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Abstract

We consider superposition states of various numbers of eigenstates in order to study vibrating quantum billiards
semiquantally. We discuss the relationship between Galërkin methods, inertial manifolds, and partial differential equations
such as nonlinear Schrödinger equations and Schrödinger equations with time-dependent boundary conditions. We then use a
Galërkin approach to study vibrating quantum billiards. We consider one-term, two-term, three-term,d-term, and infinite-term
superposition states. The number of terms under consideration corresponds to the level of electronic near-degeneracy in the
system of interest. We derive a generalized Bloch transformation that is valid for any finite-term superposition and numer-
ically simulate three-state superpositions of the radially vibrating spherical quantum billiard with null angular-momentum
eigenstates. We discuss the physical interpretation of our Galërkin approach and thereby justify its use for vibrating quantum
billiards. For example,d-term superposition states of one degree-of-vibration quantum billiards may be used to study nona-
diabatic behavior in polyatomic molecules with one excited nuclear mode and ad-fold electronic near-degeneracy. Finally,
we apply geometric methods to analyze the symmetries of vibrating quantum billiards.
© 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

Quantum billiards have been studied extensively in recent years[11,13,20,21]. They are important tools in the
study of quantum chaos. When their boundaries are time-dependent, they are also useful for probingsemiquantum
chaos[35], the primary concern of the present paper. This type of quantum chaos, whose phenomenology we discuss
in Appendix A, pertains to chaos in semiquantum systems derived via a Born–Oppenheimer scheme[4,7–9,35]. In
conservative situations, such systems may be expressed as “effective classical Hamiltonians” and analyzed using
techniques from Hamiltonian dynamics[22,29,32,35,46,50].
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Vibrating quantum billiards are semiquantum models for nonadiabatic coupling in polyatomic molecules[8,28,
38–40]. They may also be used as mathematical abstractions in the description of Jahn–Teller distortions[6,30,35,
46,50], nanomechanical vibrations[34] and solvated electrons[43,44]. Hence, the study of semiquantum chaos in
quantum billiards with time-dependent boundaries is important both because it expands the mathematical theory of
dynamical systems and because it can be applied to problems in atomic, molecular, and mesoscopic physics.

Blümel and Esser[8] found semiquantum chaos in the one-dimensional vibrating quantum billiard. In previous
works[28,39], we extended these results to spherical quantum billiards with time-dependent surfaces and derived
necessary conditions for vibrating quantum billiards with one “degree-of-vibration” (dov) to exhibit chaotic behavior
[40]. The dov constitute the classical degrees-of-freedom (dof) in a vibrating quantum billiard and refer to the
number of distance dimensions of the boundary that vary in time. Bifurcations of one dov quantum billiards have
been analyzed[36], and we have recently performed some analysis of two dov quantum billiards[38].

Quantum systems with time-dependent potentials have been the subject of considerable attention in the quantum
chaos literature. Such systems include, for example, Anderson transitions[10,12], Landau level mixing[42], the
two-particle Harper problem[3], and amplitude-modulated pendula[33]. There are two important differences
between these descriptions and the “vibrating quantum billiards” that interest us. First, we use a semiquantum
description in order to examine systems with dof that evolve on multiple timescales. Studies like those cited above
are concerned with the quantum signatures of classical chaos rather than with semiquantum chaos. We seek to
connect the study of nonadiabatic phenomena (such as Jahn–Teller effects), which is of considerable interest in the
molecular physics literature, to abstract mathematical models such as vibrating quantum billiards[6,7,30,35,46,50].
This abstraction leads to a second important distinction. In contrast to the works cited above, the time-dependence
in the vibrating quantum billiards we discuss has not been specified a priori. Instead, it must be determined in the
process of solving a boundary value problem (rather than in advance of attempting such a solution). The problem
under consideration is thus said to have afree boundary[18].

