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Abstract—Because networks can be used to represent many
complex systems, they have attracted considerable attention
in physics, computer science, sociology, and many other
disciplines. One of the most important areas of network
science is the algorithmic detection of cohesive groups (i.e.,
“communities”) of nodes. In this paper, we algorithmically
detect communities in social networks and image data by
optimizing multislice modularity. A key advantage of modu-
larity optimization is that it does not require prior knowledge
of the number or sizes of communities, and it is capable of
finding network partitions that are composed of communities
of different sizes. By optimizing multislice modularity and
subsequently calculating diagnostics on the resulting network
partitions, it is thereby possible to obtain information about
network structure across multiple system scales. We illustrate
this method on data from both social networks and images,
and we find that optimization of multislice modularity performs
well on these two tasks without the need for extensive problem-
specific adaptation. However, improving the computational
speed of this method remains a challenging open problem.
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I. METHODS

Many networks can be partitioned into communities, such

that they consist of cohesive (and often dense) groups of

vertices with sparse connections between distinct groups

[1]. Perhaps the most popular way of detecting communities

algorithmically is by optimizing the quality function known

as modularity [2]:

Q =
1

2m

∑
ij

(
Aij − γ

kikj
2m

)
δ(gi, gj) , (1)

which measures how well a network can be partitioned

into disjoint groups of nodes. In (1), Aij are the elements

of the graph’s adjacency matrix A, the sum of all of the

edge weights in the network is m, ki is the strength (i.e.,

weighted degree) of node i, and the resolution parameter γ
[3] enables us to uncover community structure at different

scales. The modularity of a network partition measures the

fraction of total edge weight within communities minus that
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Figure 1. (a) Schematic of a multislice network. (We reproduce this
image from [4] with permission from the authors.) (b) Image of a pair
of cows, which we downloaded from the Microsoft Research Cambridge
Object Recognition Image Database [10] (copyright c© 2005 Microsoft
Corporation). It is modified to produce the segmentation in Fig. 2.

expected if edges were placed randomly according to the

null model Pij = kikj/(2m), which preserves a network’s

expected strength distribution. Finding a network partition

that attempts to maximize Q allows one to probe a net-

work’s community structure. In contrast to traditional forms

of spectral clustering, modularity optimization requires no

knowledge of the number or sizes of communities, and it

also allows one to segment a network into communities of

disparate sizes (even for a fixed value of γ) [1], [2].

Optimization of modularity was recently generalized to

“multislice” networks [4], which are represented using ad-

jacency tensors and consist of layers of ordinary networks.

The framework of multislice networks can thereby be used to

represent time-dependent or multiplex networks. In Fig. 1(a),

we show a schematic of a multislice network. Using this

framework, we define a generalized modularity function [4]

Qmulti =
1

μ

∑
ijsr

[
(Aijs − γs

kiskjs
2ms

)δsr + δijCjsr

]
δ(gis, gjr) ,

(2)

where gjr indicates that community assignment of node

j from slice r, the intraslice edge strength of node j in
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Figure 2. (a) Segmentation of the cow image in Fig. 1. (b) obtained using
optimization of multislice modularity with interslice coupling parameter
ω = 0.3. The horizontal axis shows the slice index s ∈ {1, . . . , 6},
which has an associated resolution-parameter value of γs = 0.04s− 0.03.
The vertical axis gives the sorted pixel index. Color in each vertical stripe
indicates the community assignments of the pixels in the corresponding
network slice. We also show the segmentation that we obtain in the images
for (b) γs = 0.05, (c) γs = 0.13, and (d) γs = 0.21.

slice s is kjs =
∑

i Aijs, the corresponding interslice edge

strength is cjs =
∑

r Cjsr, and 2μ =
∑

jr kjr + cjr. In

(2), one can use a different resolution parameter γs in each

slice. For a given slice s, the quantity Aijs gives the edge

weight between nodes i and j. For a given node j, the

quantity Cjsr gives the interslice coupling between the rth

and sth slices.

Optimization of the ordinary modularity function (1) has

been used to study community structure in myriad networks

[1], and it has also been used in the analysis of hyperspectral

images [5] recently. In our work, we optimize multislice

modularity (2) to examine community structure in social

networks and segmentation of images. In each case, we

start with a static graph, and each layer of the multislice

network uses the same adjacency matrix but associates it

with a different resolution-parameter value γs. We include

interslice edges between each node j in adjacent slices only,

so Cjsr = 0 unless |r − s| = 1. We set all nonzero

interslice edges to a constant value ω. This setup, which

was illustrated using the infamous Zachary Karate Club

network in [4], allows one to detect communities using a

range of resolution parameter values while enforcing some

consistency in clustering identical nodes similarly across

slices. The strength of this enforcement becomes larger as

one increases ω. To optimize multislice modularity (2), we

use a Louvain-like locally-greedy algorithm [6], [7].

II. DATA AND RESULTS

A. LAPD Field Interview Data

In [11], we used data with both geographic and social

information about stops involving street gang members in

the Los Angeles Police Department (LAPD) Division of

Hollenbeck [8]. We optimized multislice modularity (2)

as a means of unsupervised clustering of individual gang

members without prior knowledge of the number of gangs

or affiliation of the members. We subsequently examined

network diagnostics over slices to attempt to estimate the

number of gangs that is stable across multiple resolution-

parameter values and that also corresponds roughly to the

number expected by the LAPD.

B. Cow Image

We segment the cow image in Fig. 1(b) (which contains

about 3×104 pixels) without specifying the number of image

components. We build a graph of this image in which each

node corresponds to a pixel and each edge indicates the

similarity between a pair of pixels. We associate a 3 × 3
pixel-neighbor patch with each pixel i in the image. Let

pD(i, j) denote the L2 norm of the difference of patches

corresponding to nodes i and j. The adjacency matrix A that

we use in each layer of the multislice network has elements

Aij = exp

{−p2D(i, j)

τ(i)τ(j)

}
,

where τ(i) is the 20th smallest pD between pixel i and other

pixels [9]. We construct a multislice network that consists

of six copies of A. We associate the resolution parameter

value γs = 0.04s − 0.03 with slice s ∈ {1, . . . , 6}. We

then optimize multislice modularity and obtain the image

segmentations shown in Fig. 2. (Color indicates group

assignments.) With this procedure, we are able to identify

all four components of the image. As indicated in panel

(a), we obtain smaller-scale communities (i.e., groups of

pixels) as we increase the value of the resolution parameter.

Importantly (see the discussion in Section I), the coupling

between slices enforces some consistency in clustering

identical nodes similarly across slices. In panels (b) and

(c), we observe a good segmentation of the two cows, the

sky, and the background grass. As indicated in panel (d),

the three groups corresponding to the two cows and the sky

stay relatively stable, but the group corresponding to the

grass breaks down by the sixth slice.

This application on image segmentation is computation-

ally expensive due to the large number of pixels. It takes a lot

of computational memory and time to run the optimization

using more slices, which we would like to do in order to

investigate how the segmentation evolves over a larger range

of resolution values. Computational improvements will be

necessary to conduct more detailed analysis.
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III. FUTURE DIRECTIONS

As mentioned above, optimization of multislice modu-

larity can be computationally expensive. As the size of

network data has increased tremendously, it is crucial to

develop efficient algorithms to cluster network nodes to

obtain insights on applications like social networks and

images. To do this, one needs to take advantage of data

sparsity to help speed up optimization processes. Aside from

the computational cost, how to characterize and analyze the

performance of modularity optimization is of importance as

well.
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