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1. Introduction

Granular crystals consist of closely packed arrays of particles 
that traditionally are modeled as interacting with each other 
elastically7 [146, 163, 176, 189] (see figure 1). The simplest 
description of a granular crystal, which one can construe as 

a type of metamaterial, models only forces that result from 
the contact of adjacent particles. The exact nature of this 
contact force depends on the geometry of the particles in 
contact, the contact angle, and elastic properties of the par-
ticles [100]. Consequently, by changing the material proper-
ties or shapes of the particles, one can modify the effective 
stiffness of a granular crystal. One can also apply an initial 
prestress (i.e. a precompression) by applying a static force 

Nonlinear coherent structures in granular 
crystals

C Chong1, Mason A Porter2,3,4, P G Kevrekidis5 and C Daraio6

1 Department of Mathematics, Bowdoin College, Brunswick, Maine 04011, United States of America
2 Department of Mathematics, University of California, Los Angeles, CA 90095, United States of America
3 Oxford Centre for Industrial and Applied Mathematics, Mathematical Institute, University of Oxford, 
Oxford OX2 6GG, United Kingdom
4 CABDyN Complexity Centre, University of Oxford, Oxford OX1 1HP, United Kingdom
5 Department of Mathematics and Statistics, University of Massachusetts, Amherst,  
Massachusetts 01003-4515, United States of America
6 Division of Engineering and Applied Science, California Institute of Technology, Pasadena,  
CA 91125, United States of America

E-mail: cchong@bowdoin.edu

Received 30 March 2016, revised 18 April 2017
Accepted for publication 1 June 2017
Published 6 September 2017

Abstract
The study of granular crystals, which are nonlinear metamaterials that consist of closely 
packed arrays of particles that interact elastically, is a vibrant area of research that combines 
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In our review, we primarily discuss phenomena in one-dimensional crystals, as most research 
to date has focused on such scenarios, but we also present some extensions to two-dimensional 
settings. Throughout the review, we highlight open problems and discuss a variety of potential 
engineering applications that arise from the rich dynamic response of granular crystals.
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at the boundaries of the crystal. This controls the strength of 
the system’s nonlinearity, which can range from almost linear 
(for strong precompression) to purely nonlinear (no precom-
pression). The remarkable tunability of granular crystal stems 
both from this ability to tune the response from a weakly non-
linear regime to a strongly nonlinear regime and from the abil-
ity to study crystals with either homogeneous or controllably 
heterogeneous configurations (e.g. periodic arrangements, 
settings with defects, random arrangements, and so on). This 
flexibility makes granular crystals potentially useful for a host 
of applications, including shock- and energy-absorbing lay-
ers [45, 50, 64, 85], actuating devices [107], acoustic lenses 
[181], acoustic diodes [19] and switches [124], sound scram-
blers [46, 147], and more.

Granular crystals are also an ideal test bed for fundamental 
studies of nonlinear dynamics, as they constitute a prototypi-
cal (and experimentally convenient) realization of a classi-
cal system of nonlinearly coupled oscillators. The simplest 
and most standard type of granular crystal consists of a one-
dimensional (1D) crystal with spherical particles. One can 
envision these spheres as particles that are coupled by nonlin-
ear springs and do not have any on-site forces. We use the term 
‘granular chain’ to refer to an array of particles aligned in a 
1D configuration. More generally, the term ‘granular crystals’ 
includes such chains as examples but can also indicate more 
general configurations. The broad range of interest in granular 
chains (and in granular crystals more generally) is apparent in 
the diverse nature of the publications about them; these range 
from predominantly experimental investigations that focus on 
applications to theoretical studies that concentrate on rigorous 
mathematical proofs. V. F. Nesterenko is largely responsible 
for bringing significant attention to the subject of granular 
crystals, and his influential 2001 book [146] is a canonical 
starting point for researchers who are interested in this subject. 
Since the publication of Nesterenko’s book, there has been 
a burst of activity on granular crystals. These activities were 
discussed in a 2008 review article by Sen et al [176], and spe-
cific areas in the study of granular crystals have been surveyed 
in specialized reviews that were published as book chapters  
[189, 198]. There is also a very recent popular article in the 
magazine Physics Today [163]. Our review complements 
[176, 189, 198] and highlights a wealth of exciting research 
on granular crystals that has appeared in the last decade8.

The explosion of recent results in granular crystals has 
resulted from the emergence of numerous research groups 
with the ability to perform detailed quantitative monitoring 
of granular crystals by using novel techniques (including non-
invasive ones, such as photography [217] or laser Doppler 
vibrometry [26, 125]). These exciting advances have ushered 
the investigation of granular crystals into a new era of theory, 
computation, and experiments [163] that we will explore in 
the present paper. In this topical review, we emphasize non-
linear coherent structures, such as traveling solitary waves, 
dispersive shock waves, and discrete breathers.

The remainder of our topical review is structured as follows. 
We present experimental setups in section 2, discuss model 
equations in section 3, and examine the linear regime and dis-
persion in section 4. We then discuss traveling solitary waves 
in section 5, dispersive shock waves in section 6, and breath-
ers in section 7. We give an introduction to  two-dimensional 
granular crystals in section 8, and we conclude in section 9. 
We highlight open questions and possible applications of 
granular crystals throughout the article.

2. Experimental setups

Most experimental studies on the dynamic response of gran-
ular crystals have focused on the elastic response of 1D and 
two-dimensional (2D) macroscale systems, which are usually 
composed of 10–800 particles, with diameters in the milli-
meter-to-centimeter range. Most granular crystals use spheri-
cal particles, although an increasing number of recent studies 
have examined other geometries, including ellipsoidal particles 
[148], cylindrical particles [108, 112], and a combination of 
different particle shapes [119]. Researchers have used particles 
made of various mat erials [146, 176, 189]. The most commonly 
used constitutive materials are stainless steel ball bearings 
[146], although other metals (e.g. aluminum, brass, and bronze) 
[20, 39, 40] and softer particles—composed of polymeric mat-
erials such as Homalite [178], nylon [40], Teflon (PTFE) [46], 
and Delrin [118]—have also been employed.

Experimental techniques for monitoring coherent struc-
tures (such as propagating waves) in granular crystals (see 
figures 1(a) and (b)) often entail assembling particles inside 
cylindrical [147] or square support guides [39], support rods 
[20], or tracks [97]. In these systems, one can create an initial 
excitation of propagating waves using drop-weight impacts 
of striker particles [147], electromagnetic actuators [39], 
piezo-electric transducers [49], or noncontact laser ablation 
[203]. Typical initial excitations of granular chains include 
single impulses, shocks, and continuous harmonic vibrations. 
Much of the same experimental approaches used in 1D granu-
lar chains have also been employed to study nonlinear wave 
propagation in elastic 2D [118, 121] and three-dimensional 
(3D) granular crystals with Hertzian contacts [10].

There are a variety of ways to detect coherent structures 
in granular crystals. The most common approach of a local 
measurement of transient force profiles in selected particles 
relies either on using piezo-electric transducers embedded at a 
boundary and/or inside the particles [46, 98] or on using triax-
ial accelerometers [121]. The use of embedded sensors allows 
accurate detection of force profiles, but it is limited to a small 
number of locations in a granular crystal. Additionally, embed-
ded sensors can be intrusive to the dynamics from (i) an imped-
ance mismatch between the piezoelectric layer and the particle 
materials and (ii) the presence of wires, which are needed to 
transfer the recorded signal. Less intrusive techniques include 
using laser vibrometers [26, 125], which can measure the dis-
placement and velocity of selected particles. This approach 
has the advantage of being able to scope individual particles at 
will, leading to the potential to visualize the entire spatiotem-
poral dynamics of a granular crystal. Optical techniques, such 

8 We also note that although other types of granular systems—such as soils, 
sand, and cereals—also have rich and diverse dynamics, their physical prop-
erties are rather different from those of granular crystals. They are beyond the 
scope of our article, but interested readers can examine the reviews [16, 128].
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as photoelasticity, have also enabled full-field visualization 
of coherent structures in 1D and 2D systems, although such 
approaches are limited to crystals composed of relatively soft 
particles and to disk-shaped elements (cylinders that are rela-
tively small along the principle axis) [74, 217]. Additionally, 
carbon paper has been employed to measure transmitted force 
at the edge of 3D particle lattices [142].

Experimental methods to study 1D granular crystals (i.e. 
granular chains) are now well-established. One of the chal-
lenges facing experimentalists today is the ability to create 
granular crystals in higher dimensions (in 2D and even 3D), 
where it is necessary to use a larger number of particles than 
in 1D. Increasing the number of particles in a densely packed 
crystal translates to increasing the amount of connectivity 
between particles. This demands high precision in particle fab-
rication (in particular, in their sphericity and in their surface 
finish and asperities), and small tolerances in crystal assem-
bly (which, for the most part, have been arranged manually to 
date), both of which are difficult to achieve. Experimental sys-
tems with a very large number of particles are also more sensi-
tive to the presence of defects (e.g. gaps between contacts or 
misalignment) and disorder, and such configurations are there-
fore less reproducible than systems with fewer particles [120].

An exciting experimental direction in granular crystals 
is to explore the dynamics of systems that are composed of 

‘engineered’ particles. For example, heavy particles with a 
soft coating [44] have an exceptionally low signal speed, and 
particles with internal [21] or external resonant masses [72] 
allow the formation of tunable and low-frequency band gaps 
in transmission spectra.

The experimental platforms that have been developed for 
granular crystals have yielded fundamental proof-of-prin-
ciple demonstrations of nonlinear phenomena predicted by 
computational and analytical studies. However, most of the 
experiments are limited to the study of crystals with contact 
interactions in the elastic regime. Deviations from a purely 
elastic regime have been identified in the presence of dissipa-
tion [29, 149, 166], which arises in experiments either from 
(1) the presence of friction between particles and supports 
or from (2) intrinsic losses in the particles (e.g. vibrational 
modes and viscoelasticity). Recent experimental approaches 
that deviate from linear elasticity have been helpful for 
characterizing granular crystals with elasto-plastic contacts 
[24–26]. The effects of plasticity around a contact between 
particles is an important factor for using granular crystals 
as impact-protecting layers. Experimental setups to study 
impulse mitigation and redirection in elasto-plastic granular 
crystals excited by high-velocity impactors have included 
modified split-Hopkinson bar systems [24, 154, 155] and 
spring-loaded coils [25].

