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Isomorphisms in Multilayer Networks

Mikko Kivela™ and Mason A. Porter

Abstract—We extend the concept of graph isomorphisms to multilayer networks with any number of “aspects” (i.e., types of layering).
In developing this generalization, we identify multiple types of isomorphisms. For example, in multilayer networks with a single aspect,
permuting vertex labels, layer labels, and both vertex labels and layer labels each yield different isomorphism relations between
multilayer networks. Multilayer network isomorphisms lead naturally to defining isomorphisms in any of the numerous types of
networks that can be represented as a multilayer network, and we thereby obtain isomorphisms for multiplex networks, temporal
networks, networks with both of these features, and more. We reduce each of the multilayer network isomorphism problems to

a graph isomorphism problem, where the size of the graph isomorphism problem grows linearly with the size of the multilayer

network isomorphism problem. One can thus use software that has been developed to solve graph isomorphism problems as a
practical means for solving multilayer network isomorphism problems. Our theory lays a foundation for extending many network
analysis methods—including motifs, graphlets, structural roles, and network alignment—to any multilayer network.

Index Terms—Complex networks

1 INTRODUCTION

NETWORK science has been very successful in investiga-
tions of a wide variety of applications in a diverse
set of disciplines. In many situations, it is insightful to use a
naive representation of a complex system as a simple, binary
graph, which allows one to use the powerful methods and
concepts from graph theory and linear algebra; and numer-
ous advances have resulted from this perspective [1]. As net-
work science has matured and as ever more complicated
data have become available, it has become increasingly
important to develop tools to analyze more complicated
graphical structures [2], [3]. For example, many systems that
were typically studied initially as ordinary, time-indepen-
dent graphs are now often represented as time-dependent
networks [4], networks with multiple types of connections
[5], or interdependent networks [6], and the analysis of these
generalized network structures has lead to discoveries of
fundamentally new types of phenomena related to dynam-
ical processes on networks [2], [3], [7], [8]. (For instance, see
the examples in [9], [10].) Recently, a multilayer-network
framework was developed to represent a large number
of such networked systems [2], and the study of multilayer
networks has rapidly become arguably the most prominent
area of network science. It has achieved important results in
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a diverse set of fields, including disease dynamics [11], func-
tional neuroscience [12], ecology [13], international relations
[14], transportation [15], and more.

With the additional freedom in representing a multilayer
network, numerous ways to generalize network concepts
have emerged [2], [3]. The different definitions can arise from
different modeling choices and assumptions, which also have
often been implicit (rather than explicit) in many publications.
To make sense of the multitude of terminology and develop
systematic methods for studying multilayer networks, one
needs to start from first principles and define the fundamental
concepts that underlie the various methods and techniques
from network analysis that one seeks to generalize. For exam-
ple, exploring the fundamental question, “How is a walk
defined in multilayer networks?”, led to breakthroughs in
generalizing concepts such as clustering coefficients [16], [17],
centrality measures [18], [19], [20], and community structure
[21], [22], [23] in multilayer networks. In this article, we
answer another fundamental question: “When are two multi-
layer networks equivalent structurally?” by generalizing the
concept of graph isomorphism to multilayer networks.

Any attempt to generalize a method that relies on graph
isomorphisms to multilayer networks also necessitates gen-
eralizing the concept of graph isomorphisms. Very recently,
there has been work on methods relying on (some times
implicit) generalizations of graph isomorphism—especially
in the context of small subgraphs known as “motifs” [24]—
for many network types that can be represented as multi-
layer networks [25], [26], [27], [28], [29], [30]. Further, many
other tools in network analysis—such as structural roles
[31], [32], network-comparison methods [33], [34], [35], [36],
[37], and graph-anonymization techniques [38], [39]—are
based on graph isomorphisms.

Defining isomorphisms for multilayer networks yields
isomorphism relations for each of the wide variety of net-
work types that can be expressed using a multilayer-network
framework. For example, one obtains isomorphisms for
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multiplex networks (in which edges are colored), intercon-
nected networks (in which vertices are colored), and tempo-
ral networks [2]. Instead of defining isomorphisms and
related methods and tools separately for each type of net-
work, we develop a general theory and set of tools that can
be used for any types of multilayer network [40]. With our
contribution, we hope to avoid a confusing situation in the
literature in which elementary concepts, terminology, tools,
and theory are developed independently for the various
special types of multilayer networks.

The rest of this paper is organized as follows. In Section 2,
we introduce the basics concepts, lay out the ideas behind
multilayer isomorphisms, and summarize the results of our
article. In Section 3, we give the permutation-group formula-
tion of multilayer network isomorphisms and enumerate
some basic properties of multilayer network isomorphisms
and related automorphism groups. In Section 4, we show
how to solve a multilayer network isomorphism problem
computationally by reducing it to an isomorphism problem
in a vertex-colored graph. This reduction allows one to use
graph isomorphism software packages to solve the multilayer
network isomorphism problem, and we use it to show that
multilayer isomorphism problems are in the same computa-
tional complexity class as the graph isomorphism problem.
We provide tools for producing the reductions as a part of a
multilayer analysis software [40]. In Section 5, we give exam-
ples of how one can use multilayer network isomorphisms for
multiplex networks, temporal networks, and interconnected
networks. Finally, in Section 6, we conclude and discuss
future research directions.

2 BAsic CONCEPTS AND SUMMARY OF RESULTS

2.1 Multilayer Networks

In recent years, there has been a growing interest in general-
izing the concept of graphs in various ways to study graphi-
cal objects that are better suited for representing specific
real-world systems. This has allowed increasingly realistic
investigations of complex networked systems, but it has
also introduced mathematical constructions, jargon, and
methodology that are specific to research in each type of
system. The rapid development of such jargon has been
overwhelming, and it has sometimes led to confusion and
inconsistencies in the literature [2].

To unify the rapidly exploding, disparate language (and
disparate notation) and to bring together the multiple con-
cepts of generalized networks that include layered graphical
structures, the concept of a “multilayer network” was devel-
oped recently [2], [18]. Reference [2] includes a list of about 40
mathematical constructions that can be represented using the
framework of multilayer networks. Most of these structures
are variations either of graphs in which vertices are “colored”
(i.e., vertex-colored graphs, see Sections 4.1 and 5.2) or of
graphs in which edges are “colored” (i.e., multiplex networks,
see Section 5.1). Both types of coloring can also occur in the
same system, various types of temporal networks admit a nat-
ural representation as a multilayer network [2], and other
types of complications can also arise. This new unified frame-
work has opened the door for the development of very gen-
eral, versatile network concepts and methods. See [2], [3] for
reviews of progress in the study of multilayer networks.
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Fig. 1. Example of a multilayer network with two aspects. In this graphi-
cal structure, each entity can have an associated vertex-layer tuple in
one or more layers, which are also organized into combinations of ele-
mentary layers. In this example, each layer has either A or B as the first
elementary layer, and it has either X or Y as the second elementary
layer. There are thus 4 layers in total, and entities can have an associ-
ated vertex-layer tuple in one, two, three, or all four layers. [This plot is
inspired by a figure in [2].]

The formal definition of a multilayer network needs to
be able to include the various layered network structures
in the literature. In Ref. [2], we (and our collaborators)
defined a multilayer network as a quadruplet M =
(Var, Ear, V, L) [2]: The set V consists of the vertices of a net-
work, just as is an ordinary graph. Each vertex resides in
one or more uniquely-named layers that are combinations
of exactly d elementary layers, where each of these elemen-
tary layers corresponds to an “aspect”. That is, each aspect
is a different type of layering. For example, a social net-
work that changes in time and includes social interactions
over multiple communication channels has two aspects—
one for time and the other for the type of social interac-
tion—and so a layer represents one type of social interac-
tion at a given time. The sequence L = {L,}?_, consists
of the sets of elementary layers for each of the d aspects,
and we use the symbol L =1L, x - x Ly to denote the set
of layers. Each vertex can be either present or absent in
a layer, and we indicate the presence of a vertex by inclu-
ding its combination with the layer in the set
Vie CV x Ly x --- x Ly of vertex-layer tuples. Finally, we
define the set Ey C Viy x Vi of edges between pairs of
vertex-layer tuples as in ordinary graphs. See Fig. 1 for an
example of a multilayer network with two aspects.

