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1 Introduction

In this chapter, we consider analytical approaches for calculating the expected
sizes of cascades in complex contagions.1 As a concrete example of a complex
contagion, we use the Watts threshold model (WTM) [44] (see also [15, 43]) on
undirected, unweighted networks. In this model, each node i of a network has a
positive threshold ri ; usually, the thresholds are chosen at random from a given
probability distribution, but (with some difficulty and arguably circular reasoning)
they can also be estimated from empirical data. We focus in particular on the case
in which a contagion is initiated by multiple seed nodes, so we assume that a finite
(but small) fraction of the network nodes are active at the beginning of contagion
dynamics.

Each node can be in one of two states; we will call the states “inactive” and
“active.” All nodes, except for the seed nodes, are initially inactive. In each discrete
time step, each inactive node i of a network considers its neighboring nodes, and it
becomes active if the fraction of its neighbors that are active exceeds or equals the
threshold ri of node i. One can interpret the threshold as a node’s stubbornness and
the fraction of active nodes as a “peer pressure” function [26]. Once a node becomes
active, it cannot later return to the inactive state, so the cascade grows in a monotonic

1See [35] and references therein for discussions of cascades on networks and for a “definition” of
a complex contagion. See [29] for a friendly introduction to cascades on networks.
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fashion. An important macroscopic quantity is the fraction ρn of active nodes at time
step n. Because of the monotonic nature of the dynamics, ρn is a nondecreasing
function of n, so (because ρn ≤ 1, by definition) the limit ρ∞ = limn→∞ ρn exists.
We call ρ∞ the “steady-state fraction of active nodes,” and we focus our attention
on methods for analytically approximating its value.2 Assuming that a fraction ρ0
of the nodes are selected uniformly at random as the seed nodes for a contagion,
we want to predict the steady-state value ρ∞ and to determine the conditions under
which ρ∞ substantially exceeds ρ0. In other words, we want to answer the question
“When does a global cascade occur?”3

The rest of this chapter is organized as follows. In Sects. 2 and 3, we focus
on ensembles of infinite-size random networks (i.e., on asymptotic behavior as
the number N of nodes becomes infinite), both without (see Sect. 2) and with
(see Sect. 3) degree–degree correlations. In Sect. 4, we discuss recent progress on
calculating ρ∞ for finite-size networks. We conclude in Sect. 5.

2 Configuration-Model Networks

Let’s begin by assuming that our networks are realizations drawn from a
configuration-model ensemble [9]; they are characterized by a given degree
distribution pk , where pk is the probability that a node chosen uniformly at
random has k neighbors, but they are otherwise maximally random. Moreover, our
theoretical approach is for the limit of infinitely large networks (sometimes called
the “thermodynamic limit”). Because configuration-model networks are locally
tree-like [25], one might expect that we can apply mean-field approaches, such as
those used for models of biological contagions [33], to approximate the fraction
of active nodes. We’ll first briefly summarize what we’ll call a “naive mean-field
(MF)” approach, and we’ll then explain why—and how—it can be improved.

2.1 Naive Mean-Field Approximation

We define ρ
(k)
n as the probability that a node of degree k is active at time step n; the

total fraction of active nodes is then given by

ρn =
∑

k

pkρ
(k)
n . (1)

2In [12], Gleeson and Cahalane showed that if nodes are updated one at a time in a random order,
rather than all simultaneously as described here (i.e., if we use “asynchronous” updating instead of
“synchronous” updating [35]), one obtains the same steady-state limit ρ∞, although the temporal
evolution of the active fraction does depend on the updating scheme that is used [8]. See Sect. 5.1
of [35] for a description of an algorithm for a stochastic simulation of the WTM.
3See the discussion in [35] of ways of measuring cascade sizes.
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A node of degree k is active at time n either because (i) it was a seed node (with
probability ρ0) or (ii) it was not a seed node (with probability 1 − ρ0), but it has
become active by time step n. In the latter case, the number m of its active neighbors
at time n − 1 must be large enough so that the fraction m/k is at least as large as
the node’s threshold. Treating the k neighbors as independent of each other, the
probability that m of the k are active at time n is given by the binomial distribution

