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Influence of network topology on sound propagation in granular materials
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Granular media, whose features range from the particle scale to the force-chain scale and the bulk scale, are
usually modeled as either particulate or continuum materials. In contrast with each of these approaches, network
representations are natural for the simultaneous examination of microscopic, mesoscopic, and macroscopic
features. In this paper, we treat granular materials as spatially embedded networks in which the nodes (particles)
are connected by weighted edges obtained from contact forces. We test a variety of network measures to determine
their utility in helping to describe sound propagation in granular networks and find that network diagnostics can be
used to probe particle-, curve-, domain-, and system-scale structures in granular media. In particular, diagnostics
of mesoscale network structure are reproducible across experiments, are correlated with sound propagation in this
medium, and can be used to identify potentially interesting size scales. We also demonstrate that the sensitivity
of network diagnostics depends on the phase of sound propagation. In the injection phase, the signal propagates
systemically, as indicated by correlations with the network diagnostic of global efficiency. In the scattering phase,
however, the signal is better predicted by mesoscale community structure, suggesting that the acoustic signal
scatters over local geographic neighborhoods. Collectively, our results demonstrate how the force network of a
granular system is imprinted on transmitted waves.
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I. INTRODUCTION

During the past 15 years, techniques from areas of physics
such as statistical mechanics and nonlinear dynamics have
been used to make important advances in studying networks
across myriad disciplines [1]. Conversely, the perspective of
networks can also play important roles in physical problems,
as there is a large class of heterogeneous systems—such as
foams, emulsions, and granular materials [2,3]—for which the
connectivity of the constituent elements is an important factor
in the deviation of their behavior from continuum models.
In fact, the discontinuous nature of granular materials led to
the early idea of a fabric structure governing the anisotropic
behavior of such materials [4–6].

We investigate whether studying the rich and complex
dynamics of granular materials [7] using network analysis
can provide new insights into the underlying physics. This
treatment is a natural one, because granular materials can be
represented as spatially embedded networks [8] composed of
nodes (particles) and edges (contacts between particles) with
definite locations in Euclidean space [9,10]. In Fig. 1, we
show a quasi-two-dimensional granular system composed of
photoelastic disks, which permits the determination of both
the contact network and the interparticle forces. The forces
between particles in these systems are nonhomogeneous, and
they form a network of chain-like structures that span the
system [see Fig. 1(b)]. This force-chain network has the
same topology as the contact network but contains edges that
are weighted by the interparticle forces [Fig. 1(c)]. This is
exciting from a networks perspective, as it allows us to study
the influence of network topology on “network geometry”
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in a spatially embedded system. From the perspective of
granular materials, earlier work suggests that force chains
provide the main supporting structure for static and dynamic
loading [11,12].

Because signal propagation in granular and heterogeneous
materials [13] is of considerable importance to numerous
industrial and natural systems, it has been the topic of many
investigations. A longstanding question is how to reconcile
the failure of continuum models of granular sound propagation
[14–17], as such models that have been unable to quantitatively
describe important heterogeneous and nonlinear features of
acoustic speed [18–21]. The presence of force chains has
been suggested as a potentially confounding phenomenon that
might underlie the failure of previous physical models of sound
propagation [18,22]. Ultimately, it would be beneficial to quan-
tify how the pressure or strain state of a system is imprinted on
transmitted waves and to understand how to use these waves
to accurately detect buried objects or reservoirs of oil.

An increasing body of work has used tools from areas
like network science and computational homology to obtain
insights about the structural properties of granular materials
[9,10,23] and other continuous media [24]. Indeed, a networks
perspective provides a valuable complement to the standard
ways of studying granular materials. In the present paper, we
analyze experimental data using network analysis to inves-
tigate the role of force-weighted contact networks in sound
propagation. The use of photoelastic particles combined with
high-speed imaging allows us to gain insight into internal force
structures and particle-scale sound propagation; such insights
are not readily available when using ordinary granular mate-
rials. We find that geographic community structure provides
a fundamental constraint to sound propagation, illustrating
that contact topology alone is insufficient to understand signal
propagation in granular materials.

041306-11539-3755/2012/86(4)/041306(17) ©2012 American Physical Society

http://dx.doi.org/10.1103/PhysRevE.86.041306


BASSETT, OWENS, DANIELS, AND PORTER PHYSICAL REVIEW E 86, 041306 (2012)

(c)

(a)

(b)

1cm

FIG. 1. (Color online) (a) Image of a 2D vertical aggregate of
photoelastic disks confined in a single layer. The driver position
is marked with an arrow. Several particles are embedded with a
piezoelectric sensor, for which wires are visible. (b) The internal
stress pattern within the photoelastic particles manifests as a network
of force chains. (c) The dark (blue) lines show a weighted graph,
which is determined from image processing and overlaid on the image
from panel (b). An edge between two particles (nodes) exists if the two
particles are in physical contact with each other; the forces between
particles give the weights of the edges.

II. EXPERIMENTS

We perform experiments on a vertical 2D granular system
of bidisperse disks confined between two sheets of Plexiglas,
which have been slightly lubricated with baking powder to re-
duce friction with the container walls. The top of the container
is open, and the particles are confined exclusively by gravity.
The particles are 6.35 mm thick, have diameters d1 = 9 mm
and d2 = 11 mm, and are cut from Vishay PSM-4 photoelastic
material to provide measurements of the internal forces. We
show example images in Fig. 1. These particles have an elastic
modulus of E = 4 MPa, and they are sufficiently dissipative
that propagating sound waves experience an approximately
exponential decay as a function of distance from the source.
The use of such soft, dissipative particles differs from previous
work [25–29], where much harder particles have been used.
Further details about the apparatus are described in Ref. [22].

We excite acoustic waves from the bottom of the system by
sending pulses of five 750 Hz sinusoidal waves with a voice
coil driver attached to a 20 mm wide platform; maximum
particle displacements are roughly 5 μm. To assess the
reliability of network diagnostics, we repeat the experiments
for 17 different particle configurations, each of which is

obtained by manual rearrangement. We restrict our analysis
to a region of the system that contains just over N = 400
particles. This subsystem corresponds to a region in which
vertical force gradients are minimized due to the Janssen
effect [30].

We compute particle positions and forces using two high-
resolution pictures of the static system and one high-speed
movie that captures the system dynamics. We take one static
image without the polarizer [see Fig. 1(a)] and use it to
determine particle positions and contacts [22,31]. We take a
second static image using polarizers [see Fig. 1(b)], and we use
this image to estimate the normal forces at each contact [22].
In the vicinity of each contact, we use a combination of the
light intensity (I ), the square of the mean intensity gradient
(|∇I |2), and the position of the photoelastic fringes to estimate
the contact forces by comparing them to calibration images
with known forces. We measure the amplitude and location
of sound propagation using a high-speed camera operating
at 4000 Hz; the camera records 80 frames of data (20 ms)
containing both the injection of the signal (0 < t < 40) and its
dissipation (40 < t < 80). For each particle in each frame, we
compute �I (x,y,t) = I (x,y,t) − I (x,y,t0), which measures
how much the brightness I of the particle changes with respect
to its unperturbed brightness. In earlier work [22], we used
piezoelectric sensors embedded in a subset of the particles to
determine that �I is proportional to the change in stress on
that particle. Using �I allows us to follow the propagating
signal through all particles in the measurement region.

To determine which particles are in contact, we use the
positions of the particle centers, which we determine from
the static image of the system using a Hough transform. If the
distance between two particle centers is less than 1.05 times
the sum of their radii, we treat the particles as being in contact.
This method overcounts the number of true contacts. However,
the effect of such overcounting is minimized by the fact that
false contacts are assigned a force value of almost zero when
we apply our image-processing techniques to find the contact
forces. Accordingly, they do not contribute significantly to the
structure of the weighted network.

For each experimental run, we construct both an un-
weighted (binary) and a weighted network, which correspond
respectively to an underlying contact network and a force-
chain network (see Fig. 1). In each type of network, the nodes
represent the particles in the system. In the binary network A,
an edge exists between node i and j (i.e., Aij = 1) if node i

is in contact with node j ; otherwise, Aij = 0. The weighted
network W contains the same edges, but each element Wij now
has a value that is given by an estimate of the normal force fij

between particles i and j , normalized by the mean force f of
all contacts: Wij = fij /f .

III. RESULTS

We assess the global organization of the networks using
21 candidate diagnostics for A and 8 candidate diagnostics
for W. We define each diagnostic in Appendix A, where
we also include descriptions to provide intuition about what
each of them measures; these descriptions also indicate their
possible physical significance to the granular system that
we study. We examine the reliability of these diagnostics
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across experimental runs in Appendix B, and we compare
the binary network diagnostics to those in a null model
constructed using an ensemble of random geometric graphs
(RGGs) [32] in Appendix C. We examine four diagnostics
(clustering coefficient, geodesic node betweenness, optimized
modularity, and global efficiency) in further detail. Each of
these four diagnostics can be defined for both binary and
weighted networks, and each is helpful for obtaining insights
into a particular type of spatial structure in the system: particles
(clustering coefficient), curves (betweenness), mesoscale do-
mains (via community structure determined from modularity
optimization), and the entire system (global efficiency). We
describe our results in the sections below.

