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Animals live in groups to defend against predation and to obtain food. However, for some

animals—especially ones that spend long periods of time feeding—there are costs if a group

chooses to move on before their nutritional needs are satisfied. If the conflict between feeding and

keeping up with a group becomes too large, it may be advantageous for some groups of animals to

split into subgroups with similar nutritional needs. We model the costs and benefits of splitting in a

herd of cows using a cost function that quantifies individual variation in hunger, desire to lie down,

and predation risk. We model the costs associated with hunger and lying desire as the standard

deviations of individuals within a group, and we model predation risk as an inverse exponential

function of the group size. We minimize the cost function over all plausible groups that can arise

from a given herd and study the dynamics of group splitting. We examine how the cow dynamics

and cost function depend on the parameters in the model and consider two biologically-motivated

examples: (1) group switching and group fission in a herd of relatively homogeneous cows, and (2)

a herd with an equal number of adult males (larger animals) and adult females (smaller animals).

Published by AIP Publishing. [http://dx.doi.org/10.1063/1.4983671]

Although animals gain many advantages—such as pro-

tection from predators—from living in groups, they also

incur considerable costs. For grazing animals, such as

cows and antelopes, these costs include balancing their

own nutritional needs to stay in one place to feed with the

need to keep up with a group and stop grazing when the

rest of the herd moves on. If the nutritional needs of dif-

ferent individuals are sufficiently disparate, this can lead

to the splitting of a group so that those with similar needs

to graze, lie, and ruminate remain together. If a group of

animals becomes too small, however, this can increase the

risk of predation, as small groups are less able to defend

themselves against predators than large groups. In this

paper, we describe a cost function (CF) that balances pre-

dation risk (based on group size) with different individual

needs for feeding and lying down to infer the sizes at

which group splitting occurs. We model variation in hun-

ger and lying desire using the standard deviation of indi-

viduals within a group, and we model predation risk as

an inverse exponential function of the group size. In a

series of examples, we optimize the CF for each individ-

ual in a group of animals and examine when groups of

cows split into smaller groups.

I. INTRODUCTION

Animals gain many advantages from grouping and syn-

chronizing their behavior—including greater vigilance, coor-

dinated defense against predators, and increased ability to

find and defend food sources.1,2 However, living in large

groups also carries disadvantages, such as increased risk of

disease and parasitism,3,4 having food stolen,5 and interfer-

ence with movement.6 A “perfect” synchronization requires

animals to change their activities at a communal time rather

than at individual ideal times, and this can be costly for

individuals.

The balance between synchrony and risk of predation is

complex,7,8 and one possible approach for examining such

a balance is with a cost function (CF) with components from

synchrony and risk. When a group of animals becomes very

large, the cost incurred through synchrony tends to exceed

that incurred through risk, as a significant number of individ-

uals change their desired activities (like eating or lying) to

conform to communal decisions. Because of the balance, a

CF with components from synchrony and risk of predation

should have at least one optimum point, and one should

expect animal groups to split if they are too large. However,

an optimal group size is not necessarily a “stable” group

size. Supposing animals join a group one by one, a stable

group size is a size at which there is no further fission of

groups or switching of animals between groups.9 Even when

a group is already at its optimum for existing individuals,
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extra individuals can still benefit from joining the group. At

some point, however, the group can become sufficiently

large that it splits into two groups, as this benefits its mem-

bers more than the overloaded single group.9 A stable group

size is therefore likely to be consistently larger than an opti-

mum group size.9,10

Sometimes grouping can be even more complicated, as

individuals within a group differ in many ways that relate to

their fitnesses. For example, males and females in a herd dif-

fer in their nutritional needs. However, although they can

benefit from staying with a mixed-sex group, some individu-

als may have to interrupt valuable feeding or lying time to

keep up with a herd when it moves.11,12 It can be costly for

such individuals to synchronize their activities with others,

as they are forced to switch between eating, lying down, or

moving at a communal time rather than at a time that is opti-

mal for them as individuals.13 Alternatively, a group may

split into subgroups that consist of individuals with similar

switching times (such as all males and all females, or juve-

niles and adults), and then the costs of synchronization are

lower.13–17 Such synchronization costs depend on the differ-

ent activities of animals in a group, so some animals (e.g.,

baboons) break up into subgroups for foraging, particularly

when food is scarce, and then come together into larger

groups for sleeping.18

Social splitting between two categories (e.g., males–

females or calves–adults) has been examined using an

ordinary-differential-equation (ODE) model, whose perfor-

mance was tested using data on mixed-sex grouping in

red deer.12 However, even for animals in the same cate-

gory (e.g., males), activity synchronization can vary sig-

nificantly, as it can depend on the age, body mass, and

health of animals. Consequently, category-based splitting

can lead to groups in which animals are still heteroge-

neous across many other categories. Splitting of animals

in different categories can also be seasonal; for example,

in nature, mixed-sex social grouping does not occur dur-

ing the mating season.19

Communal decisions in herds are made either despot-

ically by a dominant animal (or dominant animals) or

democratically by the majority of individuals in a

group,20–22 and the corresponding groups are called

“despotic groups” and “democratic groups,” respectively.

Modeling of synchronization costs has suggested that

costs for despotic groups tend to be higher than those for

democratic groups.20

The rest of our paper is structured as follows. In Sec. II,

we discuss biological modeling principles and the construc-

tion of a CF, which encapsulates the demands of hunger and

lying desire of cattle, for groups of cows to stay together or

break apart. In Sec. III, we describe a method for determin-

ing the demands of hunger and lying desire using a CF and

an evolution scheme (ES) that describes changes in the states

(eating, standing, and lying down) of the cows. In Sec. IV,

we examine the dynamics of cows and study the CF for vari-

ous parameter values. In Sec. V, we present two examples:

(1) group-switching dynamics of cows when a herd that con-

sists of adults splits into a maximum of three groups, and (2)

a scenario in which a herd that consists of an even mixture of

males and females splits into a maximum of two groups. In

Sec. VI, we discuss our results and present ideas for future

work.

II. BIOLOGICAL MODELING PRINCIPLES

We consider the behavior of cows (Bos taurus), which

make many daily decisions about staying with or leaving a

herd. Cows have a two-stage feeding process that involves

first grazing (standing up) and then ruminating (predomi-

nantly lying down). Together, lying down and ruminating

can occupy up to 65% of a cow’s day.23,24 Both grazing and

lying (including ruminating) are essential for successful

digestion of grass,25 but cows have to stop these actions if

their herd decides to move to another area; this can occur

15–20 times a day.24 Each individual cow has similar—but

not identical—needs for lying and grazing,23,26 so keeping

up with a herd each time it moves can be considerably costly

because of interrupted grazing or lying times. This cost can

include a reduced growth rate in young cattle27,28 and physi-

ological and behavioral symptoms of “stress” when a cow is

deprived of adequate opportunities for lying down.29,30

Reference 13 examined costs from synchronization, as

animals often need to change their behavior (e.g., staying in

one place versus moving to another place) at a communal

time rather than at their ideal time. In our work, we consider

both a synchronization cost and a cost due to predation risk.

We assume that large groups encounter a large synchroniza-

tion cost and small groups increase the cost of predation

risk.7,8 Therefore, an “optimal” group size is neither too

large nor too small. Moreover, we assume that the synchrony

can vary within groups, so one set of cows can be eating

while another set of cows is lying down or walking (in the

neighborhood of others).

We construct a cost function (CF) based on the follow-

ing four principal assumptions:

(i) Herds are fully democratic when cows take commu-

nal decisions, as this reduces cost.20

(ii) Cows are free to switch between groups, which freely

form or dissolve.31–33

(iii) Fission of groups depends only on cows’ hunger,

lying desire, and predation risk.

(iv) The predation risk of a group is an exponential func-

tion of the inverse of the group size.

The decrease of predation risk with group size in

assumption (iv) arises from the facts that having more ani-

mals in a group contributes to greater vigilance,1,2,34 a higher

dilution effect,35,36 and a higher confusion effect.37,38

Consequently, a larger group size tends to result in a lower

predation risk. Motivated by empirical studies in Refs. 34

and 39–41, which described an inverse exponential relation-

ship between group size and predation risk, we use such a

relationship in assumption (iv).