(
k

m

)
(ρn−1)

m(1 − ρn−1)
k−m , (2)

where ρn−1 is the probability that the node at the end of a uniformly randomly
chosen edge is active at time step n − 1. Under the usual mean-field assumptions
(see, for example, [25]), we write ρn−1 as the weighted mean over the possible
degrees of neighbors4:

ρn−1 =
∑

k

k

z
pkρ

(k)
n−1 , (3)

where z = ∑
k kpk is the mean degree of the network.

If m neighbors of a node are active, the probability that the node is active is equal
to the probability that its threshold is less than m/k. We write this probability as
C(m/k), where C is the cumulative distribution function (CDF) of the thresholds.
Putting together these arguments and summing over all possible values of m, we
write the MF approximation for ρ

(k)
n as

ρ(k)
n = ρ0 + (1 − ρ0)

k∑

m=0

(
k

m

) (
ρn−1

)m (
1 − ρn−1

)k−m
C

(m

k

)
. (4)

Multiplying Eq. (4) by k
z
pk and summing over k gives

ρn = ρ0 + (1 − ρ0)
∑

k

k

z
pk

k∑

m=0

(
k

m

) (
ρn−1

)m (
1 − ρn−1

)k−m
C

(m

k

)
, (5)

so we now have an expression for ρn in terms of ρn−1. Starting from an initial
condition with a fraction ρ0 = ρ0 of seed nodes (chosen uniformly at random), one
can iterate Eq. (5) to determine ρn for any later time step, and it converges to ρ∞

4The weighting (k/z)pk arises because we are considering the mean over nodes of degree k, where
those nodes are reached by traveling along an edge from the node of interest. It is well-known (see,
e.g., [32]) that a node at the end of a uniformly randomly chosen edge of a configuration-model
network has degree k with probability (k/z)pk , reflecting the fact that large-k nodes are more likely
than small-k nodes to be reached in this way.
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Fig. 1 The expected steady-state fraction ρ∞ of active nodes for cascades in the Watts threshold
model (WTM) when every node has the same threshold r = 0.18 (so a node becomes active
when its fraction of active neighbors is at least as large as 0.18). The networks are Erdős–Rényi
random graphs (G(N,m), where m is the total number of edges) with mean degree z (so they
have approximately a Poisson degree distribution pk = zke−z/k!), and the initial seed fraction is
ρ0 = 10−3. The simulation results, shown by the black squares, are a mean over 100 realizations
on networks with N = 105 nodes. The blue dashed curve shows the result of the naive mean-field
approximation given by Eqs. (5) and (6), and the red solid curve comes from the message-passing
approach of Eqs. (10) and (12)

as n → ∞. One then calculates the naive MF approximation to the steady-state
fraction ρ∞ of active nodes from Eqs. (1) and (4) with the formula

ρ∞ = ρ0 + (1 − ρ0)
∑

k

pk

k∑

m=0

(
k

m

)
(ρ∞)m (1 − ρ∞)k−m C

(m

k

)
. (6)

However, as we illustrate in Fig. 1, the naive MF approximation calculated using
Eqs. (5) and (6) does not accurately match the values of ρ∞ from numerical
simulations on large networks. In Sect. 2.2, we consider why this mismatch occurs,
and we introduce an improved approximation technique, which is of “message-
passing” type.

2.2 Message-Passing for Configuration-Model Networks

In this section, we present the approach that was first used in [10, 13], who adapted
the method used by Dhar et al. [5] for the zero-temperature random-field Ising
model on Bethe lattices. Nowadays, the approach is called “message-passing for
configuration-model networks.” See, for example, Sect. IV of [40].