Figure 1. Macroscale and microscale experimental setups for granular chains. (a) Schematic diagram of a typical macroscale setup 
that includes support rods, boundaries, excitation capabilities, and a detection system. (The orange lines represent laser interferometers, 
which monitor the displacement and velocity of selected particles.) (b) Laboratory realization of the setup in panel (a) with particles 
whose diameter is about 1.9 cm. (c) Image and schematic diagram of a typical microscale setup that includes support grooves, robotic 
manipulation, and optical excitation and detection capabilities. The inset shows an optical image of a granular chain composed of stainless 
steel particles (of roughly 300 microns in diameter) and a scanning-electron-microscopy image of the support grooves. (d) Laboratory 
realization of the setup in (c). Panels (a) and (b) used with permission from Paul Anzel. Panels (c) and (d) reprinted figure with permission 
from [126], Copyright (2016) by the American Physical Society.
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The studies that we mentioned above concern macroscale 
particles (with millimeter-sized to centimeter-sized diameters). 
The solitary waves supported by nonlinear granular chains 
have a spatial wavelength of roughly five particle diameters 
(although the situation is more subtle than this, as we will dis-
cuss in sections 5.1 and 5.2) and a propagation speed that is 
proportional to their amplitude. These spatial and temporal 
properties translate to signals that travel through macroscale 
granular chains with frequencies in the 1–100  kHz range. 
Using strongly nonlinear signals in acoustic imaging or in non-
destructive evaluation requires acoustic excitations in the ultra-
sonic regime (i.e. microscopic particle sizes). Recent numerical 
investigations have examined coherent structures in smaller-
scale granular crystals (e.g. nanoscale buckyball particle chains 
[205]), but much remains unknown about the propagation of 
dynamic excitations through chains of micrometer-size parti-
cles in contact (and more generally about coherent structures in 
such granular crystals). Although one expects the fundamental 
elasticity of the contacts to remain valid when particles have 
diameters of about 1–100 micrometers, the dynamics of micro-
particle chains are not simply scaled-down version of their mac-
roscale counterparts. One expects microscale granular crystals 
to exhibit qualitatively different dynamics, which are affected 
by the presence of adhesive forces, viscous drag, electrostatic 
charges, surface asperities, and a greater sensitivity to disorder. 
Because of these effects, exper imental studies at these scales 
are challenging: they require high accuracy in particle packing, 
excitation, and detection of waves with non-contact techniques 
(see the next paragraph), which are nonintrusive and more pre-
cise than those that are used for macroscale systems.

Recent studies of 1-micrometer-diameter silica spheres 
employed a laser-induced transient grating technique to excite 
surface acoustic waves and measure their dispersion [18]. 
However, this technique is not suitable for capturing nonlinear, 
transient wave phenomena, such as those found in macroscale 
systems. At slightly larger scales, chains of steel particles with 

diameters of about 2–300 micrometers have been investigated 
using non-contact optical techniques [126]. In these experi-
ments, particles were aligned in microfabricated grooves 
using a robotic positioning systems, and high-speed micros-
copy imaging was used to ensure high positioning accuracy 
(see figures 1(c) and (d)).

3. Model equations

The force that results from the deformation of two spherical 
particles in contact is described by the classical Hertz law

( ) [ ] /= +F x A x ,3 2 (1)

where x is the overlap between the two particles and A is the 
material parameter (see also equation (4) below). A Hertzian 
interaction between a pair of particles occurs only when they 
are in contact, so each particle is affected directly only by its 
nearest neighbors and experiences a force from a neighbor 
only when it overlaps with it. This yields the bracket

[ ] ⩽
⎧⎨⎩=

>
+x

x x
x

, if 0
0, if 0 (2)

in equation (1). The original derivation of the contact law (1) 
is in Hertz’s seminal work [83], and [100] has a more mod-
ern version of it. The full derivation described in [83, 100] 
is somewhat cumbersome, and Sen et al gave a brief ‘back-
of-the-envelope’ derivation of it in [176]. The nonlinearity 
exponent p depends on the geometry of the contact between 
particles. For example, p  =  3/2 for spherical particles. 
Cylindrical particles whose axes lie in the same plane but are 
not parallel also have an exponent of p  =  3/2. In this case, 
the material parameter A depends on axis orientation. Other 
particle geometries can lead to exponents other than 3/2. For 
example, hollow spheres have interaction laws that vary as a 
function of shell thickness [100].

Figure 2. One-dimensional monomer granular chain compressed by a static force F0. The open circles represent the initial positions of the 
particle centers in static equilibrium, and the black circles indicate the displaced positions. [146] 2001 © Springer-Verlag New York. With 
permission of Springer.
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Assuming that the only relevant force arises from elastic 
contact between particles (see figure 2 for an illustration), the 
1D equations of motion for a finite-length granular chain (i.e. 
a 1D granular crystal) are

[ ] [ ]δ δ= + − − + −− +
+

+ + +u
A
m

u u
A
m

u u¨ ,n
n

n
n n n

p n

n
n n n

p
0, 1

1
0, 1 1

 (3)
where un is the displacement of the nth particle (with 

{ }∈ …n N1, 2, , , where N is the number of particles) mea-
sured from its equilibrium position in an initially compressed 
chain, mn is the mass of the nth particle, and ( / ) /δ = F An n

p
0

1  
is a static displacement for each particle that arises from the 
static load =F const0 . (See figure 2 for an illustration.) For 
spherical particles, the exponent is p  =  3/2 and the parameter 
An, which reflects the material and the geometry of the chain’s 
particles, has the form

( ) ( )
( )

ν ν
=

− + −

+ +

+ +

+

+A
E E

E E

4

3 1 3 1
,n

n n
R R

R R

n n n n

1

1
2

1
2

n n

n n

1

1 (4)

where En is the elastic (Young) modulus of the nth particle, νn 
is its Poisson ratio, and Rn is its radius. Important special cases 
of equation (3) include monoatomic (i.e. ‘monomer’) chains 
(in which all particles are identical, so An  =  A, mn  =  m, and 
δ δ=n0, 0), period-2 diatomic chains, and chains with impu-
rities (e.g. a ‘host’ monomer chain with a small number of 
‘defect’ particles of a different type). The simplest type of 
period-2 diatomic chain (which is sometimes simply called a 
‘dimer’ chain as a shorthand9) consists of alternating particles 
of two types, so An  =  A, δ δ=n0, 0, and the mass is =m mn 0 
for even n and =m mn 1 for odd n. In such a chain, the mass 
ratio /m m1 0 is the only additional parameter other than those 
in the monomer case. We use the term ‘M-mer’ for period-M 
chains with M  >  2.

We now present some basic analytical considerations for 
the equations of motion (3). It is convenient to work in so-
called ‘strain variables’ = −+y u un n n1 . For a monomer chain, 
equation (3) becomes

( [ ] [ ] [ ] )/ / /δ δ δ= − − − − −+ − + + +y
A
m

y y y¨ 2 .n n n n0
3 2

0 1
3 2

0 1
3 2 

(5)

Introducing the scaling →t t A
m

 allows us to write equa-

tion (5) as

( [ ] [ ] [ ] )/ / /δ δ δ= − − − − −+ − + + +y y y y¨ 2 .n n n n0
3 2

0 1
3 2

0 1
3 2 (6)

If δ ≠ 00 , one can also normalize the precompression by 
rescaling the amplitude yn [146]. For an infinite lattice (i.e. 
Z∈n ), equation (3) has the Hamiltonian

( )
Z
∑= + −
∈

+H m u V u u
1
2

˙ ,
n

n n n n n
2

1 (7)

where the potential function is

( ) [ ]

[ ] [ ]

/

/ /

δ φ

φ δ δ

= − +

= − +

+ +

+ +

V y A y

A A y

2
5

, with

2
5

.

n n n n n n

n n n n n n

1 0,
5 2

1 0,
5 2

1 0,
3 2

 

(8)

Note that φn in equation  (8) implies that ( ) =′V 0 0n  and 
( ) ⩾″V 0 0n , which is necessary to ensure that the classical 

ground state (for which = =u u̇ 0n n ) is a minimum of the 
energy H [69]. For the specific case of granular chains (with 
either zero or nonzero precompression), see [133]. The latter 
case is associated with ( )″ >V 0 0n , and the former is associated 
with ( )″ =V 0 0.

Equation (3) is the simplest model for the description of a 
granular chain. It neglects many features, leading to dispari-
ties between its solutions and experimental observations. One 
potentially important feature is particle rotation [8, 27, 139], 
and another is that the contact points of particles cannot be 
aligned perfectly in experiments because of clearance between 
the particles and support rods [126]. This is likely to result in 
dynamic buckling of a granular chain when particles exhibit 
high-amplitude motion. In 1D settings, effects from the above 
two features are negligible in a variety of experimental con-
figurations, but the role of rotation is considerably more impor-
tant in higher-dimensional settings [42, 139, 207, 209, 211].

Additionally, as we explained above, the model of equa-
tion (3) is Hamiltonian in nature. This is a useful idealization 
for understanding the principal wave and coherent-structure 
phenomenology in granular chains, but realistic granular 
crystals have dissipative effects (e.g. from wave attenuation) 
that can significantly modify the coherent-structure dynamics 
from those predicted by a Hamiltonian description like equa-
tion  (3). A customary approach is to incorporate a dashpot 
form of dissipation, /( ) τ= −F u m˙d n n n

1  (where τn is a character-
istic time scale), to describe experimental observations quali-
tatively (and, with parameter fitting, even quantitatively in 
some cases) [19, 87]. Another recent proposal [166, 167] is to 
explore a form of dissipation that involves a discrete Laplacian 
in the velocities10. The specific form employed for the force 
was [( )/ ( )/ ]( ) τ τ= − − −− − + +F m u u u u˙ ˙ ˙ ˙d n n n n n n n n n

2
1 1, 1 , 1 , which 

was considered in the context of a monomer chain, and it was 
assumed that τ −n n1,  is constant along the lattice. This approach 
was validated mathematically using perturbation methods 
in [23]. Subsequent generalizations of this functional form 
include power laws of the relative velocities [29] and more 
complicated forms, such as [199]

( )( ) ( )( )∝ − − − − −− − + +F m u u u u u u u u˙ ˙ ˙ ˙ ,d n n n n n n n n n
3

1 1 1 1

which is inspired by viscoelasticity theory and involves both dis-
placements and velocities. Additionally, see [76] for an attempt 
to use finite-element modeling to derive a form for dissipative 
effects in granular crystals. However, despite the multitude of 
proposed models for incorporating dissipation, presently there is 9 Alternatively, one can use the term ‘dimer’ for any chain that consists of 

two types of particles but are not necessarily arranged with a spatial period 
of 2. In this article, a ‘dimer’ has a spatial period of 2, a ‘trimer’ has a 
spatial period of 3 (whether or not there are three distinct types of particles), 
and so on.

10 This idea is reminiscent of Navier–Stokes damping; see e.g. the discussion 
in [159] about the physical interest in such a functional form for the creation 
of ‘lattice turbulence’.
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no universally accepted functional form to describe dissipative 
effects in granular crystals. Features such as plastic deformation 
[24–26, 154–156] and damping due to rotation may also account 
for some of the wave attenuation that has been observed in exper-
iments [208]. The correct way to model such effects in granular 
crystals is an important open research problem. In the present 
review article, we mostly restrict our attention to Hamiltonian 
models of granular crystals (and especially equation (3)).