A. Scale sensitivity of network diagnostics

A key advantage of using network tools to study granular
materials is that different network diagnostics (which we
define and discuss in detail in Appendix A) are sensitive
to different system scales, and this is especially helpful
for spatially embedded systems like granular packings (see
Fig. 2). Our results indicate that the global efficiency Ew [see
Eq. (A19)] is a system-level property that has its smallest
values along the perimeter of the system and its largest
values in the center. Community structure, and its associated
community label X [see Eq. (A23)] and intracommunity
strength z-score [see Eq. (3)], is a mesoscale property and
can be used to probe intermediate structural features. We
find that geodesic node betweenness Bw [see Eq. (A21)]
can be construed as a one-dimensional property in these

0 1x10-3

global efficiency
Ew log    (X  (z+5))2

community structure

Bw
geodesic node betweenness

Cw
clustering coefficient

0.6 2.2

0 7x104 0 200

(a) (b)

10

(c) (d)

FIG. 2. (Color online) Example distributions of several network
diagnostics for a sample granular packing. The network characteris-
tics that we examine include (a) global efficiency Ew , (b) community
structure, which we visualize using the quantity X2(z + 5), where
X is the community label, (c) geodesic node betweenness Bw , and
(d) clustering coefficient Cw . This figure illustrates their respective
sensitivities to system-scale (2D), domain-scale (2D), curve-scale
(1D), and particle-scale (0D) structure. The quantity X2(z + 5) allows
us to visualize both the community label (X) and the intracommunity
strength z-score z [see Eq. (3)] simultaneously; we chose the constant
5 purely for visual clarity.

materials because it is sensitive to curve-like structures in the
network. Finally, we find that clustering coefficient Cw [see
Eqs. (A9) and (A20)] is sensitive to particle-scale features of
the network. In Sec. III D, we report how each of these network
diagnostics correlates with sound propagation through the
granular material.

B. Identifying a characteristic size scale

An ongoing challenge in the study of granular systems
is identifying and measuring characteristic size scales within
granular materials from the perspective of either particles or
force chains [2,3,33]. Network modularity provides a novel
means to measure such size scales via the identification of
community sizes. We find that the optimal value of modularity
is a reliable diagnostic for the structure of both the binary and
weighted networks (see Appendix B). To seek characteristic
community sizes, we also examine community structure as a
function of a resolution parameter γ [34–36]. The modularity
index for a weighted network W is [37]

Qw =
∑
ij

[Wij − γPij ]δ(gi,gj ), (1)

where node i is assigned to community gi , node j is
assigned to community gj , δ(gi,gj ) = 1 if gi = gj and it
equals 0 otherwise, and Pij is the expected weight of the
edge-connecting node i and node j under a specified null
model. We use the usual Newman-Girvan null model, in which
the expected strength distribution of the network is preserved
[37,38]. We employ the Louvain locally greedy algorithm to
optimize modularity [39], and we vary the resolution parameter
γ from 0.001 to 1000. Low values of γ probe large spatial
scales, and high values probe small scales. When we increase
γ , the number of communities increases (as expected), and the
modularity decreases. See Figs. 3(a) and 3(c).

One can think of the term Jij (γ ) = Wij − γPij in Eq. (1)
as a particular choice of interaction strength between a pair of
spins in a Potts model [34,37,40]. We exploit this analogy with
the Potts model to transform the resolution parameter γ so that
it measures the effective fraction of antiferromagnetic edges
ξ (γ ) in a network [41]. We define lW (γ ) to be the number
of negative elements of J(γ ). The transformed resolution
parameter is then

ξ (γ ) = lW (γ ) − lW (�min)

lW (�max) − lW (�min)
∈ [0,1], (2)

where �min is the largest number of negative entries Jij (γ )
for which an N -node network forms a single community and
�max is the smallest number for which the network forms N

communities of size 1.
We examine community structure as a function of the

transformed resolution parameter ξ (γ ), which we vary be-
tween 0 and 1. The optimized modularity, the mean size of
communities, and the variance in community size all change
gradually for most of the ξ (γ ) range [see Figs. 3(b), 3(f),
and 3(h)], although abrupt changes are evident for very low
and very high values of ξ (γ ). The gradual change hints
at an interesting size scale, which occurs in partitions that
contain about 50–250 communities (with a characteristic size
of roughly 2–8 particles). One possibility is that this size
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FIG. 3. (a), (b) Modularity index Qw , (c), (d) number of com-
munities, (e), (f) mean size of communities in terms of number of
particles, and (g), (h) variance of community size as a function of
(a), (c), (e), (g) the resolution parameter γ and (b), (d), (f), (h) the
effective fraction of antiferromagnetic edges ξ (γ ). Error bars indicate
the standard deviation over the 17 experimental runs.

corresponds to the width of a shear band. Such bands arise in
a variety of materials with particulate structure [42]. Another
possibility is that this size corresponds to the “cutting” length
scale �∗ [43], which is set by a community size at which the
excess (overconstrained) number of contacts in the bulk of a
region is equal to the number of contacts around the perimeter.
If this latter association is correct, then the mean number
of particles per community would scale with the confining
pressure. Future experiments can test this hypothesis.

C. Geography of community structures

Using modularity optimization [36–38,44], we find that
the force-chain network exhibits geographically constrained
community structure: Groups of particles in close spatial
proximity are more likely to be a part of the same community
(i.e., to contact one another with a large force) than particles
that are farther apart. We examine this local neighborhood
structure over a variety of size scales by varying the resolution
parameter γ . We show representative results for large spatial
scales in Figs. 4(a)–4(c). We also note that the communities
that we identify in granular force networks resemble those in
spatial entities like states or countries, whose borders are de-
termined in part by physical boundaries between neighboring
geographic domains.

Importantly, because the optimization of Q is NP-hard [45],
one does not expect an optimization algorithm to give a

global optimum of Q. Instead, we harness numerous near-
degeneracies [46] among good local optima of Q by estimating
Q 100 times. We find that the these 100 values of Q for
a given run at a given γ vary by approximately 1 × 10−14,
and the similarity in particle assignments to communities is
approximately 0.98. We quantify this using partition similarity
[47,48], which ranges from 0 (not similar at all) to 1
(identical). These results indicate that the local geographic
structures that we are identifying in the 2D granular system are
robust, suggesting the potential for identifying reproducible
2D “geographic” regions.

To probe the role of each particle in the community
structure of a force-chain network [see Fig. 4(d)], we use
the intracommunity strength z-score zi to measure how well
connected a node is to other particles in its community and the
participation coefficient Pi to measure how the connections
emanating from a particle are spread among particles in the
different communities (including its own) [49].

The intracommunity strength z-score is

zi = Sgi
− S̄gi

σS̄gi

, (3)

where Sgi
denotes the strength (i.e., the total edge weight) of

node i’s edges to other nodes in its own community gi , the
quantity S̄gi

is the mean of Sgi
over all of the nodes in gi ,

and σSgi
is the standard deviation of Sgi

in gi . The (aggregate)
strength of node i is denoted by Si and gives the total force of
all contacts on particle i.

The participation coefficient is [49]

Pi = 1 −
Nm∑
g=1

(
Sig

Si

)2

, (4)

where Sig is the strength of edges of node i to nodes in
community g [49].

In Figs. 4(e) and 4(f), we show the intracommunity strength
z-score and the participation coefficient for the community
structure depicted in Fig. 4(a). Particles that are geographically
central to a community tend to have higher values of zi and
lower values of Pi than particles at the geographic periphery
of a community. From a physical perspective, zi tends to be
highest in particles with many force chains passing through
them [compare, e.g., Figs. 4(d) and 4(g)], and high values of
Pi are associated with the boundaries between communities
(where there are few force chains).

We test whether the observed properties of community
structure in our granular systems are related statistically to
the interparticle forces that constitute the force-chain structure
[see Figs. 4(d) and 4(g)] by examining the relationship between
intracommunity strength z-score zi , participation coefficient
Pi , the normalized node strength S ′

i = Si/N , (i.e., the mean
force of all edges emanating from a node), and the amplitude
of the acoustic signal �I using the Spearman rank correlation
coefficient ρ, which is defined as the Pearson correlation
coefficient between ranked variables. We use the Spearman
coefficient rather than the Pearson coefficient due to the
non-normal distributions of �I values over particles.

