modularity matrix B and the matrix element

Uij is the ith component of the jth (normalized) eigenvector. That is, xi is a p-dimensional vector
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(with jth element equal to
√
λjUij) and the magnitude |xi| of this node vector measures the

potential positive impact on aggregate modularity from legislator i.5

The divisiveness measure uses the roll-call adjacency matrices to estimate the potential effect

that each individual legislator has on the aggregate polarization of his/her legislature, but it need

not say anything about the alignment of that legislator’s voting behavior with that of his or her own

group. Estimating alignment requires us to compare the divisiveness measure with the associated

community vector Xk =
∑

i∈ck xi , where we have summed over all node vectors corresponding to

legislators assigned to the kth community ck. We can then calculate the solidarity6 cos θik, where

θik is the angle between the node vector xi and the community vector Xk. When the solidarity is

close to 1, the legislator and community are in strong alignment; when the solidarity is close to 0,

however, the legislator is not strongly aligned with his or her community (Newman 2006a).

3.3 Modularity and NOMINATE-based Measures

Let us first consider the number of communities revealed by the modularity procedure. Theoretical

models suggest that single-member districts should yield a two-party system (Duverger 1954, Cox

1997), so we expect most Congresses to achieve their maximum modularity when partitioned into

two communities. However, we find three or more communities in 35 of 109 Houses and in 67 of

109 Senates. We tended to obtain more communities when maximum modularity is low. Maximum

modularities in Congresses partitioned into three or more communities are on average 0.045 lower in

the House and 0.066 lower in the Senate than maximum modularities in two-community Congresses.

These differences are both significant (p < 0.0001) in one-tailed t-tests. When we constrain our

focus to those Houses and Senates in which the third-largest community is larger than the size

difference between the two largest communities, we find three or more communities in 11 Houses

and 31 Senates. We provide descriptive statistics for these Congresses in Section 7.3 of the online

supplement and a historical example from the 19th century in Section 7.4.

In Figure 1, we compare maximum-modularity values to the NOMINATE-based measure used

by McCarty, Poole, and Rosenthal (2007) and described in Section 2. Following the advice of Aldrich
5The divisiveness |xi| is known as ‘community centrality’ in the networks literature (Newman 2006a).
6From a networks perspective, one might wish to use the name ‘community alignment’ for the solidarity.
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et al. (2004), we calculate this measure using two dimensions of DW-NOM. For reference, we include

a calculation of the MPR measure using two-dimensions of W-NOMINATE (which we hereafter

call ‘W-NOM’) as well. For comparability, we rescale both modularity and the NOMINATE-based

measures to lie in the interval [0, 1].

<FIGURE 1 ABOUT HERE>

The modularity values in Figure 1 are consistent with several stylized facts about polarization.

Most notably, they capture the spike in polarization associated with the end of Reconstruction

as well as the well-documented modern spike (McCarty et al. 2007). They also show a lull,

corresponding to the era of party decline during the 75th–95th Congresses (1937–1979) (Coleman

1996). Interestingly, the DW-NOM version of the MPR measure suggests a much lower level of

polarization over this period than does modularity or the W-NOM version. Further, the DW-

NOM-based measure derives much of its visual impact from its limitation to post-Reconstruction

Congresses. The modularity and W-NOM-based measures show that modern-day polarization is

high but not to a greater extent than what seems to be the case in many other periods. The

low-modularity period of the 75th–95th Congresses appears to be the exception rather than the

rule.

Another difference between modularity and the MPR measure is the year-to-year variation.

DW-NOM assumes that legislators always remain in the same voting bloc and allows their ideology

to move in only one direction over time, resulting in a time series that is smoother than that for the

modularity or W-NOM measures.7 As we discuss below, we believe that allowing such year-to-year

variation is informative.

In addition to maximum modularity Q, we calculate party modularity P , which is the modular-

ity obtained from the network partitioned so that legislators are assigned to groups that contain only

members of the same party. In Figure 2, we report P/Q, which represents the relative contribution

of formal party divisions to total polarization. In periods in which polarization is predominantly

partisan, one finds that P ≈ Q. When P is substantially less than Q, however, community divisions
7The W-NOM version also suggests higher levels of polarization than maximum modularity for most Congresses.

We have no theory to explain this finding but stress that the W-NOM measure is not a significant predictor of
majority-party switches (see Table 1)
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other than party better explain polarization. The party partition captures the vast majority of the

maximum modularity in all modern Houses, with the 85th–95th Congress period (1957–1979) serv-

ing as a notable exception. Party importance varies more in the Senate, where it oscillates from one

Congress to the next between the 67th (1921) and 75th (1937) Congresses and is again a smaller

fraction of modularity during the 85th–95th Congresses.

<FIGURE 2 ABOUT HERE>

Although the DW-NOM MPR measure suggests a substantially lower polarization level for the

75th–95th Congresses than does the modularity measure, party modularity nearly equals maximum

modularity for the 75th–84th Houses before dropping off during the 85th–95th, suggesting that

the importance of party did not start to wane until the 85th Congress (some 20 years after the

decline in the DW-NOM measure). Our results suggest that extra-partisan coalition tensions

generated heightened polarization during this period that is not captured by DW-NOM, even in

two dimensions.8

The existence of a disparity between party allegiance and voting behavior is unsurprising. Many

studies show that parties have reorganized throughout history (Merrill et al. 2008). These realign-

ments represent changes in the formal allegiances of members of Congress. It is reasonable to

assume that such changes are costly to politicians (Downs 1957b, Cox & McCubbins 2005), so they

are unlikely to be undertaken without substantial prior effort to salvage the existing party order.

As party bonds disintegrate, we reason that some legislators seek to preserve alliances while other

(opportunistic) legislators seek new alliances that reflect (or perhaps help create) a different order

(Riker 1986).

The existing measures of polarization based on DW-NOM are ill-equipped to identify these

shifts for three reasons. First, they assume a party-system structure to orient their legislators

in space, and this assumption might mask the importance of intra-party communities. Second,

DW-NOM is weighted dynamically, which constrains the spatial movement of legislators over time

to a single direction. This restriction allows one to identify ideal points on a consistent spatial
8Regression results, which we present in Section 4, provide some support for this finding in the House but not in

the Senate.
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metric over time (Poole 2005). Cox & Poole defend this constraint by noting many legislators

have changed parties over their careers but that none have changed back (Cox & Poole 2002).