4. Linear regime and dispersion

The nature of the equations of motion (3) is reminiscent of 
a Fermi–Pasta–Ulam (FPU) oscillator chain [48, 60, 71]. 
The connection is especially evident in the weakly nonlinear 
regime, in which the dynamic strains are small compared to 
the static precompression:

∣ ∣
≪

δ
− +u u

1.n n

n

1

0,
 (9)

One can then Taylor expand the potential function to obtain

( )≈ + +′V y K y K y K y ,n n n n n n n n2, 3,
2

4,
3 (10)

where

δ δ

δ

= = −

= −

+ +
−

+
−

K A K A

K A

3
2

,
3
8

,

3
48

.

n n n n n n

n n n

2, 1 0,
1 2

3, 1 0,
1 2

4, 1 0,
3 2

/ /

/
 

(11)

The function Vn( y ) in equation  (11) is the classical FPU 
potential (also called the ‘K2–K3–K4 potential’ or the ‘α–β 
potential’) [71]. The corresponding linear problem,

( ) ( )= − − −−
+

+u
K

m
u u

K

m
u u¨ ,n

n

n
n n

n

n
n n

2,
1

2, 1
1 (12)

is a prototypical example of a coupled spring–mass system 
that serves as a textbook model for vibration modes [113]. 
For a monomer chain, equation (12) has plane wave solutions,

( ) [ ]( ) π= ∈ω+u t ke , 0, ,n
kn ti

where the angular frequency ω and the wavenumber k are 
related through the dispersion relation

[ ( )] ( / )ω =k
K
m

k
4

sin 2 .2 2 2 (13)

Equation (13) implies that the largest possible angular fre-
quency of a plane wave is /ω = K m20 2  (the so-called ‘cutoff 
point’). It thereby highlights the role of the lattice dynami-
cal system (12) as a filter that allows the transmission of 
frequencies ω ω< 0 but prohibits the transmission of frequen-
cies ω ω> 0. The sound speed cs, which indicates the maxi-
mum speed of a linear wave, is defined as the phase velocity 

( )/ω k k in the limit →k 0. In this case, /=c K ms 2 . The single 
(positive) branch of the dispersion curve represented by equa-
tion (13) is called the ‘acoustic band’ of the linear spectrum. 
If the particles in a granular chain are arranged in a periodic 
manner with period Z∈ +M  (e.g. M  =  2 for a dimer), then the 
linear problem (12) is solved by Bloch waves

( ) [ / ]( ) C π= = ∈ ∈ω+
+u t f f f k Me , , 0, .n n

kn t
n n M

i (14)

One can compute the dispersion relation by solving the 
×M M matrix eigenvalue problem obtained by substitut-

ing equations  (14) into (12). This results in M eigenvec-
tor–eigenvalue pairs ( )ω−f, 2 , where ( )= …f f ff , , , M

T
1 2  

Figure 3. Pass bands (acoustic and optical) and band gap for the diatomic granular chain considered in [20]. (a) Analytical expression 
derived from the corresponding dispersion relations. (b) Experimental transfer function inferred when sending ‘white noise’ from one side 
through the system and then retrieving (on the other side) only the frequencies that belong to the pass bands (observe that the experimental 
and theoretical cutoff frequencies are somewhat different.) Reprinted figure with permission from [20], Copyright (2010) by the American 
Physical Society. 
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[113]. We use notation so that eigenvalues are ordered as 
( ) ⩾ ( ) ⩾ ⩾ ( )ω ω ω− − … −k k kM1

2
2
2 2 . The branch corresponding 

to ( )ω− k1
2  is called the ‘acoustic band’, and ( )ω− kj

2  is called 
the (j  −  1)th ‘optical band’ (where j  >  1). See figure 3 for an 
example of a dispersion relation in a diatomic granular chain. 
If the chain has finite length or is not arranged in a periodic 
manner, one can obtain the angular frequencies of the linear 
modes (which are not necessarily sinusoidal in space) numer-
ically by solving the ×N N eigenvalue problem that results by 
substituting the ansatz ( ) = ωu t ven

ti , with ( )= …v v vv , , , N
T

1 2 , 
into equation (12), where N is the length (i.e. number of parti-
cles) of the chain. In some special cases, one can approximate 
these eigenvalues analytically. For example, this is possible for 
a granular chain with a small number of impurities [134, 135]. 
See [99] for a relevant study for strongly nonlinear chains, 
and see [191] for a relevant study of weakly nonlinear chains. 
In a finite-length granular chain, the boundary conditions and 
length affect the mode shapes and introduce new modes, such 
as gap modes and edge modes (i.e. surface modes) [200].

Now that we have reviewed the dynamics of linear granular 
chains, we will discuss the effects of nonlinearity in the next 
several sections. As we will see, nonlinearity has a significant 
impact on the formation, propagation, and aggregate dynamics 
of waves and other coherent structures. In our discussions, it will 
nevertheless be helpful to keep the linear dynamics in mind.

5. Traveling solitary waves

5.1. Continuum modeling and the Nesterenko solitary wave

In 1985, Lazaradi and Nesterenko reported a new type of soli-
tary wave [116] (see [213] for a review of solitary waves) that 
they found by striking one side of an uncompressed monomer 
granular chain with another particle. The resulting waveform 
was localized like a traditional solitary wave [214], but its tails 
exhibited much faster decay, and it was pondered whether the 
wave, a new type of solitary wave (see figure 4), might even 
have compact support [146]11. The experiments of Lazaradi 
and Nesterenko [116] were performed in the absence of static 

precompression. In this case, equation (3) is purely nonlinear, 
and it is very challenging to study it analytically because the 
nonlinearity is not smooth (as the quantity ( )″′V 0  is undefined 
in the absence of precompression). One of the first analyti-
cal results on a purely nonlinear granular chain was due to 
Nesterenko [145], who derived an explicitly solvable partial 
differential equation as an approximation to equation (3). This 
follows a standard procedure in discrete models by using a 
long-wavelength (i.e. near-continuum) limit in which one 
expects that the spatial extent of the wave is much longer than 
the spacing of the underlying lattice. A standard mechanism 
to transfer from the original discrete framework to this con-
tinuum limit is to introduce a small parameter ε and define a 
new variable ( ) ( )≈U X T u t, n  that approximates a solution to 
equation (3), where the independent variables X and T gener-
ally depend on ε. In the remainder of our article, we use the 
notation U(X, T) to represent a continuum approx imation of 
the displacement un(t), and we use Y(X, T) to represent a con-
tinuum approximation of the strain yn(t). We consider different 
scalings throughout the review, but we use the same notation 
for them for simplicity. In our first example, we define =X nε  
and =T tε . Differences become partial derivatives through a 
Taylor expansion of the new variable U. We thus write

( ( ) ) ( ) ( ) ( )

( ) ( )

ε ε
ε

ε ε

± = ± ∂ + ∂

± ∂ + ∂ +!

U n T U X T U X T U X T

U X T U X T

1 , , , ,
2

,
3!

,
4!

,

X X

X X

2
2

3
3

4
4

where ∂X
j  denotes the jth partial derivative with respect to the 

variable X. Because ε is supposed to be small, the new variable 
U(X, T) has a wavelength that is large relative to that of the 
underlying lattice. Using the scaling =X nε , =T tε , one can 
derive a continuum model from equation (3) that is equivalent 
to the one that Nesterenko derived. One obtains

∂ = −∂ −∂ + ∂ −∂

−
−

−∂ ∂−

⎜

⎟

⎡
⎣⎢

⎛
⎝

⎞
⎠
⎤
⎦⎥

U U U

p p
U U

12

1
2

,

T X X
p

X X
p

X
p

X

2
2

2

2 2 2

( ) ( )

( )( )

ε
 

(15)

Figure 4. (a) For a monomer granular chain, a compression wave travels through the chain after it is struck at one end. After the wave has 
traveled a few lattice sites, it appears as though a constant shape profile forms and propagates through the chain. Each bell-shaped curve 
corresponds to the velocity profile of a single particle. (b) Solution of equation (18) (solid curves), which represents a genuine traveling 
solitary wave. The markers give the associated locations on the lattice. (c) Contour plot of the evolution of equation (3) with initial data 
given by the solitary wave in panel (b).

11 A solitary wave with compact support is called a ‘compacton’ [170].
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where we have assumed that the parameters are normalized (i.e. 
A  =  m  =  1). See [146, chapter 1.3] for the original derivation, 
and see [162] for a detailed version of the derivation for a dimer 
chain. The derivation of equation  (15) assumes a long wave-
length (i.e. →ε 0), although traditionally ε = 1 has been used. 
Consequently, one can construe equation  (15) with ε = 1 
as a ‘quasicontinuum’ model, as it does not possess a small 
parameter, so it is not a self-consistent asymptotic procedure. 
This is one of the limitations of equation (15), as we will dis-
cuss in section 5.3. For now, let’s press on with equation (15) 
despite its limitations and seek traveling wave solutions. We 
define the coordinate ξ = −X cT and the new strain variable 
( ) ( )ξ ξ= ξr U . Substituting the traveling wave ansatz ( )ξr  into 

equation (15) leads to an ordinary differ entially equation (ODE) 
that can be solved explicitly [146, chapter 1.3]. Among the solu-
tions of this ODE, one of par ticular interest is (what has come to 
be known as) the ‘Nesterenko solitary-wave solution’ (which is 
also sometimes called the ‘Nesterenko soliton’ or ‘Nesterenko 
compacton’) [7, 146]:

ξ ξ ξ π= +
−
+

<
+
−

−
− −

⎧
⎨
⎪⎪

⎩
⎪⎪

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟r p

c
p

p p
p p

p
2

1
cos 6

1
1

,
1

24 1
,

0, otherwise.

p
p p

1
1 2

1
2

1
2

2( ) ∣ ∣ ( )
( )

∣ ∣ ( )
( )

 

(16)

This solution agrees reasonably well with direct numerical 
computations of solitary waves of equation  (3) [145]. Note 
that if one starts with the strain-variable formulation in equa-
tion (6) and performs the same derivation for a new continuum 
approximation Y(X,T), then ( ) ( )ξ ξ≠Y r . See the derivation 
and discussion in [7].

In the approximation (16), the amplitude of the wave 
scales with its speed c (a nonlinear analog of a dispersion 
relation) and the wave has a nonzero value only for a finite 
number of lattice sites (roughly 5 particles for a Hertzian 
interaction). Specifically, this suggests that the wave is 
genuinely compact and thus takes the form of a compacton. 
However, as we show in section  5.2, this is not the case, 
although the wave does possess very rapidly decaying (dou-
bly exponential) tails.

In simulations and experiments, one can generate a 
traveling wave in a granular chain by impacting one bound-
ary of the chain (which is at rest) with some initial velocity 
vi. Using scaling arguments on the quasicontinuum model 
(15), one can show that /∝c vi

1 5 [146, sections 1.4 and 1.6.2] 
for Hertzian interactions. The analytical approx imations 
that we reviewed in this section are consistent with exper-
imental and numerical findings [39, 40, 116]. Such results 
are now considered classical, and numerous studies on 
traveling waves in granular chains have followed them 
and built upon them. See the review article [176], which is 

dedicated to solitary-wave solutions of granular chains. In 
the remainder of this article, we will emphasize results that 
appeared after [176].

5.2. Genuine traveling solitary waves

The experiments, numerical simulations, and informal 
asymptotics that we discussed in section 5.1 all suggest the 
existence of stable traveling solitary-wave solutions in a 
homogeneous granular chain. In this section, we consider the 
fundamental mathematical issue of the existence of genuine 
traveling waves. Genuine traveling waves are solutions that 
travel through a granular chain without any disturbance to 
the original wave shape. To identify genuine traveling wave 
solutions, it is convenient to work directly in the strain-
variable formulation of equation (6). Substituting the ansatz 

( ) ( ) ( )ξ= Φ − = Φy t n ct t t, ,n  into equation (6) yields

ξ ξ ξ

δ ξ δ ξ

δ ξ

∂ Φ = − ∂ Φ + ∂ Φ

+ + Φ − − + Φ

+ + Φ +

ξ ξ

+ +

+

t c t c t

t t

t

, , 2 ,

1, 2 ,

1, .

t t
2 2 2

0
3 2

0
3 2

0
3 2

( ) ( ) ( )
{[ ( )] [ ( )]
[ ( )] }

/ /

/

 

(17)

Traveling waves of equation  (3) correspond to station-
ary (i.e. time-independent) solutions ( ) ( )ξ φ ξΦ =t,  of equa-
tion (17). Such solutions satisfy

φ δ φ ξ δ φ ξ

δ φ ξ

= − ∂ + + − − +

+ + +

ξ + +

+

c0 1 2

1 .