With this perspective, one may use vibrating quantum billiards to study nonadiabatic transitions in molecular sys-
tems[32,35]. In particular, we are concerned with Jahn–Teller-like distortions in polyatomic molecules[6,24,30].
Associated with nonadiabatic behavior ared-fold near-degeneracies in the adiabatic sheets describing the eigenen-
ergies of a molecule’s electronic subsystem[7,46,50]. To analyze such near-degeneracies, one may studyd-mode
Galërkin projections (i.e.,d-term superposition states) of vibrating quantum billiards.

Our previous work on quantum billiards with time-dependent boundaries concentrated primarily on two-term
superposition states[8,9,28,36,38–40]. In the present paper, we considerd-term superpositions (d ≥ 1) in one dov
billiards. One derives ad-dimensional Galërkin projection of the Schrödinger equation to obtaind coupled ordinary
differential equations of motion for the complex amplitudes in the normal mode expansion of the wavefunction.
One then uses a “generalized Bloch transformation” (GBT) to obtain equations of motion in the position, momen-
tum, and(d2 − 1) “generalized Bloch variables” (GBVs). Using the radially vibrating spherical billiard with null
angular-momentum eigenstates[39] for numerical simulations, we review thed = 2 case and also analyze the
d = 3 case explicitly. We discuss the geometric aspects of this problem and briefly mention how one can generalize
the present study to quantum billiards with more than one dov.

Quantum billiards describe the motion of a point particle of massm0 undergoing perfectly elastic collisions in a
domain in a potentialV with a boundary of massM � m0. With this condition on the mass ratio, we assume that
the boundary does not recoil from collisions with the confined particle. Point particles in quantum billiards possess
wavefunctions that satisfy the Schrödinger equation, whose time-independent part is the Helmholtz equation. One
uses homogeneous Dirichlet boundary conditions, as the wavefunctions are constrained to vanish on the boundary
[27]. It is known that globally separable quantum billiards with “stationary” (i.e., zero dov) boundaries are not chaotic
but that quantum billiards with at least one dov may behave chaotically under certain conditions[40]. (A quantum
billiard is globally separablewhen the geometry of the billiard is one for which the Helmholtz equation is globally
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separable.) In the case of the radially vibrating spherical billiard, at least one pair of a finite-term superposition
must have equal orbital (l) and azimuthal (m) quantum numbers for the system to exhibit chaotic behavior[28].
This condition is satisfied automatically if one considers only null angular-momentum eigenstates[39].

2. Galërkin expansions

Galërkin expansions are used to study semilinear partial differential equations such as reaction–diffusion
equations. They can also be used, for example, to study nonlinear Schrödinger (NLS) equations. The present
treatment of the linear Schrödinger equation with nonlinear boundary conditions parallels established methods for
nonlinear partial differential equations, because these analyses both rely on Galërkin methods. Additionally, many
finite element schemes are based on Galërkin approximations[26].

Consider a (possibly nonlinear) partial differential equation Oψ = 0. The operator O takes the form

O ≡ L + N, (1)

where L is a linear differential operator and N a nonlinear one. (A good example to keep in mind is the NLS,
as L is the Schrödinger operator in that case.) One expressesψ as an expansion using some orthonormal set of
eigenfunctionsψi(x) of L, i ∈ I :

ψ(x) =
∑
I

ci(x̄)ψi(x), x ∈ X, (2)

whereI is an indexing set and the coefficientsci(x̄) are unknown functions of some subset of variablesx̄ of the
original vector of variablesx. It is important to realize that the coefficientsci depend only on some of the independent
variables and not the entire vectorx of variables. In the present paper, for example, we consider coefficients that
depend only on time.