We find that the mean force of all contacts on a particle (i.e.,
S ′

i) is significantly positively correlated with zi [see Fig. 4(h)].
The mean value of the Spearman rank correlation coefficient
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FIG. 4. (Color online) The geographic sizes of communities tend to decrease as the resolution parameter γ is increased from
(a) γ = 0.1 to (c) γ = 2. We color particles according to their community label. One can examine community structure of the
(d) force-chain network using geographic location, (e) intracommunity strength z-score zi , (f) participation coefficient Pi , and (g) mean
force per particle S ′

i . (Recall that i labels the particle.) Example scatter plots for a single experimental run demonstrating that the mean force S ′
i

on particle i is (h) positively correlated with the intracommunity strength z-score (the Spearman correlation coefficient for this run is ρ ≈ 0.96
and the p-value is p ≈ 1.9 × 10−283) and (i) negatively correlated with the participation coefficient (ρ ≈ −0.18 and p ≈ 1.8 × 10−5). Note
that the correlations reported in panels (h) and (i) are for the resolution-parameter value of γ = 0.1. In panel (h), we display the nodes that are
assigned to communities 1 through 4 and nodes whose participation coefficients are equal to 0 using different colored markers. We display nodes
in any of the four communities whose participation coefficients are greater than 0 (so-called boundary nodes) using dark (purple) markers.
The mean correlations for intracommunity strength z-score and participation coefficient over experimental runs and values of the resolution
parameter are ρ ≈ 0.72 ± 0.02 and ρ ≈ −0.05 ± 0.04, respectively. We show the results for one experimental run (No. 2) in this figure, and
the results for the other runs are similar.

ρ over experimental runs and resolution-parameter values is
ρ ≈ 0.71 ± 0.02 (where 0.02 gives the standard deviation
over experimental runs). This strong positive correlation
indicates that particles at the centers of communities are
likely to have more or stronger force chains running through
them. We also find that S ′

i is negatively correlated with Pi

[Fig. 4(i)]. The mean ρ over experimental runs and values
of the resolution parameter is ρ ≈ −0.05 ± 0.04, where we
again take the standard deviation only over experimental
runs. As γ is increased, ρ changes from negative to positive,
and the mean over γ values is near 0. Note additionally
that a large fraction of the particles have participation co-
efficients of 0. This is a consequence of the fact that the
communities are geographically constrained such that the
majority of particles have contacts only within their own
community.

The relationships between z, P , and S ′ are expected.
For example, if the edges of node i all lie within its own
community, then S ′ and z are related linearly according to the
following equation: Si = ziσSgi

+ S̄gi
, where we recall that

Sgi
is the strength of edges of node i to other nodes in its

community gi , and S̄gi
is the mean of Sgi

over all of the nodes in
gi . This linear relationship is evident for the four communities
that we show in Fig. 4(h). Nodes whose connections span more
than one community (so-called boundary nodes, for which the
value of P is greater than 0) are not so simply related.

D. Signal propagation on force-weighted contact networks

Previous work in Ref. [22] has shown that the propagation
of acoustic signals is facilitated along strong force chains in
granular materials via the increased contact area at strong
contacts. With this in mind, we test whether the geographic
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FIG. 5. (Color online) (a) An example scatter plot between
logarithms of the intracommunity strength z-score [log10(z + 5)]
and the amplitude of the acoustic signal [log10(�I )] at t = 1 for
a single experimental run (j = 2) and resolution-parameter value
(γ = 0.1). We added the constant 5 to z to ensure that all values
were positive prior to taking the logarithm. The Spearman rank cor-
relation coefficient is ρ ≈ 0.57 and the p-value is p ≈ 2.1 × 10−45.
(b) Correlation between log10(z + 5) and log10(�I ) for all 17 runs
as a function of time: t < 40 is the acoustic signal injection phase,
and t > 40 is the acoustic signal scattering phase. In the bottom part
of panel (b), we show a trace of the voltage V of a piezo particle;
the injected signal has an amplitude of 0.5V. (c) Correlation between
log10(z + 5) and log10(�I ) as a function of γ , where γ ∈ [0,2] is
increased in increments of 0.1. We averaged the correlation over all
80 time points at which �I was measured. The mean ρ over runs, γ

values, and time was 0.34 ± 0.06. Box plots show the variability over
experimental runs. (d) Correlation between log10(�I ) and a variety
of network diagnostics: intracommunity strength z-score z = z(γ )
for γ = 0.001, γ = 10, and γ = 100 (white background, left part
of the figure); and weighted (light gray background, middle part of
the figure) and unweighted (dark gray background, right part of the
figure) versions of global efficiency [Ew(i) and E(i)], geodesic node
betweenness [Bw(i) and B(i)], and clustering coefficient [Cw(i) and
C(i)]. For completeness, we also show results for the mean force S ′

(left part of the figure), which was the variable previously reported to
be correlated with �I [22].

community structure of force-chain networks is related to sig-
nal propagation. As the example shown in Fig. 5(a) indicates,
we find that z, which we measure over a range of size scales as-
sociated with resolution-parameter values γ ∈ [0.001,100], is
significantly correlated with the signal amplitude �I . (For this
example run, ρ ≈ 0.57 and the p-value is p ≈ 2.1 × 10−45.)
The statistical correlation between network structure and
signal amplitude exists not only in the highly heterogeneous
signal injection phase, in which sound propagates from the
driver to nearby particles, but also in the more homogeneous
scattering phase, in which sound reverberates throughout the
system. In Fig. 5(b), we show the results at γ = 0.1. Figure 5(c)
shows that the mean ρ over runs, γ values, and time is
0.34 ± 0.06. We discuss the dynamics within the injection
and scattering phases in more detail in the next section.

In quantifying the relationship between the intracommunity
strength z-score z (a property of the algorithmically computed
community structure) and the signal propagation amplitude
�I , we note that the correlation between these two variables
decreases as γ increases [see Fig. 5(c)]. The strength of the
relationship between network structure and signal propagation
for small γ suggests that partitions with a few large communi-
ties have a greater association with the propagation behavior.
Indeed, as demonstrated in Fig. 5(d), when the network forms
a single community (for very low γ values), the correlation
between z and �I is similar to that between the mean force
per particle (S ′) and �I .

The retention of a correlation between z and �I for larger
values of γ , for which the network is partitioned into more
(and smaller) communities, stems from the strong correlation
between intracommunity strength z-score and the mean force
(normalized strength) of a particle [see Fig. 4(h)], the latter
of which is a particle-scale measurement and is independent
of spatial resolution. The relationship between the mesoscale
(community structure) and particle-scale (mean force on a
particle, which is equal to a node’s normalized strength)
network properties stems from the physical embedding of the
granular system in R

2. A particle that is located geographically
inside of a community has all of its connections to other
particles in its community because it is constrained to connect
only to its geographic neighbors (i.e., there can be no long-
range contacts). This is unlike most investigated real-world
networks [36,37], in which communities tend to be highly
interconnected and most nodes have at least some connections
to nodes in other communities.

To assess whether community structure is unique in its
ability to predict signal amplitude, we also examine other
weighted network diagnostics that are sensitive to different
system dimensionalities (see Fig. 2). Our results suggest that
community structure [see Fig. 2(b)] is a better predictor of sig-
nal propagation than system-scale [e.g., global efficiency; see
Fig. 2(a)], curve-scale [e.g., geodesic node betweenness;
see Fig. 2(c)], and particle-scale [e.g., clustering coefficient;
see Fig. 2(d)] network diagnostics. See Appendix A for math-
ematical definitions and intuitive descriptions. In particular,
clustering coefficient and �I are not strongly correlated, so
triangles of contacts do not appear to be important for signal
propagation. See the comparison in Fig. 5(d).

E. Phase sensitivity of network diagnostics

Although the correlation between z and signal amplitude
is strong in both injection and scattering phases for small
γ (i.e., large community size), it is higher in the scattering
phase than in the injection phase when averaged over all
resolutions [γ ∈ [0.001,1000]; see Figs. 6(b) and 6(e); we
indicate the specific values of γ in the figure caption]. We
do not observe such sensitivity to phase for the mean force
per particle [see Figs. 6(a) and 6(d)]. Interestingly, the signal
propagation during the injection phase is more strongly corre-
lated with the global efficiency than it is during the scattering
phase [see Figs. 6(c) and 6(f)], suggesting that the acoustic
signal propagates over the shortest weighted paths during
the injection phase. These results illustrate insights from
network analysis that one cannot obtain from particle-scale
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FIG. 6. (Color online) Spearman correlations between signal
amplitude �I and (a) the mean force per particle S ′, (b) the
intracommunity strength z-score z for γ = 2, and (c) the global
efficiency Ew . Our data encompass all experimental runs and all
times, including both injection (left) and scattering (right) phases. We
show the Spearman correlations between signal amplitude �I and
the three diagnostics shown in panels (a)–(c) in box plots: (d) mean
force per particle (ρS′ ), (e) intracommunity strength z-score z (ρz),
and (f) global efficiency (ρEw

). We have averaged the correlations
that we show in the box plots separately over the injection (left) and
scattering (right) phases. For panel (e), note that we also average the
correlations over the resolution parameter γ . Using MATLAB notation,
the precise values of γ that we considered are [0.001 : 0.001 : 0.009,
0.01 :0.1 :0.91, 2, 3, 4 :0.1 :20, 30 :10 :100, 200 :100 :1000]. The
reported p-values indicate the results of two-sample t-tests.

measurements: Signal propagation during injection is well
characterized by shortest paths that span the system, whereas
it is characterized by local neighborhood structure during
scattering. An interesting question is whether the amplitude
of the injected signal affects the size of the geographic
neighborhood through which it propagates.