2 2
0

3 2
0

3 2

0
3 2

{[ ( )] [ ( )]
[ ( )] }

/ /

/ 
(18)

If the solution also has the property that ( )→ φ ξ =ξ ±∞lim 0, 
it is called a ‘solitary wave’. The existence of such solutions 
follows from a general result of Friesecke and Wattis [69], 
which holds for traveling wave solutions of general FPU 
lattice equations. In [133], this result was applied to equa-
tion (6). Although this existence result is exact (no approx-
imations were made), this proof of it is not constructive, so 
analytical approximations like (16) and numerical computa-
tions are very useful. Chatterjee argued heuristically in [31] 
that the tails of this genuine traveling wave solution are dou-
bly exponential rather than truly compact (as suggested by 
the continuum approximation of equation  (16)) when there 
is no precompression. This fact was proved subsequently 
in [55] by formulating the advance–delay equation  (18) 
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(with δ = 00 ) as a fixed-point problem: Using the transform 
( ) ˆ( )∫φ ξ φ= ξ

−∞

∞
k ke dki  leads from equation (18) to

ˆ( ) /⎜ ⎟⎛
⎝

⎞
⎠φ φ= ̂k

c
k1

sinc
2

,
2

2 3 2 (19)

where the hat ^ denotes the (wavenumber-dependent) Fourier 
transform of the spatial variable. Invoking the convolution 
theorem yields

∫φ ξ ξ φ ξ φ= Λ ∗ = Λ −
−∞

∞
y y dy,3/2 3/2( ) ( ) ( ) ( ) (20)

where ( ) ( / ) { ∣ ∣ }ξ ξΛ = −c1 max 1 , 02 . Without loss of gener-
ality (given the scaling properties of equation  (6)), one can 
assume that c  =  1. Using ξ= −z y and changing variables in 
(20) then yields

∫φ ξ φ ξ φ ξ

φ ξ φ ξ

+ = Λ + −

⇒ +

−
z z z

n

1 1 d

,

1

1
3 2 3 2

3
2

n

( ) ( ) ( ) ⩽ ( )

( ) ⩽ ( )

/ /

( )
 (21)

where we used only the fact that ( )[ ]
/φ ξ+ − =∈ − ysup 1y 1,1

3 2

φ ξ3 2( )/  for a positive, monotonically decreasing traveling 

wave (and the normalization ( )∫ Λ =
−

z zd 1
1

1
). This establishes 

the doubly-exponential decay for traveling solitary waves in 

granular chains with a Hertzian potential p  =  3/2, and it shows 
for general exponents p that φ φ∼n

p
0

n

 as →∞n . Equation (20) 
also provides an efficient numerical algorithm for the com-
putation of such waves by setting up a fixed-point iteration 
scheme (see [55, section  4]). Using an iterative scheme in 
Fourier space (e.g. equation (19)) for the computation of soli-
tary waves in the context of FPU lattices was first introduced 
in [84]. Stefanov and Kevrekidis [184] used a reformulation 
of equation (20) to prove the existence of bell-shaped, mono-
tonically decaying traveling waves for ξ> 0 by constructing 
an energy functional for which the constrained minimization 
problem over bell-shaped entries has a solution. The proof was 
generalized in [185] for granular chains with nonzero precom-
pression. In the latter scenario, the precompression absorbs 
most of the decay in the estimate of equation  (21), leaving 

( )φ ξ+ 1  bounded above by ( )φ ξ  multiplied by a suitable pref-
actor. Decay in this case is thus exponential, as observed both 
numerically and experimentally [146]. The associated waves 

are strongly reminiscent of the supersonic waves of standard 
FPU chains [185]. Moreover, the speed of sound is related 

to the precompression: δ∝
−

c ps

p

0

1
2 , in line with the charac-

terization of the δ = 00  case as a ‘sonic vacuum’ [146]. We 
will further discuss granular chains with precompression in 
section 5.4.

One can study the stability of stationary solutions φ0 of 
equation  (18) by examining the fate of small perturbations 
around them. More concretely, one substitutes the lineari-
zation ansatz ( ) ( )ξ φ ε ξΦ = + λt a e, t0  into equation  (17) to 
obtain the eigenvalue problem

λ ξ ξ λ ξ δ φ ξ ξ

δ φ ξ ξ δ φ ξ ξ

= − ∂ + ∂ + + − −

− + + + + +

ξ ξ +

+ +

a c a c a a

a a

2
3
2

1 1

2 1 1 .

2 2 2
0

0 1 2

0
0 1 2

0
0 1 2

( ) ( ) ( ) {[ ( )] ( )

[ ( )] ( ) [ ( )] ( )}

/

/ /

 
(22)

A similar formulation was used to study the stability of 
traveling kink solutions of the sine-Gordon equation  [101]. 
The stability properties of genuine solitary-wave solutions are 
unknown from a mathematically rigorous perspective, although 
both direct numerical simulations and experiments suggest 
overwhelmingly that they must be stable [146, 204]. Moreover, 
it is not even clear if the stability characteristics of stationary 
solutions of the advance–delay equation (17) are inherited by 
the corresponding solutions of the discrete equation (6). More 
generally, this is an important question about the stability of 
traveling waves on lattices, as the model in equation (17) con-
tains spatial scales that are in some sense ‘inaccessible’ to the 
original lattice (i.e. ones that are below the scale of the lat-
tice spacing). Consequently, one can, in principle, envision a 
scenario in which equation  (17) includes instabilities whose 
imprint cannot occur in the original system in equation (6).

In the absence of rigorous mathematical results, numer-
ical computations give another route to gather information on 
the stability of traveling waves in granular chains. One then 
requires a numerical approximation of equation  (18), which 
one can achieve by discretizing equation (18) in the variable 
ξ and employing Newton iterations to approximate the solu-
tion [53, 204, 210]. Upon this discretization, equation  (22) 
becomes a standard matrix eigenvalue problem. One must be 
cautious, however, because the discretization can introduce 
spurious eigenvalues [210, 216]. Indeed, the best choice of dis-
cretization for stability computations is also an open problem.

Figure 5. Comparison of continuum approximations and genuine solitary-wave solutions of equation (6) for (a) p  =  3/2, (b) p  =  3, and 
(c) p  =  11. The markers show the wave on the lattice, dotted curves show the corresponding solutions of the continuum model (23), 
and dashed curves show equation (16). The approximation does poorer as the nonlinearity exponent p increases. Reprinted figure with 
permission from [7], Copyright (2009) by the American Physical Society.
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An important complementary approach to understanding 
the stability of a traveling wave solution of equation (6) through 
analysis of equation (17) that respects the underlying discrete-
ness of the lattice model is to consider traveling waves as peri-
odic orbits imposed at the level of the original lattice [67]. In 
other words, they are fixed points of the dynamical evolution 
process of travel by one site followed by an integer shift of 
the sites. This viewpoint was explored for traveling breathers 
in [75]. In our view, pursuing both of these approaches (dis-
crete versus continuum), comparing their spectra (see also the 
recent work of [53]), and appreciating their similarities and 
differences is a crucial open area in the mathematical analysis 
of traveling waves in discrete Hamiltonian systems.

5.3. Other continuum models and their limitations

Although the agreement between the quasicontinuum approx-
imation (15) and numerical computations seems satisfactory 
for the exponent p  =  3/2, the level of agreement becomes pro-
gressively less satisfactory as p increases, as was discussed 
systematically in [7] (see figure 5). Consequently, it is natural 
to ask if it is possible to derive the quasicontinuum model of 
equation  (3) in a mathematically rigorous way—for exam-
ple, by bounding the error of the approximation in a suitable 
norm in terms of some small parameter. Using the scaling 

( ) ( )ε ε =Y n t Y X T, , , one can derive the following continuum 
model from the strain-variable formulation (6) of a granular 
chain [7, 38, 84, 202]:

( ) ( )ε∂ = ∂ + ∂Y Y Y
12

.T X
p

X
p2 2

2
4 (23)

Like equation  (16), the model (23) also possesses solu-
tions with compact support. Equation  (23) is a strongly 
nonlinear model reminiscent of the Boussinesq equation. 
Both equation  (15) and equation  (23) are pathological in 
the sense that they are ill-posed for p  =  1 because of large-
wavenumber instabilities in the associated dispersion rela-

tion εω = −k k2 2
12

42

 [47]. The fact that instabilities at large 
k lead to ill-posedness of equation (23) has been studied both 
numerically and by demonstrating instability of the compact 
solutions [94]. Alternative paths [168, 169] (see also [146, 
section 1.4]) for ‘regularizing’ these equations are possible. 
For example, one can write

( ) ( )ε∂ = ∂ + ∂ ∂Y Y Y
12T X

p
X T

p2 2
2

2 2 (24)

by inverting ε− ∂1 X12
22

 in equation (23) and Taylor expanding it 
on the left-hand side. However, equation (24) also has issues, 
as now traveling waves acquire an exponential tail [93] and 
thus do not possess the proper doubly-exponential decay [55, 
184]. It is also interesting (and an open avenue) to consider a 
variant of equation (23) involving Padé approximations [104, 
168, 169, 202] of the form

ε
∂ =

∂

− ∂
Y Y

1
.T

X

X

p2
2

12
22 (25)

As an aside, we note that one can directly approximate the 
solitary traveling wave of equation (3) using a Padé approx-
imation by substituting the ansatz

( )φ ξ
ξ

=
∑ q

1

j j
j

into a normalized variant of equation (18) and solving an alge-
braic system for the qj [183]. The continuum models above are 
somewhat unsatisfactory, as they require an arbitrary trunca-
tion in the Taylor expansion of the nonlinearity. A more math-
ematically sound approach is possible by defining ε= +p 1  
and considering an approximation in the →ε 0 limit (i.e. in the 
vicinity of the linear limit). One thereby derives the so-called 
‘log-KdV equation’ [93]

( (∣ ∣))∂ + ∂ + ∂ =Y Y Y Ylog 0T X X
3 (26)

using the scaling ( ( ) ) ( )ε ε− =Y n t t Y X T, ,3 . Equation  (26) 
possesses an exact Gaussian traveling wave solution. The 
exact solitary-wave solution of equation (18) and the compac-
ton solution of (23) both approach this Gaussian profile in the 
→ε 0 limit for near-sonic wave speeds. However, the Gaussian 

traveling wave does not capture the doubly-exponentially 
decaying coherent structure as p deviates from 1 (and espe-
cially for p  =  3/2, where it fails by about 35 %). It is unclear if 
equation (26) is well-posed, as the nonlinear term diverges at 
Y  =  0. Consequently, a full understanding of continuum mod-
eling of a purely nonlinear granular chain remains a difficult 
problem that has only partially been addressed.

5.4. Traveling solitary waves in precompressed Granular 
chains

If a granular chain is compressed statically (such that δ ≠ 00 ), 
its governing equation  (3) is linearizable, and the resulting 
dynamics differ strikingly from the case without precompres-
sion. As we indicated previously (see section 5.2), the super-
sonic waves in this case possess tails with an exponential 
decay (rather than the doubly-exponential decay of a purely 
nonlinear granular chain). This implies that the traveling wave 
solution of the purely nonlinear problem is a singular limit—
rather than a regular limit—of the traveling wave solution as 
the precompression tends toward 0.

In the presence of precompression, the scaling 
( ( ) ) ( )ε ε− =Y n t t Y X T, ,3  leads to another log-KdV equa-

tion, similar to equation (26), that is well-posed (because the 
nonlinear term is no longer divergent) [54]. This variant of the 
log-KdV equation is a useful model for general initial data, as 
opposed to equation (26), which is relevant only for special 
solutions. A rigorous justification of this log-KdV equation as 
an accurate continuum limit of a granular chain with precom-
pression (defined in equation (6)) was given in [54].