The fundamental problem with the naive MF approach of Sect. 2.1 is that it
neglects the directionality in the spreading of a contagion. The contagion spreads
outwards from the seed nodes, and it can reach inactive nodes only after it has first
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Fig. 2 Schematic for the method described in Sect. 2.2. We suppose that the contagion spreads
upward from level n − 1 to level n and beyond. The assumption of infinite network size allows us
to consider the limit of an infinite number of levels, terminating with the “top” (i.e., “root”) node
of the tree approximation

infected some of their neighbors. In the schematic in Fig. 2, we assume that the
contagion spreads upward from “level” n − 1 to level n and then to level n + 1.
We number the levels according to their distance from the seed nodes, which we
place at level 0. This is a highly stylized approximation, as we are almost always
considering networks that are not actually trees (and, e.g., social networks typically
have significant clustering), but we see nevertheless that it gives good results (see,
e.g., the discussion in [25]). For the synchronous updating that we employ in
this chapter, level n of the tree approximation corresponds to time step n of the
contagion process on the original network. See [10] for details and an extension to
asynchronous updating.

We now focus again on the steady-state limit n → ∞. We introduce the variable
q

(k)
n , the probability that a node of degree k on level n is active, conditional on its

parent (at level n + 1) being inactive. When we calculate q
(k)
n , we account for the

directionality of the contagion spreading, because we assume that the node at level
n + 1 in Fig. 2 is inactive at the time when the node at level n is updating from the
inactive to the (possibly) active state. As before, there are two ways in which the
node at level n can be active: either it was a seed node (with probability ρ0) or it
was not a seed node (with probability 1 − ρ0) but has been activated by its children
(i.e., the nodes at level n − 1 in Fig. 2). Because the level-n node has degree k and
one of its edges is adjacent to its (inactive) parent, there are k − 1 children node at
level n − 1. Each of these children is active with probability qn−1, where (similar to
Eq. (3)) qn is the weighted mean over the q

(k)
n values. That is,

qn−1 =
∑

k

k

z
pkq

(k)
n−1 . (7)

Therefore, the probability that m children are active is given by the binomial
distribution on k −1 nodes, where each is active with independent probability qn−1.
That is,

(
k − 1

m

)
(qn−1)

m(1 − qn−1)
k−1−m . (8)
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As with the naive MF case, the activation of a degree-k node with m active
children depends on its threshold being less than the fraction m/k; this occurs with
probability C(m/k). Putting together the preceding arguments, we write

q(k)
n = ρ0 + (1 − ρ0)

k−1∑

m=0

(
k − 1

m

)
(qn−1)

m(1 − qn−1)
k−1−mC

(m

k

)
, (9)

and we obtain a discrete scalar map for qn by multiplying Eq. (9) by k
z
pk and

summing over k. Using Eq. (7) then yields

qn = ρ0 + (1 − ρ0)
∑

k

k

z
pk

k−1∑

m=0

(
k − 1

m

)
(qn−1)

m(1 − qn−1)
k−1−mC

(m

k

)
. (10)

Iterating Eq. (10) starting from initial condition q0 = ρ0 leads to the steady-state
value

q∞ = lim
n→∞ qn . (11)

Finally, we use the fact that a node at the “top” (i.e., “root”) of the tree—formally
at level ∞—has k children with probability pk and (assuming that the root node is
not a seed node) that each child is active with probability q∞. We then determine
the steady-state active fraction of nodes from q∞ by calculating

ρ∞ = ρ0 + (1 − ρ0)
∑

k

pk

k∑

m=0

(
k

m

)
(q∞)m(1 − q∞)k−mC

(m

k

)
. (12)

The solid red curve in Fig. 1 shows the result of using Eqs. (10) and (12) to
determine the steady-state fraction of active nodes. This approximation method is
very accurate, and it is far superior to the naive MF approach of Sect. 2.1. Note that
simulation results at the discontinuous transition near z = 6.5 depend strongly on
the size of a network, and agreement with the theory improves as one considers
larger networks (see Fig. 3 of [12]).

