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Accuracy of mean-field theory for dynamics on real-world networks
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Mean-field analysis is an important tool for understanding dynamics on complex networks. However,
surprisingly little attention has been paid to the question of whether mean-field predictions are accurate, and
this is particularly true for real-world networks with clustering and modular structure. In this paper, we compare
mean-field predictions to numerical simulation results for dynamical processes running on 21 real-world networks
and demonstrate that the accuracy of such theory depends not only on the mean degree of the networks but also
on the mean first-neighbor degree. We show that mean-field theory can give (unexpectedly) accurate results for
certain dynamics on disassortative real-world networks even when the mean degree is as low as 4.

DOI: 10.1103/PhysRevE.85.026106 PACS number(s): 89.75.Hc, 87.23.Ge, 89.75.Fb

I. INTRODUCTION

Mean-field theories are among the most common forms of
analytical approximation employed when studying dynamics
on complex networks [1]. Typically, mean-field theories are
derived under several assumptions:

(i) Absence of local clustering. When considering possible
changes to the state of a node B1, it is assumed that the states
of the neighbors of node B1 are independent of each other.
However, this assumption that the network is “locally treelike”
does not hold if the neighbors of B1 are also linked to each
other—i.e., if the network is clustered (exhibits transitivity).

(ii) Absence of modularity. It is also usually assumed that
all nodes of the same degree k are well described by the mean
k-class state—i.e., by the average over all nodes of degree k.
However, this might not be true if the network is modular, so
that the states of degree-k nodes are differently distributed in
different communities.

(iii) Absence of dynamical correlations. Finally, it is
assumed that the states of each node B1 and those of its
neighbors can be treated as independent when updating the
state of node B1.

Importantly, the neglect of dynamical correlations (as
distinct from structural correlations such as degree-degree
correlations [2,3]) between neighbors in assumption (iii) can
be addressed in improved theories that incorporate information
on the joint distribution of node states at the ends of a random
edge in the network [4,5] (cf. theories that only specify the
structures at the ends of a random edge). The improved
theories are often called pair approximations (PAs) [6,7], and
these are inevitably more complicated to derive and study than
mean-field (MF) theories, so we mostly restrict our attention in
the present paper to the more common MF-theory situation.1

1One should not think of PA theories as theories that only add
information about degree-degree correlations. Each particular PA or

The distinctions between assumptions (i)–(iii) can be
clarified by considering the theoretical approaches beyond the
MF level that have been developed in certain cases to deal
with violations of (i)–(iii). The impact of nonzero clustering
on percolation problems on a network was examined in
Refs. [8–12]. The analytical methods used in those papers
explicitly account for the dependence of neighbors’ states
on each other—i.e., for the violation of MF assumption (i).
The role of community or modular structures [see assumption
(ii)] on percolation requires a different extension of analytical
methods [13,14]. As noted above, PA theories can account
for dynamical correlations more accurately than MF theory,
thereby improving on assumption (iii).

The MF assumptions enumerated above are clearly violated
for real-world networks, which are often highly clustered and
modular [4,15]. It is therefore rather surprising that MF theory
often provides a reasonably good approximation to the actual
dynamics on many real-world networks. This fact has been
noted by several authors [1,5,16–18], but to our knowledge
no comprehensive explanation for this phenomenon has ever
been developed. In studying this phenomenon, we focus
on a specific question of obvious practical interest: Given
a real-world network and a dynamical process running on
it, is it possible to predict whether or not MF theory will
provide a good approximation to the actual dynamics on
this network? In this paper, we test multiple well-studied
dynamical processes on 21 undirected, unweighted real-world
networks. We enumerate and summarize various properties of
the networks in Table I. These networks are characterized

MF theory can either neglect degree-degree correlations (or other
structural correlations, which specify connections between nodes) or
take them into account. The difference is that MF theories are derived
under assumption (iii) of the absence of dynamical correlations, while
PA theories take the dynamical correlations into consideration.
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TABLE I. Basic diagnostics and error measures for the networks used in this paper. All real-world data have been treated in the form of
undirected, unweighted networks. We only consider the largest connected component of each network, for which we enumerate the following
properties: total number of nodes N ; mean degree z; mean first-neighbor degree d; fraction of nodes of degree 10 or less; clustering coefficients
C and C̃ (defined, respectively, in Eqs. (3.6) and (3.4) of Ref. [48]); and Pearson degree correlation coefficient r . The quantities ES , EK , and
EV are the relative MF errors for the SIS, Kuramoto, and voter models; and EPA

V is the relative PA error for the voter model. The last column
gives the citation for the network in this paper’s bibliography and/or the URL of a data file.

No. Network N z d frac(k � 10) C C̃ r EK ES EV EPA
V Refs.

