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Estimating interevent time distributions from finite observation periods in communication networks
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A diverse variety of processes—including recurrent disease episodes, neuron firing, and communication
patterns among humans—can be described using interevent time (IET) distributions. Many such processes are
ongoing, although event sequences are only available during a finite observation window. Because the observation
time window is more likely to begin or end during long IETs than during short ones, the analysis of such data is
susceptible to a bias induced by the finite observation period. In this paper, we illustrate how this length bias is
born and how it can be corrected without assuming any particular shape for the IET distribution. To do this, we
model event sequences using stationary renewal processes, and we formulate simple heuristics for determining
the severity of the bias. To illustrate our results, we focus on the example of empirical communication networks,
which are temporal networks that are constructed from communication events. The IET distributions of such
systems guide efforts to build models of human behavior, and the variance of IETs is very important for estimating
the spreading rate of information in networks of temporal interactions. We analyze several well-known data sets
from the literature, and we find that the resulting bias can lead to systematic underestimates of the variance in
the IET distributions and that correcting for the bias can lead to qualitatively different results for the tails of the
IET distributions.
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I. INTRODUCTION

The newfound wealth of large data sets in the modern era of
“big data” necessitates statistical analyses of such data. This
has been prevalent in the study of human behavior, as the
digital footprints left behind by electronic activities provide
a deluge of data. One of the most important problems in
the study of human dynamics, which benefits directly from
such data, is to quantify temporal activity patterns in human
behavior. For example, this problem has been approached via
the characterization of time sequences of human activities
[1–16] and the analysis of “temporal networks” [17–19] (i.e.,
networks that change in time). Interevent times (IETs) give
the times between each pair of events (e.g., sending an e-mail,
making a phone call, or doing any other activity), and the way
that they are distributed has received intense scrutiny because
they can be used to characterize temporal processes.

Electronic records often have a huge number of data points.
Such data often include many subjects but may or may not also
include a similar wealth of longitudinal points. For example,
there exist data sets that include thousands or even millions
of people but with observation periods that last only a few
months [2,6,10,11]. Moreover, even when the observation
period is long, a given individual might rarely be active
during that time. This is the case, for example, in recent
studies of e-mail communication [2–4,7,12], mobile phone
calling [1,10,11,13], Web site usage [5,14,15], and donations to
charities [20]. As we illustrate in this article, data sets in which
the observation windows are comparable in scale to the IETs
are vulnerable to finite-size biases. This can arise due to short
observation windows and/or sparse records of activity. This
effect biases the tails of observed IET distributions, thereby
creating a very serious issue, as the properties of distribution
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tails are often among the most important empirical features that
one needs to consider [17,19] and models of human dynamics
have been validated or refuted based on their predictions of
the shape of IET distributions [3,4,7,9,11,21,22]. Furthermore,
the variance of IET distributions can have a large effect on
dynamical processes that occur in a system [10,13,23–28],
and the IET-distribution variance has been used to classify the
processes that produce these distributions [12,29].

Several approaches have been used to account for the bias
introduced by a finite temporal-window size. In particular,
it is common to disregard all of the boundary effects and
use the observed IETs [5,6,11,12,14,30]. Such biases are
sometimes acknowledged: for example, the exponential tail
of an IET distribution is sometimes construed as a finite-
size effect [9,11]. One can try to ameliorate the bias by
introducing temporal periodic boundary conditions [10,13],
but such a solution does not give an unbiased estimator for
an IET distribution. Another approach to dealing with a finite
observation period is to correct the probability of observing
an IET value by dividing it by the probability that an IET of
that length is not truncated by the observation window [31].
As we discuss in Sec. II, for stationary renewal processes, the
latter probability always decreases linearly with the growth
of the observed IET length. This linear correction has also
been observed in empirical data by resampling using different
observation-window sizes [23].

The error in an observed IET distribution is very small if
the tail of the IET distribution is sufficiently short relative
to the length of the time window. This is usually the case
if one uses event sequences with a large number of events.
Unfortunately, in practice, this tends to entail that one can use
only a small subset of available data. For example, some studies
on temporal communication patterns that were based on data
sets of thousands or millions of people only used subsets of the
most active people that ranged from a single person to about
10% of the data [3,7,9,11]. This approach discards valuable
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FIG. 1. (Color online) (a) A stationary renewal process generates
an infinite sequence of events. We place a time window of length T

in an arbitrary place on the timeline. (b) We consider only events that
lie inside the time window. The time from the beginning of the time
window to the first event is the residual waiting time τR , and one
can derive its distribution from p(τ ) [32]. (c) Observed interevent
times (IETs) are those that lie completely inside the time window.
(d) Censored IETs are those that are cut by the time window. An
IET that is cut by the end (beginning) of the time window is said to
be forward censored (backward censored). An IET that is truncated
must be longer than the forward (backward) censoring time: τf c � τ3

(τbc � τ0) [50].

data and biases the analysis towards the behavior of very active
individuals.