2.2 Isomorphisms in Graphs and Multilayer
Networks

A graph isomorphism formalizes the notion of two
graphs having equivalent structures. The structure is
what is left in a graph when one disregards vertex labels.
That is, two graphs are isomorphic if one can transform
one graph to the other by renaming the vertices in one of
the graphs. Note that the edges do not have their own
labels but they are determined by the vertex labels of the
two endpoints, and those labels are also updated in the
transformation.

To be able to give a mathematical definition of a graph
isomorphism, we first define a vertex map as a bijective func-
tion y:V — V' that relabels each vertex of the graph
G = (V, E) with another distinct label. We use the following
notation to relabel vertices of G using y:

M V' ={r(v)[veV};

Q@ E"=A{(y(v),y(u)|(v,u) € E};
@) G = (V' E).
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With this notation, two graphs G and G’ are isomorphic if
there exists y such that G¥ = G'.

One can define isomorphisms for multilayer networks in
very similar manner. The idea is again that two networks
are equivalent structurally if the vertices in one of them can
be relabeled so that the first network is turned into exactly
the second one. To do this, we need some additional (and
slightly more cumbersome) notation:

M) Vi ={{r(v), @) | (v,a)
@ By = A{((y(v), @), (v(u), B) | (v,
3 MY=(Vj,E,V'L).

Note that (v,a) = (v, (xl, ...,a4), where « is a vector of
layers. With the above definitions, we can now say that two
multilayer networks M and M’ are vertex-isomorphic when
there exists y such that M = M.

A vertex isomorphism is a natural extension of the stan-
dard graph isomorphism to multilayer networks, but it is
not the only one. In a vertex isomorphism, one disregards
only the vertex labels (but retains the layer labels) when
comparing two multilayer networks. This choice is justifi-
able in some applications, but in others one might wish to
also disregard the layer labeling. For example, one can map
temporal networks into multilayer networks so that each
time instance is a layer [2], and in this case two temporal
networks are vertex-isomorphic if (1) the network has the
same structure and order of structural changes and (2) the
exact timings the structural changes are equal. However, if
one is interested only in the relative order of the changes
that take place in the network, one needs to be able to also
disregard the layer labels. To do this, one can proceed in
very similar way as for vertices, as it requires a function to
relabel the layers. Specifically, we say that a bijective func-
tion 8, : L, — L/ is an elementary-layer map that renames the
elementary layers of a network.

One also may want to be able to relabel all of the elemen-
tary layers or only a subset of them in a multi-aspect multi-
layer network. We define a function § : L — L’ that relabels
all elementary layers, §(a) = (81(c1),...,84(cq)), and call it a
layer map. A partial layer map 8;, . j, is a layer map for which
8, = 11if a # j; for all I and where 1 is an identity map. That
is, a partial layer map only relabels elementary layers that
use some subset of all aspects. We say that these aspects j
are “allowed” to be mapped. We are now ready to define
notation that formalizes the above ideas of how layer maps
affect multilayer networks:

1) L ={r%}%and L% = {§,(a) |a € L.} ;

@ Vi ={(v,8()]|(v,e) € Vis};

@) B = {((v,8(a)), (u,8(8))) | ((v,@), (u, B)) € Enr};
@ M= (VP E},V,L?).

We can now say that two multilayer networks are layer-
isomorphic when there exists a § such that M® = M. Because
of the intrinsic complications in defining general multilayer
networks with any arbitrary number of aspects, the above
notation is a bit cumbersome. In Section 3.1, we will make
the notation less cumbersome, at the cost of also making it
less explicit.

We have defined isomorphisms related to relabeling either
vertices or layers, but there is no reason why one cannot
simultaneously do both of these. We thus define the vertex-

S Vu}
(M), (u7 ﬂ)) € Eﬂ[} ;

’- ’-
’- ’-

Fig. 2. Four examples of multilayer networks with one aspect: (a) M,,
(b) My, (¢) M., and (d) M,. The multilayer network ), is vertex-isomor-
phic to M;, because there is a permutation y = (123) of vertex labels
such that M) = M,. We can thus write M, =, M,. The network ), is
layer-isomorphic to M., and we write M, =, M, because there is a per-
mutation § = (XY) of layer labels such that M2 = M,. The network A,
is also vertex-layer isomorphic to M,, and we write M, =, M, because
there is a vertex-layer permutation ¢ = (y,§) such that M{ = M,. Note
that M, is not vertex-isomorphic to M, or M, and it is not layer-isomor-
phic to M, or M,. However, M, is vertex-layer isomorphic both to M,
and to M..

layer map & = (y, 81, ...,84) as a combination of a vertex map y
and a layer map é. A vertex-layer map acts on a multilayer
network such that a vertex-map and layer-map act sequen-
tially on the network: M* = (M ), Clearly, the order in which
the vertices and layers are relabeled does not matter, and ver-
tex maps and layer maps commute with each other, so
(M?)? = (M?)”. The vertex-layer maps can be used to define
vertex-layer isomorphisms in the same way as one defines
vertex isomorphisms and layer isomorphisms.

We now collect all of our definitions of multilayer-net-
work isomorphisms.

Definition 2.1. Two multilayer networks M and M’ are

(1)  vertex-isomorphic if there is a vertex map y such that

MY =M ;
(2) layer-isomorphic if there is a layer map § such that
MB M/ .

(3)  vertex-layer-isomorphic if there is a vertex-layer
map ¢ = (y,8) such that M* = M’ .
Layer isomorphisms and vertex-layer isomorphisms are called
partial isomorphisms if the associated layer maps are partial
layer maps.

We use the notation M 2, M’ to indicate that networks
M and M’ are vertex-isomorphic. We indicate partial layer
isomorphisms by listing the aspects that are allowed to be
mapped (i.e., aspects that do not correspond to identity
maps in the partial layer map) as subscripts. If the layer iso-
morphism is not partial, we list all of the aspects of the net-
work. We use almost the same notation for vertex-layer
isomorphisms, where the only difference is that we include
0 as an additional subscript. For example, for a single-aspect
multilayer network, 2¢; denotes a layer isomorphism and
2, denotes a vertex-layer isomorphism. For partial layer
isomorphisms and vertex-layer isomorphisms, we use a
comma-separated list in the subscript to indicate the aspects
that one is allowed to map. For example, =, is a partial layer
isomorphism on aspect 2, and 2 3 signifies a vertex-layer
isomorphism in which one is allowed to map aspects 1 and
3 but for which the elementary layers in aspect 2 (and in
any aspects larger than 3) are not allowed to change. We
will explain the reason for this notation in Section 3.1.

We give examples of a vertex isomorphism, a layer iso-
morphism, and a vertex-layer isomorphism in Fig. 2.
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2.3 Summary of Results and Practical Implications
2.3.1 Applications of Isomorphisms

The idea of a graph isomorphism is one of the central concepts
in graph theory and network science, and it is an important
underlying concept for many methods of network analysis—
including motifs [24], graphlets [35], [41], graph matching [33],
[34], network comparisons [35], [36], [37], graph anonymiza-
tion [38], [39], and structural roles [31]. Defining multilayer-
network isomorphisms thus builds a foundation for future
work by allowing generalization of all of these ideas for multi-
layer networks. Multilayer-network isomorphisms can also
be used to define methods and concepts that are not intrinsic
to graphs. For example, one can classify multilayer-network
diagnostics and methods based on the types of multilayer
isomorphisms under which they are invariant.