1 Word adjacency: Spanish 11558 7.45 942.58 0.91 0.38 0.02 − 0.2819 − 0.03 0.01 0.21 0.04 [25]
2 Word adjacency: English 7377 11.98 666.03 0.81 0.41 0.04 − 0.2366 − 0.03 0.01 0.12 0.03 [25]
3 AS Internet 28311 4.00 473.65 0.96 0.21 0.01 − 0.2000 0.08 0.03 0.44 0.08 [26]
4 Word adjacency: French 8308 5.74 376.22 0.93 0.21 0.01 − 0.2330 − 0.02 0.03 0.23 0.003 [25]
5 Marvel comics 6449 52.17 338.16 0.25 0.78 0.19 − 0.1647 − 0.03 0.02 0.03 0.008 [27]
6 Reuters 9/11 news 13308 22.25 236.17 0.70 0.37 0.11 − 0.1090 − 0.01 0.01 0.04 −0.009 [28]
7 Word adjacency: Japanese 2698 5.93 199.99 0.92 0.22 0.03 − 0.2590 − 0.02 0.02 0.24 0.01 [25]
8 Facebook Oklahoma 17420 102.47 186.04 0.11 0.23 0.16 0.0737 0.03 0.01 0.02 0.01 [19,29]
9 Corporate ownership (EVA) 4475 2.08 113.85 0.98 0.01 0.00 − 0.1851 0.80 0.06 1.00 0.65 [30]
10 Political blogs 1222 27.36 100.07 0.45 0.32 0.23 − 0.2213 0.04 0.01 0.05 0.009 [31]
11 Facebook Caltech 762 43.70 74.65 0.20 0.41 0.29 − 0.0662 0.004 0.01 0.04 0.009 [19,29]
12 Airports500 500 11.92 59.50 0.76 0.62 0.35 − 0.2679 − 0.002 0.06 0.29 0.19 [32,33]
13 C. Elegans metabolic 453 8.94 51.57 0.86 0.65 0.12 − 0.2258 0.03 0.04 0.18 0.04 [34,35]
14 Interacting proteins 4713 6.30 32.92 0.84 0.09 0.06 − 0.1360 0.14 0.04 0.19 −0.03 [36–38]
15 C. Elegans neural 297 14.46 32.00 0.41 0.29 0.18 − 0.1632 0.10 0.03 0.09 0.006 [20,39]
16 Transcription yeast 662 3.21 22.31 0.95 0.05 0.02 − 0.4098 0.64 0.08 0.70 0.36 [40]
17 Coauthorships 39577 8.88 20.17 0.77 0.65 0.25 0.1863 0.22 0.08 0.14 0.01 [41,42]
18 Transcription E. coli 328 2.78 17.88 0.96 0.11 0.02 − 0.2648 0.48 0.09 0.79 0.43 [43]
19 PGP Network 10680 4.55 13.46 0.90 0.27 0.38 0.2382 0.50 0.16 0.45 0.17 [44–46]
20 Electronic Circuit (s838) 512 3.20 4.01 1.00 0.05 0.05 − 0.0300 0.78 0.23 0.62 0.23 [25]
21 Power Grid 4941 2.67 3.97 0.99 0.08 0.10 0.0035 0.93 0.29 0.90 0.65 [20,47]
22 γ theory [γ (3,3) = 1] 1002 3 3 1.00 1/3 1/3 N/A 0.91 0.89 0.78 0.47 [10]
23 γ theory [γ (3,3) = 1] 10002 3 3 1.00 1/3 1/3 N/A 0.97 0.88 0.79 0.49 [10]

by a range of values for several standard network diag-
nostics, which is important for this study. We show that
MF theory typically works well provided that d, the mean
degree of first neighbors of a random node, is sufficiently
large. In contrast, we demonstrate that the mean degree z

of a network is not necessarily a good indicator of MF
accuracy.

The remainder of this paper is organized as follows. In
Sec. II, we introduce the dynamical processes that we consider
and compare numerical results with MF theory for sample
real-world networks. In Sec. III, we discuss the implications of
our results and propose an explanatory hypothesis. In Sec. IV,
we compare our results with earlier work in this area. We
conclude in Sec. V.

II. EXAMPLES

We begin by showing examples for which MF theory gives
accurate results for dynamics on real-world networks and
contrast them with examples for which MF theory performs
poorly.