2.3 The Criticality Condition (i.e., “Cascade Condition”)

An additional benefit of the analytical approach that we outlined in Sect. 2.2 is that
it enables one to determine conditions on the model parameters that control whether
or not global cascades occur. This question was first addressed by Watts [44] using
a percolation argument, but one can derive the same condition using the approach
of Sect. 2.2. For this analysis, we assume that the seed fraction is vanishingly small,
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so we take the ρ0 → 0 limit of our general equations. (See [13] for extensions
to nonzero ρ0.) In this case, Eq. (10) always has the solution qn ≡ 0 for all n,
corresponding to the case of no contagion. However, for certain parameter regimes,
this contagionless solution can be unstable, and then any infinitesimal seed fraction
ρ0 > 0 leads to a global cascade of nonzero fractional size. (The “fractional size”
of a contagion is the number of active nodes divided by the total number of nodes.)
Therefore, we linearize Eq. (10) about the solution qn ≡ 0 to determine its (linear)
stability. For scalar maps of the form qn = g(qn−1), the criterion for instability of
the 0 solution is that [41]

|g′(0)| > 1 . (13)

Differentiating the right-hand side of Eq. (10) and setting qn−1 = 0 yields
the following condition for global cascades to occur (from an infinitesimal seed
fraction)5:

∑

k

k

z
pk(k − 1)C

(
1

k

)
> 1 . (14)

Given a network’s degree distribution pk and the CDF C of thresholds, it is
easy to evaluate the condition (14), so Eq. (14) is a very useful criterion for
determining whether global cascades can exist (the “supercritical regime”) or not
(the “subcritical regime”).

3 Networks with Degree–Degree Correlations

We now follow [6, 10, 34] and extend the message-passing approach to networks
with nontrivial degree–degree correlations. Let pkk′ be the joint probability distri-
bution function (PDF) for the degrees k and k′ of the end nodes of a uniformly
randomly chosen edge of a network.6 As in Sect. 2, and referring again to Fig. 2, we
define q

(k)
n as the probability that a degree-k node on level n is active, conditional on

its parent (on level n + 1) being inactive. Similarly, writing q
(k)
n for the probability

that a child of an inactive level-(n + 1) node of degree k is active, it follows that

q(k)
n =

∑
k′ pkk′q(k′)

n∑
k′ pkk′

, (15)

5Note that C(0) = 0, because we have assumed that all thresholds are positive.
6In configuration-model networks, in which no correlations are imposed in the generative model,
pkk′ = kpkk

′pk′/z2, because the degrees of the nodes at the two ends of an edge are independent.
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because a neighbor of the degree-k node has degree k′ with probability
pkk′/

∑
k′′ pkk′′ . Similar to Eq. (9), we then determine the conditional probabilities

for each degree at level n from the children at level n − 1 using the relation

q(k)
n = ρ0 + (1 − ρ0)

k−1∑

m=0

(
k − 1

m

) (
q

(k)
n−1

)m (
1 − q

(k)
n−1

)k−1−m

C
(m

k

)
, (16)

where q
(k)
0 = ρ0 for all k. The unconditional density of active degree-k nodes at

steady-state is

ρ(k)∞ = ρ0 + (1 − ρ0)

k∑

m=0

(
k

m

) (
q(k)∞

)m (
1 − q(k)∞

)k−m

C
(m

k

)
, (17)

and the total network density is equal to

ρ∞ =
∑

k

pkρ
(k)∞ . (18)

3.1 Matrix Criticality Condition

As in Sect. 2.3, one can derive the condition that determines whether global
cascades arise from infinitesimal (i.e., ρ0 → 0) seeds by linearizing the system
of equations (16) about the zero-contagion solution q

(k)
n ≡ 0 for all n and k. Note

that Eq. (16) includes one equation for each distinct degree class in a network, so
the condition for instability of the contagionless solution is an eigenvalue condition
on the Jacobian matrix of the system. From Eqs. (16) and (15), we find (see [10])
that the condition for instability (i.e., for the existence of global cascades) is that the
largest eigenvalue7 of the matrix M exceeds 1, where M is the matrix with entries

Mkk′ = (k′ − 1)∑
k′′ pkk′′

pkk′C

(
1

k′

)
. (19)

As noted in [10], a similar condition occurs for bond percolation on networks with
degree–degree correlations [31], and such conditions are also relevant for epidemic
models on networks [19].