We model the CF, which we denote by C in Sec. III B,

as a convex combination of costs from hunger (h), desire to

lie down (f), and predation risk (r). We thus write

C ¼ khþ lf þ 1� k� lð Þr; (1)
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where k; l 2 0; 1½ � are parameters. In Eq. (1), “hunger” refers

to the grazing demand of cows in a group, and “lying desire”

is their demand to lie down. We compute their hunger and

lying desire at each time step using a previously-introduced

evolution scheme (ES)42 for cows to change their state

(where eating, standing, and lying down are the three possi-

ble states), and we quantify synchronization cost based on

cows’ hunger and desire to lie down. We assess the cost

from hunger (respectively, lying desire) as the mean over all

groups of the standard deviation of hunger (respectively,

lying desire) within each group, and we model the cost from

risk as a function of the group size. During each time step,

we minimize the CF over all groups that one can construct

from a given herd, where we specify a maximum number of

groups, and determine the lowest splitting cost. We deter-

mine the optimum group sizes using the minimum of the CF,

as it rewards groups with homogeneous demands for hunger

and lying desire. This construction enforces perfect synchro-

nization of activity within each group. Our modeling frame-

work is very flexible, and we can examine more general

situations by employing different CFs, measuring synchrony

in different ways, and considering other extensions.

III. TEMPORAL EVOLUTION AND MODELING GROUP
SPLITTING

As in Ref. 42, when considering a herd, we simulate

cows’ hunger (i.e., desire to eat) and lying desire (i.e., desire

to lie down) and changes of state between eating, lying

down, and standing. We then present a CF and optimize it to

determine the lowest-cost splitting of the herd.

A. Temporal evolution and change of states of cows

Cows interact with each other through the ES, which

helps provide some understanding of their cooperative activ-

ities. We augment the ES in Ref. 42 by formulating it as an

iterative scheme that we combine with our CF. In this model,

each individual cow is a piecewise-smooth dynamical sys-

tem, and a cow switches between three discrete states: eating

(E), lying down (R), and standing (S). There are also continu-

ous variables, x 2 0; 1½ � and y 2 0; 1½ �, that, respectively, rep-

resent the cows’ desire to eat and desire to lie down. The

dynamics of a single cow are given by state-switching condi-

tions and the following set of differential equations:

Eating state Eð Þ :
_x ¼ �n00x;

_y ¼ f0y;

(

Lying-down state Rð Þ :
_x ¼ n0x ;

_y ¼ �f00y ;

(

Standing state Sð Þ :
_x ¼ n0x ;

_y ¼ f0y ;

(
(2)

where n0i is the rate of increase of hunger; n00i is the decay rate

of hunger; f0i is the rate of increase of desire to lie down, and

f00i is the decay rate of desire to lie down of the ith cow. The

parameters n0i;n
00
i ;f
0
i, and f00i are all positive. These parameters

can be different for different cows, although for simplicity

we did not include the subscript i in Eq. (2). If two cows

have similar parameter values, we expect them to exhibit

similar dynamics. Based on the hypothesis that it is good for

cows to eat when other cows are eating and to lie down

when other cows are lying down, one can extend the “single-

cow model” in Eq. (2) into a coupled dynamical system by

allowing the individual cows to interact, and we use a time-

dependent adjacency matrix to encode which cows are inter-

acting with each other (see Sec. IIIC). In Eq. (3) below, we

indicate how coupling influences the dynamics of cows.

As we mentioned previously, we modify the coupled

system in Ref. 42 to produce an iterative scheme. To sim-

plify our exposition (though at the cost of some technical

correctness in the context of animal behavior), we sometimes

use the terms “lying desire” to represent “desire to lie down”

and “hunger” to represent “desire to eat.” We study the

dynamics of the cows at each instance when the state

variable changes from one state to another, and we record

x and y for the cows only at these times. Thus, for t 2
f1;…; T � 1g and i 2 f1;…; ng, the discrete-time variables

x
tð Þ

i 2 0; 1½ � and y
tð Þ

i 2 0; 1½ �, respectively, represent the level

of hunger and desire to lie down of the ith cow when the

discrete-time state variable h tð Þ
i changes at time t. The vari-

able h tð Þ
i represents the new state of cow i at time t; it can be

eating (E), lying down (R), or standing (S).
As one can see from the paragraph above, the ith cow is

described by three variables: h tð Þ
i ; x

tð Þ
i , and y

tð Þ
i . For times t 2

f1;…; T � 1g and cows i 2 f1;…; ng, the time-dependent

coupling of cows is given by the differential equations

_x tþ1ð Þ
i ¼ ai h tð Þ

i

� �
þ rx

d
tð Þ

i

Xn

j¼1

a
tð Þ

ij vE h tð Þ
j

� �" #
x

tð Þ
i ;

_y tþ1ð Þ
i ¼ bi h tð Þ

i

� �
þ ry

d
tð Þ

i

Xn

j¼1

a
tð Þ

ij vR h tð Þ
j

� �" #
y

tð Þ
i ; (3)

where

ai h tð Þ
i

� �
:¼ �n00i vE h tð Þ

i

� �
þ n0ivR h tð Þ

i

� �
þ n0ivS h tð Þ

i

� �
;

bi h tð Þ
i

� �
:¼ f0ivE h tð Þ

i

� �
� f00i vR h tð Þ

i

� �
þ f0ivS h tð Þ

i

� �
; (4)

with

vw h tð Þ
i

� �
¼ 1; h tð Þ

i ¼ w;
0; otherwise:

(
(5)

The time-dependent adjacency matrix A tð Þ ¼ a
tð Þ

ij

h i
n�n

represents a network of cows at time t. Its components are

a
tð Þ

ij ¼
1; if the ith cow interacts with

the jth cow at time t;
0; otherwise:

8<
: (6)

Thus, d
tð Þ

i ¼
Pn

j¼1 a
tð Þ

ij is the degree (i.e., the number of other

cows with which it interacts) of cow i. We will discuss such

interactions in terms of cow groupings in Sec. III C. The non-

negative parameters rx and ry, respectively, represent coupling

strengths with respect to hunger and desire to lie down.
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The switching condition of the state variable h tð Þ
i of the

ith cow at time step t is

h tþ1ð Þ
i !

E; if h tð Þ
i 2 R ;Sf g and x

tð Þ
i ¼ 1;

R; if h tð Þ
i 2 E ;Sf g and x

tð Þ
i < 1; y

tð Þ
i ¼ 1;

S; if h tð Þ
i 2 E ;Rf g and x

tð Þ
i < 1; y

tð Þ
i ¼ d

or x
tð Þ

i ¼ d; y tð Þ
i < 1

� �
;

8>>>>><
>>>>>:

(7)

where we use the parameter d 2 0; 1ð Þ to exclude the point

ðx tð Þ
i ; y

tð Þ
i Þ ¼ 0; 0ð Þ from the variable domain (because it cre-

ates degenerate solutions). Note in Eq. (7) that cow i
switches to the standing state if either its hunger reduces to d
or its desire to lie down reduces to d (as long as neither of

them has a value of 1).

We study the dynamics of cows at discrete times, so we

examine a Poincar�e section that we construct (using ideas

from Ref. 43) by considering switches between different

states. We can thereby study the dynamics given by Eqs. (3)

and (7). See the schematic in Fig. 1. The boundaries of this

Poincar�e section are:

@E ¼ f x; y; hð Þjx ¼ 1 ; d � y � 1 ; h ¼ Eg;
@R ¼ f x; y; hð Þjd � x < 1 ; y ¼ 1 ; h ¼ Rg;
@Sx ¼ f x; y; hð Þjd < x < 1 ; y ¼ d; h ¼ Sg;
@Sy ¼ f x; y; hð Þjx ¼ d; d � y < 1 ; h ¼ Sg: (8)

These four boundaries arise from the switching conditions in

Eq. (7); the first pair of conditions yields the first two bound-

aries, and the second pair yields the last two boundaries. At

time t, the variables x
tð Þ

i ; y
tð Þ

i , and h tð Þ
i of the ith cow are repre-

sented by one of the boundaries, and then the cow switches

to another boundary in the subsequent time step according to

the switching condition in Eq. (7).

We solve the dynamical system in Eq. (3) for n cows in

T time steps together with the switching conditions in Eq.