This defense is justifiable if exogenously-defined groups, such as parties, sufficiently capture group

dynamics (Poole & Rosenthal 1997), but our results suggest otherwise. Third, these measures rely

on strict assumptions about the nature of ideology (Downs 1957b) that might be more appropriate

for fitting individual roll-call votes than for examining the effect of group dynamics on formal party

divisions.

3.4 Changes in Group Dynamics

One clear indicator of a formal power shift in Congress is a change in the majority party. When

a new majority party is elected, one can normally point to major policy failure on the part of the

previous majority. One important way for a majority party to remain effective—and for its brand

to remain strong—is for its caucus members to coordinate on a policy agenda. The House and

Senate majorities resolve their coordination problems through various institutional means, such as

the delegation of agenda control to leaders and the appointment of party whips (Rohde 1991, Cox

& McCubbins 2005). Willingness to coordinate depends on a variety of forces, including electoral

pressure, ideological cohesion, and career ambition (Aldrich & Rohde 2001).

When party membership poses electoral risk, members hedge their bets by seeking extra-

partisan coalitions. Modularity captures this dynamic, showing the emergence of third (non-party)

communities and the evolution of party-dominated communities into more heterogenous groups.

The less that communities in Congress reflect party labels, the more likely that interest groups,

party organizations, and ultimately voters notice the gap. If these political actors support the party,

then the legislator might be replaced and the party system might thereby be preserved. However,

if they support the legislator, then he/she might either switch parties or attempt to bring his/her

party closer to his/her district’s preferences. When party positions shift, we reason, it becomes

more difficult for parties and voters to coordinate on ideology. Thus, electoral volatility increases

and changes in formal groups, such as majority party switches, become more likely.

In order to test the ability of maximum modularity to predict changes in the majority-party
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in Congress, we examine the values of modularity in Section 4. We then conduct individual-level

analyses in Section 5 to examine the ability of divisiveness and solidarity (which we defined in

Section 3.2) to predict the electoral fates of House members. In both cases, we compare regressions

using the modularity measures to similar specifications that use NOMINATE-based measures as

their independent variables.

4 Majority-Party Switches

We begin to explore the relationship between maximum modularity in Congress t and a majority

party switch in the next Congress (t + 1) using locally weighted polynomial regression (LOESS)

(Loader 1999). Our analyses demonstrate that changes in majority-party switches are most common

when polarization is moderate, and they are relatively uncommon when polarization is low or high.9

This non-monotonic relationship suggests that it is appropriate to include both linear and squared

modularity scores in multivariate regressions.

4.1 Data, Analyses, and Results

We compiled a time-series data set that covers each of the 4th–109th Congresses.10 The data set

contains both the key independent variable (maximum modularity) and the key dependent variable

(majority-party switches) for each House and Senate. ‘Majority-party switches’ is a binary variable

that takes the value 1 if a switch occurred as a result of the previous election and a 0 if it did not.

Using information provided in Kernell et al. (2009), we identified 27 switches in the House and 26

switches in the Senate.11

We control for economic indicators such as gross domestic product (GDP), consumer price

index (CPI), and national debt (as a percentage of GDP) (Historical Statistics of the United

States, 2009). We also include indicator variables for divided government, midterm Congress, and

Republican or Democratic majorities. We included the first two variables to control for the impacts
9The medium-modularity range is approximately [0.15, 0.30] for the House, and [0.15, 0.23] for the Senate (see

Figure 3). We show associated plots in Section 7.5.1 of the online supplementary information.
10The accompanying economic data that we gathered were not available for the first three Congressional sessions.
11We include a table of these switches in Section 7.5 of the online supplementary information.
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of presidential races on Congressional electoral outcomes and the last two to capture any peculiar

effects of a stable two-party system. Finally, we include an indicator variable for Congresses with

three or more communities, expecting that these Congresses are likely to be particularly unstable.

We conducted logistic regression analyses using several specifications. We first examined the

relationship between future majority-party switches and maximum modularity and its squared

term, while controlling for the lagged dependent variable and the presence of three (or more)

communities. We subsequently added structural and economic control variables for Congress t and

retested the model for majority-party switches in the next Congress (t+1). To aid comparison with

NOMINATE-based measures, we report similar specifications using both W- and DW-NOM-based

MPR measures of polarization. MPR analyses are necessarily limited to Congresses 46-109 (the

time period over which DW-NOM is calculated), so we conducted modularity regressions over this

time period as well. We present our results in Table 1.

<TABLE 1 ABOUT HERE>

The regression results show a clear relationship between modularity and majority-party shifts

in the House. In all four specifications, modularity is significant and positive (p < 0.05), and its

squared term is significant and negative (p < 0.05). In the Senate, results are weak. Modularity

approaches significance (p < 0.1) in only two of the four models, and the squared term approaches

significance in only one. Neither the DW- nor W-NOM MPR measures are significant in any

specification in either chamber.

The existence of a non-monotonic relationship between modularity and House majority switches

has important implications for the study of legislative organization and party dynamics. With some

caution, we offer some preliminary explanations for these results in the following section. We refer

to these results and explanations as our ‘partial polarization’ hypothesis.

4.2 Discussion

We believe that the instability of partially-polarized Houses might be driven by the strategic be-

havior of legislators, candidates, and other partisans as they attempt to coordinate with low-

information voters. These dynamics are most easily explained by dividing Congresses into three
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categories: those with low, medium, and high modularities. We observe that low- and high-

modularity Congresses tend to have stable majorities, whereas the majorities in medium-modularity

Congresses are less stable.