The use of IET distributions by scholars has a long history,
and the problem of inferring an IET distribution from a finite
observation period arises in a diverse set of fields—such as
engineering and medicine, where the problem has been studied
using renewal processes [32] and other models for recurrent
events [33,34]. Due to the generic nature of the problem,
several statistical tools have been developed for estimating
IET distributions for renewal processes [35–41]. Additionally,
some techniques based on survival analysis and event-history
analysis have been used to analyze temporal network data
[42–44]. Similar problems have also been encountered when
analyzing geological data [45,46] and estimating interspike
intervals of firing neurons [47].

In the present paper, we concentrate on stationary renewal
processes that produce N event sequences observed in a finite
time window of length T . A renewal process is specified
by an input IET distribution and event sequences that are
generated by independently drawing IETs from the input
distribution. [See Figs. 1(a) and 1(b) for an illustration.] We
focus on renewal processes because they are minimal models
for producing event sequences with arbitrary IET distributions.
However, real processes are often more complicated than
stationary renewal processes. For example, communication
patterns and many natural phenomena—such as earthquakes,
neuronal spike trains, and disease epidemics—arise from
processes that have memory [12,30]. Other processes, such
as inhomogeneous Poisson processes and processes in which
cascades of activity can be triggered by prior events, also yield
tractable models for human dynamics [7,48,49].

II. ESTIMATION OF INTEREVENT
TIME DISTRIBUTIONS

We seek to estimate the IET distribution p(τ ) of the under-
lying process when we are given only the time stamps of the
events inside the observation window. A naive method would
be to use the distribution p′(τ ) for observed IETs to estimate
the real distribution p(τ ) [see Fig. 1(c)]. Unfortunately, in
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FIG. 2. (Color online) We simulate N = 105 event sequences
using stationary renewal processes for which the real IET distribution
satisfies (a) p(τ ) ∝ e−τ and (b) p(τ ) ∝ τ−2.1. We consider window
sizes T (which we indicate by dashed vertical lines) of (a) 0.5, 1, 2, and
5 and (b) 5, 10, 20, and 40. We calculate IETs for each event sequence,
pool them together, and plot cumulative IET distributions P�(τ ).
Solid circles indicate the observed IET distribution, and crosses
indicate the estimates of the real IET distribution using the KM
estimator. The solid black line is the theoretical p(τ ) distribution,
and dotted curves are the theoretical distributions p′(τ ) for IETs [see
Eq. (1)] that lie completely inside each time window. A nonparametric
maximum likelihood estimator [38] gives qualitatively similar results.
See Fig. 4 in Appendix B for the same distributions plotted using
probability densities instead of cumulative probabilities.

general, the observed IETs and the real IETs do not follow the
same distribution.

In Fig. 2, we illustrate the difference between p(τ ) and
p′(τ ) for stationary renewal processes with exponential and
power-law IET distributions. This difference grows linearly
when the IET length τ approaches the window size T , and
p′(τ ) = 0 for τ > T . The growth occurs because a longer IET
makes it more likely that the observation window either starts
or ends between the two events that correspond to that IET.
Observed IETs are always distributed so that there is a linear
cutoff at the end time T of the time window. In other words,

p′(τ ) ∝ (T − τ )p(τ ) (1)

when the number N of event sequences tends to ∞ [38]. To
give intuition for Eq. (1), note that for a stationary renewal
process the probability of observing an event is uniform for an
entire observation window. This implies that (T − τ )/T is the
probability that an IET of length τ following an event chosen
uniformly at random in the interval is not cut short by the end
of the observation window.

In the worst case, the linear bias in Eq. (1) can lead to
qualitatively incorrect conclusions about the shape of the tail
of an IET distribution. It is therefore important to correct for
this bias. Note that this bias is more severe than that from an
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upper truncation, in which data points that are larger than a
certain threshold value are not observed [51,52].

There exist both parametric [41] and nonparametric [34–40]
estimators for the real IET distribution p(τ ). A straightforward
nonparametric way to estimate IETs is to use the Kaplan-Meier
(KM) estimator [53] by considering the IETs inside the time
window as uncensored observations and the IETs that are
truncated by the end of the time window as censored obser-
vations [36,54]. Additionally, because the stationary renewal
process that generates the event sequences is symmetric in
time, we can increase the accuracy of our estimate by repeating
this estimation process backwards in time [36]. That is, each
uncensored IET is counted twice, and the censored IETs at the
boundaries of the time window are counted only once [55].
One can estimate the variance of the KM estimator using
Greenwood’s formula [53,56], which has to be modified
slightly to take into account double-counting of the uncensored
IETs [36]. See Fig. 1(d) for a schematic and Fig. 2 for an
example of how the KM estimator corrects the bias introduced
by the finite observation window for simulated data [57]. See
Appendix A for details on how to use the KM estimator to
estimate IET distributions.