(7). The solution gives the discrete dynamics of the ith cow

in terms of x
tð Þ

i ; y
tð Þ

i , and h tð Þ
i at each time step t. We show the

derivation of these solutions in the Appendix as an iterative

scheme. As one can see in the left panel of Fig. 1, at time step

t, each cow is in one of three states (E; R, or S) at the start of

the time step, and it switches to one of the other two states,

where it starts the tþ 1ð Þth time step. The last two equations

in Eq. (8) collectively explain the standing state, so both the

lower and the left boundaries of the Poincar�e section (see the

right panel of Fig. 1 and also Fig. 2) represent the standing

state. Thus, in the Poincar�e section, the starting point of each

cow at a given time step is on one of four boundaries, and the

end point at that time step is on a boundary that represents a

new state (for which there are two possibilities). We present

the corresponding iterative scheme of the solution in Table I,

in which we use the following notation:

g0i :¼ n0i þ
rx

d
tð Þ

i

Xn

j¼1

a
tð Þ

ij v tð Þ
E h tð Þ

j

� �
;

g00i :¼ �n00i þ
rx

d
tð Þ

i

Xn

j¼1

a
tð Þ

ij v tð Þ
E h tð Þ

j

� �
;

c0i :¼ f0i þ
ry

d
tð Þ

i

Xn

j¼1

a
tð Þ

ij v tð Þ
R h tð Þ

j

� �
;

c00i :¼ �f00i þ
ry

d
tð Þ

i

Xn

j¼1

a
tð Þ

ij v tð Þ
R h tð Þ

j

� �
; (9)

where i 2 f1;…; ng and t 2 f1;…; Tg.

B. Cost function (CF) determining the splitting of herds

In this section, we determine the lowest-cost grouping

of cows by minimizing a CF. This gives the total number of

groups and the number of cows in each group. We suppose

that a herd of cows splits into a maximum of L distinct

groups N
tð Þ

1 ;…;N
tð Þ

L , with jN tð Þ
l j ¼ n

tð Þ
l > 0 cows in the lth

group (where l 2 f1;…; Lg), at each time step t 2 T. If the

herd splits into L1 < L groups at some time step t1, we set

jN t1ð Þ
l j ¼ 0 for l 2 fL1 þ 1;…; Lg.

FIG. 1. Schematic of the switching dynamics of a cow. The left panel is a

new version of the right panel of Fig. 1 in Ref. 42, and the right panel is an

integrated version of the four panels from Fig. 2 of Ref. 42. The left panel

shows three states (fE;R;Sg, where S ¼ Sx [ Sy) and the possibilities for

switching between states. The edges of the square in the right panel repre-

sent boundaries of the domain of the continuous variables x and y [see Eq.

(8)]. We are interested only in the discrete dynamics of cows; they are given

by x
tð Þ

i ; y
tð Þ

i , and h tð Þ
i on the boundaries. The arrows represent all possible

state switches of a cow. A given style and color of arrows in the left and

right panels indicates the same type of switch.

FIG. 2. All possible state switches of a cow in a single time step.42 This fig-

ure is an integrated version of the four panels from Fig. 2 of Ref. 42 and is

the same as the right panel of Fig. 1, except that we have added labels to the

state switches. The states are fE;R;Sg (eating, lying down, and standing),

where S ¼ Sx [ Sy. We show all possible state transitions in Table I. For

example, “1a” refers to “subcase a” of “case 1” in the table. We use the

same style and color of arrows as in Fig. 1.
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Our CF is the sum of two components: a synchroniza-

tion component (SC) and a risk component (RC). The syn-

chronization component (SC) models the cost due to

variation in the lying desire and/or hunger of cows, and the

risk component (RC) models the cost from predation risk.

1. Synchronization component

Recall from Sec. III A that cow i’s hunger is x
tð Þ

i 2 0; 1½ �
and lying desire is y

tð Þ
i 2 0; 1½ �. We re-index the variables x

tð Þ
i

as x
tð Þ

k;l and y
tð Þ

i as y
tð Þ

k;l, respectively, to denote the hunger and

lying desire of the kth cow in the lth group at the tth time

step. Because hunger and lying desire are separate motiva-

tions in cows, we compute the two groupings independently,

so that cows are optimally homogeneous with respect to hun-

ger (case I) or optimally homogeneous with respect to lying

desire (case II). Of these two groupings, we then select the

one with the lower synchronization cost.

Case I: We sort cows according to increasing hunger,

and we place the first n
tð Þ

1 cows into group N
tð Þ

1 , the next n
tð Þ

2

cows into group N
tð Þ

2 , and so on. In each group, the synchro-

nization cost from hunger represents the heterogeneity of

hunger within the group. As a simple way to quantify this

cost, we use the mean of the standard deviations of cows’

hunger within the groups and thus calculate

h
tð Þ

1 ¼
1

L

XL

l¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pn tð Þ

l

k¼1

x
tð Þ

k;l �
Pn tð Þ

l

k¼1

x
tð Þ

k;l=n
tð Þ

l

 !2

n
tð Þ

l

vuuuuut (10)

to assess the SC due to hunger. Similarly, we quantify the

heterogeneity of groups with respect to lying desire as the

mean of the standard deviations of cows’ lying desire in

groups by calculating

f
tð Þ

1 ¼
1

L

XL

l¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pn tð Þ

l

k¼1

y
tð Þ

k;l �
Pn tð Þ

l

k¼1

y
tð Þ

k;l=nl

 !2

n
tð Þ

l

vuuuuut : (11)

Case II: Similar to case I, we sort cows according to

increasing lying desire and place them into groups

N
tð Þ

1 ;…;N
tð Þ

L . We again compute hunger and lying desire

from the means of the standard deviations within the groups,

and we denote them by h
tð Þ

2 and f
tð Þ

2 , respectively.

From the cow groups that we find in cases I and II, we

choose the grouping that yields the minimum SC. The hunger

h tð Þ and the lying desire f tð Þ of the cow herd at time t are thus

h tð Þ ¼ min h
tð Þ

1 ; h
tð Þ

2

n o
; f tð Þ ¼ min f

tð Þ
1 ; f

tð Þ
2

n o
: (12)

2. Risk component

Unlike hunger and lying desire, a herd’s predation risk

is independent of the individuals’ states and depends only on

the group size. The group size is related inversely to the risk

of being attacked by predators,1,2,34–38 and we model the pre-

dation risk rl 2 0; 1ð � of the lth group (which has size nl > 0)

as an inverse exponential function of the group size:34,39–41

rl ¼ e� 1�nlð Þ=c ; (13)

where c is a constant. We assume that the predation risk is

small when a group has sufficiently many cows, and we use

an associated condition to compute the constant c. We

denote this sufficient group size (the so-called “safe size”)

TABLE I. Iterative scheme for temporal evolution of cow dynamics that we obtain from solving the dynamical system in Eq. (3) with the switching condition in

Eq. (7). We show the derivation of these solutions in the Appendix. For the ith cow at time step t, one of the cases 1, 2, 3, and 4 in this table represents the

boundary of the Poincar�e section [see Eq. (8)] associated with the cow at the beginning of that time step. For each of the four situations, subcases “a” and “b”

represent the new state of the cow at the end of time step t. We illustrate all eight possible combinations in the Poincar�e section in Fig. 2.