2.3.2 Applications of Automorphisms

The modeling flexibility added by layered structures in net-
works has led to the discovery of qualitatively new phenom-
ena (e.g., novel types of phase transitions) for processes such
as disease spread and percolation [2], [7], [8]. It is interesting
to examine how multilayer network architectures affect struc-
tural features such as the graph symmetries. One can study
symmetries using automorphism groups of graphs, as these
enumerate the ways in which vertices can be relabeled with-
out changing a graph. We formulate the idea of graph auto-
morphism groups for multilayer networks in Section 3, and
we introduce a simplifying notation in which we think of ver-
tices as a “Oth aspect”. We show that combining maps of dif-
ferent aspects preserves all of the symmetries that are present
in these aspects, but that completely new symmetries can
result from combining these maps (see Proposition 3.1). For
example, if a symmetry exists under vertex-isomorphism or
layer isomorphism, it must also exist under vertex-layer iso-
morphism. However, a vertex-layer isomorphism can lead to
symmetries that are not present under either vertex isomor-
phism or layer isomorphism.

The multilayer network automorphisms that we define in
the present work generalize notions of structural equiva-
lence of vertices (or, more precisely, “role equivalence”,
“role coloring”, or “role assignment”) [31], [32]. Other
related notions of structural equivalences have been defined
in specific types of multilayer networks. For example, in
social networks with multiple types of relations between
vertices, one can study the “block models” that one obtains
by considering different types of homomorphisms [42], [43],
[44], [45]. Additionally, in coupled-cell networks (which can
have multiple types of edges and vertices), the automor-
phism groups and groupoids—which one obtains by relax-
ing the global condition for automorphisms—have a strong
influence on the qualitative behavior of dynamical systems
on such networks [46], [47], [48].

2.3.3 Aspect Permutations

In our definition of multilayer networks, the elementary
layers are ordered, and it is important to note that this is
simply for bookkeeping purposes. Additionally, one can
think of the vertices as elementary layers of a Oth aspect:
from a structural point of view, the vertices are the same as
other types of elementary layers. This is evident from the
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definition of multilayer networks, but it is far from evident
in typical illustrations, in which vertices and layers are visu-
alized, respectively, as points and planes. One can permute
the order in which elementary layers are introduced, and
isomorphism relations remain the same as long as the
aspects in which the renamings are allowed are permuted
accordingly (see Section 3.3).

2.3.4 Practical Computations

For practical uses, it is important that the various types of
multilayer isomorphisms can be computed in a simple and
efficient way. It is a standard practice to solve this type of
computational problem by reducing the problem to an iso-
morphism problem in (colored) graphs by constructing aux-
iliary graphs and then applying existing software tools for
finding graph isomorphisms [49]. The auxiliary graphs can
become complicated as the number d of aspects grows, and
a slightly different auxiliary graph construction procedure
needs to be defined for all 2¢ types of isomorphisms. In Sec-
tion 4, we show how to construct such auxiliary graphs for
general multilayer networks in a way that the size of the
problem grows only linearly with the size of the multilayer
network. This opens up a very straight forward and efficient
way to apply our approach for practical data analysis of any
kind of multilayer networks without requiring knowledge
of reductions or explicit construction of auxiliary graphs.

2.3.5 Application to Specific Network Types

Most studies of multilayer networks usually consider specific
types of multilayer networks rather than studying them in
their most general form [2]. In Section 5, we show how the
theory of multilayer isomorphisms can be applied to some of
the most typical types of networks: multiplex networks, ver-
tex-colored networks (i.e., networks of networks), and tem-
poral networks. We also illustrate how the different implicit
isomorphism definitions for temporal networks from the lit-
erature [25] are related to our multilayer isomorphisms (see
Section 5.3). Our isomorphism definitions for multilayer net-
works are explicit, and anyone who is familiar with multi-
layer isomorphism can very easily transfer that knowledge to
isomoprhisms in temporal networks.

One of the most prominent use of graph isomorphisms is
motif analysis, in which all subgraphs of a network are
grouped into isomorphism classes and the numbers of sub-
graphs in each class are examined [24]. For both computa-
tional tractability and the ability to interpret the results of
such calculations, such analysis typically relies on using a
reasonably small number of isomorphism classes. This lim-
its the sizes of subgraphs that are studied, as the number of
isomorphism classes grows very rapidly as a function of
number of vertices. Similarly, the number multilayer-net-
work isomorphism classes grows very rapidly both as a
function of the number of vertices and as a function of the
number of layers. Consequently, the same limitations of
motif analysis that apply to ordinary graphs also apply for
multilayer networks. In Section 5.1, we examine the growth
of the number of isomorphism classes in multiplex net-
works. This illustrates the type of compromise that one
needs to make in the number of vertices and layers that can
be considered in a subnetwork to ensure that the number of
isomorphism classes is reasonable.
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3 PERMUTATION FORMULATION AND PROPERTIES
OF MULTILAYER ISOMORPHISMS

We now show how to formulate the multilayer-network iso-
morphism problem in terms of permutation groups, and we
give some elementary results for multilayer-network iso-
morphisms and related automorphism groups.

3.1 Permutation Formulation of Multilayer
Isomorphisms

We limit our attention (without loss of generality) to multi-
layer networks M in which each of the networks has the same
set V of vertices and same sets { L, }?_, of elementary layers.!

We can now formulate the isomorphism theory using
permutation groups. Vertex maps are permutations acting
on the vertex set V, and elementary layer maps are permu-
tations acting on elementary layer sets L,. If we construe
the group operation as the combination of two permuta-
tions, then all possible vertex maps form the symmetric
group Sy, and all possible elementary layer maps for a
given aspect a form another symmetric group S;, (G.e.,
y € Sy, and §, € Sz,). The vertex-layer maps are given by a
direct product of the symmetric groups of vertices and of
elementary layers.

For notational convenience, we define the set of vertices to
be the “Oth aspect” (i.e., we define Ly = V). We also intro-
duce the following notation for vertex-layer tuples:
v = (v,a). By convention, we define subscripts for vertex-
layer tuples so that vy =v and v, = «, for a > 0, where
veVand a € L. It is also convenient to use 1. to denote a
group that consists of the identity permutation over elements
of the set C. Additionally, recalling that { = (y,81,...,84), it
is convenient to use the notation v¢ = ¢(v) = (y(v), 8(a)) and
v = 84 (Va)-

We let p C{0,1,...,d} (with [p| > 1) denote the set of
aspects that can be permuted. Given p, we can then define
permutation groups

P, =D x - x Dby, (1)

where D? = S; if a € pand DP = 1;, if a ¢ p. We denote
the complementary set of aspects by p = {0,1,...,d} \ p.

We obtain vertex permutations for p = {0}, layer permutations
when 0¢ p, and vertex-layer permutations when 0 € p and
Ip] > 1.Layer permutations or vertex-layer permutations are
partial permutations if there exists a € {1,...d} suchthata ¢ p.

We can now define multilayer-network isomorphisms
for a set of multilayer networks M.

Definition 3.1. Given a nonempty set p, the multilayer networks
M, M' € M are p-isomorphic if there exists { € P, such that
M4 = M'. We write M =, M.

We denote the set of all isomorphic maps from M to M’
by Iso,(M,M')={¢ € B,: M*= M'}. Similarly, we use
Aut, (M) =Iso,(M, M) to denote the automorphism group
of the multilayer network M.

1. For notational convenience in Section 4, we assume that the verti-
ces and layers can always be distinguished from each other. That is, we
assume that the vertex set and the layer sets are distinct from each other
and that any Cartesian product of the vertices and elementary layers
are distinct from each other.