In low-modularity Congresses, communities tend to be weak and are presumably less informative

to political elites and the general electorate. Recall from Section 3.3 that Congresses with more

than two communities tend to have lower modularity than those with two communities. If one

imagines Congressional activity as a coordination problem, then low-modularity Congresses are

those in which coordination takes place between different coalitions on different issues and in which

mechanisms to aggregate preferences within groups have little power. In such an environment,

coordination costs are likely to be high, and individual legislators might see little benefit in group

alliances (Olson 1965), which could result in committee rule (Shepsle & Weingast 1987) or gridlock

(Binder 1999). Electoral institutions (Herrnson 2004) also give Congressmen the incentive to pursue

particular benefits for their districts in order to win reelection (regardless of collective impact). In

such an environment, coordination likely occurs through logrolling and the exchange of district-level

benefits.

High-modularity Congresses have the opposite problem: communities are well-defined and usu-

ally party-oriented. Presumably, legislators have solved their coordination problem by coalescing

into voting blocs that reduce the costs of governing and improve the value of ideological signals to

the electorate. Such efficiency comes with a corresponding loss in voting freedom, as the electoral

costs of defecting from a community increase. Donors, lobbyists, activists, and elites who have in-

vested in the existing community structure might be less willing to support defectors, which impairs

a Congressman’s ability to fundraise and decreases his/her chance of reelection. Defection might

also muddle the ideological signal to voters, which could in turn decrease turnout or encourage

the consideration of challengers. Consequently, pressure to conform might explain the dearth of

majority switches in these Houses.

Medium-modularity Congresses reveal environments that are subject to potential flux. Such

Congresses might represent a highly modular environment that is in the process of breaking down

or a poorly-structured environment in the process of consolidating. When group structures exist
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but are not well-established, politicians have a strategic incentive to develop and control stable

communities that will convey more effective signals to voters. The strategic behavior of legislators,

in turn, causes communities to fracture and reassemble; meanwhile, voters attempt to make sense

of the more complex environment.

We investigate the strategic incentives of individual legislators in the following section by using

divisiveness and solidarity. These concepts connect modularity and group dynamics directly to the

electoral fortunes of individual legislators.

5 Reelections in the House

We begin with insights that arise from our analyses in Section 4.2 on the effect of the maximum-

modularity value on changes in the majority party in Congress. Our ‘partial polarization’ hypothesis

suggests that medium levels of maximum modularity might lead to instability in Congressional

blocs, with some alliances breaking down and others being forged. At the individual-level, this

instability should be reflected in the electoral successes and failures of legislators. Here we explore

the relationship between maximum-modularity, its associated individual-level quantities (namely,

divisiveness and solidarity), and reelection outcomes in the House. We start this exploration by

conducting a series of two-dimensional LOESS regressions.12

In our first regression, we find evidence for an interactive effect between modularity and divisive-

ness as they impact reelection. Divisive legislators in medium-modularity Houses have the highest

rates of electoral failure but are more successful when modularity is low or high. In low-modularity

Houses, we suspect that this arises because group solidarity is a less valuable cue for voters when

group structures are weak. In high-modularity Houses, we suspect that divisiveness is only suc-

cessful in combination with strong group solidarity, as groups are highly salient in these Congresses

and members are likely to be penalized for defection. In medium-modularity Congresses, the leg-

islative environment appears to be more complex, as both Congressmen and voters have poorer

information about the structure and salience of communities. This results in coordination failures

between Congressmen, parties, and voters (Downs 1957b), which in turn leads to lower reelection
12We show associated plots in Section 7.6 of the online supplementary information.
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rates.

We conduct a second regression to illuminate the impact of solidarity and divisiveness on re-

election.13 We find that highly divisive Congressmen suffer in their electoral prospects unless they

also have high group solidarity, providing further tentative support for our ‘partial polarization’

hypothesis. Significant numbers of legislators with both high divisiveness and high solidarity in a

Congress are associated with high modularities (that is, they have a high potential contribution

to modularity and that contribution is realized by their strong alignment with identified groups;

see also the additional regressions in Section 7.6 of the online supplement). In the absence of such

strong solidarity, the aggregate maximum modularity may only reach the medium-modularity level;

legislators in such Congresses possibly use votes to form coalitions (yielding high divisiveness) but

are not always successful in forming cohesive groups in line with the full body of their votes (i.e., low

solidarity). Electoral failure in this case could stem from the loss of activist support (Aldrich 1995)

or a coordination failure with voters (Downs 1957b).

From these regressions, we derive three testable hypotheses that lend support to our broader

‘partial polarization’ hypothesis. First, increasing divisiveness causes a decrease in reelection prob-

ability. Second, increasing solidarity increases reelection chances. Finally, the impaired electoral

chances of highly-divisive legislators can be mitigated if their divisive behavior is consistent with

the voting behavior of their community. In other words, we expect a positive association between

electoral success and an interaction between divisiveness and solidarity (divisiveness × solidarity).

We test these three hypotheses in the next subsection.

5.1 Data, Analyses, and Results

In this section, we test our three hypotheses concerning reelection to the House of Representatives.

Our dependent variable is reelection to the House (1 for success, and 0 for defeat). We exclude

legislators who do not participate in the general election. Our explanatory variables are divisiveness,

solidarity, and their interaction. We have rescaled divisiveness to the interval [0, 1] to make the

regression results easier to interpret (solidarity lies in this interval by definition).
13To aid interpretation, we report correlations between divisiveness and solidarity in Section 7.6 of the online

supplementary information. We also report examples of the various legislator types.
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We also include several control variables in our specifications. At the Congress level, we control

for presidential election years and divided government using indicator variables. At the individ-

ual level, we control for party (indicators for ‘Democrat’ and ‘Republican’), preference extremity

(absolute value of first-dimension DW-NOM), seniority (number of Congresses served), party unity

(as defined in Poole 2005), previous margin of victory (percentage of votes), and district-level

partisanship.14 We pool data for the 56th—103rd Houses (1899—1995) for our analyses.15

We require a model that can estimate appropriate standard errors for our explanatory variables

while accounting for the nature of the data. To do this, we employ mixed-effects logistic regression

model that allows us to account for both Congress-level and individual-level components as random

effects by calculating random intercepts for these variables (Gelman & Hill 2007). We draw the

random intercepts from a Gaussian distribution with mean 0 and standard deviation equal to that

of the variable. The functional form of the model resembles a traditional logit model with the

random effects as additional parameters:

Pr(yi = 1) = logit−1(αlegislatori + α
Congress
i + βfixed

i + εi) . (4)