The message-passing method that we have described has also been generalized
for networks with community structure [10] and different degree–degree corre-
lations in different communities [27] (where the latter case also has a notable
interpretation in the language of multilayer networks [20]), multiplex networks

7The matrix M is not symmetric, but there exists a similarity transformation to a symmetric matrix,
so all of its eigenvalues are real.
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[46], other contagion models [18], dynamics in which nodes can be in more
than two states [26], and more. Reference [11] presented an alternative derivation
(starting from a so-called “approximate master equation” (AME) framework) of the
configuration-model-approximation equations (10) and (12).

4 Message-Passing for Finite-Size Networks

In this section, we discuss message-passing approaches [23, 40] that are applicable
to finite-size networks, rather than to the ensembles of (infinite-size) networks that
we discussed above. Recent papers [23, 40] have shown how a message-passing
approach can be applied successfully to networks with a finite number of nodes. In
this section, we explain this idea by applying it to the WTM. The resulting equations
are computationally very expensive to solve. We close the chapter by deriving the
analog of the criticality conditions of Eqs. (14) and (19) for the existence of global
cascades in finite-size networks. This criticality condition is relatively tractable to
compute.

Suppose that we are given a finite-size network that is unweighted and undirected
(and unipartite). The total number of edges in the N -node network is E, where E =
Nz/2 and z is the mean degree. To use a message-passing approach, we consider
quantities like qj→i , which are specified for a directed edge j → i. We consider
each undirected edge of a network (such as the one between nodes i and j ) as
consisting of a reciprocal pair of directed edges (i → j and j → i), giving a total
of 2E directed edges. The direction of the edges gives the local directionality of a
contagion, analogous to the ascending levels in Fig. 2.

The edge-based quantity qj→i is the probability that node j is active, conditional
on node i being inactive. See Fig. 3, and compare it to Fig. 2. To write an equation for
qj→i , we consider the effect on j of all of its neighbors aside from i. Specifically, if
node j is not a seed node (which is the case with probability 1−ρ0), it is active only
if sufficiently many of its neighbors are active. To calculate qj→i , we assume that
node i is inactive,8 so we must consider whether the number of active nodes among

Fig. 3 Schematic for the message-passing approach of Sect. 4

8This assumption has various names: it is called the “cavity approach” in statistical physics [28,
39, 47], and it is closely related to the WOR (“without regarding”) property that was used for
financial-contagion cascades in [16].
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the remaining neighbors is sufficient to activate node j . It is convenient to introduce
the notation σ� to represent the state of node � in a given realization: σ� = 1 if node
� is active, and σ� = 0 if node � is inactive. One can then write the equation for
qj→i as

qj→i = ρ0 + (1 − ρ0)
∑

{σ�}:� ∈Nj \i
C

(∑
� σ�

kj

) ∏

σ�=1

q�→j

∏

σ�= 0

(
1 − q�→j

)
. (20)

The summation in Eq. (20) is over all combinations of σ� values. In other words,
one sums over the possible states of the neighbors of j (where Nj denotes the
set of such neighbors), except for node i. Given the set {σ�} of neighbor states, the
fraction of active neighbors of node j is

∑
� σ�/kj , where kj is the degree of node j .

The probability that this fraction is at least as large as the threshold of node j is

given by C
(∑

� σ�

kj

)
. Let’s consider each of inactive node j ’s neighbors, except for i.