The derivation of the KM estimator for IETs is based on a
partial likelihood approach for data produced with a stationary
renewal process [36]. The KM estimator only assumes that
the sampled IETs are produced from the IET distribution
independently of the windows of observation (i.e., the times
from events to the end of the observation period). That is,
the KM estimator disregards some information on how the
data were produced if it is used for data that is known to be
produced by a stationary renewal process. Vardi [35] defined
a nonparametric maximum likelihood estimator (NPMLE)
method for data produced with a stationary renewal process.
Soon and Woodroofe [38] later generalized Vardi’s method for
continuous-time situations as well as for situations in which
there are event sequences in which no events are observed
during the observation time window. Note, however, that
methods based on the KM estimator and Vardi’s NPMLE can
yield estimates that are very close to each other even though the
KM estimator is more computationally efficient than Vardi’s
NPMLE estimator [36]. One can also use a reduced-sample
estimator, which ignores data points close to the boundaries of
an observation window, although Pawlas et al. [47] observed
for several different generative models of event sequences that
it gives less accurate estimates than a method based on the KM
estimator.

When does one need to worry about finite-window-size effects?

The bias introduced by using the observed IET distribution
as an estimate of the real IET distribution for a given process
can be very small even if data are produced by sampling from
a renewal process using a finite time window. This is the case
if the time-window length is sufficiently long. In this case, one
does not need to worry about finite-size effects or make any
corrections to account for them. We next give some guidelines
for determining when this happy situation holds.

As we discussed at the beginning of Sec. II, the bias in an
IET distribution grows linearly with the IET length. It is thus
useful to compare the bias in the smallest observed IET to the

bias in the largest observed IET, as their ratio gives an estimate
of the largest error in the distribution. If the smallest possible
IET is τ0, then Eq. (1) implies that

p′(τ )

p′(τ0)
=

(
1 − τ

T

)
p(τ )

p(τ0)
. (2)

Equation (2) can be used as a rule of thumb for assessing
whether a finite time window distorts an observed IET
distribution. For example, if the largest data point (i.e., the
rightmost point in an observed IET distribution) is more
than 100 times smaller than the length of the observation
window, then the error that results using the observed IETs
for estimating the real IET distribution is less than 1% for IET
values that are smaller than the maximum observed IET value.

Equation (2) gives an estimate of the relative probabilities
of observed IETs, but it does not indicate anything about the
distribution’s tail, which is not observed. This can be an issue
if there are very small amounts of data or if one wants to
calculate summary statistics of an IET distribution that are
very sensitive to the properties of the tail (e.g., moments of
an IET distribution or measures of event burstiness [12]). The
moments μ′

m of an observed IET distribution are lower than
the moments μm of the real IET distribution. However, if we
have an estimate pest(τ ) of the real IET distribution p(τ ) for
τ � τmax, then we can define an estimator of the moments as

μest
m =

∫ τmax

0
τmpest(τ )dτ + τm

maxP
est
� (τmax), (3)

where P est
� is the estimator of the cumulative distribution of

the IETs. That is, in this estimator, we use pest(τ ) for the
IET distribution for τ � τmax and replace the contribution
of the unobserved tail,

∫ ∞
τmax

τmpest(τ )dτ , with an expression,

τm
max

∫ ∞
τmax

pest(τ )dτ = τm
maxP

est
� (τmax), that takes values that

are less than or equal to those of the real contribution.
Assuming that the estimate of the IET distribution is perfect
[i.e., pest(τ ) = p(τ ) when τ � T ], we obtain a sharper lower
bound for the moments using μest

m than using μ′
m. That is,

μ′
m � μest

m � μm. We illustrate this issue in Sec. III using
empirical data. Note, in practice, that τmax is close to T for
these data sets.

III. ANALYSIS OF EMPIRICAL DATA

We now use the methods that we described in Sec. II to
reanalyze several public data sets that have been studied in
the literature. For each data set, we concentrate on temporal
sequences of messages that are sent by individuals.