Fig. 3. An example demonstrating that one cannot always construct
multilayer-network automorphism groups by combining smaller automor-
phism groups. That is, Aut,, (M)Aut,, (M) # Aut,,,, (M) in this exam-
ple. In a directed multilayer network M with edge set E) = {[(1, X),
2, X)), (1, X), (LY)] [(2,Y), (1Y) [(2.Y), (2. X)]}, both the vertex

automorphism grouh Autyy (M) and the layer automorphism group
Autyy (M) are groups whose only permutation is the identity permuta-
tion, but the vertex-layer automorphism group Aut 1y (M) has a permu-

tation ((12), (XY)) in addition to the identity permutation.

3.2 Basic Properties of Automorphism Groups

In Eq. (1), we constructed the groups P, as direct products
of symmetric groups and groups that contain only an iden-
tity element. The automorphism groups are subgroups of
these groups: Aut,(M) < P,. A permutation remains in the
automorphism group even if we allow more aspects to be
permuted (i.e., if the set p is larger), and permutations that
use only a given set of aspects are independent of permuta-
tions that use only other aspects. We formalize these
insights in the following proposition.

Proposition 3.1. The following statements are true for all M
and [p| > 0:

(1) Auty (M) < Aut,(M)ifp’ Cp;

(@) Aut, (M)Aut,, (M) < Aut,(M) if p1,p2 Cp, with
pNp=0;

@) [L¢D=1=¢D =1foralliif¢? € Aut,, (M) and
piNpj=0foralli#j.

For a proof, see Section 7.1.

It is important to observe in claim (2) of Proposition 3.1
that the subgroup relation can be proper even if p = p; U ps.
That is, the relationship Aut,, (M)Aut,, (M) = Auty,up, (M)
is not always true, but one can combine permutations in P,
and P,, that are not in the automorphism groups Aut, or
Aut,, to obtain a permutation that is in Aut, ,,(M). We
give an example in Fig. 3.

3.3 Aspect Permutations

In the definition of multilayer networks, the order in which
one introduces different types of elementary layers (.e.,
aspects) only matters for bookkeeping purposes. For exam-
ple, for a system that is represented as a multilayer network
with two aspects, A and B, it does not matter if we assign
index 1 to aspect A and index 2 to aspect B or index 1 to
aspect B and index 2 to aspect A. The isomorphisms of type
=~ and = in the former case become the isomorphisms of
type & and = in the latter case, and vice versa. Similar rea-
soning holds even if we consider the vertices to be a “Oth
aspect”, as we did in Section 3.1.

To formalize the above idea, we introduce the idea of
aspect permutations as permutations of indices of the
aspects (including the Oth aspect). We then show that mul-
tilayer-network isomorphisms are invariant under aspect
permutations as long as the indices in the set p of aspects
that are not restricted to identity maps are permuted
accordingly.
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(

ST

Fig. 4. Two single-aspect multilayer networks, (a) M, and (b) M,, that are
aspect-transposes of each other: M, = Ay (M,) and M, = A (M,).
The transposition operation preserves multilayer isomorphisms in the
sense that a third multilayer network .. is vertex-isomorphic (respectively,
layer-isomorphic) to M, if and only if A (M.) is layer-isomorphic (respec-
tively, vertex-isomorphic) to M. Similarly, M. is vertex-isomorphic (respec-
tively, layer-isomorphic) to M, if and only if Ay (M.) is layer-isomorphic
(respectively, vertex-isomorphic) to M,; and M, is vertex-layer-isomorphic
to M, (respectively, M,) if and only if Agqy)(M.) is vertex-layer-
isomorphic to M, (respectively, M,). lllustrations produced using [40].

Definition 3.2. Let o € Sy, 4y be a permutation of aspect indi-
ces. We define an aspect permutation of a multilayer network
as Ao(M) = (Vi,, By, V', L)), where

@® ‘/XI:{(Uafl(o)w--a%fl(d))|V€VM};

2) Ey= {((va’1(0)7 e 7’04:7*1({1))7 (ucfl(U)a e auafl(d))) |
(v,u) € Ex};

(3) Vl = LJ—I(O) ;

(4) L'= {LU’I(a)}Z:I .

See Fig. 4 for an example of an aspect permutation in a
single-aspect multilayer network. For single-aspect multi-
layer networks, there is only one nontrivial aspect permuta-
tion operator, and we call the resulting multilayer network
its aspect transpose. Multilayer networks that are vertex-
aligned [2] (i.e., networks for which V3 = Vi x --- x V) are
often represented using adjacency tensors [2], [18], [50]. In
this case, aspect permutations of multilayer networks
become permutations of tensors indices [51], [52], [53] in the
tensor representation. Note that aspect permutation is a
meaningful operation even for undirected multilayer net-
works, and it is different from the transpose operator, which
reverses the orientations of the edges.

Aspect permutations preserve the sets of isomorphisms
as long as the indices in the isomorphism permutations are
also permuted accordingly.

Proposition 3.2. The relation
Iso, (M, M') = I [Isoe (As (M), A (M))], (2)

holds, where 1,-1(8) = ($o(0)s - - -+ $o(a)) 15 an operation that
permutes the order of elements in a tuple according to the
permutation o' and p° is a set in which each element of p is
permuted according to the permutation o.

For a proof, see Section 7.1.

4 SOLVING MULTILAYER ISOMORPHISM PROBLEMS

To take full advantage of the theory of isomorphisms in multi-
layer networks, one needs efficient computational methods
for finding isomorphisms between a pair of multilayer net-
works. One can proceed on a case-by-case basis for various
types of networks, such as temporal networks [25], using stan-
dard techniques from the graph-isomorphism literature [49].
We will now use the same techniques to show how to reduce
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all of the multilayer-network isomorphism problems to ver-
tex-colored-graph isomorphism problems. This reduction
allows one to solve any kind of isomorphism problem for any
type of multilayer network without the need to come up with
and prove the correctness of a new reduction technique.

In the reductions that we define, the size of the vertex-col-
ored-graph isomorphism problem is a linear function of the
size of the multilayer-network isomorphism problem and
thus yields practical ways of solving multilayer-network iso-
morphism problems. We also use these reductions to show
that solving multilayer-network isomorphism problems is in
the same complexity class as ordinary graph isomorphism
problems. This is unsurprising, as many generalized graph
isomorphism problems are known to be equivalent [54],
including ones that involve the very general relational struc-
tures defined in Ref. [55]. Another valid approach for our
argument would be to reduce a multilayer-network isomor-
phism problem to other structures (e.g., to a k-uniform hyper-
graph [56]), but the reduction to a vertex-colored graph yields
practical benefits in terms of the ability to directly use soft-
ware that is designed to solve isomorphism problems.

4.1 Isomorphisms in Vertex-Colored Graphs

A vertex-colored graph G, = (V., E,, 7, C) is an extension of a
graph (V., E,) with a surjective map 7 : V' — C' that assigns
a color to each vertex. We define a vertex map as a bijective
map y:V.— V! and introduce the following notation:
VI ={v)|ve Ve, B = {(y(v),y(w) [ (v,u) € Ec}, w7 (v) =
7y '(v)), and GY = (V?,EY,n",C). Two vertex-colored
graphs, G. and G/, are isomorphic if there is a vertex map y
such that G¥ = G', and we then write G, = G'..

For the purposes of isomorphisms, we can—without loss
of generality—limit our attention to graphs with the vertex
set V. =1{1,...,n}, where n is the number of vertices in the
graph. This allows us to phrase the graph isomorphism
problem in terms of permutations (similar to Section 3.1).
The bijective map y in the definition of a graph isomor-
phism is again a permutation that acts on the set V' of verti-
ces, and the permutations form the symmetric group Sy.

The vertex-colored-graph isomorphism problem is a
well-studied computational problem, and several algo-
rithms and accompanying software packages are available
for solving it [49], [54], [55].