A. Kuramoto phase oscillator model

In Fig. 1, we show the results of running the Kuramoto phase
oscillator model [22] on the Facebook Oklahoma network
[19] and on the US Power Grid network [20]. Each node
corresponds to an oscillator with an intrinsic frequency drawn

from a unit-variance Gaussian distribution. The phase θj (t) of
the oscillator at node j obeys the differential equation

dθj

dt
= ωj + K

N∑
�=1

Aj� sin(θ� − θj ), (1)

where ωj is the intrinsic frequency of node j , N is the number
of nodes, and A is the adjacency matrix of the network. The

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.5

1

K

r 2

numerical simulation
MF theory

(b)

0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045 0.05
0

0.5

1

K

r 2 numerical simulation
MF theory

(a)

FIG. 1. (Color online) Order parameter for synchronization in
the Kuramoto phase oscillator model running on (a) the Facebook
Oklahoma network [19] and (b) the US Power Grid network [20] as
a function of the coupling parameter K . The order parameter r2 is
defined in Eq. (2). The MF theory of [21] is given by Eq. (3).
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coupling to network neighbors is measured by the parameter
K , and global synchrony of the oscillators is expected to
emerge for sufficiently large K [23]. Synchrony is quantified
using the order parameter [21]

r2 =
∣∣∑N

j=1 kj e
iθj

∣∣∑N
j=1 kj

, (2)

where kj is the degree of node j and i = √−1. The MF
theory of Ref. [21] (see also [24]) yields the following implicit
equation for r2:

∞∑
k=0

k2pke
−K2k2r2

2 /4

[
I0

(
K2k2r2

2

4

)
+I1

(
K2k2r2

2

4

)]
= 2

√
2z√

πK
,

(3)

where In is the modified Bessel function of the first kind, pk is
the degree distribution of the network, and z = 〈k〉 ≡ ∑

kpk

is the mean degree. The agreement in Fig. 1 between theory
and simulation is very good for the Facebook network but very
poor for the Power Grid. (See Fig. 4 for additional examples.)

The results of Fig. 1 are perhaps explained in part by noting
that the mean degree z of the Facebook network is about
102, whereas z ≈ 2.67 for the Power Grid (see Table I). It
is arguable that nodes with many neighbors will experience
something closer to a “mean field” than nodes with few
neighbors. In particular, it is plausible that low-z networks
might be more prone to errors in MF due to neglecting the
effects of clustering, modularity, and dynamical correlations.
This is attractively simple, but as we show below, this naive
explanation does not fully capture certain subtleties.

B. SIS epidemic model

In Fig. 2, we compare simulations for the susceptible-
infected-susceptible (SIS) epidemic model [51–53] with the
corresponding predictions of a well-known MF theory [49,50].
In this MF theory, the fraction ik(t) of degree-k nodes that are
infected at time t is given by the solution of the equation

dik

dt
= −ik + β(1 − ik)k�k, (4)

where β is the spreading rate, the recovery rate has been set to
unity by choice of time scale, and

�k =
∑
k′

P (k′|k)ik′ (5)

is the probability that any given neighbor of a degree-k node is
infected. In Eq. (5), P (k′|k) is the probability that an edge
originating at a degree-k node has a degree-k′ node at its
other end. Because degree-degree correlations are included,
this version of the theory is called a correlated MF theory
(cMF). A further simplification of the theory is possible if
one assumes that the network is uncorrelated and is thus
completely described by its degree distribution pk . In this case,
which is termed uncorrelated MF (uMF), P (k′|k) in Eq. (5)
is replaced by k′pk′/z and �k becomes independent of k. In
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FIG. 2. (Color online) Fraction of infected nodes in the steady
state of the SIS process on the (a) Autonomous System (AS) Internet
[26] and (b) Electronic Circuit (s838) [25] networks as a function of
the spreading rate β. The MF theory is from Refs. [49,50]. Observe
that uncorrelated and correlated MF theories are indistinguishable in
panel (b).

Fig. 2, we show predictions of both correlated and uncorrelated
MF theories for the steady-state endemic infected fraction

I = lim
t→∞

∑
k

pkik(t)

for the AS Internet network [26] and for the Electronic Circuit
(s838) network [25]. The MF theory is very accurate for the
former, but it performs poorly for the latter.

The result for the AS Internet network is particularly
surprising in light of the fact that the mean degree of this
network is only 4. The aforementioned naive argument that MF
theory is accurate for high-degree nodes thus cannot account
for the good performance of the theory in this low-z case, in
which 96% of the nodes in the network have degree 10 or less
(see Table I).