Adding precompression also introduces a natural small 
parameter δ| |≪y 1n n0,/  for the strain amplitude yn relative to the 
precompression value δ n0, . For solutions with small strain mag-
nitude ⏐yn⏐, the nonlinear response is weak, and one can describe 
the dynamics of a granular chain through its associated Taylor 
expansion. Continuum modeling of the FPU equation with a 
polynomial potential is well-understood [65, 174]. For example, 
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using the scaling ( ( ) ) ( )ε ε ε ε= − =y Y n ct t Y X T, ,n
2 3 2  applied 

to a precompressed granular chain with the first three terms in 
its Taylor expansion (see equation (10)) leads to the Korteweg–
de-Vries (KdV) equation [212]

( )∂ = ∂ + ∂c Y
c

Y K Y2
12

,T X X

2
3

3
2 (27)

where one chooses δ0 so that K2  =  1. The soliton solution of 
the KdV equation (27) provides a reasonable approximation 
of the genuine traveling solitary-wave solution of a precom-
pressed granular chain for velocities c close to (but above) 
the sound speed cs. Solitary-wave interactions have also been 
explored in this context [177]. The KdV description has been 
studied rigorously (with error estimates) for a monomer FPU 
chain [65, 174]. In stark contrast to granular chains without 
precompression, there are rigorous results not only for the 
existence of traveling solitary waves but also in descriptions of 
both their linear and nonlinear stability [66–68]. Additionally, 
[32, 70] rigorously derived the KdV equation for dimer and 
M-mer granular chains (see section 5.5).

5.5. Traveling structures in configurations other than  
monomer chains

Let us now discuss striking the end of a heterogeneous (i.e. 
nonuniform) granular chain. Generically, for heterogeneous 
chains, one does not observe the formation of a constant-shape 
traveling structure that propagates indefinitely (as in figure 4). 
For example, for a diatomic granular chain that consists of alter-
nating light and heavy masses, the lighter-mass particles vibrate 
between adjacent particles of heavier mass after the initial wave 
front has passed. This can result in the attenuation of a travel-
ing wave. Hence, although early numerical and experimental 
(and heuristic analytical) studies for diatomic (and triatomic) 
granular chains suggested the possible existence of propagat-
ing structures [161, 162], a more systematic examination of the 
dynamics revealed an intriguing phenomenology that depends 
on the ratio of light to heavy masses [95]. This ratio is a canoni-
cal parameter of a diatomic chain, and pulse attenuation can be 
significant at special mass ratios (i.e. at ‘resonances’) [95, 96], 

as has been studied both theoretically [96] and experimentally  
[109, 201]. Interestingly, for another set of special mass ratios 
(i.e. at so-called ‘anti-resonances’) [95], there seems to exist 
a genuine traveling wave structure, as the vibrating frequency 
of the lighter particles is in synchrony with the wave speed 
of the traveling structure, so energy is transferred completely 
from the lighter to the heavier particles and vice versa. This 
latter feature has also been confirmed experimentally [109]. 
(See [197] for the related case of a diatomic Toda lattice.) In 
contrast to the solitary waves of a monomer chain, the tails of a 
solitary wave in a dimer have small-amplitude oscillations that 
do not decay to 0 [95, 162]. It is an open problem if there are 
indeed special mass ratios in which the oscillating tails vanish 
(i.e. if there exists a genuine solitary wave with exponentially 
decaying tails in diatomic granular chains). This question has 
been answered partially in the related problem of a diatomic 
FPU problem with a polynomial potential [59]. There, it was 
shown rigorously that solitary waves exist near sonic speed and 
that they are the superposition of a periodic traveling wave (the 
tail) and an exponentially localized function. However, [59] 
did not give a lower bound for the amplitude of the periodic 
traveling wave, so one cannot guarantee that this ‘oscillating 
tail’ is nonzero for all mass ratios. Their result applies to a 
precompressed granular chain, but the methodology in [59] 
cannot be used for a purely nonlinear granular chain. The exact 
numerical computation of solitary waves with nonvanishing 
tails in a granular crystal is an intriguing open problem, and 
it is also open to perform systematic numerical illustrations of 
this phenomenon, if it exists, in the strongly nonlinear limit.

A variety of similar features to the ones that we described 
in the paragraph above arise in ‘locally resonant chains’, in 
which each particle is connected to a vibrating (resonator) ele-
ment (see figure 6). For a linear resonator, the equations of 
motion are

[ ] [ ]
( )

/ /δ δ= + − − + −

− −

− + + + + +m u A u u A u u

k v u

¨

,

n n n n n n n n n n

n n

1
3 2

1 1 1
3 2

1
 

(28)

( )= −v k v u¨ ,n n n1 (29)

Figure 6. (a) A woodpile chain, which can be modeled as (b) a locally resonant granular crystal. (a) and (b) Reprinted figure with 
permission from [110], Copyright (2015) by the American Physical Society. (c) A mass-in-mass granular chain. Reproduced with 
permission from [43].
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where vn is the displacement of the attached resonator (whose 
mass we have scaled to 1 in equation  (28). Physical exam-
ples of locally resonant chains include ‘woodpile’ phononic 
structures (see figure 6), which consist of a stacked array of 
cylinders (i.e. rods), whose bending modes are modeled as 
vibrating elements [110]; ‘mass-with-mass’ systems (in which 
the resonators are external rather than internal) [72, 106]; 
and ‘mass-in-mass’ systems (in which each particle contains 
another vibrating particle) [21, 106]. Solitary-wave solutions 
of locally resonant chains are similar to their counter parts in 
diatomic granular chains. Generically, they have nonvanish-
ing oscillating tails [204], but their tails do vanish for some 
special parameter values. See [204] for numerical computa-
tions and [105] for a rigorous proof. The woodpile chains also 
have another interesting characteristic: because the resonators 
in this case are ‘intrinsic’ (i.e. they consist of the vibrational 
modes of the rods themselves), one can adjust the length (and 
other properties) of the cylinders to tune the associated inter-
nal vibration modes. A scenario in which multiple such modes 
are involved in the dynamics was broached in [110], and it 
seems to lead typically to attenuation of wavelike excitations.

Traveling waves in heterogeneous granular chains with 
nonperiodic arrangements also exhibit interesting phenom-
ena. The effect of impurities on traveling waves in granular 
chains is well-studied and results in reflected and transmitted 
waves [176]. Intriguingly, in the presence of multiple impuri-
ties (as well as precompression), the dynamics can feature 
resonant interactions that enable (perfect) transmission of 
small-amplitude waves through the impurities. This analog of 
the well known Ramsauer–Townsend resonance in quant um 
physics was illustrated recently in [137]. Another type of het-
erogeneous chain is a tapered one, in which some feature (e.g. 
the mass) of the particles increases or decreases gradually 
along a chain (see, e.g. [50, 51, 79, 80]). One can also design 
particular heterogeneities to mitigate forces at the end of a 
chain [64]. While the quasicontinuum modeling described 
in section 5.1 cannot be applied to such situations, one can 
obtain analytical approximations by employing the so-called 
‘binary collision approximation’, in which at each time one 
considers the dynamics at only two lattice sites [127].

Another intriguing direction of intense recent interest 
involves the interplay of structural disorder with the gran-
ular nonlinearity and the lattice discreteness. In the broad 

context of condensed-matter physics, disorder (e.g. in the 
form of randomness) causes strong localization—so-called 
‘Anderson localization’—that affects the diffusivity of waves 
in disordered media [9, 22]. Recent studies in the context of 
granular crystals have demonstrated computationally that 
such localization phenomena can be altered dramatically and 
can be even reversed (as superdiffusive transport can occur) 
by manipulating the nonlinearity strength in mechanical 
systems [6, 136] (see also, e.g. [160, 180]) and its poten-
tial ‘competition’ with disorder. Such versatile dynamics 
associated with disorder and nonlinearity have been stud-
ied only very recently in granular crystals (and, more gen-
erally, they have not been studied much in lattice systems 
with inter-site interactions). There are numerous exciting 
directions to pursue in this area. Some of these predictions 
have now been verified experimentally [111], but additional 
experimental efforts are needed. A far more detailed under-
standing exists for lattice systems with on-site nonlineari-
ties [61, 114], where nonlinearity promotes localization (in 
the form of discrete breathers), rather than enabling mobility 
(in the form of traveling waves, as in FPU-type lattices). As 
a result, energy transport is only subdiffusive, whereas (as 
indicated above) superdiffusivity can occur for disordered 
granular crystals [6, 136]. The study of disorder and non-
linear analogs of Anderson localization are important direc-
tions to pursue. They are accessible experimentally, and a 
systematic theoretical understanding of associated super-
diffusive and subdiffusive transport should yield important 
insight more generally on the interaction between disorder 
and nonlinearity.

6. Dispersive shock waves

As we discussed in sections 5.1 and 5.3, one can derive a 
quasicontinuum approximation of a solitary-wave solu-
tion in a long-wavelength limit of a monoatomic granular 
chain. However, a genuine solitary-wave solution is strongly 
localized, with doubly-exponential tail decay when there 
is no precompression and exponential tail decay when 
there is precompression. If one considers a similar wave-
form, except with a considerably wider spatial scale (see 
figure 7), it appears, upon evolving the initial data through 

Figure 7. (a) Strain profile of a solitary-wave solution (red curve) in a granular chain. One uses an arbitrary long-wavelength bell-shaped 
curve (blue curve) as initial data when solving equation (6). (b) Contour plot of the evolution of the blue curve of panel (a) via equation (6). 
Observe that the high-amplitude portion of the wave (yellow) travels faster than the low-amplitude part (light blue). (c) Strain profile (at 
time t  =  20) showing the onset of microscopic oscillations, which are reminiscent of a dispersive shock. (d) Dispersive-shock solution of 
the KdV equation. Reproduced with permission from [2].
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equation (6), that the wave speed of each point of the wave-
form depends on the amplitude at that point, with larger 
amplitudes entailing faster wave speeds (see figure  7(b)). 
To understand this observation from an analytical perspec-
tive, one can employ a quasicontinuum modeling approach 
[146, section 1.4.5]. We consider the long-wavelength ansatz 
= =y Y n t Y X T, ,n ( ) ( )ε ε . This yields

[( ) ]δ∂ = ∂ +Y Y .T X
p2 2

0 (30)

Equation (30) is reminiscent of equation (23), except that 
now δ ≠ 00  and there is no higher-order correction term. We 
can rewrite equation  (30) as a system of conservation laws 
[34]:

δ
∂ − ∂ =

∂ − ∂ + =
⎫⎬⎭

Y V
V Y

0
0

,T X

T X
p

0

 
[( ) ]   (31)

which have the form of a so-called ‘p-system’ [123, 179]. By 
defining

( ) ( ) ( )⎜ ⎟⎛
⎝

⎞
⎠δ= = −

− +
Y
V

F
V

Y
Y Yand ,p

0

we can express equation (31) as a Burgers-type system:

( )∂ + ∂ =DFY Y Y 0,T X (32)

where

( ) ( )
⎛
⎝⎜

⎞
⎠⎟δ

=
−

− + −DF
p Y

Y
0 1

0p
0

1

is the Jacobian matrix of F. The eigenvalues of ( )DF Y  are 
( ) ( )λ δ=± +±

−p YY p
0

1, which suggests that solutions 
of equation  (31) consist of traveling waves with velocity 

( )δ± + −p Y p
0

1. Because the velocity depends on the ampl-
itude Y of the solution (with larger speeds for larger ampl-
itudes if p  >  1), bell-shaped initial data deforms and steepens, 
as observed in figure 7. For δ ≠ 00 , it was demonstrated rig-
orously in [34] that equation  (30) accurately describes the 
dynamics of a granular chain over long but finite time inter-
vals. The approximation breaks down when solutions of equa-
tion (30) become singular (e.g. at the point of wave breaking). 