We evaluate four mixed-effects logistic regression specifications and report our results in Table

2. In the first specification, we regress divisiveness and solidarity against the reelection indicator.

We find that divisiveness has a significant negative impact on reelection chances and that group

solidarity has a significant positive impact. In the second specification, we also include the inter-

action of solidarity and divisiveness (Divisiveness × Solidarity). This model maintains the finding

that divisiveness is associated with decreased reelection probability, and it also suggests that the

combination of divisiveness and solidarity has a significant positive impact on reelection. Although

the sign of solidarity flips from positive to negative, the aggregate effect of solidarity must include

the interaction term.16 At even moderately low levels of divisiveness (i.e., rescaled values of 0.2 or
14District-level partisanship is estimated by multiplying the most recent Democratic Presidential vote (percentage)

for a district by the party indicator variables.
15Covariate data were compiled by Keith Poole in collaboration with Andrew Scott Waugh.
16The interaction variable projects the node vector onto the group vector of its associated community, thereby

indicating the actual contribution to aggregate modularity that is made by assigning the legislator to that specific
group (Newman 2006a).
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lower), the effect of the interaction term exceeds the main solidarity effect, suggesting that most

legislators benefit from increased solidarity with their community. The third and fourth specifica-

tions include the aforementioned Congress-level and individual-level controls, and they yield similar

results.

<TABLE 2 ABOUT HERE>

5.2 Discussion

The negative influence of divisiveness suggests that legislators suffer a penalty for polarizing votes

unless they also exhibit high community solidarity, and that this is particularly true in high-

modularity environments. We hypothesize that divisiveness without solidarity not only disconnects

legislators from needed elite support but also complicates the decisions of rationally-ignorant voters.

Conversely, legislators cannot be highly divisive while simultaneously maintaining independence

from a coalition. Only by appropriately balancing group solidarity and individual divisiveness do

Congressmen maximize their chances at reelection.

Our individual-level results support our Congress-level findings and show significant differ-

ences in the value of communities across different levels of polarization. In partially-polarized

(i.e., medium-modularity) Congresses, legislators face complex environments in which their al-

liance choices are subject both to greater error and to greater risk. In such environments, they

must balance community cohesion with concerns for constituents, activists, and others who impact

their electoral fates.

6 Conclusions

Researchers have long sought to separate the effects of party on voting behavior from electoral,

interest-group, and other pressures. Prior studies have assumed the existence and structure of

parties (Poole & Rosenthal 1997)—or of alternate mechanisms such as committees (Shepsle &

Weingast 1987) or institutional veto players (Tsebelis 2002)—to derive implications for the struc-

ture of roll-call voting. These studies have tended to consider their organizational mechanisms in
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isolation, which our results suggest might be a mistake.

In this paper, we have used the network-science concept of modularity to provide a novel mea-

sure of polarization in Congress. Using roll-call data, we calculated the community structures that

maximize modularity for the 1st–109th Houses of Representatives and Senates. Such structure in-

cludes the membership of each community and also (via modularity) indicates the cohesiveness of

communities. We argue that modularity offers a clearer and more parsimonious measure of polar-

ization than existing measures that are based on spatial-modeling assumptions. The introduction

of modularity and related measures to the analysis of Congressional behavior has the potential to

fundamentally alter the study of group dynamics and partisanship in legislatures.

We demonstrate the value of this modularity by demonstrating that there exists a non-monotonic

relationship between modularity and majority party switches in the House, which suggests that

‘partially-polarized’ Congresses are more unstable than ones with either low or high levels of po-

larization. Similar uses of NOMINATE-based polarization measures fail to replicate this result.

We further investigate the ‘partial polarization’ hypothesis using divisiveness and solidarity, which

capture the individual-level impacts of legislative alliances, and we find that these measures are

significant predictors of reelections in the House.

Modularity provides a valuable and parsimonious benchmark measure of polarization against

which to compare alternate legislative orderings. By comparing the maximum modularity of a

Congress to modularities calculated either using party divisions or using any other exogenously-

determined partition, one might be able to identify the conditions under which particular structural

arrangements succeed and fail. This, in turn, might help to disentangle the complex interplay of

environmental, ideological, and institutional pressures that impact the structure of Congressional

voting. Our results also suggest that community structure in Congress strongly influences the

strategic incentives of political elites to preserve or subvert existing order, and that the value in

pursuing a new order depends on the presence of community structures that are neither too strong

to break nor too weak to identify.
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Supplementary Information

7.1 Generation of Adjacency Matrices

In this section, we describe in detail the process by which we calculated adjacency matrices using

House and Senate roll-call data (which we obtained from voteview.com) . For each legislative

body, roll calls for a two-year Congress are encoded in an n × b matrix M. Each matrix element

Mik equals 1 if legislator i voted yea on bill k, −1 if he/she voted nay, and 0 otherwise. Because

we are interested in characterizing similarities between legislators (rather than direct connections

between legislators and bills), we transform the voting matrix into an n × n adjacency matrix A

whose elements Aij ∈ [0, 1] represent the extent of voting agreement between legislators i and j.

We define these matrix elements by

Aij =
1
bij

∑
k

γijk , (5)

where γijk equals 1 if legislators i and j voted the same on bill k and 0 otherwise, and bij is the

total number of bills on which both legislators voted. Because perfect similarity between a legislator

and him/herself provides no information, we set all diagonal elements to be zero (i.e., Aii = 0).

The matrix A thereby encodes a network of weighted ties between legislators, and the weights are

determined by the similarity of their roll-call records in a single two-year Congress.

Following the guidelines of Poole & Rosenthal (1997) and Anderson et al. (1966), we consider

only ‘non-unanimous’ roll-call votes. A roll-call vote is classified as ‘non-unanimous’ if at least 3%

of legislators are in the minority. For modern Congresses, this implies that a roll-call minority must

contain at least 4 Senators or at least 13 Representatives to yield a ‘non-unanimous’ vote. This

ensures that our data sets mirror those used by McCarty, Poole, and Rosenthal (2007), permitting

more explicit comparison of our polarization measure with theirs.