We also examine the sensitivity of the relationship between
z and �I to the injection and scattering phases as a function
of the resolution parameter [see Fig. 7(a)]. The correlation
between z and signal amplitude is consistently higher in
the scattering phase than in the injection phase throughout
γ ∈ [0.001,1000]. Furthermore, the largest difference in the
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FIG. 7. (Color online) (a) Spearman correlations between signal
amplitude �I and the intracommunity strength z-score z averaged
over the injection (lower; black) and scattering (upper; red) phases
as a function of the resolution parameter γ . (b) Difference between
the correlation in the scattering (ρs

z ) and injection (ρi
z) phases as a

function of the number of communities in the partition. We find the
greatest sensitivity to phase for partitions with approximately 50–100
communities (i.e., for communities containing roughly five to eight
particles), which corresponds to the upper end of the size scale (two
to eight particles) that we identified as potentially interesting using
the transformed resolution parameter.

Spearman correlation between z and �I for the scattering ver-
sus injection phases occurs for partitions with approximately
50–100 communities, corresponding to community sizes of
roughly five to eight particles [see Fig. 7(b)]. This is similar
to the size scale that we identified previously when using the
transformed resolution parameter.

IV. DISCUSSION

A networks perspective provides a useful framework in
which to study the material and dynamic properties of granular
materials. Network diagnostics vary in their sensitivity to
scales of the granular system: The particle scale can be probed
with a clustering coefficient, the curve scale can be probed
with geodesic node betweenness, the domain scale can be
probed with community structure, and the system scale can
be probed with global efficiency. Moreover, one can identify
potentially interesting length/size scales in the system using
mesoscale network features such as community structure. As
we show in Appendix A, one can also obtain physical insights
into the geographic organization of the material by comparing
the features of the actual networks to a null model consisting
of an ensemble of random geometric graphs.

The dynamics of signal propagation on a network are
best characterized by weighted diagnostics derived from the
granular force-chain network, suggesting that the topology of
the underlying (unweighted) contact network alone is not suf-
ficient to explain signal propagation. In other words, one must
also consider network geometry. This result underscores the
important relationship between signal propagation and force-
chain organization [see Fig. 5(d)]. Similar phenomena are
likely relevant for a variety of energy transport problems (e.g.,
in sound, heat, and electricity) in a broad class of amorphous
materials. Although real 3D granular systems are not photoe-
lastic, recent advances in tomography [50,51] have begun to
provide data on contact forces within packings of deformable
spheres. As experimental techniques mature, it will be possible
to apply network analyses to laboratory 3D systems.
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The algorithmic detection of communities is particularly
useful in quantifying the effect of mesoscale network structure
on signal propagation. We find that community structure
is a better predictor of signal amplitude over the range of
propagation phases than system-scale, curve-scale, or particle-
scale measurements. Furthermore, by contrasting signal
behavior during injection and scattering phases, we are able
to differentiate the sensitivities of system-wide and mesoscale
network structure to sound propagation. Community structure
seems to be a better predictor of signal propagation in the
scattering phase than in the injection phase, suggesting
that the sound scatters in local geographic neighborhoods.
However, global efficiency predicts signal propagation better
in the injection phase than in the scattering phase, suggesting
a more system-wide dynamic distribution of sound.

Studying community structure allows one to investigate the
mesoscale architecture of granular packings. In addition to
the intracommunity strength z-score predicting particle-scale
sound amplitude, the identification of geographic communities
provides a quantifiable size scale, which might be useful for
seeking the diverging length scale that is expected at the
jamming transition [2,3]. The mesoscale nature of the sound
propagation might be related to other mesoscale phenomena
in granular physics, such as the spatial eigenmodes for soft
(low-energy) modes, which are observed in simulations to
take the form of localized swirls [52,53]. Our approach also
provides a framework to relate 1D structures (force chains)
to 2D structures (geographic domains). It therefore might also
prove useful in other settings, such as in the study of crystalline
solids, where domain structure is critical to system function.

The presence of correlated regions such as geographic
communities in a granular material is reminiscent of shear
transformation zones (STZs) [54], in which localized regions
throughout a sheared material have an increased propensity
to deform under shear. Importantly, however, the community
structure that we compute spans the system, whereas STZs
are relatively small structures dispersed throughout a system.
Also of interest is a comparison with the results of Ref. [55],
which illustrated that vibrational modes can identify soft spots
in sheared systems.

In conclusion, using network analysis to study granular
materials can be extremely useful, as it can help characterize
particle-, curve-, domain-, and system-scale properties in such
media. In particular, the algorithmic detection of communities
provides a means to identify potentially interesting charac-
teristic size scales in such systems. When combined with
time-resolved acoustic measurements [22], such a networks
perspective can help illuminate mesoscale structures within
which sound travels preferentially. We find that particles that
are well connected to their community have larger-amplitude
signals passing through them. Our results also suggest that
signals scatter in local geographic neighborhoods but propa-
gate more systemically during signal injection. Investigation
of both weighted and unweighted networks demonstrates that
a weighted network is a better predictor of sound propagation,
suggesting that the force-chain structure of the granular
material is an important component in sound propagation. Our
results show that one cannot examine only system-scale or
local-scale network features to understand how sound travels
through a granular material. Importantly, one achieves a better

description of sound propagation when one includes how the
particles relate to their neighbors in a network.
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APPENDIX A: DEFINITIONS OF NETWORK
DIAGNOSTICS

1. Diagnostics applied to unweighted contact networks

To characterize structure in the binary (contact) networks,
we examined 21 diagnostics: number of nodes, number of
edges, global efficiency [56], geodesic node betweenness cen-
trality [57,58], random-walk node betweenness [59], geodesic
edge betweenness [60], eigenvector centrality [61], closeness
centrality [62], subgraph centrality [63], communicability
[64,65], clustering coefficient [66], local efficiency [56], mod-
ularity optimized using two different algorithms [37–39,44],
hierarchy [67], synchronizability [68], degree assortativity
[69], robustness to targeted and random attacks [70], the Rent
exponent [71], and mean connection distance [72].

In our descriptions below, we give for each diagnostic
(i) a mathematical definition, (ii) an intuitive description of the
term, and (iii) a comment on its possible physical significance
for the granular system that we study. We also compute
node-specific values for the following diagnostics: geodesic
betweenness, global efficiency, and clustering coefficient. (See
the discussions below.)

(1) Number of nodes N : (i) The diagnostic N is defined
as the number of nodes in a network. (ii) It is used as a
measure of the size of a system. (iii) In this study, N is the
number of particles in the system. It provides a consistent
but dynamically uninteresting characterization of the network
because it is identical at all points in time.

(2) Number of edges D: (i) The diagnostic D is defined
as D = ∑

ij Aij , where A is an unweighted (binary) network
with components Aij . Nodes are particles, and an edge exists
between particles i and j (i.e, Aij = 1) if and only if particles
i and j are in contact with each other (otherwise, Aij = 0).
(ii) The quantity D is simply the total number of edges in
the system. (iii) The number of edges D is related to the
mean contact number, which is denoted by z in the granular-
materials community. The mean contact number of the system
is equal to z = D

2N
. The diagnostic D provides a consistent

but uninteresting characterization of the network because the
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number of contacts scales with pressure [2] (which is the same
for all experimental runs).

(3) Global efficiency E [56]: (i) Let dij be the shortest
(geodesic) number of steps necessary to get from node i to
node j . The global efficiency is then defined as

E = 1

N (N − 1)

∑
i �=j

1

dij

. (A1)

(ii) Global efficiency can be interpreted as a measure of how
well a signal is transmitted through a network. (iii) One
can expect the global efficiency to be small in 2D granular
packings because particles that are not geographically close
to one another are separated by multiple contacts (edges) and
therefore by a long path length (low efficiency). As one can
see in Table III, this is indeed the case.