The eigenfunctionsψi are associated with the linear differential equation Lψ = 0 along with a set of (linear
and time-independent) boundary conditions. This yields a countably infinite coupled system of nonlinear ordinary
differential equations forci(x̄), i ∈ I [45]. (If the partial differential equation is linear with linear boundary
conditions so that N≡ 0, then taking an eigenfunction expansion yields constant coefficientsci(x̄) ≡ ci . Otherwise,
one obtains a system of nonlinear ordinary differential equations.) One then projects the expansion(2) onto a
finite-dimensional subspace (by assuming that only a certain finite subset of theci(x̄) are nonzero) to obtain
a finite system of coupled nonlinear ordinary differential equations. (The differential equations so obtained are often
calledamplitude equations[5,25].) Thus, for example, a two-term superposition state corresponds to a two-mode
Galërkin projection. If all the dynamical behavior of a system lies on such a finite-dimensional projection, then
one has found aninertial manifold(global center manifold) that necessarily contains any global attractor that the
system might have[45]. Perhaps the most famous example of a Galërkin approximation is the Lorenz model, which
is a three-mode truncation of the Boussinesq equations for fluid convection in a two-dimensional layer heated from
below[47].

When applying Galërkin expansions to nonlinear partial differential equations Oψ = 0, one decomposes the
operator O into (nontrivial) linear and nonlinear parts

O ≡ L + N (3)

and expands according to the eigenfunctions of the linear operator L and the relevant boundary conditions. Such
methods are thus applicable to nonlinear operators that are nontrivially decomposable into linear and nonlinear
parts. The term “semilinear” is often applied to operators that can be decomposed in this manner. For the NLS and
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complex Ginzburg–Landau (CGL) equations, L corresponds to the linear Schrödinger operator. In this context, the
study of vibrating quantum billiards is related to the study of NLS and CGL equations.

2.1. Physical interpretation ofd-term Galërkin expansions

We discussed earlier that ad-term Galërkin projection corresponds to ad-term superposition state. We now
consider the issue of when such a state occurs in physical systems relevant to vibrating quantum billiards. The
condition under which such an approximation is valid corresponds to the case in which the other states of the
system have negligible contribution to the dynamics. Because the present system cannot admit an exact iner-
tial manifold, we justify ignoring the other modes of the system on physical grounds. The primary examples to
keep in mind are polyatomic molecules withd-fold degeneracies or near-degeneracies in their electronic energy
levels[46].

Molecular systems exhibit both electronic (fast) and nuclear (slow) dof. In the Born–Oppenheimer approximation
[4,6,7,35], one quantizes the electronic dof and treats the (much slower) motion of the nucleus as a perturbation of
electronic motion in a nucleus of constant size. One may consider molecular systems in which onlyd of the states
give an important contribution to the dynamics of the system—that is, the system is aptly described by(d − 1)
quantum-mechanical dof. One may do this if thed states in question have energies that are the same or are at least
sufficiently close to each other so that when one considers the coupling of electronic and nuclear motion, the system
may be treated semiquantally[32]. As one increases the mass of the nucleus relative to that of the electron, the
electronic energy levels need not be as close together for a semiquantum description to be valid. The increased
nuclear mass causes the nuclear eigenenergies to lie closer together and be more accurately approximated as a
continuum for a given electronic spectrum. This continuum approximation corresponds to treating the nuclear dof
classically.

The semiquantum regime aptly describes the dynamics of molecules when they undergo nonadiabatic transitions
[35,46,50]. In this regime, the nuclear dof (in other words, the dov) are treated classically, whereas the electronic
dof are treated quantum-mechanically[14,46]. One uses ad-term Galërkin projection when the(d+1)th term is far
enough away that it may be ignored. As the firstd electronic energy levels are either degenerate or nearly so, the use of
d-mode Galërkin expansions allows one to explore the nonadiabatic transitions involving their associated eigenstates
[7,35]. Ordinarily, one encounters near-degeneracies involving very few eigenstates. This, then, provides a rationale
for the analysis of few-mode Galërkin expansions and the resulting low-dimensional systems of ordinary differential
equations. Additionally, this provides a physical meaning to vibrating quantum billiards: ad-mode superposition
state of ans dov quantum billiard describes nonadiabatic transitions in a polyatomic molecule withs excited nuclear
modes and ad-fold electronic near-degeneracy. These transitions resemble the Jahn–Teller effect[7,35,46,50]. A
common reason for degeneracy and near-degeneracy of electronic energy levels is molecular symmetry. Indeed, we
found in a previous study that vibrating quantum billiards require certain symmetries for different eigenstates to
couple with each other[40].