The Eckmann et al. e-mail data set [2] contains time
stamps of about 3 × 105 e-mails among 3188 people during
83 days. This data set has been examined by several authors,
and the shape of the IET distributions of individuals with
high e-mailing frequencies has received particularly close
scrutiny (and has attracted controversy) [3,7,30,58,59]. The
pussokram.com (POK) data set [5,31] is a communication
record of an online community with about 3 × 104 people
who sent 5 × 105 messages during the entire 492-day lifetime
of the site. Because the data recording started from the birth of
the POK Web site, it is not reasonable to construe message
sequences in this data set as having been produced by a
stationary process. However, it is still reasonable to consider
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the data as being forward censored (see Fig. 1). Rybski et al. [5]
plotted the distribution of all IETs as well as distributions
grouped according to the number of sent messages. Their plots
contain noticeable dips at the end of the IET distributions, but
it is not clear in their paper if this feature arises because of
intrinsic human behavior or is instead due to the finite length
of the data. The third data set that we examine was introduced
by Wu et al. [9], who studied IETs of short messages sent
within each of three different companies during one month. We
present our reanalysis of data from company 1, which includes
about 5 × 105 messages sent by about 4 × 104 people. The
results for the two other companies are similar. To obtain good
statistics, Wu et al. concentrated on communication patterns
between the few pairs of users who sent very large numbers
of messages to each other. For each data set, we consider
the observation window for each user to be the observation
window of the whole system, although additional information
on users leaving or joining the system could have been used to
construct individual observation windows if such information
were available.

Each of the data sets includes a large number of IETs that
are sufficiently close to the time-window length to affect the
observed IET distribution. We illustrate this fact in Figs. 3(a)–
3(c). For each data set, we show both the observed IET
distribution and the KM estimate of the IET distribution. It is
clear that the shape of the tail of the observed IET distributions
is qualitatively different from that of the KM estimate of the
IET distribution. The dip that is often observed in the tail of
an IET distribution that includes IETs that are close to the
observation-window length [5,11,14,30] can be explained by
the finite observation window in each of the data sets that we
study.

In Table I, we compare some summary statistics of the
KM estimate of the IET distributions and the observed IET
distributions to gain a better understanding of how much the
two differ. The first two moments and residual waiting times
calculated from the IET distribution given by the KM estimator
are often more than 100% larger than ones calculated from the
observed IET distribution. These differences can have a huge
impact on processes that act on top of temporal networks,
and it is clear that the bias introduced by a finite observation-
window size can be a major problem in these situations. For
example, the mean residual waiting time τR—which is vastly
shorter when calculated using the observed IET distributions

TABLE I. The first two moments of the IETs calculated from the
observed IET distribution and using Eq. (3) for the IET distribution
produced by the KM estimator, estimates of the residual waiting
times using the formula μ1(τR) = 1

2
μ2
μ1

[13], and the mean of forward
and backward censoring times τf c,bc. (For the POK data set we
only calculate the mean of forward censoring times.) Note that data
produced by a stationary renewal process have forward-censoring and
backward-censoring times that are distributed as the residual waiting
times for values that are smaller than the window size T .

Data μ′
1 μKM

1

√
μ′

2

√
μKM

2 μ′
1(τR) μKM

1 (τR) τf c,bc

E-mail 0.908 1.51 3.20 6.88 5.62 15.6 17.5
POK 5.13 28.4 23.1 106 51.9 198 240
Short message 0.633 1.40 2.11 4.89 3.53 8.53 8.73
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FIG. 3. (Color online) Results for several empirical data sets.
We consider activation times for each node as a single event
sequence. (a–c) IET distributions that we obtain from combining IET
distributions of all node activation sequences. Closed circles indicate
the observed IET distributions, and crosses indicate the estimates of
the IET distributions using the KM estimator. (d–i) We bin event
sequences according to the number of events in them: crosses, n = 3;
pluses, n = 6; open circles, n ∈ {8,9}; open downward triangles,
n ∈ [14,25]; open squares, n ∈ [51,150]. We skip every other bin
to make the figure easier to read, and we normalize IETs according to
the bin’s mean IET. (d–f) Cumulative distributions of observed IETs
normalized by the mean μ′

1 of the observed IETs. (g–i) KM estimates
of the cumulative IET distributions normalized by the mean μKM

1

calculated from the estimated IET distribution. The shaded regions
are 95% confidence intervals [36]. The data sets are (a, d, g) the
Eckmann et al. e-mail data [2], (b, e, h) POK messages [5], and
(c, f, i) the Wu et al. short-message data [9]. See Fig. 5 in Appendix B
for the same distributions plotted using doubly logarithmic axes.

than when calculated using the IET distributions obtained with
the KM estimator—is related to the speed of spreading in
networks [10,13,23,24,27], because it is the expected time
until the next event after a node is infected at a time chosen
uniformly at random.