(4) Geodesic node betweenness B [57]: (i) Geodesic node
betweenness is defined for the ith node in a network G as

Bi =
∑

j,m,i∈G

ψj,m(i)

ψj,m

, (A2)

where all three nodes (j , m, and i) must be different from each
other, ψj,m is the number of geodesic paths between nodes j

and m, and ψj,m(i) is the number of geodesic paths between j

and m that pass through node i. The geodesic betweenness of
an entire network B is defined as the mean of Bi over all nodes
i in the network. (ii) Geodesic betweenness can be interpreted
as a measure of traffic flow on a network. (iii) One might
expect the majority of geodesic paths that link any node of the
packing to any other node to pass through the middle of the
system. Indeed, we find that the largest values of betweenness
occur in the center of the system and the smallest values occur
along the edges of the packing.

(5) Random-walk node betweenness Brw [59]: (i) For an
adjacency matrix A and diagonal matrix D, let Mt = At · D−1

t

be the matrix M with row and column t removed (and At and
Dt are defined analogously). The probability that a walk starts
at node s, takes n steps, and ends up at some node i (which
cannot be t because t has been removed) is given by element is
of Mn

t ; denote this element by [Mn
t ]is . Walks end up at v and w

with probabilities [Mn
t ]vs and [Mn

t ]ws , respectively. Fractions
1/kv and 1/kw of these walks subsequently pass along the edge
(v,w) in one direction or the other, assuming that such an edge
exists. (Note that kv is the degree of v and kw is the degree of
w.) Summing over all n shows that the mean number of times
that a walk of any length traverses the edge from v to w is
k−1
v [(I − Mt )−1]vs . (As discussed in Ref. [59], this expression

does not depend on w.) The random-walk betweenness of
a node is the mean of this quantity over all edges emanating
from that node, and the random-walk betweenness of the entire
network is the mean of the random-walk betweenness of all
nodes in the network. (ii) Random-walk betweenness can be
interpreted as a measure of information flow or signal flow
in a network. (iii) Similar to geodesic node betweenness, one
might expect the random walk node betweenness to be highest
in the center of the system and lowest on the edges of the
system. This is indeed the case.

(6) Geodesic edge betweenness Be [60]: (i) Inspired by
Freeman’s geodesic node betweenness, the geodesic between-
ness of an edge is defined as the number of shortest paths
between pairs of nodes that run along it. For the edge that con-
nects nodes j and m, the geodesic edge betweenness is given by

Be(j,m) =
∑
i,k

ψi,k(j,m), (A3)

where ψi,k(j,m) is the number of shortest paths between i and k

that pass through the edge that connects nodes j and m. (ii) One
can interpret edge betweenness as a measure of the influence of
an edge on traffic flow through a network. (iii) In a 2D granular
packing, edge betweenness might indicate the influence of a
contact on a hypothetical flow through the network. In our
system, we find that edge betweenness is largest in the center
of the system and smallest on the edges of the system. This is
consistent with the results for geodesic node betweenness.

(7) Eigenvector centrality Ce [73]: (i) The eigenvector
centrality Ce(i) of node i is proportional to the sum of the
eigenvector centralities of the nodes connected to it:

Ce(i) = 1

λ

∑
j∈M(i)

Ce(j ) = 1

λ

∑
j

AijCe(j ), (A4)

where M(i) is the set of nodes that are neighbors of i (i.e.,
which are connected to i directly via an edge) and λ is the
largest eigenvalue of A. From Eq. (A4), one can deduce that
Ce(i) is the ith component of the leading eigenvector (each
entry of which is positive by the Perron-Frobenius theorem [1])
of the adjacency matrix. (ii) Eigenvector centrality can be used
to measure the importance of a node in a network based on
its direct connection to important nodes. (iii) In a 2D granular
packing, one would expect eigenvector centrality to be large
for a particle that has many contacts or for a particle whose
immediate neighbors have many contacts. Indeed, we find that
eigenvector centrality is highest in a local region of the system
in which high-degree nodes are most concentrated.

(8) Closeness centrality Cc [62]: (i) We use a version of
closeness centrality that is appropriate for both connected and
disconnected graphs [74]. It is defined as

Cc(i) =
∑

j∈V/i

2−ψG (i,j ), (A5)

where ψG(i,j ) is the geodesic distance between nodes i and
j (i.e., the length of the shortest path connecting i and
j ) and the notation V/i indicates that V is the connected
network component reachable from i and does not include
i. (ii) Closeness centrality can be used as a measure of the
importance of a node in a network. (iii) For 2D granular
systems, one might expect closeness centrality to be small,
given the lattice-like topology of a contact network. However,
as shown in Table III, closeness values are somewhat larger
than those for random geometric graphs (RGGs; see the
discussion in Appendix C).

(9) Subgraph centrality Cs [63]: (i) We first note that the
number of closed walks of length k starting and ending at
node i is given by the kth local spectral moment μk(i), which
is defined as the ith diagonal entry of the kth power of the
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adjacency matrix A:

μk(i) = [Ak]ii . (A6)

The subgraph centrality of node i is then defined as

Cs(i) =
∞∑

k=0

μk(i)

k!
. (A7)

(ii) Subgraph centrality characterizes the participation of each
node in all subgraphs in a network. (iii) For 2D granular
systems, one might expect subgraph centrality to be small
because nodes participate in few subgraphs that are far away
from them, as their connectivity is strongly constrained to
their local geographic neighborhood. Indeed, as indicated in
Table III, subgraph centrality has a value that is less than 1/3
of the value that we computed for a corresponding ensemble
of RGGs (see our later discussion).

(10) Communicability Co [64,65]: Because of the direct
relationship between the powers of the adjacency matrix A
and the number of walks in a network, one can define the
communicability between nodes i and j as

Coij
=

∞∑
k=0

[Ak]ij
k!

. (A8)

The communicability Co of a network is then the mean of
the communicabilities of each pair of (nonidentical) nodes.
(ii) Communicability was developed to measure the ease of
communication or transmission in terms of passage between
different nodes in a network, and it is specifically based on
walks rather than paths [64]. (iii) For 2D granular systems,
one might expect the mean communicability to be small
because the geographic nature of the contacts creates a lattice-
like topology. Indeed, as indicated in Table III, its value is less
than 1/4 of the value that we computed for a corresponding
ensemble of RGGs.

(11) Clustering coefficient C [66]: (i) The diagnostic C

is defined by supposing that a node i has ki neighbors, so
a maximum of ki(ki − 1)/2 edges can exist between these
neighbors. The local clustering coefficient Ci is the fraction of
these possible edges that actually exist:

Ci =
∑

mj AmjAimAij

ki(ki − 1)
. (A9)

The clustering coefficient C of an entire network is then defined
as the mean of Ci over all nodes i. (ii) The clustering coefficient
C can be interpreted as a measure of local clustering properties
in a network. (iii) One can expect C to be large in 2D granular
packings because particles that are geographically close to one
another are also near each other in a network. This ought to
yield a large number of connected triples and hence a high
value of C. As shown in Table III, we do indeed observe
reasonably large values [75] for clustering coefficients in the 17
experimental runs (the mean value over all runs is C ≈ 0.26),
but interestingly the mean value of C in the corresponding
RGG ensemble is twice as high.

(12) Local efficiency El [56]: (i) The local efficiency of
node i is defined as

El(i) = 1

NGi
(NGi

− 1)

∑
j,k∈Gi

1

dj,k

, (A10)

where Gi is the subgraph consisting of all nodes connected to
node i along with all of their edges between each other, and
dj,k is the minimum path length between nodes j and k in this
subgraph. The local efficiency El is the mean value of El(i)
over all nodes i. (ii) Local efficiency El can be interpreted
as a measure how well a signal is transmitted through a
subgraph. (iii) One might expect local efficiency to be large
in 2D granular packings because particles that are very close
to each other geographically lie in one another’s subgraphs.
However, as we show in Table III, we obtain values that are
only about half of those for corresponding RGGs. The mean
granular-network value of 0.33 is comparable in value to some
communication networks [56].

(13) Modularity index Q [36–38]: (i) Networks can be
partitioned into communities (or modules) in which nodes
inside the same community are more densely connected to
each other than they are to nodes in other communities. The
modularity of a network partition is defined as

Q = 1

2D

∑
ij

[
Aij − kikj

2D

]
δgi ,gj

, (A11)

where ki is the degree of node i, D is the total number
of edges in the network, δij is the Kronecker delta, and
gi is the community to which node i has been assigned.
With the standard null model Pij = kikj /(2D), Eq. (A11) is
sometimes called “Newman-Girvan modularity.” One uses one
of numerous possible computational heuristics to maximize
Q in the space of all network partitions, and one can then
report the maximum value obtained for Q. However, it is
important to note that the optimization of Q is NP-hard [45],
so one cannot expect the output of an optimization algorithm
to be a globally optimal partition of a network. In this light,
we use two different computational heuristics to optimize
Q: Newman’s spectral algorithm [44] implemented in the
Brain Connectivity Toolbox [90] (which yields a modularity
value that we denote Qs) and the Louvain locally greedy
method [39] (yielding a modularity value that we denote
QL). (ii) The optimal value of Q is a measure of how well
a network can be partitioned into cohesive communities.
(iii) In a 2D granular system, one might expect communities
to be localized geographically because connectivity between
nodes in potential communities is constrained geographically.
Indeed, as shown in Table III, the values of Qs and QL are
both extremely high [36,37].