4.2 The Reduction

The idea behind our reduction of multilayer-network iso-
morphism problems to the isomorphism problem in vertex-
colored graphs is that we define an injective function f,
such that two multilayer networks M and M’ are isomor-
phic with a permutation from P, if and only if f,(M) and
fp(M") are isomorphic vertex-colored graphs. In this reduc-
tion, it is useful to consider the concept of an underlying
graph Gy = (Var, Eyr) of a multilayer network [2]. For two
multilayer networks to be isomorphic, their underlying
graphs need to be isomorphic. However, this is not a suffi-
cient condition, because it allows (1) permutations in
aspects that are not included in p and (2) permutations that
occur in each layer independently of permutations that
occur in other layers. Consider, for example, the multilayer
network A, in Fig. 2 and the network M/ that one obtains
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3,B,X)
B

Fig. 5. Example of a function f, that maps multilayer networks to vertex-colored graphs. (a) A multilayer network M, with a single aspect, two layers,
and three vertices. (b) The vertex-colored graph f;y, (M;). One can use the mapping f(o; to find vertex isomorphisms in the multilayer network ;. In
other words, permutations of vertex labels are allowed, but permutations of layer labels are not allowed. (c) The vertex-colored network f1;(M;).
One can use the mapping f(,; to find vertex-layer isomorphisms in the multilayer network 1. In other words, both vertex labels and layer labels
are both allowed to be permuted. (d) A multilayer network M, with two aspects, two layers in each aspect, and four vertices. (e) The vertex-colored
graph f(1 23(M>). One can use the mapping f{, o} to find layer isomorphisms in the multilayer network M. In other words, permutations of layer labels
are allowed in each aspect, but permutations of vertex labels are not allowed. (f) The vertex-colored graph f;;;(M>). One can use the mapping f{;; to
find partial layer isomorphisms in the multilayer network 1,. In other words, permutations of layer labels are allowed only in the first aspect, and per-
mutations of vertex labels or layer labels are not allowed in the second aspect.

by swapping vertex labels 2 and 3 in layer X but not in layer
Y. The underlying graphs G, and G/ are then isomorphic
even though there is no vertex-layer isomorphism between
the two associated multilayer networks.

We address the first issue above by coloring the vertices in
the underlying graph so that its vertices, which correspond
to vertex-layer tuples in the associated multilayer network,
that are not allowed to be swapped are assigned different
colors from ones that can be swapped. For example, for a ver-
tex isomorphism in a single-aspect multilayer network, we
color the vertices of the underlying graph according to the
identity of their layers (i.e., by using a different color for each
layer). We address the second issue above by gluing together
vertex-layer tuples that share a vertex or an elementary layer
by using auxiliary vertices. For example, for a vertex isomor-
phism in a single-aspect multilayer network, we add an aux-
iliary vertex in the underlying graph for each vertex v € V'in
the multilayer network, and we connect the auxiliary vertex
to vertices in the underlying graph that correspond to v. This
restricts the possible permutations: for each layer, one needs
to permute the vertex labels in the same way. See Fig. 5 for an
example of our reduction procedure.

We define the reduction function f, for general M and p
as follows.

Definition 4.1. We construct the reduction from multilayer
networks to wvertex-colored graphs f,: M — G, such that
fp((V]\h EA17 ‘/7 L)) = (V07 EGa Ca 7T) ”Si”g

(1) Vo=V UV, where the auxiliary vertex set Vy =
U aEpL‘l;

(2)  Eg = Ey UEy, where Ey = {(v,,V) |V € Viy,a € p};

(3) C=pULp x---xXLg ;

4 n(vy) =a if vg€ L, and m(vy) = (v, ...v5,) if
Vg =VE Var .

In addition to the reduction function f, that we need to
solve the decision problem of two multilayer networks
being isomorphic, we would like to be able to explicitly con-
struct the permutations that we need to map a multilayer
network to an isomorphic multilayer network. That is, we

need a mapping between the permutations in multilayer
networks and permutations in vertex-colored graphs. We
define this map as follows.

Definition 4.2. Given a multilayer network M, we define the
function g, from the permutations P, to permutations of vertex-

colored graphs so that vgf'(‘h) = 1§ if vy € Vs and vg”(C) = vl if

vy € Lo forany ¢ € P,.

The following theorem allows us to use f, and g, for the
purpose of solving multilayer network isomorphism prob-
lems using an oracle for vertex-colored graph isomorphism.

Theorem 4.1. Iso, (M, M') = g, [Iso(f,(M), f,(M"))]

For a proof, see Section 7.2.

From Theorem 4.1, it follows that one can also solve mul-
tilayer network isomorphism problems using the reduction
to vertex-colored graphs that we have introduced. For
example, one can use this reduction to determine if two
multilayer networks are isomorphic, to define complete
invariants for isomorphisms, and to calculate automor-
phism groups. We summarize these uses of Theorem 4.1 in
the following corollary.

Corollary 4.2. The following statements are true for all multi-
layer networks M, M’ € M and nonempty p:

(1) M=, M'sf,(M) = f,(M);

(2)  Cq(f,(M)) is complete invariant for =2, if Cg is com-
plete invariant for =;

(3)  Auty(M) = g, (Aut(f,(M))).

For a proof, see Section 7.3.

We now define the “multilayer network isomorphism
decision problem” and show that it is in the same complexity
class with the graph isomorphism problem if one problem is
allowed to be reduced to the other in polynomial time.

Definition 4.3. The multilayer network isomorphism problem
(MG1,) gives a solution to the following decision problem:
Given two multilayer networks M,M' € M, is M =, M’
true?
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The complexity class in which problems can be reduced
to the graph isomorphism problem is denote here G/ and
many graph-related problems such as vertex-colored graph
isomorphism problem and hypergraph isomorphism prob-
lem are known to be GI-complete [54].

Corollary 4.3. MG1I, is GI-complete for all nonempty p.

For a proof, see Section 7.3.

We do the reduction from multilayer networks to vertex-
colored graphs using the f, function that we defined earlier.
We only need to show that this reduction is indeed linear
(and thus also polynomial) in time. The reduction of graph
isomorphism problems to multilayer network isomorphism
problems is trivial if we allow the vertex labels to be per-
muted, because we can simply map the graph to a multi-
layer network with a single layer. If we cannot permute the
vertex labels—i.e., if 0 ¢ p—then we need to construct a
multilayer network in which each vertex of the graph
becomes a layer with only a single vertex and we then con-
nect these layers according to the graph adjacencies.

5 ISOMORPHISMS INDUCED FOR OTHER TYPES OF
NETWORKS

In this section, we illustrate the use of multilayer network iso-
morphisms in network representations that can be mapped
into the multilayer-network framework. As example, we use
the three most common types of multilayer networks [2]: mul-
tiplex networks, vertex-colored networks, and temporal net-
works. In Section 5.1, we discuss isomorphisms in multiplex
networks. We focus on counting the number of nonisomor-
phic multiplex networks of a given size (i.e., with a given
number of vertices). In Section 5.2, we discuss isomorphisms
in vertex-colored networks. In Section 5.3, we illustrate how
multilayer network isomorphisms give a natural definition of
the isomorphisms that are defined implicitly for temporal net-
works when analyzing motifs in them [25].

5.1 Multiplex Networks

Multiplex networks have thus far been the most popular type
of multilayer networks for analyzing empirical network
data [2], [3]. One can represent systems that have several dif-
ferent types of interactions between its vertices as multiplex
networks that are defined as a sequence of graphs {G,}, =
{Va, Eu },- It is almost always assumed that the set of vertices
is the same in all of the layers V,, = Vj for all «, B (although
this is not a requirement), and multiplex networks that satisfy
this condition are said to be “vertex-aligned” [2].