Because each of these nodes � is active with an independent probability of q�→j , the
first product term of Eq. (20) gives the probability that a specified subset of nodes
is active, and the second product term of Eq. (20) gives the probability that the
remaining neighbors of j are inactive. Consequently, multiplying the two product
terms gives the probability (assuming that j is inactive) to have a given combination
{σ�}� ∈Nj \i of neighbors’ states, and the sum over all possible combinations plays
the same role as the sum over m in Eqs. (9) and (16).

In principle, one can solve Eq. (20) by iteration to determine qj→i for every
directed edge. The probability that node i is active (similar to Eq. (17)) is then
given by

ρ(i) = ρ0 + (1 − ρ0)
∑

{σj }:j ∈Ni

C

(∑
j σj

ki

)
∏

σj =1

qj→i

∏

σj = 0

(
1 − qj→i

)
, (21)

where the sum in Eq. (21) is over the possible states of all neighbors of i (compare
to Eq. (17)). Unfortunately, the summations in both Eqs. (20) and (21) require
calculating a combinatorially large numbers of terms. For example, the sum over the
sets {σ�}� ∈Nj \i of the possible states of the neighbors of node j has 2kj −1 terms,
each of which has its own probability measure that needs to be evaluated with the
two product terms in Eq. (20). The large number of possible combinations makes
the implementation of this message-passing approach extremely computationally
expensive, except for very small networks.

On the bright side, one can derive the steady-state equations for the
configuration-model ensemble that we discussed in Sect. 2 from the message-
passing Eqs. (20) and (21), as is described in detail in [40]. Essentially, in a
configuration-model ensemble, each edge-based conditional probability q�→j is
replaced by the single quantity q (which we called q∞ in Sect. 2). Because all
neighbors are treated as identical, the sum in Eq. (20) over {σ�} becomes the sum
over the number m of active neighbors, weighted by the binomial coefficient

(
k−1
m

)
,

which gives the number of arrangements of precisely m active neighbors among the
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k − 1 neighbors who can be active. Consequently, the sum over {σ�} in Eq. (20)
reduces to a sum over m in Eq. (8), yielding the steady-state limit (n → ∞) of the
configuration-model equations (10) and (12).

4.1 Criticality Condition for Finite-Size Networks

Although calculating the full message-passing equations (21) is prohibitively
expensive for large networks, one can nevertheless apply the same approach as in
earlier sections to derive a condition for the existence of global cascades. As before,
we take the ρ0 → 0 limit and linearize the governing equation (20) about the zero-
contagion equilibrium. Specifically, we linearize Eq. (20) about qj→i = 0 for each
edge. For very small values of the edge probabilities, the sum in Eq. (20) gives a
linear contribution only when a single neighbor is active. The resulting linearization
is then given by

qj→i =
∑

�∈Nj \i
C

(
1

kj

)
Bi→j,j→� q�→j , (22)

where B is the nonbacktracking (Hashimoto) matrix, which has recently been
studied in network-science questions such as percolation [17], community detection
[21], and centrality [24, 38]. The nonbacktracking matrix is a sparse matrix of
dimension 2E × 2E, where each row (or column) corresponds to a directed edge
between two nodes. The elements of B are nonzero when the directed edge that
corresponds to the row (e.g., the edge i → j ) leads to the directed edge that
corresponds to the column (e.g., j → �) via a common node (which, in this case, is
node j ), provided that the second directed edge does not return to the source node
of the original edge (i.e., node � cannot be the same as node i).