(14) Hierarchy h [67]: (i) A sense of hierarchical structure
in a network can be characterized by the coefficient h, which
is used to quantify a putative power-law relationship between
clustering coefficient Ci and the degree ki of all nodes in the
network [67]:

Ci ∼ k−h
i . (A12)

(ii) Networks in which the clustering coefficient has a power-
law scaling with degree possess a hierarchy in which hubs
(i.e., high-degree nodes) tend to have low local clustering
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and low-degree nodes tend to have high local clustering. The
parameter h gives a precise scaling of such effects when (A12)
holds, and it can perhaps indicate a looser sense of hierarchy
in more general situations. (iii) It is not clear a priori whether
2D granular packings have some hierarchical characteristics,
though the authors of Ref. [67] have suggested that geographic
networks are not very hierarchical. Our calculations (see
Table III) provide some support for this claim, as we observe
that this scaling relationship between Ci and ki seems to hold
in our data and we obtain h ≈ 0.76. It is noteworthy, however,
that this value is roughly three times what one obtains in a
corresponding RGG ensemble (see Table III).

(15) Synchronizability s [68]: (i) Synchronizability is
defined as

s = λ2

λN

, (A13)

where λ2 is the second smallest eigenvalue of the Laplacian
L = DA − A (where DA is a diagonal matrix whose diagonal
entries are the row sums of the corresponding row of A)
of the adjacency matrix and λN is the largest eigenvalue of
L [68]. (ii) The synchronizability of a network characterizes
structural properties of a network that hypothetically enable
it to synchronize rapidly. (iii) One might expect that the
synchronizability of the contact network in a 2D granular
packing is small due to the lattice-like nature of the network
topology. Indeed, as shown in Table III, the value for s for our
system is tiny.

(16) Degree assortativity a [69]: (i) The degree assortativ-
ity of a network (which is often called simply “assortativity”)
is defined as

a = D−1 ∑
i jiki − [

D−1 ∑
i

1
2 (ji + ki)

]2

D−1
∑

i
1
2

(
j 2
i + k2

i

) − [
D−1

∑
i

1
2 (ji + ki)

]2 , (A14)

where ji and ki are the degrees of the nodes at the two ends
of the ith edge (i ∈ {1, . . . ,D} [44]. (ii) Degree assortativity
measures the preference of a node to connect to other nodes
of similar degree (leading to an assortative network, for
which a > 0) or to nodes of very different degree (leading
to a disassortative network, for which a < 0). (iii) It is not
clear a priori whether 2D granular packings should display
degree assortativity. Our calculations indicate that the degrees
exhibit some mild positive assortativity (a ≈ 0.14), but the
corresponding RGG ensembles have a significantly higher
positive assortativity of a ≈ 0.56 (see Table III).

(17) Robustness R [70]: (i) One can define robustness in
terms of different types of attacks on a network. In the most
commonly studied type of targeted attack, nodes are removed
(one by one) in descending order of their degree; in a random
attack, nodes are removed in random order (e.g., uniformly
at random, which is what we consider). Each time a node
is removed from a network, we recalculate the size S (i.e.,
number of nodes) of the largest connected component. One can
examine robustness by plotting S versus the number of nodes n

removed [76–78]. One can then define a robustness parameter
R as the area under the curve in the plot of S = S(n). More
robust networks retain a larger connected component even
when several nodes have been removed; this is represented by

a larger area under the curve and hence by larger values of R.
(ii) Robustness indicates network resilience to either targeted
(Rt ) or random (Rr ) attacks. (iii) Robustness is typically
considered to be most interesting for networks with highly
heterogeneous degree distributions, so it might not be very
insightful for 2D granular packings. We note, however, that
we find values of Rt and Rr for our granular networks that are
more than three times as large as those for the corresponding
RGG ensemble (see Table III).

(18) Rent exponent p [79]: (i) Rent’s rule, which was
first discovered in relation to computer chip design, defines
a scaling relationship between the number of external signal
connections (edges) e to a block of logic and the number of
connected nodes n in the block [79]:

e ∼ np, (A15)

where p ∈ [0,1] is the Rent exponent. (ii) The Rent exponent
measures the efficiency of the physical embedding of a topo-
logical structure. (iii) Due to the physical constraints of a 2D
granular packing, we expect to observe Rentian scaling with a
relatively low Rent exponent (similar to that of a lattice). The
theoretical minimum value that people expect for the Rent’s
exponent for a 2D physical lattice is pt = 1 − 1/DE [80–82],
where DE is the Euclidean dimension of the space (e.g.,
two). The case DE = 2 yields pt = 0.5, which is consistent
with empirical results on memory circuits [83]. However, the
expected value of the Rent exponent might also depend on
the type of physical lattice under study (e.g., a rectangular
or hexagonal lattice). For our 2D granular packings, the Rent
exponent is p ≈ 0.47.

(19) Mean connection distance (mcd): (i) An edge’s es-
timated connection distance Lij is defined as the Euclidean
distance between the centroids of particles i and j . (ii) The
mean connection distance (mcd) is defined as the mean of all
Lij values in the network. (iii) The mean connection distance
in a 2D granular packing is related to the number of particles,
the area of the system, and particle size.

2. Diagnostics applied to force-weighted contact networks

To characterize the structure of the force-weighted net-
works, we used eight diagnostics: normalized strength [84,85],
diversity [86], path length [87], geodesic node betweenness
[57,85], geodesic edge betweenness [60], clustering coefficient
[85], transitivity [88], and optimized modularity [38].

(1) Normalized Strength S ′ [84,85]: (i) The strength of
node i is given by the column sum of the weighted adjacency
matrix:

Si =
∑

j

Wij , (A16)

and the strength of an entire weighted network W is the mean
of Si over all i. The normalized strength S ′ is

S ′
i = Si

N
, (A17)

where N is the total number of nodes. (ii) Strength is a measure
of how strong the connections are in a network. (iii) In the
present context, normalized strength provides a measure of
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the mean contact forces between particles, and we therefore
expect this diagnostic to be correlated with sound propagation.
Indeed, we observe this in our calculations.

(2) Diversity V [86]: (i) The diversity of node i is defined
as the variance of the edge weights for the set of all edges that
are connected to it. It is given by

Vi =
⎡
⎣ 1

N

∑
j

(Wij − 〈Wi〉)2

⎤
⎦

1/2

. (A18)

The diversity of an entire weighted network is the mean of
Vi over all i. (ii) Diversity is a measure of the variance of
connectivity strengths in a network. (iii) In the present context,
diversity is a measure of the variance of contact forces between
particles, and it has a high positive correlation with normalized
strength.

(3) Global efficiency Ew [56]: (i) Let dw
ij = max(Wij ) −

Wij be the weighted shortest path between nodes i and j . The
global efficiency of node i is then defined as

Ew(i) = 1

N − 1

∑
j �=i

1

dw
ij

. (A19)

The global efficiency Ew is the mean value of Ew(i) over all
nodes i. (ii) One can interpret global efficiency as a measure
of how efficiently a signal is transmitted through a network.
(iii) We expect the global efficiency of the force-weighted
contact network to be large in the center of the packing and
small on the edges of the packing because particles that are
not geographically close to each other do not exert forces on
one another. Indeed, this is what we observe.

(4) Clustering coefficient Cw [85]: (i) One can define a
weighted clustering coefficient Cw(i) of node i using the
formula

Cw(i) = 1

Si(ki − 1)

∑
j,k

(Wij + Wik)

2
AijAikAjk, (A20)

where Si is node i’s strength, ki is its degree, W is the weighted
adjacency matrix, and A is the underlying binary adjacency
matrix. (ii) The weighted clustering coefficient Cw(i) measures
the strength of local connectivity. (iii) The weighted clustering
coefficient is constrained by the underlying contact network
structure, so we expect it to have a high positive correlation
with the binary clustering coefficient C(i). Indeed, the Pearson
correlation coefficient between the binary and weighted clus-
tering coefficients over the experimental runs is r ≈ 0.94 (with
a p-value of p ≈ 2 × 10−9). Both diagnostics tend to attain
their highest values on the edges of the packing, where nodes’
immediate neighbors are most likely to also be connected to
one another.