One can map multiplex networks to multilayer networks
with a single aspect by considering each of the graphs G, as
an intra-layer network (i.e., a network in which the edges
are placed inside of a single layer [2]). Optionally, one can
add inter-layer edges (i.e., edges in which the two vertices
are in different layers) by linking each vertex to its replicates
in other layers. This is known as categorical coupling. Either
using categorical coupling or leaving out all of the inter-
layer edges leads to same isomorphism relations for multi-
plex networks. However, for ordinal coupling, in which only
vertices in consecutive layers are adjacent to each other, the
isomorphism classes can be different (see Section 5.3). A
vertex isomorphism in multiplex networks allows the
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vertex labels to be permuted, but the types of edges are pre-
served. The layer isomorphism allows the types of edges to
be permuted but only in a way that all of the edges of a par-
ticular type are mapped to a single other type.

Analyzing small substructures using clustering coeffi-
cients in social networks and other multiplex networks have
recently gained attention [16], [57], [58], [59], [60], [61]. Such
structures have important (and fascinating) new features
that go beyond clustering coefficients in ordinary graphs.
Instead of there being only one type of triangle, there is very
large number of different types of multiplex triangles and
connected triplets of vertices. Such triadic structures have
not been fully explored, though we discuss them in some
detail in a recent paper [16]. Moreover, one can study larger
subgraphs and induced subgraphs of multiplex networks by
extending the analysis of “motifs” in graphs [24] to multiplex
networks. There has already been interest in motif analysis in
gene-interaction networks with multiple types of interac-
tions [27], in food webs that can be represented using
directed ordered networks [28], and in brain networks with
both anatomical and functional connections [30].

Methods based on counting the number of isomorphic
subgraphs, such as motif analysis, work best if the number
of isomorphism classes is relatively small. Similarly, the rel-
atively large number of isomorphism classes even for net-
works with a small number of vertices could make some
graph-deanonymization techniques more efficient for multi-
plex networks [38]. Methods based on counting nonisomor-
phic graphs also necessitate investigating isomorphisms for
their own sake, and they thereby provide an important
motivation for the present work (as well as an obvious
future direction). In Fig. 6, we enumerate all of the possible
isomorphisms in connected multiplex networks with 3 ver-
tices and 2 layers. We indicate each of the 16 vertex-isomor-
phism classes and 10 vertex-layer-isomorphism classes.

The problem of counting the nonisomorphic graphs that
have some restrictions is known as the “graph enumeration
problem” in graph theory, and such problems can be
extended to multiplex networks (or multilayer networks in
general) using the theory that we have introduced in the pres-
ent paper. The number of undirected graphs with a fixed set

of n vertices is 2(3) , and the number of nonisomorphic graphs
also grows very quickly with n. In multiplex networks, the
analogous problem is to count the number of multiplex net-
works with n vertices and b layers. For vertex-aligned multi-

plex networks, the number of networks is 2b(3) .InTable 1, we
show the number of nonisomorphic vertex-aligned multiplex
networks for small values of n and b when considering vertex
isomorphism or vertex-layer isomorphism. We produce the
numbers in the table by systematically going through all of
the networks of a certain size and categorizing them accord-
ing to their isomorphism class.” The layer isomorphism prob-
lem for multiplex networks does not require one to solve the
graph isomorphism problem, and it is easy to solve analyti-
cally. For layer isomorphisms, the number of nonisomorphic
networks in a single-aspect vertex-aligned multiplex network

. (3) o
is given by the formula <2 S,

2. In practice, of course, we did reduce the search space by taking
advantage of symmetries in the problem.
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Count: 6 Count: 3 Count: 3 Count: 3 Count: 6 Count: 6 Count: 6 Count: 12
Count: 6 Count: 3 Count: 6 Count: 1 Count: 2 Count: 3 Count: 6 Count: 6
Count: 1 Count: 3 Count: 6 Count: 3 Count: 6 Count: 1

Count: 3 Count: 3 Count: 3 Count: 1

Fig. 6. Isomorphism classes for multiplex networks with 3 vertices and 2 layers. We only include connected networks. We show vertex isomorphisms
in the left panel and vertex-layer isomorphisms in the right panel. The count is the number of networks (with a fixed set of vertices and layers) that

are mapped to each class.

5.2 Vertex-Colored Networks

One can represent networks with multiple types (i.e., colors,
labels, etc.) of vertices using the vertex-colored graphs that
we discussed in Section 4.1. One can also map structures
such as networks of networks, interconnected networks,
and interdependent networks into the same class of multi-
layer networks [2], because one can mark each subnetworks
in any of these structures using a given vertex color.

One can map vertex-colored networks into multilayer
networks by considering each color as a layer. One then
adds vertices to the layer that corresponds to their color.
Each vertex thus occurs in only a single layer, and one can
add edges between the vertices in the resulting multilayer
network exactly as they appear in the vertex-colored net-
work. That is, in this multilayer-network representation, all
inter-layer and intra-layer edges are possible.

Vertex isomorphisms in this case are the normal isomor-
phisms of vertex-colored graphs, as vertex labels can be
permuted but the colors are left unchanged. In layer isomor-
phisms, the vertex labels must be left untouched, but the
colors can be permuted. For example, consider two net-
works with the same topology but different colorings that
correspond to vertex classifications (e.g., community assign-
ments [62]) of vertices. Two networks are then layer isomor-
phic if the two vertex classifications are the same. In a

vertex-layer isomorphism, one can permute both the vertex
names and the colors.

5.3 Temporal Networks

Temporal networks in which each edge and vertex are pres-
ent only at certain time instances arise in a large variety of
scientific disciplines (e.g., sociology, cell biology, ecology,
communication, infrastructure, and more) [4]. (One can also
think about temporal networks with intervals of activity or
with continuous time.) One can represent such temporal
networks as multilayer networks [2], [18], although this is
not the usual framework that has been used to study them.
(See [21] for an early study that used this perspective.) Rep-
resenting temporal networks as multilayer networks allows
one to use ideas and methodology from the theory of multi-
layer networks to study them, and this has already been
profitable in application areas such as political science [21],
neuroscience [63], finance [64], and sociology [65]. More
typically, one represents temporal networks either as con-
tact sequences or time sequence of graphs [4]. Sequences of
graphs are very similar construction to multiplex networks,
where the key difference is that the order of the graphs in
the sequence is important. One can map this type of tempo-
ral network to a multilayer network in very similar way as
with multiplex networks. For temporal networks, however,

TABLE 1
Numbers of Isomorphism Classes
Pro,1y Vertices Poy Vertices
|2 3 4 5 | 2 3 4 5
£ 12 4 11 34 £ 11]2 4 11 34
> 2|13 13 154 5466 = 214 2 276 10688
— 314 36 2381 1540146 — 3|8 120 12496 9156288
Number of Edges
n 1| Total [O 1 2 3 4 5 6 7 8 9 10 11 12
3 1 4 1 1 1 1
3 2 13 1 1 3 3 3 1 1
41 11 1 1 2 3 2 1 1
o 402 154 1 1 5 9 20 24 34 24 20 9 5 1 1
o 4 3] 2381 |1 1 5 15 39 8 178 280 375 417 375 280 178
4 434797 |1 1 5 15 50 132 366 800 1619 2715 4005 4973 5433

(top) Number of isomorphism classes in multiplex networks for (left) vertex-layer isomorphisms and (right) vertex isomorphisms. (bottom) The numbers of
isomorphism classes with a given number of edges. All of the rows are symmetric around the maximum value(s), which we indicate in bold. The isomorphism

classes were enumerated using [40].
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Fig. 7. (a,b) Two event-based directed temporal networks that were used as an example in Ref. [25] to illustrate the difference between temporal
motifs and flow motifs. The two temporal networks correspond to two distinct temporal motifs (i.e., two distinct isomorphism classes) but to a same
flow motif (i.e., the same isomorphism class). The numbers next to the edges are times at which events take place. (c,d) Representations of the two
temporal networks as vertex-aligned multiplex networks in which each vertex is present on each layer and the layers are ordinally coupled. This
representation leads to the same isomorphism as used for temporal motifs in Ref. [25], and the two multilayer networks are not isomorphic, because
the coupling edges fully determine the relative order of all layers. (e,f) Representation of the two temporal networks as non-vertex-aligned multiplex
networks. In this representation, vertices are only present on layers in which they are active, and they are only adjacent to their replicas in other
layers that participate in events. Consequently, similar to the isomorphisms that were used to define flow motifs in Ref. [25], the relative order of
events is only important for events that are adjacent. The two multilayer networks constructed in this way are thus vertex-layer isomorphic. Multi-

layer-network illustrations produced using [40].

one typically uses ordinal coupling instead of categorical
coupling, although it is possible to be more general [2]. (In
other words, instead of coupling all of the layer together,
one only couples consecutive layers [2], [21].)