In the inviscid Burgers equation  ( )∂ = ∂u ut x
2 , the steepening 

of bell-shaped initial data leads ultimately to the formation 
of ‘shock waves’ (i.e. front solutions that develop an infi-
nite derivative in finite time) [52]. Such derivative singulari-
ties cannot arise in a granular chain (because it is discrete in 
space), but the result of the amplitude-dependent wave speed 
(see figures 7(b) and (c)) and subsequent steepening is remi-
niscent of systems that possess so-called ‘dispersive shocks’ 
[2], in which microscopic oscillations spread out in space and 
time (see figure 7(d)). Something very similar occurs in gran-
ular chains with precompression [34] (see figure 7(c)), pre-
sumably because of the dispersive role of discreteness when 
a structure becomes sufficiently localized in space. Recently, 
dispersive shocks were studied numerically in FPU lattices 
with general convex potentials for arbitrary Riemannian (i.e. 
jump) initial data [82]. Because the p-system cannot describe 
the microscopic oscillations observed in figure 7(c), it is nec-
essary to pursue other avenues to study them analytically. For 
example, in the presence of precompression, one can consider 
the KdV limit (see equation (27)) and derive Whitham equa-
tions  to describe the amplitude of the oscillations of a KdV 
dispersive shock [2]. A complementary perspective arises 

from identifying a first-order equation (with ( )∝
+

Y YT
p

X
1

2 ) in 
a vein similar to [138] and exploring its nonlinear transport 
properties. One can also construct discretizations of this first-
order equation and examine the properties of those discrete 
equations, analogous to the discretization analyses of Burgers 
equation  in [196]. As our discussion suggests, the analyti-
cal study of dispersive shocks in granular chains both with 
precompression and (especially) without precompression 
includes a considerable number of fascinating open questions.

Shock-like structures have been studied experimentally in 
granular chains with p  =  3/2 and δ = 00  [140]. In that work, 
a ‘shock wave’ was generated by imparting velocity continu-
ously to the end of a chain [140]. Another work relevant for 
the experimental realization of shocks in granular media is 
[81], which considered the role of dissipation. The oscillations 
observed in the shock wave of the Hamiltonian system (3) dis-
appear beyond a critical value of the viscosity of the damped 
system [81].

Figure 8. A Hamiltonian breather of a diatomic granular chain considered in [191]. (a) Profile of the displacement un and (b) Floquet 
spectrum of the solution in panel (a). There is a Floquet multiplier (FM) with modulus greater than 1, indicating that there is an instability. 
(a) and (b) Reprinted figure with permission from [190], Copyright (2010) by the American Physical Society. (c) Spatiotemporal evolution 
of the forces for a simulation of the modulation instability and ensuing breather generation from initial conditions that correspond to the 
lower optical cutoff (plane-wave) mode (see figure 3). Reprinted figure with permission from [20], Copyright (2010) by the American 
Physical Society.
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7. Breathers

7.1. Discrete breathers and their stability

The final example of a prototypical nonlinear structure in a 
granular chain that we will discuss is a ‘discrete breather’ 
(sometimes also called an ‘intrinsic localized mode’), which 
is temporally periodic12 and strongly localized in space [28]. 
In the context of a granular chain, a discrete-breather (DB) 
solution of equation (3) satisfies the properties

( ) ( ) ∣ ∣
→

= + − =
±∞

+u t u t T u u, lim 0,n n b
n

n n 1

where Tb is the breather period (see figure  8(a)). Breathers 
are generic excitations in spatially extended, discrete, periodic 
(or quasiperiodic) systems [62]. The span of systems in which 
such structures have been studied is broad and diverse: they 
include optical waveguide arrays and photorefractive crystals 
[117], micromechanical cantilever arrays [172], Josephson-
junction ladders [17, 195], layered antiferromagnetic crys-
tals [56, 175], halide-bridged transition metal complexes 
[186], dynamical models of the DNA double strand [158], 
Bose–Einstein condensates in optical lattices [141], and many 
others.

Once one finds a breather solution numerically (e.g. via a 
fixed-point iteration of the time-Tb map of a system of interest 
(see section 7.7), a natural followup question is its stability. 
There have been extensive studies of the stability properties 
of breathers in discrete Hamiltonian systems (see [62, 4.2] 
and [12, 63]). For breathers in a granular chain, we focus on 
the notion of ‘spectral stability’, which is determined in the 
following way. One adds a perturbation to a breather solu-
tion and uses equation (3) to derive an equation that describes 
the temporal evolution of the perturbation. Keeping only lin-
ear terms in this equation yields a Hill equation with tempo-
rally-periodic coefficients of period Tb (see equation (40) of 
section 7.7). Consequently, the eigenvalues (or Floquet multi-
pliers) of the associated variational matrix V(t) at time t  =  Tb 
determine the spectral stability of breather solutions. Because 
of the Hamiltonian structure of the system, all Floquet mul-
tipliers (FMs) must lie on the unit circle for the solution to 
be (marginally) stable; otherwise, the solution is unstable (see 
figure 8(b)). There are continuous arcs of spectrum on the unit 
circle (in the infinite-lattice limit), and one can compute these 
arcs from the linear spectral bands of equation  (3). In gen-
eral, the isolated multipliers (i.e. the ‘point spectrum’) must 
be computed numerically (see section 7.7). For Hamiltonian 
systems, there is at least one pair of FMs at the point  +1 
(i.e. at the point (1,0) of the unit circle). These correspond to 
the invariance of the system under time translation—a fea-
ture responsible for the conservation of the total energy. By 
exploiting information about this FM pair, one can extract a 
stability criterion for breathers [102] that is reminiscent of the 
well-known Vakhitov–Kolokolov criterion for the stability 
of solitary waves. Specifically, this criterion establishes that 
a change of the monotonicity of the energy-frequency curve 

results in a change of stability of the corresponding breather 
solution. The above notion of stability is tantamount (for 
states such as traveling waves) to that of linear stability around 
stationary or traveling structures. The persistence of breath-
ers under fully nonlinear evolution in granular chains (and 
in general nonlinear lattices) is still incomplete. Therefore, 
at present, the above spectral-stability predictions need to be 
validated through direct numerical simulations.

In the presence of damping (see section  7.5), the pic-
ture is different, because then a granular chain is no longer 
Hamiltonian. The continuous part of the spectrum now typi-
cally lies within the unit circle, so most eigendirections of 
perturbation decay over time. If all FMs lie within the unit 
circle, the solution is not merely stable, but it also attracts 
nearby dynamics. Naturally, in this case, for a DB to exist 
in the first place, there needs to be some form of forcing 
(or energy pumping). Some of the examples that we will 
give in section 7.5 are in damped, driven granular chains. 
An interesting avenue for future work is to seek solutions 
in the form of dissipative DBs, which have been studied in 
systems such as radio-frequency superconducting quantum 
interference device arrays [115].

7.2. Nonexistence results

In the absence of precompression (i.e. when δ = 0n0, ), the 
mean interaction force of a temporally-periodic solution u 

must vanish: ( ( ) ( ))∫ − =′ −V u t u t td 0
T

n n0 1 . This observation, 

and the fact that ( ) ⩽− −−V u u 0n n1 , implies that the only tem-
porally-periodic solutions are the trivial equilibria (see [93, 
theorem 1]). Consequently, for a homogeneous chain, pre-
compression is crucial for the emergence of DBs. The linear 
band structure that results from precompression allows a natu-
ral place from which breathers can bifurcate. In a monomer 
granular chain, one can try to construct approximate breather 
waveforms using a continuum modeling approach. With the 
ansatz

ω≈ + + +

= − =

y t Y X T k n t

X n ct T t

, exp i i c.c. h.o.t.,

, ,

n 0 0

2

( ) ( ) ( )
( )
ε

ε ε
 (33)
where ‘c.c.’ is the complex conjugate and ‘h.o.t.’ stands for 
higher-order terms, one can derive a nonlinear Schrödinger 
equation (NLS) from equation (6)13. The NLS that one obtains 
is

∣ ∣ ( )/″ν ν ω∂ = ∂ + = − >Y Y B Y Y ki , 2 0,T X2
2 2

2 0 (34)

where B is a lengthy wavenumber-dependent expression  
[89, 173]. We define the notation ( )ω ω= k0 0 , where k0 is the 
wavenumber and ( )ω k0  is the angular frequency given by the 
dispersion relation (13) evaluated at the wavenumber k0. We 
also introduce the notation ( )ω= ′c k0 . The approx imation (33) 

13 Note that the NLS ansatz (33) assumes small amplitudes, so one actually 
derives the NLS equation from the FPU model with a polynomial potential 
given by a Taylor expansion of the Hertz law (10) This is similar to the 
derivation of the KdV equation in section 5.4.

12 Arguably, it may be desirable to loosen the definition and not demand 
strict periodicity.
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represents a standing DB if c  =  0 (i.e. when the dispersion 
curve has vanishing slope). For a granular chain, this occurs at 
the edge of the spectrum (i.e. at π=k0 ). At the wavenumber 

π=k0 , the coefficient B is

= −B K K K3 4 .2 4 3
2 (35)

For any value of the nonlinearity exponent p  >  1, one 
obtains B  <  0 for a granular chain. The ansatz (33) represents 
a spatially-localized function if the envelope function Y is spa-
tially localized. The soliton solution of the NLS equation (34) 
is a spatially localized function, but this solution exists only 
for the focusing NLS equation (i.e. when B  >  0). This suggests 
the possibility that breathers (of small amplitude and on top of 
a vanishing background) may not exist in a monomer granular 
chain. (As with other coherent structures and motivated by 
optical systems, breathers on top of a vanishing background 
are sometimes called ‘bright’ breathers.) One can reach the 
same conclusion by realizing that linear plane-wave solu-
tions that evolve through the nonlinear equations of motion 
can collapse to a localized breather state through a modula-
tional instability (MI) of a homogeneous background. For the 
monomer K2–K3–K4 FPU lattice, the condition for MI of plane 
waves is − >K K K3 4 02 4 3

2  [62, section  4.3]. The expression 
on the left-hand side of this inequality is exactly the nonlin-
earity coefficient of the NLS equation  (35). Because B  <  0, 
breathers cannot form through an MI. This discussion thus 
gives a heuristic argument that bright breathers do not exist. 
This result has been made mathematically rigorous using 
center-manifold theory [90], a rather different approach from 
the investigation of MIs. This result implies that to obtain a 
breather in a granular chain, one must modify the configura-
tion either by altering the chain (e.g. with a heterogeneity or 
an on-site potential) or by seeking an alternative waveform 
(e.g. seeking a dark breather rather than a bright breather, as 
described in section 7.6). In the following sections, we will 
explore both scenarios.