In studies of empirical data, it is often assumed that each
event sequence is produced by an IET distribution with the
same characteristic shape but a different underlying rate. We
follow the typical assumption [5,6,10,12,60,61] that the IET
distribution for a sequence is defined as p(τ |τ0) = 1

τ0
f (τ/τ0),

where p and f are probability density functions defined on the
interval [0,∞) and the mean of p(τ |τ0) is τ0. (See Appendix C
for further discussion.) In Figs. 3(d)–3(i), we plot the IET
distributions (for each data set) in which we group event
sequences with similar numbers of events. We include event
sequences that have fewer than 151 events because sequences
with few events are the most susceptible to finite-size effects.
Sequences with at most 150 events encompass 90%–99% of
all sequences (depending on the data set). We observe that
normalized IET distributions for event sequences with few
events decrease much more rapidly than the IET distributions
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for sequences with many events. This result is expected, and it
is a consequence of the bias introduced by the finite observation
window. There is a very good collapse of the tails of the KM
estimates of the normalized IET distributions for the e-mail
communication and short-message communication data. The
difference between the IET distributions of the POK data
and the two other data sets may be due to users who leave
the service permanently. This process would lead to each
user’s last IET being infinitely long, which would manifest
for each group of event sequences as the tail of the cumulative
IET distribution approaching a value that corresponds to the
fraction of people in that group who have left the service. One
would expect this fraction to be smaller for groups with a larger
number of messages if the probability of leaving the service is
lower for people who have sent more messages.

IV. DISCUSSION AND CONCLUSIONS

We investigated the effects that a finite observation window
can have on IETs. For a stationary renewal process, we
illustrated that a finite time window introduces a linear cutoff
to the observed IET distribution at the end of the time
window (see Fig. 2). We showed how to correct this bias
using nonparametric estimators, such as the KM estimator
or an NPMLE, for a stationary renewal process. We also
illustrated that these estimators work well even for event
sequences with small numbers of events if these sequences can
be grouped together. We then used these methods to reanalyze
three data sets of human communication, and we found that
using the observed IET distributions without correcting for the
finite-size bias can seriously distort the shape and key summary
statistics of IET distributions.

Human behavior is rather heterogeneous in many aspects;
in particular, the event sequences of different people contain
widely disparate numbers of events. Many authors have
argued that it is possible to represent such sequences using
a function that is independent of the underlying rate of
events [6,10,12,60,61]. However, there is an additional bias
if one infers the underlying rate from the observed number
of events (see Appendix C), and it is important to develop
statistical methods that are able to assume an underlying model
for a characteristic IET distribution. Moreover, methods for
testing whether an IET distribution has some specific shape are
also susceptible to finite-size effects, and parametric analogs
of the methods that we employed should be applied in such
situations [41]. Further, in the present paper we focus on the
IET distributions of multiple event sequences, but finite-size
effects should also be taken into consideration when estimating
summary statistics such as moments or burstiness [62] of
single-event sequences.

The need for the wide dissemination and use of correction
methods like KM estimators and NPMLEs for IET distri-
butions is underscored by the rapidly growing analysis of
temporal data streams. Nonparametric methods for correcting
for biases that are introduced by a finite observation window
have existed for several decades [35,36,38]. Surprisingly, such
methods (to our knowledge) do not seem to have been used
when analyzing human communication patterns, although
there have been some ad hoc attempts to directly correct for
the linear bias [23,31]. Additionally, although we focused on

human communication patterns, the problem of correcting for
these finite-size effects is a general one, and similar methods
have been reinvented in multiple fields. For example, the
KM estimator was used for window-censored data in the
1980s [36], and its use for such data was independently
reinvented many years later in the context of estimating the
interspike intervals of neurons [47]. Appropriately taking
into account finite-size effects makes it possible to obtain
accurate estimates of the tail of an IET distribution and to
optimally exploit data that consist of a large number of event
sequences with only a small number of events (as opposed
to high-frequency event sequences, which are largely free of
such significant finite-size effects).
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APPENDIX A: KAPLAN–MEIER ESTIMATOR FOR
INTEREVENT TIMES

We now discuss how to use the KM estimator [53] to
estimate the IET distribution of a stationary renewal process
when one only observes events in a finite time window. Our
approach is similar to the “shortcut method” of Denby and
Vardi [36]. Unlike them, however, we do not add a point
τM that is much larger than the observed IET values to the
IET-distribution estimate.

The KM estimator is a nonparametric estimator of lifetimes
(or times of death) in the presence of censored lifetimes (or
losses) [53]. Corresponding to each lifetime τi , there is a
censoring time τc,i , and we observe the lifetime if it is shorter
than or the same as the censoring time (i.e., if τi � τc,i) and
censor it if it is longer than the censoring time (i.e., if τi > τc,i).
That is, for each i we observe a single time ti that is either a
lifetime ti = τi or a censoring time ti = τc,i . (If the lifetime
τi is censored, we say that it is a “censored lifetime,” and
we say that the time τc,i that it is censored is its “censoring
time.”) The KM estimator P̂� for the cumulative distribution of
lifetimes is