As the semiquantum treatment of vibrating quantum billiards yields a conservative Hamiltonian system (as we
discuss in detail later),d-mode Galërkin expansions cannot capture their exact mathematical behavior. As just
discussed, however, taking few-mode Galërkin expansions is justified on physical grounds. Additionally, the fact
that some dynamical behavior is ignored with this process also has a physical interpretation: the complexity of
nonadiabatic transitions increases markedly as the number of degenerate or nearly degenerate eigenstates increases.
As we shall see, applying Galërkin projections to vibrating quantum billiards is an insightful and convenient
mathematical formalism for the study of nonadiabatic dynamics in semiquantum systems. Finally, note that Galërkin
expansions correspond to what researchers in quantum mechanics have done for years when they restrict themselves
to d electronic energy levels.
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3. One-term expansions

Consider a one dov quantum billiard on a Riemannian manifold(X, g). Suppose we have isolated thenth normal
mode of the present system. Insert the wavefunction

ψ(x, t) = ψn(x, t; a(t)) (4)

into the time-dependent Schrödinger equation

i�
∂ψ(x, t)

∂t
= Kψ(x, t) = − �

2

2m
∇2ψ(x, t), x ∈ X, (5)

where the electronic kinetic energy is given by

K = − �
2

2m
∇2, (6)

wherea ≡ a(t) represents the time-varying boundary component (e.g., the radius in the radially vibrating spherical
billiard). The total molecular Hamiltonian of the system is given by

H(a, P ) = K + P 2

2M
+ V, (7)

where the walls of the quantum billiard are in a potentialV and have momentumP with corresponding massM.
For the present configuration, we assume thatV does not depend explicitly on time. That is,

V = V (a) (8)

depends only on the nuclear coordinatea.
Vibrating quantum billiards have time-dependent (nonlinear) boundary conditions:

ψ(a(t)) = 0, t ∈ R, (9)

which is why one may use Galërkin projections to study them. As discussed earlier, this corresponds to a procedure
that may be used to study nonlinear partial differential equations such as reaction–diffusion equations and NLS
equations[45]. As the time-dependence ofa(t) in Eq. (9)is unknown, the problem of interest is said to have a free
boundary[18]. To solve the Schrödinger equation with Dirichlet boundary conditions in this situation, one must
determine the form ofa(t), which plays the role of a lengthscale in the vibrating quantum billiard’s eigenfunctions
(seeAppendix A). Applying a Galërkin method to this problem yields a set of ordinary differential equations that
determine the time-dependence ofa(t), its conjugate momentumP(t), and the quantum-mechanical variables[40].
Perhaps the simplest example to visualize is the radially vibrating spherical quantum billiard, in which the domain
X of the Schrödinger equation is

X = {r ∈ R
3|r ≤ a(t)}. (10)

The time-dependence in the definition of the domain of interest(10) leads to the use of Galërkin projections in the
study of vibrating quantum billiards. The fact that the potentialV (8) does not depend explicitly on time, as it does
in the work of other researchers who study similar problems[3,10,12,33,42], is also important for the application
of a Galërkin approach. AsV depends only ona, it may be treated as a constant when using a Galërkin expansion
to derive amplitude equations from Schrödinger’sequation (5).

When considering a single eigenstate, there is only one probability,|An|2 ≡ 1, as we are projecting the system
onto a one-dimensional subspace. Physically, this corresponds to a situation in which electronic energies are far
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enough away from each other so that different eigenstates do not mix (couple) with each other. In terms of billiards,
this corresponds to a situation in which the boundary is uncoupled from the enclosed particle, so one obtains a system
whose dynamics correspond to the classical (“Ehrenfest”) motion of the wall[35,46]. The quantum-mechanical
wavefunctionψ nevertheless depends on these classical dynamics, as the wave changes nontrivially with the nuclear
coordinatea. For example, the energy associated with the wave fluctuates with the displacementa. (The kinetic
energy of the particle becomes smaller whena increases and vice versa.) Put simply, even without mutual coupling
between quantum and classical components, the quantum dynamics depend nontrivially on the classical motion of
the boundary. There is thus a sort of “enslavement” of the quantum subsystem by the classical subsystem, as the
classical motion is unaffected by the dynamics of the confined particle.