Case 1: [Eqs. (A1) and (A4)] If x
tð Þ

i ¼ 1; d � y
tð Þ

i � 1, and h tð Þ
i ¼E

Subcase a: if y
tð Þ

i � d
c0
i

g00
i , then x tþ1ð Þ

i ¼ y
tð Þ

i

h ig00
i
c0
i ; y tþ1ð Þ

i ¼ 1, and h tþ1ð Þ
i ¼R

Subcase b: if y
tð Þ

i < d
c0
i

g00
i , then x tþ1ð Þ

i ¼ d; y tþ1ð Þ
i ¼ d

�
c0
i

g00
i y

tð Þ
i , and h tþ1ð Þ

i ¼S

Case 2: [Eqs. (A2) and (A5)] If d � x
tð Þ

i < 1; y
tð Þ

i ¼ 1, and h tð Þ
i ¼R

Subcase a: if x
tð Þ

i � d
g0
i

c00
i , then x tþ1ð Þ

i ¼ 1; y tþ1ð Þ
i ¼ x

tð Þ
i

h ic00
i
g0
i , and h tþ1ð Þ

i ¼E

Subcase b: if x
tð Þ

i < d
g0
i

c00
i , then x tþ1ð Þ

i ¼ d
�

g0
i

c00
i x

tð Þ
i ; y tþ1ð Þ

i ¼ d, and h tþ1ð Þ
i ¼S

Case 3: [Eqs. (A3) and (A6)] If x
tð Þ

i ¼ d; d � y
tð Þ

i < 1, and h tð Þ
i ¼S

Subcase a: if y
tð Þ

i � d
c0
i

g0
i , then x tþ1ð Þ

i ¼ 1; y tþ1ð Þ
i ¼ d

�
c0
i

g0
i y

tð Þ
i , and h tþ1ð Þ

i ¼E

Subcase b: if y
tð Þ

i > d
c0
i

g0
i , then x tþ1ð Þ

i ¼ y
tð Þ

i

h i� g0
i

c0
i d; y tþ1ð Þ

i ¼ 1, and h tþ1ð Þ
i ¼R

Case 4: [Eqs. (A3) and (A7)] If d < x
tð Þ

i < 1; y
tð Þ

i ¼ d, and h tð Þ
i ¼S

Subcase a: if x
tð Þ

i � d
g0
i

c0
i , then x tþ1ð Þ

i ¼ 1; y tþ1ð Þ
i ¼ x

tð Þ
i

h i� c0
i

g0
i d, and h tþ1ð Þ

i ¼E

Subcase b: if x
tð Þ

i < d
g0
i

c0
i , then x tþ1ð Þ

i ¼ d
�

g0
i

c0
i x

tð Þ
i ; y tþ1ð Þ

i ¼ 1, and h tþ1ð Þ
i ¼R
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by ns, and we denote the small risk to which the risk function

converges (the so-called “safety level”) at this size by s. The

constant c is thus � 1� nsð Þ=lnðsÞ, so the RC of the group is

rl ¼ s
1�nl
1�ns

� �
: (14)

In Fig. 3, we show the relationship given by Eq. (14) for a

group with safety level s and safe size ns.

We compute the predation risk of each group, and we

treat its mean

r ¼ 1

L

XL

l¼1

s
1�nl
1�ns

� �
(15)

as the risk of the herd.

In real situations, the safe size and safety level depend

on the environment in which a herd lives. If the environment

is either dense with predators or vulnerable to predation, the

safe size should be comparatively large to achieve a signifi-

cant safety level. As an example, we use Eq. (15) and com-

pute the risk of splitting a herd of n¼ 20 cows into two

groups with a safety level of s ¼ 1=30 and safe sizes of

ns¼ 10, ns¼ 20, and ns¼ 30 (see Fig. 4). We thereby illus-

trate that large safety sizes model riskier situations for a herd

than small safety sizes, independently of how the herd splits.

For all safety sizes, we achieve the lowest cost when the

herd remains intact (i.e., no splitting), because larger group

sizes entail safer herds. We achieve the second-lowest cost

when the herd splits into equal-sized groups.

3. Cost function

We formulate the CF as a convex combination of the

costs from hunger, lying desire, and risk of predation:

C tð Þ n
tð Þ

1 ;…; n
tð Þ

L

� �
¼ kh tð Þ þ lf tð Þ þ 1� k� lð Þr ; (16)

where k; l 2 0; 1½ �. For a given herd, which we denote by the

set N, and a maximum number L of groups into which it can

split, we minimize (16) over all plausible groups that can be

created, and we thereby determine the lowest-cost splitting.

C. Cost function and temporal evolution

We examine the CF simultaneously with the ES for

times t 2 f1;…; Tg. At each time step, we update the adja-

cency matrix A tð Þ ¼ a
tð Þ

ij

h i
n�n

in the scheme so that it agrees

with the best grouping provided by the optimization of the

CF in the previous time step. That is,

a tþ1ð Þ
ij ¼ 1; if i; j 2 N

tð Þ
l ;

0; otherwise;
l 2 f1;…; Lg :

(
(17)

The adjacency matrix, which encodes the network architec-

ture of a herd, is an input in Ref. 42. However, in this paper,

we update the adjacency matrix at each time step based on

an optimum grouping. At each time step, optimizing the CF

outputs a lowest-cost grouping until we reach a stopping cri-

terion, which we take to be the maximum time T. In Fig. 5,

we show a flow chart of this process.

IV. EXPLORATION OF PARAMETER SPACE

We now explore the effects of parameters on our model.

We first examine the dynamics of cows for different coupling

strengths, and we then study the CF for different values of the

parameters rx, ry, s, and ns and different coupling strengths.

A. Cow dynamics

We explore the dynamics of cows with respect to cou-

pling strength by examining hunger and lying desire on the

boundary of a Poincar�e section. We then compute the mean

group size of a herd for different safety levels.

We undertake these explorations using one herd of

n¼ 12 cows that splits into a maximum of three groups

(L¼ 3). We simulate hunger and lying desire using the ES

(see Sec. III A) followed by computing the CF (16) and opti-

mizing it to determine a lowest-cost grouping at each time

t 2 T. As we will discuss shortly, we draw some of the initial

conditions and parameter values from probability

distributions.

In the ES, we set the initial states of cows to be h 0ð Þ
i 2

U E;R;Sf g for i 2 f1;…; ng, where U denotes a uniform prob-

ability distribution over the set in its argument. We add noise

sampled from a uniform distribution into the initial condi-

tions and parameters, as it is the simplest type of noise to

consider. We determine the initial conditions x 0ð Þ
i and y 0ð Þ

i as

follows:

x 0ð Þ
i ¼ 1 and y 0ð Þ

i 2 U d; 1½ �; if h 0ð Þ
i ¼E;

x 0ð Þ
i 2 U d; 1½ Þ and y 0ð Þ

i ¼ 1; if h 0ð Þ
i ¼R;

x 0ð Þ
i ¼ d and y 0ð Þ

i 2 U d; 1½ Þ;
or

x 0ð Þ
i 2 U d; 1ð Þ and y 0ð Þ

i ¼ d;

8><
>: if h 0ð Þ

i ¼S:

8>>>>>><
>>>>>>:

(18)FIG. 4. Risk of splitting a herd of n¼ 20 cows into two groups of sizes n1

and n2 ¼ 20� n1, where the safety level is s ¼ 1=30 and the safe size is

ns¼ 10 (yellow triangles), ns¼ 20 (green squares), and ns¼ 30 (brown

disks).

FIG. 3. We model predation risk rl as an inverse exponential function of

group size nl. We use s to denote the safety level and ns to denote the safe

size. The red segment of the curve signifies a regime with an unsafe level of

risk, and the blue segment signifies a regime with a safe level of risk.
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For h 0ð Þ
i ¼ S, each of the two subcases in Eq. (18) has a 50%

chance of being the initial condition. We also make the fol-

lowing parameter choices for the ES: n0i 2 U 0:0995;½
0:1005�, n00i 2 U 0:1495; 0:1505½ �; f0i 2 U 0:0495; 0:0505½ �;
f00i 2 U 0:1995; 0:2005½ �, and d ¼ :25.

Cows are social animals, and their behavior is influ-

enced by what other cows are doing.44 We model the

strength of such interactions mathematically using the cou-

pling parameters rx and ry in the ES. Using different values

for these parameters in different simulations allows us to

examine different biological scenarios, such as strongly

interacting cows versus weakly interacting cows, and it can

be helpful for understanding the dynamics of state

changes of cows in these different scenarios. As an

initial example, we let rx ¼ 0 and ry ¼ 0 (i.e., uncoupled

cows) and run the ES for time T¼ 400 to simulate hunger

x
tð Þ

i and lying desire y
tð Þ

i for i 2 f1;…; 12g and

t 2 f1;…; 400g. We also set ns¼ 4 and s ¼ 0:2 in the RC;

L¼ 3 in the SC; and k ¼ 0:33 and l ¼ 0:33 in the CF.