7.3. Breathers in chains with impurities

By introducing an impurity (or ‘defect’) into a precompressed 
(and hence linearizable) monomer granular chain, one can cre-
ate a linear mode from which a breather can bifurcate. Such 
breathers are sometimes called ‘impurity modes’. It is pos-
sible to construct one or more breather branches as nonlinear 
continuations of (light-mass) defect modes of the linear prob-
lem. One can compute the eigenfrequencies and their modes 
as described in section  4. If the defect mass is lighter than 
the other masses in the ‘host’ chain, the corresponding eigen-
frequency lies above the acoustic band, so the corresponding 
mode is spatially localized [134]. Otherwise, the eigenfre-
quency lies within the acoustic band, and the associated mode 
is spatially extended. In [191], it was shown using a granular 
chain with free boundary conditions and a single light defect 
that breathers can be continued in frequency from the local-
ized linear defect mode to the edge of the acoustic band. The 
solutions feature a profile that is asymmetric. The case of two 
identical defects is qualitatively similar to the single-defect 
case if the defects are adjacent. However, if there is a particle 

between the two defects in a chain, there exists both a linear 
defect mode with a symmetric profile and a linear defect mode 
with an antisymmetric profile. The branch corresponding to 
the continuation of the antisymmetric mode undergoes a 
symmetry-breaking pitchfork bifurcation in which two asym-
metric solutions are created. If the two defects are different 
(e.g. in their masses), the antisymmetric branch undergoes an 
imperfect pitchfork bifurcation.

7.4. Breathers in periodically-arranged chains

One obtains a periodic arrangement in an infinite granular 
chain by introducing an infinite number of defects in a periodic 
fashion. (The simplest example is a diatomic chain.) However, 
in contrast to a chain with a finite number of impurities, the 
linear mode from which a breather bifurcates is not spatially 
localized. Instead, a DB forms spontaneously after a spatially 
extended linear plane wave undergoes an MI (see figure 8(c)). 
In the context of granular chains, DBs were first studied theor-
etically and illustrated experimentally in [20] using precom-
pressed diatomic chains that consisted of alternating steel and 
aluminum spheres. A chain was driven at the boundaries at 
the first cutoff frequency of the optical band, and the corre-
sponding mode experienced an MI. This occurred because the 
bottom of the optical band of the dispersion relation satisfies 

( )″ω >k 00  (see figure 3(a)), which leads through an asymp-
totic reduction to an effectively self-focusing NLS equation14, 
which is subject to an MI. After some transient dynamics, a 
breather (spontaneously) forms, and it has a frequency that 
is located in the spectral gap that joins the acoustic and opti-
cal bands. One can obtain a more precise description of such 
a breather through numerical computations and subsequent 
parametric continuation. Several families of DB solutions in 
diatomic granular chains were studied in [190]. These breath-
ers have different amplitudes and amounts of localization, and 
they can be either asymmetric or symmetric. The asymmetric 
breathers are centered at a light particle, and the symmetric 
ones are centered at a heavy particle. If the DB frequency is 
sufficiently close to the optical band, one can approximate the 
breather dynamics using the NLS equation [32, 88] (in a simi-
lar vein as we described in section 7.1). The selection of both 
the frequency and the location of the resulting breather when 
it emerges as a result of instability is still an open problem.

There have also been studies of breathers in chains with 
larger spatial periods. For example, period-3 (i.e. ‘trimer’) 
chains and period-4 chains were examined in [86]. Such 
sequences can consist either of particles that are all distinct 
(such as a trimer with one steel, one aluminum, and one brass 
particle) or can include multiple instances of a given type of 
particle (such as a tetramer of one steel and three aluminum 
particles). The trimer and tetramer chains have, respectively, 
two and three spectral gaps. A surprising, generic feature of 
the breathers in these systems is that the ones that bifurcate 
from the upper bands tend to be more robust (in terms of sta-
bility) than their counterparts that bifurcate from the lower 
bands. This appears to be because the former are able to avoid 

14 Recall that, at the edge of the spectrum π=k0 , the sole branch of the 
dispersion relation in a monomer chain satisfies ( )″ω <k 00 .
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resonances with (higher-frequency) linear modes, but a sys-
tematic investigation of the stability of the various breathers 
remains an open problem.

7.5. Breather variants in damped, driven granular chains

To obtain a more realistic description of breathing solutions 
from experiments of granular chains, one needs to account 
for their external drive and damping. Perhaps the simplest 
damped, driven model involves replacing one or both bound-
aries with a harmonic drive ( ) ( )π=u t a ftsin 20 , where R∈a f, , 
and to add a (linear) dashpot term ( / )τ− m u̇n n to equation (3), 
where the ‘inverse damping strength’ τ (which is usually deter-
mined empirically) represents a time scale associated with the 
damping. One can interpret this form of dissipation as friction 
between individual grains and the supporting rods. This model 
for dissipation has been used for granular chains in several 
previous works [19, 30, 37], although (as noted in section 3) 
several studies (see, e.g. [29, 76, 81, 199]) have considered 
internal friction caused by contact interaction between grains.

Unlike in the associated Hamiltonian model, temporally-
periodic solutions of a damped, driven granular chain can 
attract other types of dynamics, so one can obtain them by 
driving an initially at-rest chain for a sufficiently long time. 
These are the most straightforward breather-like solutions 
to detect experimentally. For theoretical considerations and 
to obtain a more complete view of the solution space of the 
system, one can also obtain unstable waveforms via Newton 
iterations (see section 7.7). One can study the resulting solu-
tions as one varies the driving amplitude parameter a or some 
other parameter. Through numerical simulations and experi-
ments, it has been shown in a chain with an impurity [19] 
and periodic arrangements (e.g. driven diatomic and triatomic 
chains [30, 87]) that the interplay of nonlinear surface modes 
with modes caused by the driver create the possibility, as the 
driving amplitude is increased, of hysteretic dynamics and 
saddle–node bifurcations of limit cycles, beyond which the 
dynamics of the system becomes quasiperiodic or chaotic 
(see figure  9(a)). In light of these features, damped, driven 
granular chains have been proposed for acoustic switching 
and rectification applications [19]. An intriguing phenom-
enon that is worth further investigation is that periodic orbits 
can arise even when the drive is applied to a chain without 

precompression (i.e. in the sonic-vacuum regime). See [164] 
for a numer ical study of this observation and [215] for an 
experimental study. Although the nonexistence result that we 
discussed in section 7.2 excludes the possibility of breathers 
in a purely nonlinear Hamiltonian granular chain, the works 
[164, 215] suggest that the presence of damping and driving 
allow the possibility of breathers in such chains. A rigorous 
proof of such a result is an open problem.

For a fixed, small driving amplitude (in particular, for 
∣ ∣≪ δa 0), one can perform a continuation in driving frequency 
to obtain a single branch that has peaks corresponding to 
the linear resonances. In general, as the driving amplitude 
increases, the peaks in the bifurcation diagram bend [30, 37, 
132] (see figure 9(b)) in a way that is reminiscent of the foldo-
ver event of driven oscillators [144]. See [206] for a recent 
study that extends this idea to granular chains. Such nonlinear 
bending can be useful for applications such as energy harvest-
ing [36].

7.6. Breather variants in homogeneous chain configurations

As we highlighted in section 7.2, the NLS equation  (34) in 
a homogeneous granular chain does not have bright-soliton 
solutions on top of a vanishing background, because the non-
linear coefficient is negative (i.e. B  <  0). In this case, the NLS 
equation is self-defocusing [103], and it thus possesses dark-
soliton solutions

( ) /κ κ
ν

κ= − <κ
⎛
⎝⎜

⎞
⎠⎟Y X T B X e, tanh

2
, 0,T

2

i

 (36)

which have smaller amplitude than the background. 
Consequently, the approximation of equation  (33) with the 
envelope function Y chosen to be a dark soliton represents a 
breathing solution (with π=k0 ) on top of a nonzero back-
ground (i.e. it is a ‘dark breather’):

( ) ( ) ( ) ( )ε
⎛
⎝⎜

⎞
⎠⎟ε κ κ

ν
ω= − − −y t

B
n x t2 1 tanh

2
cos ,n

n
b

2
0 

(37)

where εω ω κ= +b 0
2 is the frequency of the breather (see 

 figure 9(c)). This approximation, along with numerical com-
putations, was used to study such states in a monomer granular 

Figure 9. (a) Continuation in driving amplitude of a damped, driven granular chain with an impurity near the drive source. Adapted by 
permission from Macmillan Publishers Ltd: [Nature Materials] [19], Copyright (2010). (b) Continuation in driving frequency in a damped, 
driven monomer chain. Reprinted figure with permission from [37], Copyright (2014) by the American Physical Society. (c) Dark breather 
in a monomer granular crystal. Reprinted figure with permission from [35], Copyright (2013) by the American Physical Society.
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chain in [35] for frequencies that lie within the acoustic band. 
For frequencies close to the cutoff frequency ω0, the solutions 
are well-approximated by the associated NLS description, and 
large-amplitude solutions bifurcate from the small-amplitude 
solutions described by the NLS equation. The experimental 
realization (and bistability in a damped, driven chain) of dark 
breathers was studied in [37]. An interesting byproduct of 
the investigations of bistability was the numer ical and exper-
imental identification of branches of solutions with 3, 5, 7, etc 
dark breathers.

Localized breathing states can also arise in a granular 
chain without precompression if there is an additional on-site 
potential. Such a model can describe systems such as an array 
of canti lever beams decorated by spheres or, in principle, 
a Newton’s cradle under the influence of gravity [92]. The 
breathers bifurcate from the lone linear mode introduced by 
the linear potential, and they tend to be more localized than 
the breathers that occur in granular chains with defects or peri-
odic structures that we described in previous sections. In this 
setting, the breathers (and traveling generalizations of them) 
are well-described by the so-called ‘discrete p-Schrödinger 
equation’ (DpS) [91, 92, 93], which one can derive through a 
multiple-scale analysis similar to ones that we have described 
throughout this review. This multiple-scale analysis has been 
justified rigorously (through suitable error bounds) in this set-
ting [91].

Breathing states have also been explored in locally resonant 
homogeneous granular chains (see equation (28) and figure 6) 
[129, 130]. In the presence of precompression, [130] examined 
(i) traveling bright breathers and (ii) stationary and traveling 
dark breathers. As with a monomer granular chain, one can 
use a multiple-scale expansion to derive an NLS equation—
which is either of the defocusing or of the focusing variety, 
depending on the particular location in the acoustic or optical 
band—and thereby construct breathers. Perhaps more surpris-
ingly, in granular chains without precompression, periodic 
traveling waves and dark breathers can exist [129], despite the 
absence of a linear spectrum from which these solutions can 
bifurcate. In this case, the relevant approximate model is a 
variant of the DpS equation—specifically, it is a model rely-
ing on averaging over the breather period, but which now has 
a considerably more complicated form than the original DpS 
model—rather than an NLS equation.

7.7. Numerical computation of breathers and their spectral 
stability

We now provide a brief summary of how to compute breath-
ers in granular crystals (as well as more generally) and how 
to assess their stability using FMs. The primary tool used for 
the numerical construction of breathers is Newton fixed-point 
iterations [62, section 3]. We begin by writing equation (3) as 
a system of first order ODEs:

( )= tx F u v˙ , , , (38)

with ( )=x u v, T, where ( )= …u uu , , N
T

1  and =v u̇, respec-
tively, represent the N-dimensional position and velocity vec-
tors. One then constructs a Poincaré map: ( ) ( )( ) ( )P = − Tx x x b

0 0 , 
where ( )x 0  is the initial condition and ( )Tx b  is the result of inte-
grating equation (38) forward in time until t  =  Tb using stan-
dard ODE integrators [77]. A periodic solution with period Tb 
(i.e. satisfying the property ( ) ( )= Tx x0 b ) is then a root of the 
map P. To obtain this root, one applies Newton’s method to 
the map P in the following numerical-iteration step:

= −+ −x x x ,k k k
x

0, 1 0, 1 0,
k0,[ ] ( )( ) ( ) ( )

( )J P (39)

where k is the index of the Newton iteration and x0 is the 
desired root of P. The Jacobian of the map P is ( )J = − V TI b , 
where I is the ×N N2 2  identity matrix; V is the solution to the 
variational problem

( )=V DF V˙ , (40)

with initial data ( ) =V I0 ; and DF is the Jacobian of the equa-
tions of motion (38) evaluated at the point ( )x k0, . One initiates 
the iteration step (39) with a suitable guess (given, e.g. by a 
linear mode or a solution to a continuum nonlinear approx-
imation) and applies it until one satisfies a user-prescribed 
tolerance criterion. One thereby obtains a temporally-periodic 
solution upon successful convergence (and with high acc-
uracy). Because one must compute the monodromy matrix 
V(Tb) to apply Newton iterations, one immediately obtains 
spectral-stability information by computing eigenvalues or 
FMs of V(Tb).