Rewriting Eq. (22) in a matrix form that is suitable for iteration (analogous to
Eqs. (10) and (16)) yields

qn = DBqn−1 , (23)

where q is the 2E-vector of values qj→i . We then immediately see that the linear
stability of the q = 0 solution depends on the largest eigenvalue of the product
matrix DB, where D is a 2E × 2E diagonal matrix with nonzero elements given by

Di→j,i→j = C

(
1

kj

)
. (24)

The criterion that we have derived from the message-passing approach is therefore
that the existence of global cascades requires the spectral radius of the 2E × 2E

matrix DB to exceed 1. Because the matrix is sparse, one can check this cascade
criterion even for large networks.
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Table 1 The critical value of θ , the upper limit of the uniform distribution of thresholds, for the
WTM on various networks, as calculated using the configuration-model result Eq. (14) for θconfig
and using the maximum eigenvalue of the DB matrix in Eq. (23) to determine θcrit

Network N z θconfig θcrit

3-Regular random graph 105 3 2
3

2
3

Facebook (Caltech) [42] 762 43.7 0.98 0.98

Facebook (Oklahoma) [42] 17,420 102 0.99 0.99

Gowalla [2, 4] 1.97 × 105 9.67 0.90 0.94

PGP network [1, 3] 10,680 4.55 0.78 0.94

Power grid [30, 45] 4941 2.67 0.63 0.78

The network size (i.e., number of nodes) is N and the mean degree is z, so the number of
undirected edges is E = Nz/2. Note, as expected, that θconfig is identical to θcrit for the 3-regular
random graph. The corresponding values for the Facebook networks are also very close, indicating
that the configuration-model theory is very accurate for these networks (as also found in [14, 25]).
For the other networks, there is a considerable difference between θconfig and θcrit, indicating
that the configuration-model result is inaccurate for these networks (although it is also known
that the message-passing approach, which is based on a tree-like assumption of independence of
messages [7], tends to be inaccurate for spatially-embedded networks [36, 38], such as the power-
grid example in this table)

In Table 1, we give examples in which we consider the WTM with thresholds
uniformly distributed over the interval (0, θ), so the mean threshold value is θ/2. If
the parameter θ is small, all thresholds are small, and a seed node is likely to cause
many neighbors to become active, leading quickly to a global cascade. However, a
very large value of θ implies that many nodes’ thresholds are too large to allow them
to activate, so no global cascades occur. In Table 1, we report the critical value of
the parameter θ that separates the global-cascade (i.e., supercritical) regime from the
no-global-cascade (i.e., subcritical) regime for several real-world networks using the
configuration-model condition given by Eq. (14) and the spectral condition on the
matrix DB that we described above. In previous work on calculating percolation
thresholds for real-world networks [36, 37], using the nonbacktracking matrix
has led to more accurate predictions than those found by applying configuration-
model theory (which uses only the degree distribution of a network). We therefore
anticipate that the cascade threshold identified by the largest eigenvalue of the
matrix DB will be more accurate than configuration-model predictions and will
provide important insights into the structural features of certain networks that enable
configuration-model theories to give accurate results [14].

5 Conclusions

In this chapter, we reviewed several analytical approaches for complex-contagion
dynamics. For concreteness, we focused on the example of the Watts threshold
model, but the methods that we discussed can also be applied to other monotonic
binary-state dynamics [11]. To provide context, we first introduced a naive mean-
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field approach, which has limited accuracy. We then showed that using the methods
of [5, 13] gives very accurate results on configuration-model networks. We demon-
strated how the methodology can yield a criterion for determining whether global
cascades occur, and we briefly reviewed an extension of the method to networks with
imposed degree–degree correlations. In Sect. 4, we briefly discussed the approaches
of [23, 40] to derive message-passing equations for cascades on finite-size networks.
Although the resulting equations are computationally expensive to solve, we showed
that they give a condition for global cascades in terms of the spectral radius of a
matrix that is related to the nonbacktracking matrix. The nonbacktracking matrix has
arisen in prior work from linearizations of belief-propagation algorithms [21], but
the product matrix DB that determines the cascade condition has not been studied
in detail (to our knowledge), and we believe that further investigations of it will
yield fascinating insights into the propagation of monotonic complex contagions
and other monotonic dynamics [22, 23].
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