(5) Geodesic node betweenness Bw [89]: (i) Geodesic
betweenness is defined for the ith node in a network G as

Bw(i) =
∑

j,m,i∈G

ψ̃j,m(i)

ψ̃j,m

, (A21)

where all three nodes (j , m, and i) must be different from each
other, ψ̃j,m denotes the number of geodesic weighted paths

between nodes j and m, and ψ̃j,m(i) denotes the number of
geodesic weighted paths between j and m that pass through
node i. (As with weighted global efficiency, the weighted
shortest path between nodes i and j is dw

ij . Other choices
for how to compute dw

ij are, of course, possible.) The weighted
geodesic betweenness of an entire network Bw is defined as
the mean of Bw(i) over all nodes i. (ii) One can interpret
weighted geodesic betweenness as a measure of traffic flow on
a network. (iii) We expect betweenness in weighted networks
to correlate positively with strength, just as betweenness in
binary networks tends to correlate positively with degree [59].
In a 2D granular packing, we expect particles in the center
of the system to have high values of weighted betweenness
because more paths must pass through them to connect the
particles at the periphery of the system. We indeed find this to
be the case.

(6) Geodesic edge betweenness Bew [69,89]: (i) We define
geodesic edge betweenness on weighted networks using the
number of weighted shortest paths between pairs of nodes
that are connected by an edge. (We again determine the path
distance between nodes i and j using dw

ij .) For the edge
that connects nodes j and m, the weighted geodesic edge
betweenness is

Bew(j,m) =
∑
i,k

ψ̃i,k(j,m), (A22)

where ψ̃i,k(j,m) is the number of shortest paths between nodes
i and k that pass through the edge that connects nodes j and m.
(ii) Weighted edge betweenness indicates the influence of an
edge on traffic flow through a network. (iii) In a 2D granular
packing, the edge betweenness should give an indication of
the influence of a contact on a hypothetical flow through the
network. We find that edge betweenness is largest in the center
of the system because more paths must pass through these
edges to connect all pairs of particles.

(7) Modularity index Qw [36–38]: The weighted modular-
ity of a network partition is

Qw = 1

2W̄

∑
ij

[
Wij − SiSj

2W̄

]
δgi ,gj

, (A23)

where Si is node i’s strength, W̄ is the total strength of
the edges in a network, Wij is an element of the weighted
adjacency matrix, δij is the Kronecker delta, and gi is the
label of the community to which node i has been assigned.
As with unweighted networks, one uses some computational
heuristic to find a partition that maximizes Q. We use the
Louvain locally greedy optimization method [39]. (ii) The
maximum value of Q is a measure of how well a network can
be partitioned into cohesive communities. (iii) In a 2D granular
packing, in which forces between particles are represented as
edge weights, we expect communities to be localized in space
because the forces between nodes in potential communities are
constrained geographically. Indeed, as shown in Fig. 2, this is
indeed the case.
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(8) Transitivity T [88]: (i) The weighted transitivity T (i)
of node i is

T (i) = 2

ki(ki + 1)

∑
j,k

(W̃ij W̃jkW̃ik)1/3, (A24)

where we have normalized weights by the maximum edge
weight in the matrix:

W̃ij = Wij

max(Wij )
. (A25)

The transitivity T of the entire network is the mean of T (i)
over all nodes i. (ii) Weighted transitivity is a generalization
of the local clustering coefficient (which is sometimes called
“transitivity”) in unweighted networks in which one computes
the sum of the weights of edges in a network’s triangles instead
of computing simply the number of triangles. (iii) We expect
weighted transitivity to be similar to the weighted clustering
coefficient Cw. Indeed, we find that the two variables are highly
correlated over experimental runs (with a Pearson correlation
coefficient of r ≈ 0.99 and a p-value of p ≈ 1 × 10−16).

We implemented all computational and simple statistical
operations (such as t-tests and correlations) using MATLAB R©

(MathWorks, Natick, MA). We estimated network diagnostics
using a combination of in-house software, the Brain Connec-
tivity Toolbox [90], the MATLAB Boost Graph Library, and the
code [91] for the Louvain optimization of modularity [39] that
we obtained from Peter Mucha.

APPENDIX B: RELIABILITY OF NETWORK STRUCTURE

We quantify the reliability of each diagnostic by calculating
the coefficient of variation (a normalized measure of disper-
sion) over the 17 experimental runs: CV = σ/|μ|, where σ is
the standard deviation and μ is the mean. Values of CV � 0.2
are commonly considered to be acceptable, as they indicate
that a variable is reliable [78,92,93]. See Table I for CV
values for all binary network diagnostics and Fig. 8(b) for
a corresponding bar graph. Interestingly, reliable diagnostics
are dispersed among the quantities that we considered rather
than focused on sets of related diagnostics.

For the force-weighted granular networks, we find lower re-
liability (i.e., higher values of CV) for the diagnostics than for
the (binary) contact networks. Compare Figs. 8(b) to 9(b) and
Table I to Table II. It is possible that the reliability is lower in
the weighted networks because a large selection of force-chain
networks are consistent with a given packing [94]. Therefore,
for each binary network, we are sampling one weighted net-
work out of the many possible force-chain networks that could
arise from the underlying contacts. Based on this degeneracy,
we might expect that network diagnostics that depend on the
forces (i.e., network geometry) might be less consistent across
experiments than those based on contacts (i.e., network topol-
ogy) alone. As with the binary networks, the strongly reliable
weighted-network diagnostics are dispersed among the various
diagnostics rather than focused on sets of related quantities.

TABLE I. Reliability of network diagnostics for the (binary)
contact networks. We measure reliability using coefficient of variance
(CV).

Binary contact network diagnostic Variable CV

Mean connection distance mcd 0.0046
Geodesic edge betweenness Be 0.0090
Global efficiency Eg 0.0114
Rent exponent p 0.0171
Random-walk node betweenness Brw 0.0176
Number of nodes N 0.0179
Geodesic node betweenness B 0.0213
Modularity: Louvain optimization QL 0.0071
Modularity: spectral optimization Qs 0.0252
Closeness centrality Cc 0.0267
Number of edges D 0.0360
Synchronizability s 0.0408
Robustness, random Rr 0.0456
Clustering coefficient C 0.0496
Subgraph centrality Cs 0.0528
Local efficiency El 0.0573
Robustness, targeted Rt 0.0727
Communicability Co 0.0829
Hierarchy h 0.1080
Eigenvector centrality Ce 0.1150
Degree assortativity a 0.3219

APPENDIX C: COMPARISON OF CONTACT NETWORKS
TO RANDOM GEOMETRIC GRAPHS

Many of the diagnostics that we compute for the granular
networks are highly correlated with one another [see Fig. 9(a)].
In the (binary) contact networks, they form roughly two
families, where the correlations among the diagnostics within
a given family are high. The diagnostics that we used for
the weighted networks also exhibit some correlations [see
Fig. 9(a)], and (unsurprisingly) this is particularly evident for
diagnostics that are known to be closely related mathemati-
cally. For example, the weighted clustering coefficient is highly
correlated with transitivity, and geodesic node betweenness is
highly correlated with geodesic edge betweenness.

It is important to think about the possible origins of correla-
tions between the various network diagnostics. Some of them
might be specific features of the precise granular system under
consideration, but others might arise because our granular
packings are confined in 2D rather than in 3D or because of our

TABLE II. Reliability of network diagnostics for the force-
weighted contact networks. We measure reliability using coefficient
of variance (CV).

Force-weighted contact network diagnostic Variable CV

Transitivity T 0.0339
Clustering coefficient Cw 0.0549
Geodesic node betweenness Bw 0.0282
Geodesic edge betweenness Bew 0.0199
Normalized strength S ′ 0.0000
Modularity: Louvain optimization Qw 0.0135
Diversity V 0.0412
Global efficiency Ew 0.1094
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FIG. 8. (Color online) (a) Relationships between 21 binary
network diagnostics: degree assortativity (a), geodesic node be-
tweenness (B), closeness centrality (Cc), clustering coefficient (C),
communicability (Co), geodesic edge betweenness (Be), eigenvector
centrality (Ce), global efficiency (Eg), hierarchy (h), local efficiency
(El), modularity optimized using the Louvain (QL) and spectral
(Qs) heuristics, number of nodes (N ), number of edges (D), mean
connection distance (mcd), random-walk node betweenness (Brw),
Rent exponent (p), robustness to random attack (Rr ), robustness to
targeted attack (Rt ), subgraph centrality (Cs), and synchronizability
(s). We order the diagnostics to maximize the correlation along
the diagonal for better visualization of highly correlated groups of
diagnostics. Color indicates the correlation between global network
diagnostics over the 17 experimental runs. (b) Reliability, as measured
by the coefficient of variation (CV), over the 17 runs for the 21 binary
network diagnostics reported in panel (a).

particular preparation protocol. Still others might be general
properties of spatially embedded systems (in any dimension),
of granular materials, or of networks in general.