P̂�(t) =
∏
s�t

(
1 − δs

ns

)
, (A1)

where ns is the number of lifetimes that are known to be at
least as long as s (i.e., ns = ∑

s ′�s[δs ′ + cs ′ ]), the parameter δs

is the number of lifetimes that are observed at time s, and cs

is the number of lifetimes that are censored at time s.
One can estimate the variance of the KM estimator using

Greenwood’s formula [53,56]:

Var
(
P̂�(t)

) = P̂ 2
�(t)

∑
s�t

δs

ns(ns − δs)
. (A2)

One can then use the variance estimate to construct confidence
intervals for the estimate of an IET distribution. For example, if
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the P̂�(t) values are normally distributed, then the confidence
intervals are

P̂�(t) ± zα/2

√
Var

(
P̂�(t)

)
,

where 1 − α is the confidence level and zα is the quantile
function of the standard normal distribution. In general, how-
ever, the P̂�(t) values are not normally distributed, which can
lead to confidence intervals that are not restricted to lie in the
interval [0,1]. One usually addresses this situation by applying
a transformation g to the P̂�(t) values to obtain a set of values
that better follow a normal-distribution approximation. One
can then calculate the confidence interval for the transformed
random variable so that

g
(
P̂�(t)

) ± zα/2

√
Var

(
g
(
P̂�(t)

))
.

Choices for the transformation include g(p) = ln(p), g(p) =
ln (− ln(p)), and g(p) = arcsin(

√
p). (See, e.g., Borgan and

Liestøl [63] for a discussion about choosing the transforma-
tion.) In Fig. 3, we used the transformation g(p) = ln (p/(1 −
p)) to follow the choice in Ref. [36].

One can use the KM estimator to estimate IETs of a
renewal process by considering the observed IETs as observed
lifetimes and the IETs that are truncated by the end of
a time window (i.e., the IETs that are forward censored)
as censored lifetimes. If the renewal process is stationary,
then one can also repeat this procedure by reversing the
direction of time [36]. In other words, one can consider both
backward-censoring and forward-censoring times as censored
lifetimes, and the observed IETs are twice counted as observed
lifetimes. This makes it possible to use the information in the
backward-censoring times in the construction of the estimator
for the IET distributions. Note that the variance estimator of
Greenwood’s formula in Eq. (A2) needs to be multiplied by
2 to account for the fact that uncensored data points are used
twice [36].

APPENDIX B: ALTERNATIVE ILLUSTRATIONS
OF INTEREVENT TIME DISTRIBUTIONS

Figure 4 corresponds to Fig. 2, but we now show proba-
bility densities instead of cumulative probabilities. Figure 5
corresponds to Fig. 3 in the text, but we now plot the IET
distributions using doubly logarithmic axes.

APPENDIX C: ANALYZING EVENT SEQUENCES
SELECTED BASED ON THE NUMBER

OF EVENTS IN THEM

1. Distributions of number of events

One can quantify the activity of the people in the data sets
discussed in the text by counting the number of events that
each person has in his or her event sequence. Most of the
people in the data that we examine exhibit very little activity,
although there are also people that are significantly more
active (by several orders of magnitude). One would not expect
such a distribution if all event sequences were produced by a
single renewal process. To illustrate this point, we construct a
renewal process whose IET distribution we infer using the KM
estimator. (See Fig. 3 in the text.) Using this model process,

0 1 2 3 4 5

τ

10−5

10−4

10−3

10−2

10−1

100

p
(τ

)

(a)

100 101

τ

(b)

FIG. 4. (Color online) As in Fig. 2, we simulate N = 105 event
sequences using stationary renewal processes. Here, however, we
plot probability densities instead of cumulative probabilities. We plot
IET distributions p(τ ) for N = 106 event sequences that we simulate
from a stationary renewal process for which (a) p(τ ) ∝ e−τ and (b)
p(τ ) ∝ τ−2.1. We consider window sizes T (indicated by dashed
vertical lines) of (a) 0.5, 1, 2, and 5 and (b) 5, 10, 20, and 40. Solid
circles indicate the observed IET distribution, and crosses indicate
the estimates of the real IET distribution using the KM estimator. The
solid black line is the theoretical p(τ ) distribution, and dotted curves
are the theoretical distributions p′(τ ) for IETs [see Eq. (1)] that lie
completely inside each time window.

we produce a new data set that has the same number of event
sequences as the original data. In Fig. 6, we plot the activity
distribution for the original data and the data produced by the
model processes. The distributions of events observed in our
data sets and the ones observed for the model are significantly
different: almost all of the event sequences produced by the
renewal process that we construct contain between 10 and 100
events, and there are no sequences with a very small number
or a very large number of events. It is clearly very unlikely
that all of the event sequences in the data were produced by a
single renewal process.