7.2 Community-Detection Heuristics

In this section, we list and provide brief descriptions of the community-detection heuristics that

we used to calculate maximum modularity partitions of the Senate and House networks. We
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also indicate references that provide complete specifications of the algorithms. We note that it is

important to consider several such algorithms when studying community structure by optimizing

a quality function such as modularity (Fortunato & Barthélemy 2007, Porter, Onnela & Mucha

2009, Fortunato 2010, Good, de Montjoye & Clauset 2010). In the results of our investigation, we

partition each network using various community-detection algorithms, and we use in each case the

highest-modularity partition that we obtained.

<TABLE 3 ABOUT HERE>

<TABLE 4 ABOUT HERE>

Heuristics 1–5 are all spectral methods of modularity optimization. Spectral methods use

eigenvectors of the modularity matrix B that are associated to B’s largest positive eigenvalues.

Heuristics 1–3 consist of three different implementations in which we use only the leading eigenvector

(i.e., the one associated with the largest eigenvalue), so the final partition is obtained from recursive

steps involving partitions of some portion of the network into two smaller pieces (Newman 2006b,

Newman 2006a, Fortunato 2010). The difference between the heuristics 1–3 arises from the use of

different tie-breaking and fine-tuning procedures, which attempt to improve partitions between the

recursive spectral partitioning steps. In heuristics 4 and 5, we use the two eigenvectors associated

with the two largest eigenvalues of B (Richardson, Mucha & Porter 2009): Heuristic 4 allows only

bi-partitioning steps, whereas heuristic 5 allows both bi-partitioning and tri-partitioning steps.

Heuristic 6, known as the ‘Louvain’ method, is a locally greedy modularity-optimization technique

(Blondel, Guillaume, Lambiotte & Lefebvre 2008, Fortunato 2010). Heuristic 7 employs simulated

annealing to maximize modularity (Reichardt & Bornholdt 2006, Fortunato 2010).

All of the results from heuristics 1–7 have been improved by subsequent application of a

Kernighan-Lin algorithm (Kernighan & Lin 1970, Porter, Onnela & Mucha 2009, Fortunato 2010)

(via the specification described in Newman 2006a, Richardson, Mucha & Porter 2009). This al-

gorithm takes the community partitions generated by the heuristics and conducts a series of node

swaps—moving nodes from one community to another—in order to find higher modularity val-

ues. This is a fine-tuning procedure that can be applied to the partition obtained from any other
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method.

Heuristic 8 is the walktrap algorithm (Pons & Latapy 2005). This algorithm starts by parti-

tioning the network into n communities that each contain a single node (i.e., a single legislator). It

calculates a distance between each pair of communities and then begins merging groups by taking

random walks between them. After each merging step, one calculates the modularity score for the

current partition. The algorithm finishes after n− 1 steps when the nodes have been merged into

a single community and reports the highest-modularity partition that it observed during the whole

process.

Finally, heuristic 9 is a classical cluster-analysis procedure, which we include for comparison

with modularity-maximizing community-detection heuristics. This ‘partitioning around medoids’

(PAM) cluster-analysis technique is related to the popular k-means clustering procedure (which

divides a network into precisely k communities), but is more robust: one ordinarily needs to

specify k in advance—which is inappropriate for our investigation—but the PAM method allows

one to determine an optimum number of communities based on mean silhouette width (Kaufman

& Rousseeuw 1990).

In tables 3 and 4, we provide summary statistics about the community-detection heuristics we

used. Note that the modularity values obtained using different modularity-optimization heuris-

tics vary little, especially in the House. Additionally, neither the cluster-analysis technique nor

the walktrap algorithm ever obtain the best result. Moreover, by using many different com-

putational heuristics, we more confidently sample the complicated modularity landscape to find

higher-modularity partitions to employ in our subsequent analysis. As has been discussed in a

recent paper on modularity-optimization in practical contexts (i.e., situations that consider real-

world networks) (Good, de Montjoye & Clauset 2010), the use of multiple different optimization

heuristics is an important protocol to follow.

7.3 Descriptive Statistics for Congresses with Three or More Communities

In Table 5, we give descriptive statistics for Congresses in which community-detection identifies

three or more communities. In the table, we list all Congresses in which the third-largest community
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has at least as many legislators as the number in the largest community minus the number in the

second-largest community. For each community in such Congresses, we give the size (i.e., number

of legislators), mean divisiveness of legislators, and mean solidarity of legislators.

<TABLE 5 ABOUT HERE>

7.4 A Descriptive Example from the 19th Century

As we discussed in Section 3.3, modularity and its associated individual-level quantities can be

used to investigate party polarization even during periods of history that include more than two

dominant parties. In this section, we demonstrate the utility of modularity using an illustrative

19th century example.

In the early 19th century, the fledgling party system of the United States was going through a

transitional period. The existing party system, which pitted the dominant Democratic-Republicans

against a dying Federalist party, finally broke down in the 18th Congress (1823–1825) as the

Democratic-Republicans broke ranks based on their affiliations with national leaders (most no-

tably, John Quincy Adams and Andrew Jackson). This resulted in a new period, reflected by

partisan conflict between supporters of Adams and supporters of Jackson, which lasted until the

emergence of the Whigs and the Democratic party in the 25th Congress (1837–1839) (Kernell, Ja-

cobson & Kousser 2009). The time series of maximum modularity (Table 1) captures this transition

nicely and provides evidence that group structures began to change as early as the 14th Congress—

before the Democratic-Republicans divided into the aforementioned camps. The Adams-Jackson

party system finally emerged in the 19th Congress, representing a majority-party switch in both

chambers.

One can see using modularity that the breakdown of the Democratic-Republican Party first

becomes apparent in the transition from the 13th to 14th Congress (i.e., with the 1814 election).

The second largest negative shift in maximum modularity over the last 200 years occurs during

this transition in both chambers (−0.152 in the House and −0.085 in the Senate). This decline is

particularly interesting given that the country was experiencing a unified Democratic-Republican

government and that the Democratic-Republicans held huge majorities in both chambers. Some
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of this decline is likely due to the end of the War of 1812 during the 13th Congress. With the

war over, the Democratic-Republicans no longer needed to maintain a united front, which freed

legislators to pursue alternate agendas.