C. Voter model

As a third example, we consider the survival probability
of disordered-state trajectories in the voter model [54] and
compare it with the (uncorrelated) MF theory of Ref. [55].
(For rigorous results for the voter model, see Refs. [5,56]
and references therein.) At time t = 0, each node is randomly
assigned to one of two voter states. In each time step (of
size dt = 1/N ), a randomly chosen node is updated by
copying the state of one of its randomly chosen neighbors.
On finite networks, the dynamics eventually drive a connected
component to a situation of complete order, in which all of
the nodes are in the same state. The survival probability Ps(t)
is defined as the fraction of realizations that remain in the
disordered state at time t . The red dashed curves in Fig. 3
give the survival probability predicted by the MF theory of
Ref. [55]:

Ps(t) ∼ 3

2
exp

(
−2〈k2〉

z2

t

N

)
as t → ∞, (6)

and the black solid curve gives the results of the pair
approximation (PA) theory of Ref. [6]:

Ps(t) ∼ 3

2
exp

(
−2(z − 2)〈k2〉

(z − 1)z2

t

N

)
as t → ∞. (7)
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FIG. 3. (Color online) Survival probability for voter-model tra-
jectories in the disordered state as a function of time on (a) C.
elegans neural network [20] and (b) a synthetic clustered network
with γ (3,3) = 1, which is generated as described briefly in the main
text (see Ref. [10] for details). Both networks contain N ≈ 300 nodes.
The theory curves are from Refs. [6,55].

In Fig. 3(a), we show results for the C. elegans neural
network [20] (z ≈ 14.46), for which MF theory is very
accurate. In Fig. 3(b), we show results for a synthetic clustered
network described in Ref. [10]: Every node in the network
has degree 3 and is part of a single 3-clique. Using the
notation of Ref. [10], this is called a γ (3,3) = 1 network.
It can alternatively be described in the notation of Ref. [8]
as having p1,1 = 1, as every node is part of one triangle and
has one single edge other than those belonging to the triangle.
Clustering has a strong effect in this (low-z) network; because
of this clustering and dynamical correlations, MF theory
is very inaccurate. We can make the clustering negligibly
small while keeping the degree distribution unchanged (i.e.,
pk = δk,3) by randomly rewiring the network to give a random
3-regular graph. However, even after this rewiring, the match
to MF theory is poor because dynamical correlations are
still neglected. The recent PA theory for the voter model
[6] (see also [7]) accounts for the dynamical correlations
and hence gives a good match to the survival probability
on the rewired network but not on the original clustered
network.

III. WHY IS MEAN-FIELD THEORY ACCURATE?

Briefly summarizing our observations thus far, we have seen
(i) situations in which high-z networks exhibit good matches
to MF theory but also (ii) some examples in which low-z
networks have accurate MF theories. We have discussed only a
few examples in detail, but these are representative of behavior
observed for different dynamical processes on a variety of
real-world networks. In Fig. 4, we show additional examples
for each of the three dynamical processes (the Kuramoto, SIS,
and voter models) for each of the six networks used in Figs.
1–3.

A. Mean-field accuracy for the SIS model

Clearly, the success of MF theories for dynamical systems
on networks cannot be explained purely in terms of the mean

degree z of the underlying network. Figure 2(a) in particular
gives an example in which MF theory works well on a low-z
network. To understand this seemingly surprising accuracy,
we focus on the SIS model and consider how the state of a
node is updated as compared to the assumptions of MF theory.
Suppose the state of a degree-k node B1 is being updated. In
both the true dynamics and in MF theory, the updating process
depends on the state of the neighbors of B1. Let us take node
B2 as a representative neighbor of B1 and suppose that B2 has
degree k′. Under MF assumption (iii), the state of node B2

is considered to be independent of the state of node B1. This
is why Eq. (5) involves the term ik′ , which is the probability
that degree-k′ nodes are in the infected state, without any
conditioning on the state of their neighbor B1.2

In reality, however, the states of nodes B1 and B2 exhibit
dynamical correlations. For example, during an epidemic,
an infected node is more likely to have infected neighbors
than a susceptible node. Such dynamical correlations can be
included explicitly in pair-approximation theories [57–59],
and their neglect can be a major source of error in MF theories.
This suggests an important question: Under what circum-
stances might the MF assumption of dynamical independence
(iii) still give accurate results for the update of node B1?
One can argue that if the degree k′ of node B2 is sufficiently
large, then the state of node B2 is influenced by many of
its neighbors other than node B1, so the error in neglecting
the particular dynamical correlation between B2 and B1

is relatively small for the purpose of updating node B1.
Conversely, if the degree k′ of node B2 is small, then node
B1 has a relatively strong influence on the state of node B2,
and neglecting dynamical correlations between B2 and B1

when updating B1 will yield large errors. Hence, we expect
MF theory to give reasonably accurate updates for node B1 if
its neighbors have sufficiently high degrees. Importantly, this
argument relies only on the degree k′ of the nearest-neighbor
nodes being high and gives no restriction on the degree
k of the updating node itself. (We remark that the use of
networks with nearest-neighbor nodes of high degree has
also been mentioned in studies of the Kuramoto model on
networks [23,24].)