To examine such issues, it is desirable to compare
network diagnostics computed for the networks obtained
from experimental data with those obtained from appropriate
ensembles of null-model networks. It is common to compare
the structures of networks under study to those that would
be expected in Erdős-Rényi random graphs or from some
other random-graph ensemble [1]. The networks that we
study in the present paper—namely, contact networks in
granular packings—are spatially embedded (in the plane)
because of physical constraints. The development of null
models is a wide open area of research for spatially embedded
networks [8], but we can make some progress for the binary
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FIG. 9. (Color online) (a) Relationships between eight diagnos-
tics applied to the weighted networks: geodesic node betweenness
(Bw), clustering coefficient (Cw), diversity (V ), geodesic edge be-
tweenness (Bew), global efficiency (Ew), modularity (Qw) optimized
using the Louvain method, and normalized strength (S ′). We ordered
the diagnostics to maximize the correlation along the diagonal for
better visualization of highly correlated groups. Color indicates
the correlation between global network diagnostics over the 17
experimental runs. (b) Reliability, as measured by the coefficient
of variation (CV), over the 17 runs for the eight weighted graph
diagnostics reported in panel (a).

contact networks by comparing the network diagnostics in
those networks to computations of the same diagnostics using
an ensemble of random geometric graphs (RGGs). As we will
now discuss, we find that all diagnostics (except for the ones
that we fix when defining the RGG ensemble to correspond
to their counterparts in the real networks) are significantly
different in the real versus the random networks.

The simplest RGG [8,32,95] contains N nodes that are ran-
domly distributed according to some probability distribution
throughout an ambient space, which in our case is R

2 [97]. One
then places an edge between any pair of nodes i and j that are
separated by a distance of at most 2r , where one should think
of the parameter r as the radius of a ball (using some metric) in
the confining space. In planar Euclidean space, one considers
a disk in R

2 and uses ordinary (Euclidean) distance.
To compare the networks that we study to RGGs, we

generated RGGs in which we placed nodes randomly and
uniformly within the 2D space of the granular packing. For
each experimental run, we create an ensemble of 100 RGGs
in which the number of nodes is identical to that in the
experimental system. We likewise fix the number of edges
(D) in each RGG to be identical to that in the real system by
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TABLE III. Comparison of binary network diagnostics in the (real) experimental graphs (EGs) and the random geometric graphs (RGGs).
We show the mean values of the EGs (column 1), the mean values of the RGGs (column 2), the t-values (column 3), and p-values (column 4)
for a two-sample t-test between the network-diagnostic values for the two families of networks (EGs and RGGs).

Diagnostic name EG RGG t p

EG less than RGG
Local efficiency 0.33 0.67 73.33 3.1 × 10−37

Modularity: Louvain optimization 0.81 0.92 70.52 7.2 × 10−36

Clustering coefficient 0.26 0.54 85.28 2.5 × 10−30

Random-walk betweenness 0.09 0.20 39.73 8.2 × 10−29

Degree assortativity 0.14 0.57 38.52 2.2 × 10−28

Subgraph centrality 7.19 28.79 22.41 3.9 × 10−21

Communicability 0.15 0.73 17.79 3.6 × 10−18

Rent exponent 0.47 0.50 15.41 2.2 × 10−16

EG greater than RGG
Global efficiency 0.10 0.03 94.41 1.0 × 10−40

Mean connection distance 39.60 32.32 79.38 2.5 × 10−38

Robustness, random 8.38 × 104 2.33 × 104 54.89 3.0 × 10−33

Closeness centrality 7.84 4.47 50.29 4.9 × 10−32

Synchronizability 0.0014 0.0004 44.71 2.2 × 10−30

Robustness, targeted 7.08 × 104 1.96 × 104 36.96 7.9 × 10−28

Edge betweenness 13.33 4.55 34.71 5.6 × 10−27

Geodesic node betweenness 6.24 × 103 2.16 × 103 30.95 2.0 × 10−25

Hierarchy 0.76 0.27 24.42 2.9 × 10−22

Eigenvector centrality 0.0172 0.0080 19.15 4.2 × 10−19

Modularity: spectral optimization 0.78 0.75 5.06 1.6 × 10−5

choosing the threshold 2r so that the number of inter-node
distances less than 2r is equal to D. We calculate the other 19
binary diagnostics (i.e., except for the number of nodes and the
number of edges, as those have been fixed to be equal in the two
sets of networks) and compute their mean over the 100 RGGs
in each ensemble. By performing these computations for each
experimental run, we create one estimate of each of the 19
diagnostic values for each of the 17 runs. We report in Table III
the mean values for both the real networks and the networks
generated from the RGG ensembles. We also report t-values

and p-values for two-sample t-tests between the values in the
17 real networks and the 17 mean values in the RGG networks.
As we show in Table III, each of the 19 network diagnostics
is significantly different between the two groups. Measures
of local connectivity (e.g., clustering coefficient) are higher
in the RGG, whereas measures of global connectivity and
physical distance are lower. These results illustrate that the
networks in the RGG ensemble have more locally connected
structures than those in the 2D granular system under
study.
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Computations. In our paper, some of our computations were for quantities that were similar to those that we reported in our
formulas, but they were not quite the same. Below we provide the corrected formulas.

For weighted networks, we calculated a local version of a clustering coefficient. [See Eq. (A20) on p. 12 of our paper.] Let ki

be the (unweighted) degree of node i, and let Ŵ denote the weighted adjacency matrix. The contribution Ncyc3 (i) from length-3
cycles that include node i is equal to the (i,i)th element of the matrix Ŵ, where

Ŵ = Y3,

Yij = W
1/3
ij , i,j ∈ {1, . . . ,N}. (1)

We then calculated a local weighted clustering coefficient,

Cw(i) = Ncyc3 (i)

ki(ki − 1)
, (2)

for all nodes i that are part of at least one 3-cycle. For any node i that is not part of a 3-cycle, we set Cw(i) = 0. The code
(CLUSTERING_COEF_WU.M) that we used for this computation comes from the Brain Connectivity Toolbox [1]. To subsequently
calculate a global weighted clustering coefficient, we computed Cw = 1

N

∑
i Cw(i).

For weighted networks, we also calculated a second type of global clustering coefficient. [See Eq. (A24) on p. 13 of our
paper.] We computed Ncyc3 (i) as above, and we then calculated a global weighted transitivity using the formula

T =
∑

i Ncyc3 (i)∑
i ki(ki − 1)

(3)

for all nodes i. The code (TRANSITIVITY_WU.M) that we used for this computation comes from the Brain Connectivity Toolbox
[1].

Typographical errors. Our formula [see Eq. (A2) on p. 9 of the paper] for the geodesic node betweenness centrality of node i

in an unweighted network should read

Bi =
∑

j,m∈G

ψj,m(i)

ψj,m

, (4)

where all three nodes (j, m, and i) must be different from each other, ψj,m is the number of geodesic paths between nodes j and
m, and ψj,m(i) is the number of geodesic paths between j and m that traverse node i. Our computations of node betweenness for
unweighted networks in the paper used Eq. (4), but the equation in our paper makes it look like we were summing over i. That
is not the case, as there is a value of geodesic node betweenness for each node i. The same change corrects our equation [see
Eq. (A21) on p. 12 of the paper] for geodesic node betweenness centrality in a weighted network, and again all computations in
our paper used the correct equation. The code (BETWEENNESS_BIN.M and BETWEENNESS_WEI.M) that we used for this computation
comes from the Brain Connectivity Toolbox [1].

Our formula [see Eq. (A3) on p. 9 of the paper] for the geodesic edge betweenness centrality of edge (j,m) that connects
nodes j and m in an unweighted network should read

Be(j,m) =
∑

i,k

ψi,k(j,m)

ψj,m

, (5)

where ψj,m is again the number of geodesic paths between nodes j and m, and ψi,k(j,m) is the number of geodesic paths between
i and k that traverse the edge that connects nodes j and m. That is, we used the same type of normalization as in our computation
of geodesic node betweenness centrality. The same comment about normalization applies to our equation [see Eq. (A22) on
p. 12 of the paper] for geodesic edge betweenness centrality in a weighted network. The code (EDGE_BETWEENNESS_BIN.M and
EDGE_BETWEENNESS_WEI.M) that we used for this computation comes from the Brain Connectivity Toolbox [1].

In our equation [see Eq. (A10) on p. 10 of the paper] for the local efficiency of node i in an unweighted network, we neglected
to state explicitly that NGi

represents the number of nodes in the subgraph Gi .
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As we noted earlier in this Erratum, our formula [see Eq. (A24) on p. 13] for the global transitivity in a weighted network
should read

T =
∑

i Ncyc3 (i)∑
i ki(ki − 1)

(6)

for all nodes i. The code (TRANSITIVITY_WU.M) that we used for this computation comes from the Brain Connectivity Toolbox
[1]. The difference from the formula [see Eq. (A24) on p. 13] in our paper is that the denominator should be ki(ki − 1) rather
than ki(ki + 1). All of the computations in our paper used the correct factor [i.e., ki(ki − 1)] in the denominator.

Finally, as a trivial correction, the phrase “edge-connecting node i and node j” on p. 3 should instead read “edge that connects
nodes i and j” (i.e., there should not be any hyphen).
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