This breakdown yielded a maximum-modularity partition with four communities in the Senate

(containing 14, 13, 12, and 5 Senators), and three communities in the House (containing 80, 71 and

44 Representatives), suggesting that Democratic-Republicans in the both chambers were already

beginning to explore alternate alliance structures. In Table 5 we see that the mean solidarity scores

for the 14th Congress communities are 0.70, 076, 0.66, and 0.82 in the Senate and 0.5, 0.58, and 0.57

in the House. Compare these to the 13th Congress, in which both chambers have two communities,

with sizes of 26 and 20 in the Senate and 117 and 78 in the House, and mean solidarity scores of

0.63 and 0.74 in the Senate, and 0.78 and 0.87 in the House. While mean solidarity appears not to

vary across the 13th-14th Senates, mean solidarity in the House appear substantially lower in the

14th Congress than the 13th. The decrease in solidarity, coupled with the increase in the number

of communities, suggests a weakening of party control over the House in this period.

In the House, this transition becomes further apparent in the 17th Congress (1821–1823), where

we again identify three communities when the Democratic-Republican party is nominally whole and

maintaining large majorities in both chambers of Congress. These communities contain 78, 65, and

56 legislators (see Table 5). By the 18th Congress, the divisions within the Democratic-Republican

party become formally acknowledged, as three camps emerge behind the leadership of Adams,

Jackson, and William Crawford. This formal recognition results in a dramatic increase in the

maximum modularity of the House compared to the previous Congress, demonstrating the impact

that formal party divisions can have on legislator behavior.

The same basic groups had emerged during the 17th House but had not yet formally consoli-

dated into well-defined camps, as evidenced by their mean solidarity scores (0.39, 0.40, and 0.49).

After this consolidation, however, the cost to coordinate had become lower, with an accompany-

ing increase in maximum modularity and the elimination of the third major community in the

modularity-maximizing structure. In this case, the two largest communities contain 114 and 104
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legislators.17 The elimination of the third community despite the emergence of a third party is

especially interesting, as it suggests that two of the parties saw the institutional value in coordi-

nating on roll-call votes in order to pursue their own agendas in a majority-rule institution. This

is corroborated by the mean solidarity scores for the two largest communities, 0.62 and 0.61 re-

spectively, which are substantially higher than the three large communities identified in the 17th

House. Thus, the maximum-modularity time series identifies the presence of a coalition government

in the 18th House. By the 19th House, however, the party system reforms into the pro-Adams and

pro-Jackson divisions. A majority-party switch occurs, the pro-Adams party assumes control of

both chambers, and a two-community structure emerges. A significant third community does not

emerge again until the 32nd Congress (1851–1853).

We see from this historical example that there is a lag between formal definitions of party and

the emergence of coalitions in Congress, and that this lag can work in both directions. In the 14th

Senate and 17th House, we identify four and three communities, respectively, in a period in which

only two parties nominally existed. When a three-party system becomes recognized in the 18th

Congress, maximum modularity increases and the number of communities in the House reduces to

two. Modularity thus captures a fascinating distinction between the formal, self-identifying claims

of political parties and what coordinating activities are revealed by actual voting behavior.

7.5 Modularity and Majority Party Switches

In this section, we present Table 6, which summarizes the changes in majority party in the United

States Congress from 1788-2002. These switches are used to generate the dependent variable for

our Congress-level regressions in Section 4 of the main text.

<TABLE 6 ABOUT HERE>

7.5.1 Congress-level LOESS Plots

In this section, we present plots of our Congress-level LOESS regressions (Loader 1999) to supple-

ment Section 4 of the text. Observe the non-monotonic relationship between maximum modularity
17We technically observe 4 communities in the 18th House, but the third and fourth communities contain only 2

and 1 legislators respectively.
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and majority party switches.

<FIGURE 3 ABOUT HERE>

7.6 Divisiveness and Solidarity

The plots and tables in this section supplement Section 5 of the main text. Note in Figure 5 and

Table 7 that divisiveness, solidarity, and their interaction (divisiveness × solidarity) are positively

correlated but clearly provide different pieces of information.

7.6.1 Two-Dimensional LOESS Plots

In addition to the LOESS regressions discussed in Section 5, here we also examine the relationship

between divisiveness, solidarity, and the maximum-modularity level of Congress. As expected from

the definitions of these quantities, we find that high-modularity Congresses are characterized by

high levels of divisiveness and solidarity, as they are composed of communities that are highly

structured and partisan. When either divisiveness or solidarity values dip, however, then medium-

modularity Congresses become more likely. Instability in medium-modularity cases appears to

be driven either by divisiveness without solidarity or vice versa. Intuitively, a legislator who is

divisive but not solidary holds highly divisive positions while nevertheless being assigned to a large

community (i.e., low solidarity). A legislator who is solidary but not divisive tends to side with

his/her community on most issues but holds broadly popular positions on other issues.

<FIGURE 4 ABOUT HERE>

7.6.2 Correlations and Scatter Plots

<TABLE 7 ABOUT HERE>

<FIGURE 5 ABOUT HERE>
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7.6.3 Divisiveness and Solidarity Summary Statistics

In this section, we provide additional details on the divisiveness and solidarity of individual legis-

lators. Table 8 gives summary statistics for legislators who are divisive (90th percentile or more)

but not solidary (10th percentile or less), solidary but not divisive, both solidary and divisive, and

neither solidary nor divisive. In Table 9, we give examples of legislators who fall into each of these

four categories.