In short, we argue that MF theory gives relatively small
errors for nodes with high-degree neighbors. More specifically,
MF theory is likely to be inaccurate if many nodes do not have
high-degree neighbors. This can happen, for example, if low-
degree nodes are connected preferentially to other low-degree
nodes (a sort of “poor-club phenomenon,” akin to the rich-club
phenomenon of high-degree nodes connecting preferentially
to other high-degree nodes [37]). This suggests a simple but
effective predictor of MF accuracy: If the mean degree of first
neighbors d = ∑

k pk

∑
k′ k′P (k′|k) is high, then MF theory

can be expected to be accurate. As we show below, this rule
of thumb works well for SIS dynamics on all of the networks
that we have considered.

2Assumption (i) also appears in Eq. (5) through the summation of
ik′ . This supposes that the neighbors’ states are independent of each
other—i.e., that pairs of neighbors do not form part of a triangle with
node B1.
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FIG. 4. (Color online) Results for dynamics of Figs. 1–3 for all six networks used in those figures. Curves and symbols are as in Figs. 1–3.
For the voter model, black squares show the numerical results obtained by rewiring networks in a manner that conserves both degree distribution
and degree-degree correlations [60].

In Fig. 5, we present results from numerical simulations
of SIS dynamics and consider the final, steady-state fraction
I of infected nodes. (For each network, we average over an
ensemble of more than several hundred realizations; in each
of these, 5% of the nodes are randomly chosen to be infected
at t = 0.) Because the quality of the MF approximation is
known to depend on the number of infected nodes [61], we
further compare errors for different networks by choosing the

spreading rate β in each simulation so that the MF steady-state
value Itheory equals 0.5. Letting

ES = Itheory − Inumerical

Itheory
(8)

be the relative error between the theoretical predictions
of cMF theory (4,5) and the numerical results, we color
each network’s symbol in Fig. 5 by the value of ES (see
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FIG. 5. (Color online) Accuracy of cMF theory for SIS dynamics
as a function of values of mean degree z and mean nearest-neighbor
degree d for many real-world networks. The numbers that label the
networks are enumerated in column 1 of Table I. The colors indicate
the magnitude of the relative error ES , defined in Eq. (8), between
cMF theory and numerical simulations for SIS dynamics with
Itheory = 0.5.

Table I for the error values). The results in Fig. 5 show clearly
that situations with low d and low z correspond to inaccurate
cMF predictions [see Figs. 1(b), 2(b), and 3(b)] and that the
high-d situations (some of which also have small z) all have
accurate cMF predictions, supporting our claim that the fidelity
of MF theory can be evaluated using d.

In Sec. IV, we describe an alternative measure for predicting
MF accuracy that uses intervertex distances [60]. One can
also construct other, more complicated measures (e.g., by
computing the size of the connected cluster of low-degree
nodes); however, the mean first-neighbor degree d is appealing
because it is simple to calculate and understand, and it
has considerable explanatory power. We note that similarly
accurate results have been found for real-world networks using
MF theory for a discrete-time version of the SIS model [61,62].

B. Isolating the effects of dynamical correlations
using synthetic networks

We have argued above that the observed accuracy of MF
theory on some real-world networks is due to their high d

values ameliorating the neglect of dynamical correlations [i.e.,
MF assumption (iii)]. However, real-world networks typically
have high values for clustering coefficients and significant
modular structures, so MF theory for such networks violates
assumptions (i) and (ii) as well as assumption (iii). It might
therefore be argued that the high-d effect seen in Fig. 5 could be
due to an improvement in the validity of assumptions (i) and/or
(ii), which could in principle have a larger impact than the
high-d improvement of assumption (iii). We investigate this by
now considering SIS dynamics on synthetic random networks
(with N = 104 nodes) in which the transitivity and community
structure are both negligible. Thus, MF assumptions (i) and (ii)
are both valid for these networks, and the error in MF theory
is due to violations of assumption (iii).
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FIG. 6. Error (diamonds) of cMF theory in predicting steady-state
infected fraction for SIS dynamics as a function of Pearson correlation
coefficient r in the synthetic networks (described in the text) with
(k1,k2) = (3,12). Also shown are the errors for the class of degree-3
nodes (crosses) and for the class of degree-12 nodes (triangles): these
are calculated similar to Eq. (8), using ik(∞) [from Eq. (4)] for Itheory

and the average infected fraction of degree-k nodes in simulations for
Inumerical. The solid line gives the mean nearest-neighbor degree d .