For a Hamiltonian granular chain (i.e. equation  (3) with 
no damping or driving), the monodromy matrix V(Tb) has 
eigenvalues at  +1 (see the discussion in section 7.1), so the 
Jacobian ( )J = − V TI b  is not invertible. To overcome this 

Figure 10. (a) A granular crystal with hexagonal packing. (b) Convention for the index orientation. The m-axis represents the horizontal 
direction, the n-axis represents the vertical direction, and the m-axis and n-axis meet at an angle of /θ π= 3. (c) A square granular lattice 
with cylindrical intruders. (a) and (c) Used with permission from Andrea Leonard. (b) Reprinted figure with permission from [33], 
Copyright (2016) by the American Physical Society. 
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issue, one must break the degenerate nature of J  by introduc-
ing additional constraints, such as a vanishing time average 

(i.e. ( )∫ =y t td 0
T

0 1 ) or a pinning condition (e.g. y1(t)  =  0). In 

practice, it can also be effective to take a pseudoinverse of J . 
See [12] and [62] for numerous practical methods for comput-
ing the relevant periodic orbits.

8. Two-dimensional granular crystals

8.1. Packing geometries and transient dynamics

We now discuss 2D granular crystals, which have been inves-
tigated much less than the 1D configurations that we have 
discussed thus far. In two spatial dimensions, one can situ-
ate the nodes (i.e. particles) in a network in a large variety of 
ways, such as hexagonal (see figures 10(a) and (b)) or square 
lattices. In a square lattice, one can generate a quasi-1D trav-
eling solitary wave by exciting the lattice along one of the 
spatial dimensions. This is a trivial extension of section 5, as 
the waves never ‘spill’ into adjacent directions. The situation 
for excitations in other directions is far less straightforward. 
However, from an experimental point of view, the square lat-
tice is not robust structurally, because the particles can buckle 
readily, given the lack of contact with adjacent particles on 
the diagonals. One can overcome this issue by introducing 
‘intruder’ particles into the vacant spaces between particles in 
a host crystal [187, 188] (see figure 10(c)). This is an exper-
imentally relevant mechanism for achieving either pulse redi-
rection [188] or (for intruders not restricted to a local area 
in the crystal) nonlinear pulse equipartition, a subject of 
intense theoretical investigation in granular crystals [187]. In 
the experiment of [182], two rows of granular particles were 
interconnected via a chain of such interstitial particles. By 
exciting one of the rows (the ‘impacted’ one), one can obtain 
an equal redistribution via the intruders between that row and 
the adjacent (or ‘absorbing’) row.

Without additional sources to add energy to a granular 
crystal, one would not expect a genuine traveling solitary 
wave to exist in either a square or hexagonal lattice because 
the energy imparted to a particle upon impact is distributed 
to an expanding array of neighbors as the pulse is transmit-
ted. This process continues, leading gradually to attenuation 
of the wave. Consequently, many papers on granular lat-
tices of two or more dimensions are concerned with transient 

effects after a granular lattice (or more general packing) is 
struck [1, 13, 15, 41, 73, 118–121, 143, 150, 151, 165]; this is 
relevant for impact mitigation applications. Quasicontinuum 
approaches were explored in 2D lattices with rotation in [57]. 
Additionally, structured granular composites, which are net-
works of 1D chains arranged in 3D space, exhibit exponential 
stress decay [122] and can act as effective energy-dispersion 
mechanisms [58]. From the perspective of applications, of 
particular interest is a ‘sound bullet’, in which a propagating 
wave front is directed to specific locations in a granular crystal 
[181]. One can also envision scenarios in which band gaps 
arise in 2D granular crystals either because of heterogenei-
ties (e.g. impurities or periodic structures) or local resonators 
(e.g. mass-in-mass systems). In such scenarios, it would be 
very interesting to explore the existence, structure, and sta-
bility properties (and more generally, the temporal evolution) 
of localized states in the form of DBs or their variants (e.g. 
impurity modes, as we discussed for 1D configurations in sec-
tion 7.1). In figure 11(a), we show an example of a 2D local-
ized mode of a 2D hexagonally packed granular lattice with 
a single light-mass defect in the center of the crystal. Another 
open problem is the study of phenomena such as ‘quasipat-
terns’ and ‘superpatterns’, which have often been exam-
ined for settings such as Faraday waves in fluid systems and 
generic amplitude equations (e.g. complex Ginzburg–Landau 
equations with appropriate potentials) [171, 192].

8.2. Hexagonal granular crystals: equations of motion,  
linearized dynamics, and conical diffraction

We now consider the specific case of a hexagonal granular 
crystal. The equations of motion account for the force at each 
contact point. They arise from equation (1), and each displace-
ment qm n,  has both a horizontal component um,n and a vertical 
component vm,n. If the granular crystal is precompressed, the 
equations  are linearizable. In a hexagonal monomer lattice, 
the equations of motion are

( ) ( )
( )

( ) ( )
( )

= − + −

− −

− − − −

+ −

− −

+ −

+ +

− +

q F q q F q q

F q q

F q q F q q

F q q

¨

,

m n m n m n m n m n

m n m n

m n m n m n m n

m n m n

, 1 , 1, 2 , , 1

3 1, 1 ,

1 1, , 2 , 1 ,

3 , 1, 1

 

(41)

Figure 11. (a) A breather solution of a 2D hexagonal granular network with a single defect. We show the magnitude of the displacement. 
(b) Dispersion surface corresponding to equation (41). The vector of wavenumbers is ( )ℓk, , and ω is the angular frequency. (c) Conical 
diffraction in the 2D hexagonal granular-crystal equation (41). Such diffraction results from the excitation of linear modes near a Dirac 
point. (b) and (c) Reprinted figure with permission from [33], Copyright (2016) by the American Physical Society.
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which takes into account the six contact points from 
the hexagonal symmetry. We set the mass to 1 for 
notational simplicity. The vector-valued functions 

( ) ( ) [ ( ) ( )]= =u v F u v F u vF q F , , , ,j j j u j v
T

, ,  (with { })∈j 1, 2, 3  
have the form given in equation  (1) and take into account 
the relative positions of the particles in contact. For exam-
ple, the force along the horizontal axis that results from con-
tact between particles at positions {m, n} and {m, n  −  1} 

is ( ) [ ] ( )( ( ) )// δ θ= − − ++F u v A d s d u s, cosu2,
3 2

0 , where 

(( ) ( ) ) (( ) ( ) )δ θ δ θ= − + + − +s d u d vcos sin0
2

0
2, the 

angle is /θ π= 3, the material parameter is A, and d  =  2R is 
the particle diameter. The nonlinearity strength is controlled 
by the term δ > 00 , which represents how much the granular 
packing is precompressed (see figure 10(b)). Unlike many 2D 
systems (such as photonic systems [3, 4]), one can compute 
the dispersion relation (see figure  11(b)) explicitly (using a 
2D discrete Fourier transform) instead of relying on numerical 
computations [33].

In a hexagonal granular lattice, the dispersion surface 
has so-called ‘Dirac points’, at which upward-pointing and 
downward-pointing cones meet [78, 131]. A notable exam-
ple of another physical system that possesses Dirac points is 
graphene (a monolayer of graphite that exhibits considerable 
electron mobility [152, 153]). One can thus consider a hex-
agonally packed granular crystal to be a ‘phononic’ analog 
of graphene; see also [11, 193, 194]. For wavenumbers near 
a Dirac point, one can derive so-called ‘Dirac equations’ as a 
continuum model using the methods described in this review 
[33]. The significance of this derivation is that ‘conical dif-
fraction’ (where the dynamics have the form of an expanding 
ring, as illustrated in figure 11(c)) is possible in a Dirac sys-
tem [5]. Numerical simulations of equation  (41) validate the 
presence of conical diffraction in a hexagonal granular crystal 
when there are small-amplitude excitations. Studies of coni-
cal diffraction (or refraction) date back nearly two centuries  
[78, 131], and conical diffraction has also been studied at 
length (both theoretically and experimentally) in photonic 
graphene [3, 157]. The presence of nonlinearity can play a 
crucial role in conical-diffraction dynamics, and potentially it 
can even lead to a breakdown of conical wave propagation in 
honeycomb lattices [5, 14]. The preliminary numerical simula-
tions of [33] illustrate that conical diffraction can break down 
for significantly nonlinear responses. The study of the effects 
of nonlinearity on conical diffraction through, for example, the 
derivation of a nonlinear Dirac system, is an open problem.

9. Conclusions and outlook

Granular crystals are an exciting mechanical metamaterial, 
and studying them brings together challenging problems from 
applied mathematics, scientific computation, condensed- 
matter and nonlinear physics (as well as other areas of phys-
ics), and experimental engineering. In this review, we have 
tried to illustrate the excitement that has been stimulated by 
recent advances in investigations of some of the prototypical 
nonlinear structures in granular crystals: solitary waves, dis-
persive shocks, and breathers.

A unifying theme of our review concerns approaches based 
on continuum approximations and asymptotics, which are 
illuminating in the study of all three families of structures. 
Although the continuum models provide important insights, 
they also suggest many open and nontrivial mathematical 
questions regarding their validity. (Even from a purely mathe-
matical perspective, the equations themselves are intrinsically 
fascinating.) The numerical algorithms that are used for the 
identification of genuine traveling waves, and especially for 
stability computations, are at a very early stage. The algorithm 
that we described for the numerical computation of breath-
ers is adequate for 1D granular crystals (i.e. granular chains), 
but it is too inefficient for 2D crystals, creating the need for 
new and faster algorithms, especially for large-scale com-
putations of periodic orbits. The experimental realization of 
phenomena such as conical diffraction and structures such as 
2D breathers remain open, and a particular challenge arises 
from the need to incorporate important additional dynamical 
features, such as torsion and rotation, that play stronger roles 
in 2D systems than in 1D systems. Throughout the review, 
we have also highlighted numerous other fascinating open 
issues. As we have discussed, granular crystals have an amaz-
ing amount of tunability: one can consider particles with 
different masses, sizes, material properties, and geometries; 
one can consider different particle configurations (mono-
mer chains, dimer chains, other periodic chains, chains with 
defects, and random configurations in 1D, and an even larger 
variety of possibilities in 2D); and one can tune precompres-
sion to examines crystals in either weakly nonlinear regimes 
or strongly nonlinear regimes, where the latter is understood 
far more poorly than the former. All of these features, along 
with numerous proto types for applications—involving sens-
ing, lensing, gating, impact mitigation, vibration absorption, 
and more—render granular crystals an exciting test bed for 
the implementation of linear and nonlinear, theoretical and 
applied, mathematical, physical, and engineering concepts. 
The study of granular crystals promises to be an exciting area 
for many years to come.
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