<TABLE 8 ABOUT HERE>

<TABLE 9 ABOUT HERE>
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Figure 1: [Color online] Longitudinal comparison of modularity and MPR measures in the House
(Panel A) and Senate (Panel B). Each measure has been rescaled to [0, 1] for visual convenience.
Maximum modularity lies in the interval [0.039, 0.364] in the House and [0.061, 0.285] in the Senate.
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Figure 2: [Color online] Longitudinal plot of party modularity divided by maximum modularity for
both the House and Senate. The contribution of party to maximum modularity varies considerably
over time, particularly in the Senate, suggesting that polarization in Congress is usually, but not
always, driven by formal party divisions.
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Panel A: House
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Panel B: Senate
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Figure 3: [Color online] LOESS plot of maximum modularity in Congress t versus majority party
change in Congress t + 1 for the House and Senate. Majority party changes are most probable
during medium-modularity Congresses.
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Panel A: Divisiveness, Modularity, Reelection
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Figure 4: [Color online] Two-Dimensional LOESS plots indicating the relationship between modu-
larity, divisiveness, solidarity, and reelection rates in the House of Representatives.
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Panel A: Divisiveness and Solidarity
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Figure 5: [Color online] Scatter plots illustrating the relationship between divisiveness, solidarity,
and their interaction for the House of Representatives. All variables are scaled to lie in the interval
[0, 1].
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Panel A: Fixed Effects
(1) (2) (3) (4)

Divisiveness −4.737 (0.267) *** −11.660 (0.741) *** −12.728 (0.761) *** −12.789 (0.761) ***
Solidarity 1.417 (0.134) *** −1.700 (0.346) *** −1.368 (0.362) *** −1.353 (0.362) ***
Divisiveness×Solidarity 10.030 (0.992) *** 10.874 (1.002) *** 10.990 (1.003) ***
Presidential Year −0.293 (0.205) −0.299 (0.202)
Divided Government −0448 (0.217) * −0.449 (0.215) *
|Nominate (1st dim.)| 0.967 (0.247) *** 0.842 (0.250) ***
Democrat −1.495 (0.428) *** −1.723 (0.469) ***
Republican −1.369 (0.428) ** −0.837 (0.470) .
Seniority −0.062 (0.009) *** −0.062 (0.009) ***
Party Unity −0.010 (0.003) *** −0.011 (0.003) ***
Victory Margin 0.038 (0.002) *** 0.037 (0.002) ***
Democrat×Dem. Pres. Vote 0.005 (0.004)
Republican×Dem. Pres. Vote −0.012 (0.005) **
(Intercept) 2.855 (0.155) *** 4.932 (0.267) *** 6.313 (0.551) *** 6.395 (0.552) ***

Standard errors in parentheses. Significance codes (p <): *** 0.001, ** 0.01, * 0.05, . 0.1. N = 16891

Panel B: Random Effects
(1) (2) (3) (4)

Legislator (ICPSR) 0.933 0.970 0.633 0.633
(Number of Legislators = 3867) (0.966) (0.985) (0.796) (0.796)
Congress (#) 0.461 0.430 0.436 0.422
(Number of Congresses = 48) (0.679) (0.655) (0.661) (0.650)

Variances reported with standard deviations in parentheses.

Table 2: Mixed-Effects Logistic Regression Results for the 56th–103rd Houses. The dependent
variable is reelection to the House. The key independent variables are divisiveness, solidarity, and
their interaction. Note that divisiveness and solidarity individually have a negative impact on
electoral prospects but that the interaction has a positive impact. This suggests that divisiveness
might only be sustainable for Congressmen who are also strong members of a community.
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# Method House Senate
1 Leading-Eigenvector Spectral 1 (Newman 2006b, Newman 2006a) 76 (76) 49 (49)
2 Leading-Eigenvector Spectral 2 (Newman 2006b, Newman 2006a) 75 (1) 48 (4)
3 Leading-Eigenvector Spectral 3 (Newman 2006b, Newman 2006a) 75 (1) 45 (0)
4 Two-Vector Bi-partitioning (Richardson, Mucha & Porter 2009) 81 (5) 63 (9)
5 Two-Vector Bi/Tri-partitioning (Richardson, Mucha & Porter 2009) 90 (9) 69 (3)
6 Louvain (Blondel et al. 2008) 91 (14) 88 (39)
7 Simulated Annealing (Reichardt & Bornholdt 2006) 83 (3) 66 (5)
8 Walktrap (Pons & Latapy 2005) 0 (0) 0 (0)
9 PAM Cluster Analysis (Kaufman & Rousseeuw 1990) 0 (0) 0 (0)

Mean Modularity Interval 0.0041 0.0166
Mean Identical to ‘Maximum-Modularity’ Partition (minimum 1) 5.8807 4.6239

Table 3: Summary Statistics for Community-Detection Heuristics. In this table, we compare the
partitions that we obtained using the eight modularity-optimization heuristics and the one that
we obtained using a standard cluster-analysis technique. Rows 1–9 give the number of Congresses
(out of 109) for which each measure finds the ‘maximum-modularity’ partition. In parentheses,
we report the number of Congresses for which we subsequently used the results of each method
in our analyses. Row 10 gives the mean modularity interval for the nine methods. Row 11 gives
the mean number of heuristics that find the ‘maximum-modularity’ community partition. These
results suggest that community partitions in Congress are fairly robust to different heuristics for
optimizing modularity.
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# Method House Senate
1 Leading-Eigenvector Spectral 1 (Newman 2006b, Newman 2006a) 3–13, 16, 23–26, 28, 30–36,

39, 41–43, 45–49, 51, 53–60,
62–72, 74, 76–78, 82–84, 87–
89, 93, 94, 97–99, 100, 102,
104–109

2, 4, 7, 11–13, 16, 19, 22–24,
26–28, 32, 36, 43–45, 47, 48,
50–53, 55, 57–64, 66, 67, 82,
84, 87, 90, 93, 94, 103–109

2 Leading-Eigenvector Spectral 2 (Newman 2006b, Newman 2006a) 79 1, 21, 33, 37
3 Leading-Eigenvector Spectral 3 (Newman 2006b, Newman 2006a) 40 none
4 Two-Vector Bi-partitioning (Richardson, Mucha & Porter 2009) 20, 22, 44, 61, 80 15, 42, 56, 75, 86, 95, 96, 100,

102
5 Two-Vector Bi/Tri-partitioning (Richardson, Mucha & Porter 2009) 2, 15, 17, 18, 21, 27, 37, 38,

91
29, 39, 65

6 Louvain (Blondel et al. 2008) 14, 29, 50, 52, 73, 75, 81, 85,
90, 92, 95, 96, 101, 103

3, 5, 6, 8, 10, 14, 17, 18, 20,
25, 30, 31, 34, 35, 38, 40, 41,
46, 49, 68-74, 77, 79–81, 83,
88, 89, 91, 92, 97, 97–101