The first family of synthetic networks we use is described
in Ref. [63]: Each node is either of low degree k1 [with
probability pk1 = k2/(k1 + k2)] or of high degree k2 [with
probability pk2 = k1/(k1 + k2)]. In order to create a network
with a prescribed degree-degree correlation coefficient r , we
connect the nodes of each type preferentially to nodes of
either the same or of opposite type. We show in Fig. 6 how
the aggregate error ES (diamonds) depends on the correlation
coefficient r for a specific case with (k1,k2) = (3,12). Note that
the mean degree z of these networks is fixed (z = 4.8), but the
mean first-neighbor degree d decreases as r increases. Figure 6
illustrates that the highest error for the MF theory occurs when
d is lowest. This is the fully assortative (r = 1) case in which
low-degree nodes link only to other low-degree nodes, creating
a low-k connected cluster in which MF theory is inaccurate.
At the other extreme, the disassortative (r = −1) case has
every low-degree node linked only to high-degree nodes, with
a consequent reduction in the error of MF theory (and a high
value of d). The trend of the error in each degree class also
supports our argument: high-degree neighbors correspond to
lower MF error.

In Fig. 7, we show further details about the degree-3 nodes.
To examine the importance of assumption (ii), we consider
(for each value of r) an ensemble of M = 25 realizations of
the SIS process on identical copies of the synthetic network.
At a fixed (large) time, we record the state—either infected
or susceptible—of each node i. Taking the average over the
M realizations defines fi , the fraction of realizations in which
node i is infected at the chosen time. We now consider the
distribution of fi values over the set of nodes i that all share
the same degree k, noting that assumption (ii) implies that
these fi values should be identical for every node i in a given
degree class. Consequently, we plot in Fig. 7, for degree-3
nodes, the mean and standard deviation of the fi values for
the networks used in Fig. 6. Note that the mean value equals
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FIG. 7. (Color online) Mean (black squares) and standard devi-
ation (error bars show one standard deviation above and below the
mean) of the distribution of fi values (described in text) on the same
networks as in Fig. 6. The values of Itheory are given by cMF theory,
using i3(∞) from Eq. (4).

Inumerical (k = 3), the average infected fraction of degree-3
nodes in simulations. This mean value deviates from the cMF
theory prediction i3(∞), giving the errors shown by the crosses
in Fig. 6. We note that the standard deviation of the fi values
does not depend strongly on r (and hence also does not depend
strongly on d). Moreover, if each of the fi values for each
r value were to be replaced by its mean value—so that the
standard deviation for fi was zero, in accord with assumption
(ii)—then the errors shown in Fig. 6 would be unaltered. In this
sense, the violation of assumption (ii) is not the main source
of the high-d effect on the accuracy of MF theory.

To test for the existence of dynamical correlations—which
are neglected under MF theory assumption (iii)—in the
numerical results, we calculate the fraction φSI of SI edges
(i.e., edges linking a susceptible node and an infected node)
in the networks in steady state. We then compare this to the
fraction of SI edges that would be obtained if no dynamical
correlations were present. This is determined by treating as
independent the probabilities for nodes at each end of an edge
to be in states S and I:

φMF
SI = 2

∑
k,k′

ρk

kpk

z
P (k′|k)(1 − ρk′), (9)

where ρk is the fraction of infected degree-k nodes in the
network [hence, (1 − ρk′) is the fraction of degree-k′ nodes that
are susceptible]. Note that we calculate ρk from the numerical
simulations—we do not use the corresponding MF-theory
values ik(∞)—so that we are directly testing the validity of
assumption (iii) on the numerical data. The relative error of the
MF assumption on the SI-edge fraction can then be calculated
in a similar fashion to Eq. (8):

ESI = φMF
SI − φSI

φMF
SI

. (10)

If assumption (iii) were true, there would be no dynamical
correlation effects and the fraction of SI edges could be
computed directly from the fraction of infected nodes using
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FIG. 8. Relative errors ESI (symbols), given by Eq. (10), in the
calculation of the fraction of SI edges using MF assumption (iii)
on the same networks as in Fig. 6. The solid line gives the mean
nearest-neighbor degree d .

Eq. (9), giving ESI = 0. However, Fig. 8 shows that the error
ESI increases as the mean first-neighbor distance decreases,
which is similar to the trend of error ES in Fig. 6. This
evidence supports our claim that it is MF assumption (iii)—the
neglect of dynamical correlations—that plays a dominant role
in determining the accuracy of MF theory on high-d networks.

The second family of synthetic networks is composed
of networks with negligible degree-degree correlations and
is generated using the configuration model [64]. In these
networks, d = 〈k2〉/z, so the mean first-neighbor degree
increases with the second moment of the degree distribution
if the mean degree z is fixed. For example, one can construct
networks with z = 5 with the degree probabilities

p3 = 15
17 (1 − α), p5 = α, p20 = 2

17 (1 − α), (11)

and pk = 0 for all other k. Such a network has a fraction α of
nodes with degree 5, and the remaining nodes have degrees 3
and 20. The mean first-neighbor degree for such networks is
d = 11 − 6α, so it decreases linearly with α. By comparing
numerical simulations for the SIS model with MF theory
(not shown), we find that the error magnitude |ES | increases
monotonically with α. It takes the value 0.07 at α = 0 (with
d = 11) and the value 0.16 at α = 1 (with d = 5). Similar to
the correlated synthetic networks of Fig. 6, the higher values
of d thus correspond to lower values of the error.