2. A model that produces heterogeneous mean IETs

One way to relax the assumption that event sequences are
produced by a single IET distribution is to suppose that each
event sequence is produced by an IET distribution with the
same characteristic shape, which is given by a function f but
with a different mean value τ0. The IET distribution for a
model constructed using this scenario is p(τ |τ0) = 1

τ0
f (τ/τ0),

where τ0 is the mean IET of the sequence. Such a model has
been fit to several empirical data sets [5,6,10,12,60,61], and
the function f is typically reported to be a power law with an
exponential cutoff. Note that the above model cannot capture
all forms of scaling behavior, and a different scaling ansatz
needs to be used in some other situations [64,65].

Consider a model in which we choose the distributions f

and p0(τ0) so that our model resembles a real set of event
sequences but remains analytically tractable. The distribution
for the number of events is often heavy-tailed in communi-
cation data [66] (e.g., see Fig. 6), and we choose to model
the distribution of the number of events as p(n) ∝ n−α (where
n � 1 and α = 2.5). To do this, we construct the distribution
p0 of the mean values τ0 so that the numbers of events in
the sequences are distributed as the given power law. To
ensure analytical tractability, we choose the function f to be
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FIG. 5. (Color online) Results for several empirical data sets
(also see Fig. 3) plotted using doubly logarithmic axes. We consider
activation times for each node as a single event sequence. (a–c)
IET distributions that we obtain by combining IET distributions of
all node activation sequences. Closed circles indicate observed IET
distributions, and crosses indicate estimates of the IET distributions
using the KM estimator. (d–i) We bin event sequences according
to the number of events in them: (crosses, n = 3; pluses, n = 6;
open circles, n ∈ {8,9}; open downward triangles, n ∈ [14,25]; open
squares, n ∈ [51,150]. We skip every other bin to make the figure
easier to read, and we normalize IETs according to the bin’s mean
IET. (d–f) Cumulative distributions of observed IETs normalized by
the mean μ′

1 of observed IETs. (g–i), we show KM estimates of the
cumulative IET distributions normalized by the mean μKM

1 calculated
from the estimated IET distribution. The shaded regions are 95%
confidence intervals [36]. The data sets are (a, d, g) the Eckmann
et al. e-mail data [2], (b, e, h) POK messages [5], and (c, f, i) the Wu
et al. short-message data [9].

an exponential function. That is, our aggregate process is a
combination of multiple Poisson processes.

For each event sequence, we draw an expected IET from
the distribution p0(τ0). Event sequences are then produced
by a renewal process with an IET distribution of p(τ ) =
f (τ/τ0)/τ0. The residual waiting-time distribution [32] for
the process is then

pR(τR) = 1

τ0
fR(τR/τ0), (C1)

where fR is the residual waiting-time distribution for the
process that is determined by the IET distribution f . By
exploiting the expected relation n = T

τ0
, we can approximate

the IET distribution for the aggregate process by writing

p(τ ) ∝
∫ ∞

1
np0(n)p

(
τ |τ0 = T

n

)
dn, (C2)

which reduces to

p(τ ) ∝ Eα−2(τ/T ), (C3)
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data
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FIG. 6. (Color online) Cumulative distributions for the numbers
of events in several communication data sets. We indicate the
distribution of the original data with (green) open circles, and (blue)
open downward triangles indicate the distribution of the process that
assumes that the data were produced by a single IET distribution.
(See the text for details.) (a) Eckmann et al. e-mail data [2], (b) POK
messages [5], and (c) Wu et al. short-message data [9].

where Eα(x) = ∫ ∞
1 e−tx/tαdt is the exponential integral

function [67].
In Fig. 7, we show numerical results for the model that

we just described. In Fig. 7(a), we show both the distribution
of observed IETs and a KM estimate that we compute when
all of the event sequences are grouped together. It is clear
that the observed IETs cannot be used to estimate the real
IETs, but the KM estimator performs well in this task. One
can also group event sequences with similar values for the
parameter τ0. Plotting the IET distributions then causes the
data to collapse onto a curve that follows the shape given by f

if the IET distributions are grouped according to the τ0 values
that were used to generate them and rescaled using the mean of
τ0 values. Each group—and especially the groups with large
mean values of τ0 (i.e., with a small number of events)—is of
course susceptible to finite-size-window effects [see Fig. 7(b)],
but one can correct for such effects using the same methods
that one would use for data produced by a model with a single
IET distribution. See the inset in Fig. 7(b).