7 Simulated Annealing (Reichardt & Bornholdt 2006) 1, 19, 86 9, 54, 76, 78, 85
8 Walktrap (Pons & Latapy 2005) none none
9 PAM Cluster Analysis (Kaufman & Rousseeuw 1990) none none

Table 4: This table lists the specific congresses for which each community-detection heuristic yielded
the ‘maximum-modularity’ partition. These partitions were subsequently used for individual-level
analyses in Section 5.
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Panel A: House
Year Congress Old New
1792 3 Fed Dem-Rep
1794 4 Dem-Rep Fed
1800 7 Fed Dem-Rep
1824 19 Dem-Rep Adams
1826 20 Adams Jackson
1836 25 Jackson Dem
1840 27 Dem Whig
1842 28 Whig Dem
1846 30 Dem Whig
1848 31 Whig Dem
1854 34 Dem Rep
1856 35 Rep Dem
1858 36 Dem Rep
1874 44 Rep Dem
1880 47 Dem Rep
1882 48 Rep Dem
1888 51 Dem Rep
1890 52 Rep Dem
1894 54 Dem Rep
1910 62 Rep Dem
1918 66 Dem Rep
1930 72 Rep Dem
1946 80 Dem Rep
1948 81 Rep Dem
1952 83 Dem Rep
1954 84 Rep Dem
1994 104 Dem Rep

Panel B: Senate
Year Congress Old New
1800 7 Fed Dem-Rep
1824 19 Dem-Rep Adams
1826 20 Adams Jackson
1832 23 Dem Anti-Jackson
1834 24 Anti-Jackson Jackson
1836 25 Jackson Dem
1840 27 Dem Whig
1844 29 Whig Dem
1860 37 Dem Rep
1878 46 Rep Dem
1880 47 Dem Rep
1892 53 Rep Dem
1894 54 Dem Rep
1912 63 Rep Dem
1914 64 Dem Rep
1918 66 Rep Dem
1932 73 Dem Rep
1946 80 Rep Dem
1948 81 Dem Rep
1952 83 Rep Dem
1954 84 Dem Rep
1980 97 Rep Dem
1986 100 Dem Rep
1994 104 Rep Dem
2000 107 Dem Rep
2002 108 Rep Dem

Table 6: Majority Party Switches in the U.S. Congress (1788–2002).
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Divisiveness Solidarity Interaction
Divisiveness 1
Solidarity 0.253 1
Interaction 0.866 0.653 1

Table 7: Pearson correlations between Divisiveness, Solidarity, and their Interaction
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Congress Name State District Party Divisiveness Solidarity Interaction

Divisive but not Solidary (10 least solidary listed)
63 LOFT G.W. NY 13 Dem 0.8264 0.0179 0.0148
77 WHIITEN MS 2 Dem 0.6724 0.0639 0.0429
66 SULLIVAN NY 13 Dem 0.5915 0.0881 0.0521
61 BROUSSARD LA 3 Dem 0.5748 0.0905 0.0520
82 IKARD TX 13 Dem 0.5422 0.1087 0.0589
75 CONNERY MA 7 Dem 0.6076 0.1233 0.0749
71 OCONNELL RI 3 Dem 0.5892 0.1260 0.0742
89 THOMPSON LA 7 Dem 0.5133 0.1331 0.0683
59 ADAMS H.C WI 2 Rep 0.8049 0.1333 0.1073
59 PRINCE IL 10 Rep 0.5092 0.1496 0.0762

Solidary but not Divisive (10 least divisive listed)
95 LUKEN OH 1 Dem 0.0059 0.9502 0.0056

101 CARR MI 6 Dem 0.0846 0.9488 0.0803
101 CARPER T DE 1 Dem 0.1106 0.9531 0.1054
97 SMITH N. IA 5 Dem 0.1152 0.9518 0.1097

101 ENGLISH OK 6 Dem 0.1154 0.9761 0.1127
94 VAN DEERLI CA 37 Dem 0.1193 0.9577 0.1143
95 SPELLMAN MD 5 Dem 0.1204 0.9462 0.1139

101 SARPALIUS TX 13 Dem 0.1229 0.9828 0.1208
98 MCNULTY J AZ 5 Dem 0.1270 0.9788 0.1243

100 CARR MI 6 Dem 0.1279 0.9759 0.1248
Solidary and Divisive (10 highest interactions listed)

67 KITCHIN C NC 2 Dem 0.7742 0.9782 0.7573
56 ELLIOTT SC 7 Dem 0.7272 0.9477 0.6892
59 HOWARD W. GA 8 Dem 0.7055 0.9549 0.6737
58 POU E.W. NC 4 Dem 0.6931 0.9541 0.6613
58 RANDELL C TX 5 Dem 0.6944 0.9495 0.6594
59 MCCLAIN MS 6 Dem 0.6932 0.9504 0.6588
60 SMITH W.R TX 16 Dem 0.6901 0.9514 0.6566
59 CANDLER E MS 1 Dem 0.6701 0.9699 0.6499
59 ROBINSON AR 6 Dem 0.6851 0.9466 0.6485
58 WALLACE R AR 7 Dem 0.6691 0.9689 0.6482

Neither Solidary nor Divisive (10 lowest interactions listed)
98 RINALDO W NJ 12 Rep 0.0863 0.0005 0.0000
95 RINALDO W NJ 12 Rep 0.1406 0.0008 0.0001
97 WHITLEY NC 3 Dem 0.1292 0.0017 0.0002

102 RAY R GA 3 Dem 0.1435 0.00416 0.0006
94 DERRICK SC 3 Dem 0.0110 0.0533 0.0006
93 STUCKEY GA 8 Dem 0.0799 0.0084 0.0007
98 BENNETT C FL 2 Dem 0.0459 0.017308 0.0008
96 NELSON C FL 9 Dem 0.0488 0.0213 0.0010
95 GIBBONS FL 10 Dem 0.0515 0.0265 0.0014
97 BENNETT C FL 2 Dem 0.0430 0.0369 0.0016

Table 9: Examples of House members who are divisive but not solidary, solidary but not divisive,
solidary and divisive, and neither solidary nor divisive.
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