A contact sequence consists of a set of triplets (u,v,t)
that each represents a (possibly directed) contact between
vertices v and v at time ¢. It is common to represent con-
tact-sequence data as a sequence of very sparse graphs in
which each distinct time stamp corresponds to a graph,
and two vertices are adjacent in such a graph if they par-
ticipate in an event at that time stamp [4]. This represen-
tation leads naturally to the multiplex-like multilayer
network representation of contact sequences that we
described above. Alternatively, one can represent each
event as a layer that only includes the two (or potentially
more) vertices that participate in the event. The two verti-
ces in the layer are each adjacent to its replicas in tempo-
rally adjacent layers. (See our earlier discussion of ordinal
coupling.) These two alternative representations of tem-
poral networks induce different isomorphism relations,
and this difference is related to the difference between
the temporal motifs and flow motifs from Ref. [25]. We
illustrate this distinction using an example in Fig. 7.

Contact sequences can also include delay or duration
of the contact [4]. The delay (or latency) implies that the
effect of a contact is not instantaneous. For example, in a
temporal network of airline traffic, one can construe the
flight time of each flight as a delay, and this can have an
effect on the temporal paths and dynamical processes on
the network [66]. This type of temporal network can also
be represented using a multilayer-network framework [2].
For example, a flight that leaves city A at time ¢; and
arrives in city B at time ¢, is represented as an edge from
vertex A in layer ¢; to vertex B in layer ¢;. Consequently,
multilayer network isomorphisms can also be used for
temporal networks with delays.

In a network that is purely temporal, and which thus has
only a single aspect, there are three different possible multi-
layer isomorphisms. (1) Two temporal networks are vertex-
isomorphic if they exhibit the same temporal patterns at
exactly the same time but between (possibly) different verti-
ces. (2) Two temporal networks are layer-isomorphic if they
exhibit exactly the same temporal patterns with exactly the
same vertices, although the actual times (though not the

relative order of events) can change. (3) Two temporal net-
works are vertex-layer isomorphic if they have exactly
the same temporal pattern, though the vertices and times
(but not the relative order of events) can be different.

6 CONCLUSIONS AND DISCUSSION

The theory of multilayer network isomorphisms illustrates
the power of the multilayer-network formalism: Any con-
cept or method that can be defined for general multilayer
networks immediately yields the same concept or method
for any type of network that can be construed as a type of
multilayer network. The interpretation of the concepts or
methods depends on the application and scientific question
of interest, but the underlying mathematics is the same. In
this sense, multilayer networks allow one to return to the
early days of network science in which simple graphs were
used to represent myriad types of systems and the same
tools could be applied to all of them. The key difference is
that multilayer networks allow one to represent much richer
and application-specific structures.

Going from graphs to multilayer networks adds a “degree
of freedom” to ordinary networks (or multiple degrees of
freedom if the number of aspects is larger than 1), and gener-
alizing concepts defined for graphs thus typically leads to
multiple alternative definitions [2]. This is also true for graph
isomorphisms and any isomorphism-based methods in mul-
tilayer networks, and this underscores why it is important to
identify multiple types of multilayer network isomorphisms.
Given a problem under study, one still needs to decide which
of these generalizations to use. Naturally, one can also exam-
ine multiple types of isomorphisms.

Our work on multilayer network isomorphisms lays
the foundation for many future research directions in
the study of multilayer networks. Motif analysis can now
be generalized for any type of multilayer network once
one defines a proper null model for the type of multilayer
network under study. A good selection of network mod-
els already exist both for multiplex networks and for ver-
tex-colored networks and similar structures [2]. Another
straightforward application of isomorphisms in multi-
layer networks is the calculation of structural roles [31],
[67] by defining two vertices to be structurally equivalent
if they are equivalent under an automorphism. One can
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also examine other types of role equivalence in a multi-
layer setting.

One of the challenges in isomorphism-based analysis
methods is that they are computationally challenging even
for ordinary graphs. We introduced a computationally effi-
cient way of deducing if two multilayer networks are iso-
morphic and calculating multilayer network certificates by
reducing the problem to the isomorphism problem for ver-
tex-colored graphs. Although this method is efficient for
general multilayer networks, there is room for improvement
when one is only considering a specific type of multilayer
network (such as multiplex networks).

Our theory also forms a basis for methods that still need
some additional work to be generalized for multilayer net-
works. For example, in interesting direction would be to
define “approximate isomorphisms” or inexact graph match-
ing [33] along with a way to measure how close one is to
achieving an isomorphism. This would, in turn, allow one to
define similarity measures between multilayer networks and
techniques for “aligning” two multilayer networks. It would
also make it possible to relax the conditions in role equiva-
lence to better study structural roles in multilayer networks.

Research that generalizes existing network concepts—such
as the present study—help build important foundations for
multilayer network analysis, although the most exciting direc-
tions in research on multilayer networks is the development
of methods and models that are not direct generalizations of
any of the traditional methods and models for ordinary
graphs [2]. The fact that there are multiple types of isomor-
phisms opens up the possibility to help develop such method-
ology by comparing different types of isomorphism classes.
We also believe that there will be an increasing need for the
study of networks that have multiple aspects (e.g., both time-
dependence and multiplexity), and our isomorphism frame-
work is ready to be used for such networks.

7 PROOFS

7.1 Proofs of Basic Properties of Isomorphism and

Automorphism Groups

Proof of Proposition 3.1. (1) Take any ¢ € Aut,(
lows that M* =M and ¢ €
¢ € Aut,(M).

(2) Both Aut, (M) and Aut,, (M) are subgroups of
Aut, (M) because of (1). Their direct product is a group if
they commute. Take any ¢ € Aut,, (M) and ¢’ € Aut,, (M).

M). Tt fol-
P, because ¢ € Py. That is,

We have (¢¢'), = (¢1), = (1), = (£'%), if a € py, (£'), =
(1¢), = (£1), = (¢'9), if a € py, and (¢7'), = (1), = (£'7),
if a¢pi,po. Therefore, ¢¢' =¢'¢ and Auty, (M)Aut,

(M) = Aut,, (M)Aut,, (M).

(3) Let us look at arbitrary aspect a. Because p; N p; = ()
for all ¢ # j, it follows that a is either a member of exactly
one p; or of none of them. If a is not in any p;, then
DPi =17, and ¢% = 1y, for all i. However, if a € p; (ie.,
the aspect a is in exactly one set), then ([, ¢"), = (¢),,
and it thus follows that (¢V), = 1;,. Because a is arbi-
trary, we have shown that ¢) = 1 for all 4.

Proof of Proposition 3.2. We first show that Iso,(M, M)
C I -1[Isop (As(M), As(M"))]. We consider any ¢ € Iso,
(M, M) and show that I,(¢) € Isope (Ax(M), As(M’)). By a

direct calculation, A, (M)"® =

"): for vertex-layer
tuples, (I,(Va))"® = {vi‘fll((g;,... \v eVt =1L(V§) =
1(Vy); for edges, {(I5(v), I;(w)) | (V u) € By} = {(I,(v%),
L(u®) [ (v,u) € En} = {(L(v), [,(w) [ (v,u) € By}

vertices, L ,11 =1 10y and for elementary layers,

Ao (M
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for

(0) (0)
(oY) = (L7 0Yee = (L Yy, because
Lé =L forall a.