We then consider three other values of the coupling

strengths: rx; ryð Þ ¼ 0:05; 0:05ð Þ; rx; ryð Þ ¼ 0:2; 0:2ð Þ, and

rx; ryð Þ ¼ 0:6; 0:6ð Þ. In each case, we simulate x
tð Þ

i and y
tð Þ

i

for i 2 f1;…; 12g and t 2 f1;…; 400g. We determine xi 0ð Þ
and yi 0ð Þ from Eq. (18) with initial states h 0ð Þ

i 2 U E;R;Sf g for

i 2 f1;…; 12g a single time (as opposed to determining dif-

ferent values from the same distribution) and perform all

four simulations with the same parameter choices (aside

from coupling strengths). For each of the four cases above,

we simulate one realization of the dynamics. In Fig. 6(a), we

show the hunger and lying desire for cow i¼ 1. The

uncoupled case is in the top-left panel, and the coupled cases

are in the top-right panel ( rx; ryð Þ ¼ 0:05; 0:05ð Þ), bottom-

left panel (ðrx; ryÞ ¼ 0:2; 0:2ð Þ), and bottom-right panel

(ðrx; ryÞ ¼ 0:6; 0:6ð Þ).
Unsurprisingly (and by construction), we observe simi-

lar dynamics for each cow when they do not interact with

each other, but this is not the case when cows are allowed to

interact. In other words, rx; ryð Þ ¼ 0; 0ð Þ corresponds to

modeling cows as independent oscillators, whereas the other

cases correspond to coupled oscillators. To compare the

dynamics in the four cases rx; ryð Þ ¼ 0; 0ð Þ;
rx; ryð Þ ¼ 0:05; 0:05ð Þ; rx; ryð Þ ¼ 0:2; 0:2ð Þ, and rx; ryð Þ
¼ 0:6; 0:6ð Þ, we measure the percentage of the length of the

Poincar�e-section boundary that the first cow’s orbit (x1, y1)

intersects in each case. To do this, we discretize each side

of the boundary of the Poincar�e section into 75

intervals 0:25; 0:26½ Þ; 0:26; 0:27½ Þ; …; 0:99; 1½ �, and we then

compute the percentage of the number of intervals that

the orbit intersects. For rx; ryð Þ ¼ 0; 0ð Þ; rx; ryð Þ ¼
0:05; 0:05ð Þ; rx; ryð Þ ¼ 0:2; 0:2ð Þ, and rx; ryð Þ ¼ 0:6; 0:6ð Þ,

these percentages are about 20.59%, 41.18%, 61.03%, and

66.91%, respectively.

FIG. 5. Flow chart for our model. The

inputs are (1) initial conditions for the

variables for hunger and lying desire

and (2) values for the parameters asso-

ciated with the ES, SC, RC, and CF.

We explain these parameters in Secs.

III A, III B 1, III B 2, and III B, respec-

tively. At each time step, we adjust the

adjacency matrix, which encodes

which cows interact with each other,

using the new grouping information

that we obtain by optimizing the CF.

At each time step, our model outputs

the groups of animals that correspond

to the lowest-cost splitting, and it ter-

minates upon reaching the stopping

criterion (i.e., after a designated num-

ber of time steps).
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To examine the effect of different coupling strengths in

a biological context, we compute the mean group size of the

herd (which has n¼ 12 cows) with respect to safety levels

and coupling strengths. We first consider rx ¼ ry ¼ 0 and

set the initial states of the ES using h 0ð Þ
i 2 U E;R;Sf g for i 2

f1;…; 12g and the initial conditions using Eq. (18). We use

the parameter values n0i 2 U 0:0995; 0:1005½ �, n00i 2 U

0:1495; 0:1505½ �; f0i 2 U 0:0495; 0:0505½ �; f00i 2 U 0:1995;½
0:2005�; d ¼ 0:25, and T¼ 400 in the ES; L¼ 3 in the SC;

ns¼ 4 in the RC; and k ¼ 0:33 and l ¼ 0:33 in the CF. We

consider 41 safety levels s 2 fk=40 j k ¼ 0;…; 40g. For each

safety level s, our simulation generates cow groups fN tð Þ
l jl

¼ 1; 2; 3 and t ¼ 1;…; 400g. From jN tð Þ
j j ¼ n

tð Þ
l ; we compute

the mean group size and the standard deviation of the group

sizes. We perform similar simulations for

rx ¼ ry ¼ 0:05; rx ¼ ry ¼ 0:2, and rx ¼ ry ¼ 0:6 with the

same initial states, initial conditions, and parameter values

(other than the coupling strengths). We then compute the

mean group size and standard deviation with respect to the

safety size in each case.

In Fig. 6(b), we plot the mean group size and group-size

standard deviation for each choice of coupling strengths. For

each choice, we observe that the mean group size is about 4

for s ¼ 0 and s 2 0:8; 1½ �, that it increases for s 2 0; 0:58ð �,
and that it decreases for s 2 0:6; 0:8ð Þ. We observe [see Eq.

(15)] that the herd can maintain a small risk even when split-

ting into small groups for small safety levels. For larger

safety levels, the mean group size must be larger to ensure

that the cost of the RC is sufficiently small. However,

beyond some value of the mean group size, the SC starts to

dominate the CF. The mean group size thus starts to become

smaller for larger safety levels. In this example, the value of

the safety level at which this trade-off balances is about

s ¼ 0:6. We also observe that stronger coupling entails

larger mean group sizes. For large safety levels, cows can

form large groups with similar dynamics without the herd

incurring a significant cost.

B. Cost function

We now examine how the CF changes with respect to

the coupling strengths rx and ry, the safe size ns, and the

safety level s. We perform three numerical experiments: one

to examine the effect of coupling strengths; another to exam-

ine the effects of the safe size and safety levels, and another

to compare the effect of safety level for zero and nonzero

coupling strengths.

We have already seen in Sec. IV A that different cou-

pling strengths yield different dynamics for state switches in

cows. From a biological perspective, a larger coupling

strength corresponds to stronger interactions between cows,

and we wish to explore how different interaction strengths

affect the cost of synchronizing behavior. In our simulations,

we average the cost over five realizations of parameter val-

ues of herds of n¼ 15 cows. Specifically, we generate five

sets of initial states using h 0ð Þ
i 2 U E;R;Sf g for i 2 f1;…; 15g

and then use Eq. (18) to generate five initial conditions.

We then generate five sets of values for the parameters

n0i 2 U 0:0995; 0:1005½ �; n00i 2 U 0:1495; 0:1505½ �; f0i 2 U

0:0495; 0:0505½ �, and f00i 2 U 0:1995; 0:2005½ �. We set

d ¼ 0:25; n ¼ 15, and T¼ 20 in the ES and consider the cou-

pling strengths rx ¼ ry ¼ k=150, where k 2 f1;…; 30g. We

also set L¼ 3 in the SC; ns¼ 4 and s ¼ 0:2 in the RC; and

k ¼ 0:33 and l ¼ 0:33 in the CF. We then run the dynamics

for each initial condition and compute five cost values for

each choice of coupling strengths rx ¼ ry ¼ k=150. In Fig.

7(a), we plot the standard deviations of the costs, and we

observe that they decrease with rx (and hence with ry) until

appearing to saturate once the coupling strength reaches a

value of about 0.065.

Our model assesses the effect of risk in the cost using

the RC. The risk levels in the RC depend on both the safety

level s and the safe size ns [see Eq. (15)]. In risky

FIG. 6. Herd dynamics for different coupling strengths for a herd of n¼ 12

cows. (a) We run the ES with n0i 2 U 0:0995; 0:1005½ �; n00i 2 U 0:1495;½
0:1505�; f0i 2 U 0:0495; 0:0505½ �; f00i 2 U 0:1995; 0:2005½ �; d ¼ 0:25, and

T¼ 400; an RC with ns¼ 4 and s ¼ 0:2; an SC with L¼ 3; and a CF with

k ¼ 0:33 and l ¼ 0:33. We generate orbits of hunger and lying desire of the

first cow for (top left) rx ¼ ry ¼ 0, (top right) rx ¼ ry ¼ 0:05, (bottom left)

rx ¼ ry ¼ 0:2, and (bottom right) rx ¼ ry ¼ 0:6. The red, purple, and blue

boundaries, respectively, represent the eating, lying, and standing states. The

colors of the boundaries are the same as in Figs. 1 and 2. At the top of each

Poincar�e section, we show the percentage of the boundary that the orbit

intersects; the color of the text matches the coupling strengths of the orbits

to the coupling strengths of the plots in panel (b). (b) Means and standard

deviations of the group sizes. We use the same parameter values for the ES,

SC, RC, and CF as in panel (a) and compute the mean group size �n of a herd

versus the safety level s for coupling strengths rx ¼ ry ¼ 0 (orange), rx ¼
ry ¼ 0:05 (blue), rx ¼ ry ¼ 0:2 (brown), and rx ¼ ry ¼ 0:6 (green) for