The evidence from both families of synthetic networks
suggests that the high-d effect that we have observed can be due
only to its impact on dynamical correlations [i.e., assumption
(iii)]. In real-world networks, d can presumably affect the
validity of all three MF assumptions. Further work is required
to understand which assumption(s) have the strongest impact
on MF accuracy in such situations.

C. Mean-field accuracy for other dynamical processes

The argument that we have given above for the usefulness
of d as a measure of MF accuracy is specific to SIS dynamics,
where the quantity of interest is the (ensemble-averaged)
infected fraction of nodes. We now consider error measures
on the (z,d) plane for the Kuramoto and voter models. For the
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Kuramoto model, we define an error measure in terms of the
r2 order parameter from Eq. (2) as

EK = r2 theory − r2 numerical

r2 theory
, (12)

which we evaluate at the value of K for which r2 theory = 0.6.
Similarly, a measure of relative error for the voter model is
given by

EV = log10(Ps theory) − log10(Ps numerical)

log10(Ps theory)
, (13)

where Ps theory and Ps numerical are the survival probabilities
given by Eq. (6) and by numerical simulations, respectively.
We evaluate these quantities at a time t that corresponds to
a survival probability of 1% (in MF theory): Ps theory(t) =
10−2. This definition reflects the vertical difference between
the dashed curve and the symbols in Fig. 3 at a specific
value of t .

We give the measured values for EV and EK for 21
real-world networks in Table I, and Figs. 9(a) and 9(b)
show how these values depend on the mean degree z and
mean first-neighbor degree d of the networks. The Kuramoto
model exhibits a similar pattern to SIS dynamics [compare
Fig. 9(a) with Fig. 5]: high-d networks have lower errors
than low-d networks. However, the high-d effect does not
seem to impact the voter model [see Fig. 9(b)] in the same
way. We can understand this by contrasting the predicted
quantities for SIS dynamics and the voter model. For SIS
dynamics, the error is low when MF theory accurately predicts
the fraction I (t) of infected nodes. In the voter model, the
quantity corresponding to I (t) is the fraction of nodes in
one of the two voter states, which we denote by IV (t). (By
symmetry, IV (t) can be used to denote either of the two states
without loss of generality.) When initial states are randomly
assigned, MF theory predicts that IV (t) is conserved, which
implies that IV (t) = 1/2 for all t . Numerical simulations on
real-world networks also give IV (t) = 1/2, but only when
one averages over an ensemble of realizations. In any single
realization on a network of finite size, fluctuations eventually
lead to the entire network becoming ordered—i.e., all nodes
eventually share the same opinion. (In half of the realizations,
this shared opinion is one voter state; in the other half,
it is the other state.) It is this single-realization ordering
process that is measured by the survival probability Ps(t).
In this respect, the voter model is different from both the
SIS and Kuramoto models, in which the trajectory of a typical
realization is qualitatively similar to an ensemble average of all
trajectories.

In order to better capture quantities of higher order than
IV (t), such as Ps(t), it is necessary to approximate the
dynamical correlations between nodes using, for example,
a pair-approximation method. In Fig. 9(c), we show the
magnitude of the PA error for the voter model; we still measure
the error using Eq. (13), but we use the PA theory of Eq. (7)
instead of the MF theory of Eq. (6). Observe the improvement
in accuracy over the MF theory of Fig. 9(b), particularly for
high-d networks. Similar to MF results for SIS dynamics (see
Fig. 5) and for the Kuramoto model [see Fig. 9(a)], the largest
errors are obtained in networks with both low z and low d.
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FIG. 9. (Color online) As in Fig. 5, except that color indicates the
magnitude of the relative error, determined by comparing numerical
results to (a) MF theory for the Kuramoto order parameter r2 (with
r2 theory = 0.6) from Eq. (12); (b) MF theory for the voter-model
survival probability Ps(t) at time t (with Ps theory = 10−2) from
Eq. (13); and (c) PA theory for the voter-model survival probability.