Now we need to show that I;(¢) is an acceptable
mapping for the isomorphism on the right-hand side of
Eq. (2). Note that the definition of P, in Eq. (1) depends
on the sets {La}oof elementary layers and these sets are
different in the two isomorphisms in the two sides of
Eq. (2). We write this dependency explicitly, so that P,
in the left isomorphism becomes P,({L,}{) and P7 in
the right isomorphism becomes Ppa({Lr,fl(a)}g). With
this notation, I,(P,({La}})) = Por({L,-1(0)}5), 50 £ € B,
({La}o) = 1:(8) € Pr({Ly10 }0).

Now that we know that Iso,(M, M’) C I -1 [Isop (As
(M), As(M"))] for any aspect permutation o, we can use
the aspect permutation o' instead of o. Consequently,
we can write 11 [Isoy (Ax (M), A, (M'))] C 11 (I, [Isow)(,fl

(A1 (Ao (M), Agi (As(M")))]] = Iso, (M, M').

7.2 Proof of the Reduction Theorem

We will need the following lemma for our proof of
Theorem 4.1.

Lemma 7.1. Suppose that f : M — G, and g maps permutations
P, of M € M to permutations of G. € f(M). In addition, we
suppose that the following conditions hold:

(1)  fand gare injective;
2)  fM)" = f(M') =y € g(B,);
(3) forall z € P, we have f(M*) = f(M)*?,
It then follows that Iso,(M, M) = g~ (Iso(f(M), f(M"))).

Proof of Lemma 7.1. Take any n € Iso,(M, M'). Because of
condition (3), it then follows that f(M)"™ = f(M™) =
f(M') and thus that g(n) € Iso(f(M), f(M')). This gives
7€ g Iso(f(M), f(M"))) and Iso,(M, M") C g~ (Iso( f(M),
F(M"))). Now let y € Iso(f(M), f(M")). Because of condi-
tion (2), y € g(P,) and g '(y) € P,. Using (3) we can then
write that M’ = f1(f(M)) = f(f(M)") = fA(f(M)"9 )y
= f*l(f(M‘fl(W)) MW, Thus, Ly )EISOP(M, M),
which implies that g~*(Iso(f(M), f(M'))) C Iso, (M, M’).
Consequently, Iso, (M, M') = g~ (Iso( (M), f(M"))).

Proof of Theorem 4.1. We now use Lemma 7.1 to prove
Theorem 4.1. We prove each of the three conditions for f,
and g, that we need to apply Lemma 7.1.

We begin by proving condition (1).

First, we show that g, is injective. Take any ¢,¢’ € P,
such that g,(¢) = g,(¢'). For any a ¢ p, it follows by defi-
nition of P, that ¢, = 1;, = ¢/, where 1;, is an identity
permutation over the set L,. For a € p, the definition of
g, guarantees that vfe = v%®) = %) = o% forall v € L,.
Thatis, £ = ¢, so g, is injective.
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We now prove that f, is injective. Take any M, M’ € M
such that f,(M) = f,(M'). Tt follows that V3 UV)=
wUVy, EvUEy=FEj,UE), and pULp X---X L =
D U L 5y XX L. . Because we assumed that there are no
shared labels of vertices or elementary layers (and that
tuples of elementary layers and vertices are not in the
vertex set or in any elementary layer set), it follows that
Vir = Vi, and Ey; = E);. Because M, M’ € M, itis also true
thatL = L'and V = V’. Thus, M = M’ and f, is injective.

We now prove condition (2).

Consider an arbitrary y € Sy, ,, such that (M) =
f»(M"). We want to construct ¢ € P, so that g,(¢) = y. For
any v, € Lo, we let v%a =¥ if a € p and vjo = v, if a € D.
The ¢ defined in this way is in P, because permutations for
a €p are identity permutations and v, € L, yields
7(v,) = a and thus v! € L,. We now have by definition
that vzp({) =% =Y for v, € Vj and vor(®) = v¢ forv € Vy,.
If we assume that v¢ # v” for v € V), then there exists an a

such that v% # (v¥),. We know that v% = v, = (v?), for
a€p because of the coloring: (v5,...,v5,) =m(V) =
m(y () = ar(v) = 7' (V) = [(vV)5,. .., ("), ]. That

is, it must be true that v% # (v”
is constructed using the function f,, we know that
(u,v") € Ej guarantees that there exists a b € p such that
u = (v"),. However, (v,,v)" = (v¥,v") = (v%a,v") € E} =
Ej. Thus, thereisa b € p so that v’ = (v¥),, and it thus fol-
lows that a # b. This is a contradiction, because L, N L, =
(), and it thus must be true that v%s = (v?)_ forallv € Vj,.

), for a € p. Because M’

We now prove condition (3).
From a direct calculation, we verify that for all £ € P,

we have f,(M?) = f,(M)%®),
For vertices, we write V{, = Vl\g}’ and U ., Lit =
ngpLg’J() VJ”( ), Combining these two equations

yields V7 @y Vi @ = (Vi UVp)® = Vép(().

For edges, we write Eﬁf = E]gf}(g) because E); C Vyx

{(vffl vi)|veVy,a€p}=
E‘”’
EJP( %)

Vi, and it is also true that Ef =
{(va, V) |V € Vg, a € p}#®
equations yields F, U Ef =
B9,

For the color set C, the permutation ¢ € P, does not
change anything because it only permutes the aspects in p.
Additionally, the permutation g,(¢) of the vertex-colored
graph does not change any vertex colors by definition.

The color map 74 (v) = n([g,(§)] ' (v)) = n(¢7}(v)) =
(vp, ... v5,) = m(v) if vy = v € V), where the third equal-
ity is true because ¢~'(v) € V. Similarly, 7%®)(v,) =
7([9:(8)] " (va)) = 7(8; (va)) = a = 7(vy) if v, € L, where
the third equality is true because ¢, ! (v,) € L.

Combmmg the two
UEPY — (Ey U Ey)*®) =

7.3 Proof of Corollaries

Proof of Corollary 4.2. These results follow immediately
from Theorem 4.1.

(1) M 2, M'sTso,(M, M) # g [Iso(f,(M), f,(M'))]

#0&f,(M) = f,(M').

Proof of Corollary 4.3. The number of vertices in f, (M

209
(2) Let C be the complete invariant of = for vertex-
colored graphs. That is, C(G) = C(G")<G =2 G,
where G, G’ € Ge. From this invariance and (1), it
follows that C(f(M)) = C(f(M"))=f(M) = f(M)<
M =~* M.
(3) To obtain this result, we let M =M in
Theorem 4.1.

) (see
Definition 4.1) is |Va/| + D7 |L,|, the number of edges is
|Er| + |Varl|pl, and the number of colors can be limited to
the number of vertices. In the function f,, constructing each
vertex, edge, or vertex color consists of copying it directly
from the multilayer network or doing several operations of
checking if an element belongs to a set that grows polyno-
mially with the size of M. Thus, one can use point (1) in
Corollary 4.2 to create a reduction that is polynomial in
time (and linear in space) from MG, to the vertex-colored
graph isomorphism problem, which is known to be in G1.
One can reduce in polynomial time any problem in G/ to
MGI, by mapping the two graphs to the following multi-
layer networks. Choose a € p and use the set of vertices in
the graph as a set of elementary layers in the aspect a. For
the aspects b # a, add a single layer [, to the remaining ele-
mentary layer sets. For each vertex v € V' in the graph, cre-
ate a single vertex-layer v such that v, = v and v, =,.

(In other words, create a vertex v = (v1,...,0q,...,0q) =
(l,...,u,...,1l3).) For each edge (u,w) € E in the graph,
add an edge ((lL,...,u,...,lq),(l1,...,w,...,lg)) to the

multilayer network. The two multilayer networks are iso-
morphic according to =, exactly when the two graphs are
isomorphic. 0
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