T¼ 400 time steps.
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environments, we expect the values s and ns to be larger than

in safe environments. To assess the influence of these param-

eters on the CF, we perform simulations with the initial

states h 0ð Þ
i 2 U E;R;Sf g for i 2 f1;…; 15g and determine the

other initial conditions from Eq. (18). We use n0i 2
U 0:0995;½ 0:1005�; n00i 2 U 0:1495; 0:1505½ �; f0i 2
U 0:0495; 0:0505½ �; f00i 2 U 0:1995; 0:2005½ �; d ¼ 0:25,

rx ¼ 0:1; ry ¼ 0:1, n¼ 20, and T¼ 20. Additionally, we let

L¼ 3 in the SC; ns ¼ k1 (with k1 2 f2;…; 20g) and s ¼
0:05k2 (with k2 2 f1;…; 19g) in the RC; and k ¼ 0:33

and l ¼ 0:33 in the CF. For each k1; k2ð Þ 2
f2;…; 20g � f1;…; 19g, we perform one realization (so we

only consider one value of each parameter determined from

a probability distribution). For each s and ns, we run the sim-

ulation for T¼ 20 times steps and consider the cost at each

time. In Fig. 7(b), we show the mean cost as a function of

safe size ns and safety level s. We observe that the cost is

low for small values of ns and s, and that it becomes progres-

sively larger for larger parameter values until it appears to

saturate.

In our two experiments above, we examined how the CF

depends on coupling strength and safety level. We now

examine the temporal variation of the CF versus the safety

level for both uncoupled cows and coupled cows. We gener-

ate one set of initial states using h 0ð Þ
i 2 U E;R; Sf g for i 2

f1;…; 15g and one set of initial values using Eq. (18). We

then choose the parameters in the ES, SC, and CF as in our

simulations above to examine the influence of coupling

strengths on the CF. We set rx ¼ 0 and ry ¼ 0 for the

uncoupled cows and rx ¼ 0:1 and ry ¼ 0:1 to examine a sit-

uation with coupled cows. In the RC, we let ns¼ 4 and con-

sider a safety level of s ¼ k=20, where k ¼ 0;…; 20. In Fig.

7(c), we show the cost as a function of time and safety level

for both uncoupled and coupled cows. We observe for

uncoupled cows that the cost is larger for a larger safety

level. Importantly, however, this need not be the case for

coupled cows.

V. BIOLOGICALLY-MOTIVATED EXAMPLES

We examine the CF (16) using two biological examples:

(1) a herd that splits into up to three groups and (2) a herd

with males and females that splits into two groups.

A. Example 1

In this example, we illustrate a scenario of a herd split-

ting into up to three groups. It also helps convey the effect of

choosing parameter values in Eq. (16) and the relationship

between groupings and their associated costs.

We consider a herd of n¼ 12 cows that we allow to split

into a maximum of L¼ 3 groups during T¼ 30 time steps.

We first simulate hunger and lying desire, then compute the

CF, and finally optimize the CF to determine the lowest-cost

grouping at each time. We consider a single realization of

the model (i.e., one example herd) and use it to illustrate the

general notion of trade-offs in the CF.

In the ES, we set the initial states of the cows to be

h 0ð Þ
i 2 UfE;R; Sg for i 2 f1;…; ng, and we recall that U

denotes a uniform probability distribution over the set in its

argument. We set the initial conditions x 0ð Þ
i and y 0ð Þ

i accord-

ing to Eq. (18). We also make the following parameter

choices for the ES: n0i;2 U 0:0995; 0:1005½ �; n00i 2
U 0:0495; 0:0505½ �; f0i 2 U 0:1245; 0:1255½ �, f00i 2
U 0:0745; 0:0755½ �; d ¼ 0:25; rx ¼ 0:1, and ry ¼ 0:1. We

set the parameters in the CF and RC to be ns¼ 4,

s ¼ 0:2; k ¼ 0:2, and l ¼ 0:2.

TABLE II. Possible group sizes for a herd of 12 cows that splits into a maxi-

mum of 3 groups.

Index 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

n
tð Þ

1
12 11 10 9 8 7 6 10 9 8 7 6 8 7 6 5 6 5 4

n
tð Þ

2
0 1 2 3 4 5 6 1 2 3 4 5 2 3 4 5 3 4 4

n
tð Þ

3
0 0 0 0 0 0 0 1 1 1 1 1 2 2 2 2 3 3 4

FIG. 7. Influence of parameter values on the cost C of a herd of n¼ 15

cows. (a) Cost (using equal coupling strengths rx and ry), which we compute

by averaging over five realizations of simulations with initial conditions

from Eq. (18) and parameters n0i 2 U 0:0995; 0:1005½ �; n00i 2 U 0:1495;½
0:1505�; f0i 2 U 0:0495; 0:0505½ �; f00i 2 U 0:1995; 0:2005½ �; d ¼ 0:25, T¼ 20,

L¼ 3, ns¼ 4, s ¼ 0:2; k ¼ 0:33, and l ¼ 0:33. The error bars indicate the

standard deviations over the five realizations. (b) Cost of the herd versus the

safe size ns and safety level s for rx ¼ ry ¼ 0:1 and the same values of

n0; n00; f0; f00, d, k, and l as in panel (a). (c) Temporal variation of the cost

for different safety levels for (left) uncoupled cows and (right) coupled

cows. The parameters n0; n00; f0; f00, d, ns, k, and l are the same as in panel

(a). For a given s, the cost for ns¼ 4 in panel (b) is the mean of the cost over

all of the time steps for that value of s from the right plot of panel (c).
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A herd of 12 cows can split into a maximum of 3 groups

in 19 different combinations of group sizes (see Table II).

We assign an index for each combination to simplify the

labeling in our figures. We also run the ES together with the

CF for another two instances of the CF parameters: k ¼
0:6; l ¼ 0:2 and k ¼ 0:2; l ¼ 0:6. We show our results at

time t¼ 20 for all three examples in Fig. 8. In the figure, the

highest risk occurs for n 20ð Þ
1;2;3 ¼ 10; 1; 1, in which two individ-

ual cows have separated from a herd. The second-highest

risk occurs when n 20ð Þ
1;2;3 ¼ 0; 1; 11, in which one cow has sep-

arated from a herd. The lowest risk occurs when the entire

herd stays together (index 1) or when it splits into equal

groups (index 7), where we note that the group size of 6 is

larger than the safety size ns¼ 4. One can consider equally-

weighted cost components in the convex combination that

constitutes the CF or change the importance of components

by increasing the weight of hunger [see Fig. 8(a)], lying

desire [see Fig. 8(b)], or risk [see Fig. 8(c)].

We now examine the temporal grouping in this scenario

with parameter values k ¼ 0:33 and l ¼ 0:33. In Fig. 9(a),

showing 6 arbitrary cows out of 12 in total, we see that cows

freely switch their groups to achieve the optimum value of

the CF (16). The cow that we represent with purple crosses

switches between two groups during the simulation, whereas

the other five cows switch between all three groups. In Fig.

9(b), we show the total number of groups in the herd, which

consists of a single group at times t¼ 19 and t¼ 23 and con-

sists of three groups at times t¼ 3, t¼ 7, t¼ 21, t¼ 24,

t¼ 25, and t¼ 28. In Fig. 9(c), we show the total cost and

thereby reveal that it can be more costly for the herd to stay

together as a single group than to split up (at times t¼ 19

and t¼ 23). We also note the low costs for times t¼ 3, t¼ 7,

t¼ 21, t¼ 25, and t¼ 28, when the herd consists of three

groups. Note that we have illustrated trade-offs in the CF

specifically for the initial condition and parameter values in

our example, and we expect to see qualitatively different

trade-offs for different initial conditions and parameter val-

ues. (Additionally, the “high” and “low” costs are not much

different from each other.) However, the notion of such

trade-offs is a rather general one.