There is often no way to access the underlying mean IET
values τ0 even if the data are known to be produced by the
model that we described above. Instead, one has to estimate
τ0 values from data by calculating the mean IET for each
sequence [5,6,10,12]. This introduces another kind of bias, for
which estimators that correct for finite observation windows
are not designed. Our example with exponential f illustrates
this situation rather nicely. In Fig. 7(c), we show similar results
as in Fig. 7(b), except that we group the event sequences
using the observed number n of events instead of using τ0

values of the underlying processes to calculate the expected
number of events n̂ = T

τ0
. The IET distributions of the event

sequences with small numbers of events are not identified
correctly as exponential distributions, but instead they follow
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FIG. 7. (Color online) Numerical calculations for a model in
which we produce the event sequences using the IET distribution
p(τ |τ0) = 1

τ0
f (τ/τ0), where f (τ ) = e−τ and the mean values τ0

are distributed such that the expected numbers of events satisfy the
probability distribution p(n) ∝ n−2.5 (where n � 1). (a) Cumulative
distribution of observed IETs [(green) closed circles] and a KM
estimate of the cumulative distribution [(blue) crosses]. The black
curve is the theoretical estimate of Eq. (C3) for the real IET
distribution p(τ ) ∝ Eα−2(τ/T ), where En is the exponential integral
function [67]. (b) Cumulative distributions of observed IETs when we
bin event sequences according to the expected number of observed
events n̂ = T/τ0: crosses, n̂ ∈ (2,3]; pluses, n̂ ∈ (5,6]; open circles,
n̂ ∈ (7,9]; open downward triangles, n̂ ∈ (13,25]; open squares,
n̂ ∈ (50,150]. We skip every other bin to make the figure easier to
read, and we divide the IETs in each bin by the mean τ0 value of
the bin μ1(τ0). Inset: KM estimates of the cumulative distributions of
IETs in each bin. (c) Cumulative distributions of observed IETs when
we bin event sequences according to the observed number n of events.
We divide the IETs in each bin by the mean observed IET value μ′

1 of
the bin. Lines correspond to IET distributions predicted by Eq. (C9)
(or to mixtures of them for bins that contain event sequences with
more than one n value in them). Inset: KM estimates of the cumulative
distributions of IETs in each bin as a function of IET divided by the
bin mean μKM

1 .

the distribution defined in Eq. (C8) (see below) if one uses the
observed number of events to group the event sequences. That
is, when grouping event sequences with exactly n events, we
find that (i) their IET distributions are independent of the mean
rates τ0, and (ii) they cannot be rescaled to follow f even after
removing finite-size effects.

3. Deriving observed interevent time distributions

In this section, we derive a formula for the probability
p′(τi,n) of observing τi as the ith IET in a sequence with
exactly n events. We assume that the sequence is produced by
a stationary renewal process with an IET distribution of p(τ )
and that we observe it in a finite window that begins at time
0 and ends at time T . We use p′(τi,n) to approximate p′(τ,n)
when we observe a large number of independent sequences.
See Ref. [32] for an introduction to renewal processes.

The probability that the nth event after time 0 takes place
at time t is

p(t,n) = pR ∗ p∗(n−1)(t) (C4)

where pR(τr ) = 1
μ1

∫ ∞
τr

p(τ )dτ is the residual waiting-time
distribution, ∗ is the convolution operator, x∗y means that x is
convolved with itself y times, and μ1 is the expected IET. We
use Eq. (C4) to calculate the probability p′(n) of observing
exactly n events during a time window of length T . The
probability p′(n) is equal to the probability that the nth event
after time 0 takes place at time t � T and the subsequent IET
τn is larger than T − t . That is, one can write the probability
of observing exactly n events as

p′(n) =
∫ T

0
p(t,n)

∫ ∞

T −t

p(τ )dτdt

= μ1pR ∗ p∗(n−1) ∗ pR(T ). (C5)

We now want to calculate the probability of observing n

events when we know the ith observed IET τi (where i ∈
{1, . . . ,n − 1} and n � 2). We obtain this probability from
Eq. (C5) by substituting T with T − τi and n with n − 1, to
yield

p′(n|τi) = μ1pR ∗ p∗(n−2) ∗ pR(T − τi). (C6)

The joint probability distribution of observing n events with
τi as the ith IET is thus

p′(n,τi) = p′(n|τi)p(τi). (C7)

Observe that the probability distribution (C7) is independent
of the index i for i ∈ {1, . . . ,n − 1}. By contrast, for a
single sequence, the quantities τi and τj (with i �= j ) are not
independent. However, as long as there are sufficiently many
event sequences, we can use Eq. (C7) to approximate the joint
distribution of the IETs and the numbers of events.

For a Poisson process, the approximate observed IET
distribution given the number of events is

p′(τ |n) = n
(T − τ )n−1

T n
. (C8)

The cumulative distribution is thus

P ′
�(τ |n) = (T − τ )n

T n
. (C9)

Note that Eqs. (C8) and (C9) are independent of the rate of the
Poisson process. We illustrate this independence in Fig. 7(c).
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