The present system, in other words, is a Hamiltonian system whose equations of motion are given by

ȧ = P

M
≡ ∂H

∂P
, Ṗ = −∂V

∂a
+ 2εn
a3

≡ −∂H
∂a
, (11)

whereεn is the energy parameter corresponding to thenth eigenstate[40]. (The influence of the quantum subsystem
on the classical one is encompassed entirely by the size of the parameterεn. There is no feedback.) Equilibria of
this system satisfyP = 0 and

∂V

∂a
(a∗) = 2εn

a3∗
, (12)

wherea∗ is an equilibrium displacement. In a previous study[36], we analyzed the bifurcation structure of(11). One
inserts the dynamics ofa(t) into the waveψ(x, t; a(t)), which may be termed anonlinear normal modebecause
of its dependence ona. As the Hamiltonian system(11) has one dof, it is necessarily integrable. Thus, the normal
mode we obtained is not chaotic. Nevertheless, even in this degenerate case, the quantum dynamics depend on the
classical dynamics.

4. Two-term expansions

We now review previous analysis of two-term superposition states[28,39,40]. The superposition of thenth and
qth states is given by

ψnq(x, t) ≡ An(t)ψn(x, t)+ Aq(t)ψq(x, t), (13)

which we substitute into the time-dependent Schrödingerequation (5). Taking the expectation of both sides of(5)
for the state(13)yields the following relations:〈

ψnq

∣∣∣∣− �
2

2m
∇2ψnq

〉
= K(|An|2, |Aq |2, a1, . . . , as),

i�

〈
ψnq

∣∣∣∣∂ψnq

∂t

〉
= i�[ȦnA

∗
q + ȦqA∗

n + νnn|An|2 + νqq|Aq |2 + νnqAnA
∗
q + νqnAqA

∗
n]. (14)

If the billiard has one dov, then the electronic kinetic energy is given by

K = K(|An|2, |Aq |2, a). (15)

DefiningA1 ≡ An andA2 ≡ Aq , the quadratic form(14)yields the amplitude equations

iȦk =
2∑
j=1

DkjAj , (16)
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where

D ≡ Dkj =




εn

�a2
−iµnq

ȧ

a

iµnq
ȧ

a

εq

�a2


 , (17)

andµnq = −µqn �≡ 0 is a coupling coefficient for the cross termAnA∗
q . The coefficientµnq is defined by the

relation

νnq ≡ ȧ

a
µnq, (18)

and for the special case of null angular-momentum eigenstates of the radially vibrating spherical, is given by the
expression

µnq = 2
qn

(n+ q)(q − n) , n < q. (19)

We remark that in this case,µnq > 0 provided thatn < q.
If the coupling coefficientµnq, which describes the strength of the interaction between thenth andqth eigenstates,

vanishes in a one dov quantum billiard, then the two eigenstates under consideration do not couple with each other.
We showed in a previous study that whether or not two states in vibrating quantum billiards couple with each
other depends only on their relative quantum numbers[40]. If they are not coupled, the situation corresponds
mathematically to that obtained with one-term superposition states. That is, the classical equations of motion for the
billiard boundary take the same form, except that the electronic kinetic energy is different. The quantum dynamics
of the particle enclosed by the boundary is enslaved to the classical motion of the walls but does not itself affect that
motion (aside from determining the values of the energy parametersεj ). We hence assume the interaction strength
is nonzero so that we have a new dynamical situation to discuss.