B. Example 2

We now examine mixed-sex grouping dynamics in a

herd that consists of two distinct categories of adult cows:

FIG. 8. Cost for different combinations

of group sizes for the dynamics of a

group of n¼ 12 cows for T¼ 30 time

steps. The parameter values are n0i 2U

0:0995;0:1005½ �; n00i 2U 0:0495;½
0:0505�; f0i 2U 0:1245;0:1255½ �; f00i 2
U 0:0745;0:0755½ �; d¼0:25;rx¼0:1,

and ry¼0:1 in the ES; L¼3 in the SC;

ns¼4 and s¼0:2 in the RC; and

k;lð Þ2f 0:6;0:2ð Þ; 0:2;0:6ð Þ; 0:2;0:2ð Þg
in the CF. We show the total cost (red

squares) at time t¼20 and its compo-

nents—hunger (blue triangles), lying

desire (green diamonds), and risk (yel-

low disks)—versus the index that rep-

resents the different combinations of

group sizes (see Table II). The CF

parameter values are (a) k¼0:6 and

l¼0:2, (b) k¼0:2 and l¼0:6, and (c)

k¼0:2 and l¼0:2.

FIG. 9. Group changes and related

costs as a function of time for a group

of n¼ 12 cows for T¼ 30 time steps.

We use the parameter values n0i 2
U 0:0995; 0:1005½ �; n00i 2 U 0:0495;½
0:0505�; f0i 2 U 0:1245; 0:1255½ �; f00i 2
U 0:0745; 0:0755½ �; d ¼ 0:25; rx

¼ 0:1, and ry ¼ 0:1 in the ES; L¼ 3 in

the SC; ns¼ 4 and s ¼ 0:2 in the RC;

and k ¼ 0:33 and l ¼ 0:33 in the CF.

(a) Group assignments N
tð Þ

1;2;3 of six

cows (red disk, orange square, yellow

asterisk, blue triangle, green diamond,

and purple cross) among three groups.

(b) The number of groups in which the

herd splits is determined by (c) the

total cost.
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males and females. This type of grouping is known to occur

in some animal groups (e.g., in red deer12), so we study the

same phenomenon in our model of cow herds. Adult male

cows require more energy and rest than female cows, as the

former tend to have larger body weights.45,46 We therefore

assume that the males’ rates of change of hunger and lying

desire are larger than those of females. Mathematically, we

implement this assumption by using larger values of the

parameters n0i; n
00
i ; f
0
i, and f00i of cows in the male group than

for those in the female group. (It is reasonable that, e.g., a

male cow becomes hungrier faster than a female cow, but

our analogous assumption is much less reasonable for the

sating of hunger and the desire to lie down.)

We consider a herd of 10 cows of two different types.

There are five cows (where i 2 f1;…; 5g indexes the cow)

with large body weights, and the remaining five cows

(i 2 f6;…; 10g) have small body weights. As in Sec. V A,

we simulate the hunger and lying desire of cows with the ES

(see Sec. III A) and determine a lowest-cost grouping by

optimizing the CF (16). We set the initial states of cows of

the first and second types as eating and lying down, respec-

tively. For cows of a given type, the variables have very sim-

ilar initial values. Specifically, they are the same, except that

we perturb them additively with a small amount of uniform

noise

h 0ð Þ
i ¼ E and x 0ð Þ

i ; y 0ð Þ
i

� �
¼ 1; dþ /ið Þ; i 2 f1;…; 5g;

h 0ð Þ
i ¼ R and x 0ð Þ

i ; y 0ð Þ
i

� �
¼ dþ /0i; 1
� �

; i 2 f6;…; 10g;

8><
>:

(19)

where /i;/
0
i 2 10�3U 0; 1½ � and d ¼ 0:25. We choose uni-

form additive noise because it is the simplest type of noise to

consider. We set rx ¼ 0:2 and ry ¼ 0:2 in the ES, and we

determine the other parameters so that the first group consists

of cows with a large body mass and the second group con-

sists of cows with a small body mass. That is,

n0i; f
0
i 2 U 0:2495; 0:2505½ �;

n00i 2 U 0:2995; 0:3005½ �;

f00i 2 U 0:3995; 0:4005½ �;

8>><
>>: i 2 f1;…; 5g;

n0i 2 U 0:0995; 0:1005½ �;

n00i 2 U 0:0495; 0:0505½ �;

f0i 2 U 0:1245; 0:1255½ �;

f00i 2 U 0:0745; 0:0755½ �;

8>>>>><
>>>>>:

i 2 f6;…; 10g:

8>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>:

(20)

We set the parameters in the CF and RC to be ns¼ 3,

s ¼ 0:2; k ¼ 0:33, and l ¼ 0:33. We run the ES for T¼ 30

time steps, and we consider the value of the CF at each step.

As in our examples in Sec. V A, we use only one realization,

and we note that the noise in Eq. (19) has a small magnitude.

During time steps 0–10 and 20–28, we see in Fig. 10(a) that

all of the cows are in groups with the other cows of their

own sex (i.e., with others of similar sizes, hunger, and desire

to lie down). However, during time steps 11–19 and 29–30,

some cows are not in their “proper” group, and the cost

becomes high [see Fig. 10(c)], although the CF minimizes

the cost to achieve a lowest-cost grouping. We show the

number of mismatched cows in the groups in Fig. 10(b). We

observe that the cost is large when cows are in mismatched

groups, but it is low when cows are in their proper (i.e.,

single-sex) groups.

VI. CONCLUSIONS AND DISCUSSION

We developed a framework for modeling the lowest-cost

splitting of a herd of cows by optimizing a cost function (CF)

FIG. 10. Dynamics and CF over time of a 10-cow herd of adult males and females that splits into two groups. We use the parameter values n0i; f
0
i 2

U 0:2495; 0:2505½ �; n00i 2 U 0:2995; 0:3005½ �, and f00i 2 U 0:3995;½ 0:4005� for the first 5 cows to create “male” cows; and we use the parameter values n0i 2
U 0:0995; 0:1005½ �; n00i 2 U 0:0495; 0:0505½ �; f0i 2 U 0:1245; 0:1255½ �, and f00i 2 U 0:0745; 0:0755½ � for the other 5 cows to create “female” cows. The other

parameter values are d ¼ 0:25; rx ¼ 0:2, and ry ¼ 0:2 in the ES; L¼ 2 in the SC; ns¼ 3, and s ¼ 0:2 in the RC; and k ¼ 0:33 and l ¼ 0:33 in the CF. (a)

Cow groups as a function of time. We color the first 5 cows (the “male” group) in red and the other 5 cows (the “female” group) in yellow. (b) Number of

cows that are not in their proper group as a function of time. (c) Cost of the groups over time.
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that quantifies their hunger, desire to lie down, and predation

risk. Lying in groups offers protection from preda-

tors,19,47–49 but synchronization can also be costly to indi-

viduals, as some portion of a herd has to change behavior to

eat or lie down at a communal time rather than at an opti-

mally beneficial time.11–13 In this paper, we examined situa-

tions in which cow herds split into groups such that cows’

hunger and lying desire are relatively homogeneous within

a group, while ensuring that further splitting does not result

in overly small groups, which would be more vulnerable to

predation.

We employed the evolution scheme (ES) from Sun

et al.42 and input cows’ time-dependent interactions in terms

of a adjacency matrix A tð Þ that encodes the lowest-cost group-

ing obtained by optimizing the CF. The adjacency matrix pro-

vides an interface between the CF and ES, and our framework

can be used with arbitrarily intricate CFs, ESs, and interaction

patterns. In Ref. 42, the network architecture A tð Þ, which indi-

cates which cows interact with each other at each time t, was

imposed as part of the model. In the present paper, however,

we took a different approach: we determined A tð Þ based on an

optimal grouping at the previous time step (after imposing a

group structure at t¼ 0 as a part of the initial conditions).

Because hunger and lying desire are two separate motivations

of a cow, we optimized the CF independently for each of them

in each time step to obtain two different groupings, and we

then used the grouping with the lower total cost among the two

possibilities. For convenience, we imposed a maximum num-

ber of groups into which a herd can split, as it reduces the com-

putational complexity of our approach. We assessed the cost

contributions from hunger and lying desire using the standard

deviation of the associated individual preferences in each

group (although one can replace the standard deviation by any

measure of dispersion).

In Sec. IV, we first examined how cow dynamics are

affected by coupling strengths, and we then examined the CF

for different parameter values. We simulated hunger and lying

desire of cows for four sets of coupling strengths and observed

different dynamics [see Fig. 6(a)] in the four situations. Setting

the coupling strengths to 0 implies that each cow behaves inde-

pendently [see Eq. (3)], so each cow acts as an independent

oscillator. In contrast, for positive coupling strengths, cows

interact with each other, and a cow herd is then a set of cou-

pled oscillators. To examine the different dynamics from dif-

ferent coupling strengths in a biologically-motivated context,

we computed the mean group size versus the safety level for

different coupling strengths. We observed in Fig. 6(b) that

large coupling strengths permit large groups that consist of

cows with similar needs. We also observed that the mean

group size of cows first becomes larger for progressively larger

safety levels but then becomes smaller after some value of the

safety level [see Fig. 6(b)]. Recall that group sizes in a herd

also increase with the safety level [see Eq. (3)]. In sufficiently

large groups, the synchronization cost starts to dominate the

CF for sufficiently large safety levels, and minimizing the CF

starts to encourage smaller groups to minimize the cost.