IV. COMPARISON WITH AN ALTERNATIVE MEASURE

Using numerous examples of real-world and synthetic
networks, we have illustrated that the mean degree of first
neighbors d is a good indicator of the accuracy of MF theories
for a variety of dynamical processes on networks. One can
also construct more complicated accuracy measures, which
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FIG. 10. (Color online) Location of real-world networks in the
(q,d) parameter plane, where q is the error measure (14), which was
shown in Ref. [60] to be correlated with the error of PA theory for
bond percolation. We use the same symbols as in Fig. 5.

can in general depend on the dynamics under scrutiny. In
Ref. [60], for example, we examined (among other dynamics)
the accuracy of the bond percolation theory of [65] by
comparing its predictions with numerical calculations of the
sizes of the largest connected component for several real-world
networks. We showed that a good measure of the error is given
by the quantity

q = � − �1

z
, (14)

where � is the mean intervertex distance in the original
(clustered) network, �1 is the corresponding mean distance in
a rewired version of the network (using a rewiring process that
preserves degree-degree correlations but reduces clustering),
and z is the mean degree. Noting that the bond percolation
theory of Ref. [65] is of pair-approximation (PA) type, in
contrast to the mean-field theories on which we focus in this
paper, it is nevertheless of interest to examine the relation
between q and the mean first-neighbor degree d that we have
identified in this paper as an indicator of MF theory accuracy
for several dynamical processes.

In the (q,d) parameter plane of Fig. 10, we show the
positions of the real-world networks from Fig. 5 that were also
examined in Ref. [60]. The expected relationship between q

and d is revealed: Networks with high d have low q (and hence,
according to Ref. [60], exhibit low error for bond percolation
PA theory), and low d values correspond to high q and hence to
large errors. Thus, despite its simplicity, d performs well when
compared to other, more involved, measures. As noted above,
there is scope for further work on developing more complicated

diagnostics (such as q) for predicting MF accuracy for various
dynamics, but the use of the d value is appealing because it is
simple to calculate and aids in understanding the underlying
causes of MF inaccuracies.

V. CONCLUSIONS

In summary, we have shown that MF theory works best for
networks in which low-degree nodes, if present, are connected
to high-degree nodes (i.e., for networks that are either disas-
sortative by degree or have high mean degree z). Remarkably,
it is not necessary that the mean degree of a network be large
for MF theory to work well—at least for ensemble-averaged
quantities [see Figs. 5 and 9(a)]. In addition to the 21 real-world
networks that we have studied, we have presented evidence
from synthetic networks to support our hypothesis. We stress
that our error measures focus on behavior far from critical
points; the accuracy of MF theory for the calculation of
phase-transition points (such as the value of K for the onset
of synchronization in the Kuramoto model [66,67] or the SIS
epidemic threshold [5,68–70]) is a topic for future work.

Based on our results for the voter model in Sec. III,
we expect that similar conclusions should hold for the
applicability of pair-approximation theories (such as those in
Refs. [7,58]) for dynamics on real-world networks. Although
PA theories account for the dynamical correlations that plague
MF theories, they remain vulnerable to the effects of network
clustering and modularity when d is low. For example, Fig. 3(b)
gives an example in which PA theory works well only on the
rewired (and hence unclustered) version of a (low-d) network.
This suggests that PA theory (like MF theory) is most accurate
for real-world networks with either high mean degree or high
mean first-neighbor degree.
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[50] M. Barthélemy et al., J. Theor. Biol. 235, 275 (2005).
[51] T. E. Harris, Ann. Probab. 2, 969 (1974).
[52] R. M. Anderson and R. M. May, Infectious Diseases of Humans:

Dynamics and Control (Oxford University Press, Oxford, 1992).
[53] F. Brauer and C. Castillo-Chavez, Mathematical Models

in Population Biology and Epidemiology (Springer-Verlag,
New York, 2010).

[54] T. M. Liggett, Interacting Particle Systems (Springer, New York,
1985).

[55] V. Sood and S. Redner, Phys. Rev. Lett. 94, 178701 (2005).
[56] R. Durrett, Random Graph Dynamics (Cambridge University

Press, Cambridge, UK, 2007).
[57] S. A. Levin and R. Durrett, Philos. Trans. R. Soc. London B 351,

1615 (1996).
[58] K. T. D. Eames and M. J. Keeling, Proc. Natl. Acad. Sci. USA

99, 13330 (2002).
[59] T. House and M. J. Keeling, J. R. Soc. Interface 8, 67 (2011).
[60] S. Melnik, A. Hackett, M. A. Porter, P. J. Mucha, and J. P.

Gleeson, Phys. Rev. E 83, 036112 (2011).
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[62] S. Gómez et al., Europhys. Lett. 89, 38009 (2010).
[63] P. S. Dodds and J. L. Payne, Phys. Rev. E 79, 066115 (2009).
[64] B. Bollobás, Random Graphs, 2nd ed. (Cambridge University

Press, Cambridge, UK, 2001).
[65] A. Vázquez and Y. Moreno, Phys. Rev. E 67, 015101(R) (2003).
[66] H. Hong, M. Y. Choi, and B. J. Kim, Phys. Rev. E 65, 026139

(2002).
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