Thereafter, the mean group size decreases with the safety

level.

We then studied the influence of coupling strengths rx

and ry, safe size ns, and safety level s on the CF. We

observed [see Fig. 7(a)] that the total cost becomes smaller

for progressively larger coupling strengths before saturat-

ing. In Fig. 7(b), we illustrated that setting the safe size and

safety level to low values entails a low cost. Such low

parameter values allow cows to gather into small groups of

similar cows without incurring a significant risk to a herd.

When the cows are uncoupled, the cost increases monotoni-

cally with the increasing safety level, but the cost varies

non-monotonically with increasing safety levels for coupled

cows [see Fig. 7(c)].

In a biologically-motivated example, we examined

group fission and the dynamics of cows switching between

groups. In that example, we set the initial states of cows

arbitrarily, but one can also choose initial states to examine

specific scenarios. To consider a relatively homogeneous

herd, we used similar parameter values for different indi-

viduals, and we observed the dynamics that result from

small differences in these parameter values. We considered

a single realization of the model, and other initial condi-

tions and parameter values yield different specific trade-

offs while illustrating the same essential idea. Our primary

hypothesis, that synchronization can be costly, is illustrated

by Figs. 9(b) and 9(c). Specifically, synchronization is very

costly when the groups are large and heterogeneous. One

can explore trade-offs further by considering risk and syn-

chronization costs with different rates of increase with

group size.

One can customize the ES by changing the parameters

for the rates of increase in hunger or desire to lie down.

This versatility allowed us to model a scenario of mixed-

sex grouping in a herd. Adult male cows generally possess

larger body masses and require more energy and lying time

than adult female cows. We implemented this asymmetry

among individuals by imposing larger values of the salient

parameters for males than for females.50 At times, the het-

erogeneity in motivations for eating and lying down caused

the optimal groups to consist of cow groups other than the

single-sex groups [see Fig. 10(c)], but usually optimization

of the CF yielded single-sex groups. Single-sex grouping

occurs commonly in ungulates51 (e.g., cows, deer, and

sheep) and are especially pronounced in species with large

body-size differences between males and females.11,12,14,15

In our exploration of sex grouping, we added uniform noise

to the initial conditions and parameters, as it is the simplest

type of noise to consider.

One can adjust the CF so that it can be used for herding

situations in different environments. A safe environment

allows small groups in a herd, in contrast to an unsafe envi-

ronment, which requires large groups to defend themselves

against attacks. Our CF imitates a safe environment if the

safe size ns is large and the safety level is small. One can

control the influence of the cost components (hunger, lying

desire, and predation risk) on the CF by tuning parameters,

and our approach thereby makes it possible to explore differ-

ent grouping scenarios, such as analyzing the influence of

one or more cost components versus the others for group

splitting. Our approach is also very flexible, and one can
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generalize our CF, the ES, and the interactions among ani-

mals (through a time-dependent adjacency matrix) to exam-

ine a wide variety of scenarios.

In our paper, we determined group size and splitting by

optimizing a CF at each time step. However, because

optimally-sized groups are not necessarily stable, it is

important to explore the idea of introducing a learning

process in which one keeps track of optimal group sizes

during past time steps. In the present paper, we imposed a

maximum number L of groups into which a herd can split. In

our examples, the value of L was either obvious, as in the

sex-grouping example, where we used L¼ 2 (males and

females), or hypothetical, as in our example with L¼ 3.

However, instead of imposing a maximum number of groups

in advance, it is also desirable to examine situations in which

the number of groups is an unconstrained output to better

reveal an optimal number of groups in herd splitting.

In summary, we developed a versatile model of

lowest-cost splitting of a herd of animals that allows

numerous generalizations in a straightforward way. We

illustrated our model by exploring several plausible scenar-

ios, and we believe that our approach has the potential to

shed considerable insight on grouping behavior in animals

in a wide variety of situations.
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APPENDIX: DERIVATION OF THE DISCRETE
DYNAMICS ON THE POINCAR�E SECTION

We solve the differential equations in Eq. (8) using the

boundary conditions in Eq. (7). For convenience, we substitute

Eq. (9) into these differential equations and expand as follows:

when h tð Þ
i ¼ E,

_x tþ1ð Þ
i ¼ g00i x

tð Þ
i ;

_y tþ1ð Þ
i ¼ c0iy

tð Þ
i ;

(A1)

when h tð Þ
i ¼R,

_x tþ1ð Þ
i ¼ g0ix

tð Þ
i ;

_y tþ1ð Þ
i ¼ c00i y

tð Þ
i ;

(A2)

when h tð Þ
i ¼S,

_x tþ1ð Þ
i ¼ g0ix

tð Þ
i ;

_y tþ1ð Þ
i ¼ c0iy

tð Þ
i :

(A3)

We then solve the differential equations in Eqs. (A1)–(A3)

on the boundaries @E; @R; @Sx, and @Sy given by Eq. (8) as

follows (where the subscripts of time t indicate what state

change is occurring):

when h tð Þ
i ¼ E (i.e., on @E of the Poincar�e section),

tER ¼
1

c0i
log

1

y
tð Þ

i

 !
; so

x tþ1ð Þ
i ; y tþ1ð Þ

i ; h tþ1ð Þ
i

� �
¼ y

tð Þ
i

� �g00
i

c0
i ; 1;R

 !
;

and tESy
¼ 1

g00i
log

1

d

� �
; so

x tþ1ð Þ
i ; y tþ1ð Þ

i ; h tþ1ð Þ
i

� �
¼ d; d

�
c0
i

g00
i y

tð Þ
i ;Sy

� �
;

8>>>>>>>>>>>>>><
>>>>>>>>>>>>>>:

(A4)

when h tð Þ
i ¼ R (i.e., on @R of the Poincar�e section),

tRE ¼
1

g0i
log

1

x
tð Þ

i

 !
; so

x tþ1ð Þ
i ; y tþ1ð Þ

i ; h tþ1ð Þ
i

� �
¼ 1; x

tð Þ
i

� �c00
i

g0
i ; E

 !
;

and tRSx
¼ 1

c00i
log

1

d

� �
; so

x tþ1ð Þ
i ; y tþ1ð Þ

i ; h tþ1ð Þ
i

� �
¼ d

�
g0
i

c00
i x

tð Þ
i ; d;Sx

� �
;

8>>>>>>>>>>>>>><
>>>>>>>>>>>>>>:

(A5)

when h tð Þ
i ¼ Sy (i.e., on @Sy of the Poincar�e section),

tSyE ¼
1

g0i
log

1

d

� �
; so

x tþ1ð Þ
i ; y tþ1ð Þ

i ; h tþ1ð Þ
i

� �
¼ 1; d

�
c0
i

g0
i y

tð Þ
i ; E

� �
;

and tSyR ¼
1

c0i
log

1

y
tð Þ

i

 !
; so

x tþ1ð Þ
i ; y tþ1ð Þ

i ; h tþ1ð Þ
i

� �
¼ y

tð Þ
i

� ��g0
i

c0
i d; 1;R

 !
;

8>>>>>>>>>>>>>><
>>>>>>>>>>>>>>:

(A6)

when h tð Þ
i ¼ Sx (i.e., on @Sx of the Poincar�e section),

tSxE ¼
1

g0i
log

1

x
tð Þ

i

 !
; so

x tþ1ð Þ
i ; y tþ1ð Þ

i ; h tþ1ð Þ
i

� �
¼ 1; x

tð Þ
i

� ��c0
i

g0
id; E

 !
;

and tSxR ¼
1

c0i
log

1

d

� �
; so

x tþ1ð Þ
i ; y tþ1ð Þ

i ; h tþ1ð Þ
i

� �
¼ d

�
g0
i

c0
i x

tð Þ
i ; 1;R

� �
:

8>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>:

(A7)
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