Transforming the amplitudeequations (16)using Bloch variables (seeEq. (B.6)) yields the following equations
of motion:

ẋ = −ω0y

a2
− 2µnqPz

Ma
, ẏ = ω0x

a2
, ż = 2µnqPx

Ma
,

ȧ = P

M
, Ṗ = −∂V

∂a
+ 2[ε+ + ε−(z− µnqx)]

a3
. (20)

In (20),

ω0 ≡ εq − εn
�

, (21)

and

ε± ≡ 1
2(εn ± εq), (22)

whereεn andεq (n < q) are the coefficients in the kinetic energy.
The equilibria for the dynamical system(20) satisfyx = y = 0, z = ±1, a = a∗, andP = 0, where the

equilibrium radii{a∗} are solutions of the equation

∂V

∂a
(a∗) = 2

a3∗
(ε+ ± ε−), (23)

so that
∂V

∂a
(a∗) = 2εj

a3∗
, j ∈ {1,2}. (24)
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For the harmonic potential

V (a) = V0

a2
0

(a − a0)
2, (25)

one obtains equilibrium radiia± that satisfy

a − a0 = εka
2
0

V0a3
, k ∈ {n, q}, (26)

where the subscript± corresponds toz = ±1. Whenz = +1, the system is entirely in theqth state, whereas when
z = −1, the system is entirely in thenth state. One may show that each of the present system’s equilibria are elliptic as
long asV (a)+K(a)has a single minimum with respect toa. That is, every eigenvalue of the Jacobian of the linearized
system is purely imaginary. For the system at hand, one eigenvalue is identically zero—corresponding to the row in
the Jacobian matrix arising from the derivatives ofż(a, P, x, y, z) ≡ f3(a, P, x, y, z)—and the other four constitute
two pure imaginary complex conjugate pairs when this ellipticity condition is satisfied. When this condition is not
satisfied (such as with a double-well potentialV with a suitably large central mound), one observes generalizations
of saddle-center bifurcations[36]. Moreover, different potentialsV (a) may exhibit additional equilibria, although
each of them corresponds to the manifestation of a single normal mode. However, as the energy of the normal mode
varies with the displacementa, we may obtain several different pure state equilibria corresponding to the same
state (such as the ground state), but with a different frequency and energy because it is associated with a different
equilibrium value of the nuclear displacementa. This occurs only when at least one of the equilibria violates the
ellipticity condition, so one cannot guarantee the stability of these new equilibria a priori.

The five-dimensional dynamicalequations (20)exhibit quantum chaos for some initial conditions, as can be seen
in Poincaré sections in the(a, P )-plane (Fig. 1) and the(x, y)-plane (Fig. 2) as long as the fixed-boundary (fb)
quantum numbers of the two superposition states are the same[40]. (This occurs exactly whenµnq is nonzero.)
We used the harmonic potential for both plots. As discussed in prior works[28,40], one has a classically chaotic
subsystem (described by the Hamiltonian variablesa andP ) coupled to a quantum chaotic subsystem (described
by the Bloch variablesx, y, andz). The present system is thus semiquantum chaotic[9]. We note that unlike with
one-term Galërkin projections, the normal modesψn andψq are not only nonlinear but also chaotic (because the
radiusa(t) behaves chaotically). Such wave chaos in a quantum system is a signature of semiquantum chaos.

Fig. 1. Poincaŕe section for the cutx = 0 in the(a, P )-plane.
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Fig. 2. Poincaŕe section for the cutP = 0 projected into the(x, y)-components of the Bloch sphere.

5. Three-term expansions

Let us now extend our analysis to three-term superposition states. Insert the wave

ψ(3)(x, t) ≡ An1(t)ψn1(x, t)+ An2(t)ψn2(x, t)+ An3(t)ψn3(x, t), (27)

which is a superposition ofn1, n2, andn3 eigenstates, into the Schrödingerequation (5). Taking the expectation of
both sides of(5) for the state(27)of a one dov quantum billiard yields〈

ψ(3)

∣∣∣∣− �
2

2m
∇2ψ(3)

〉
= K(|An1|2, |An2|2, |An3|2, a),

i�

〈
ψ(3)

∣∣∣∣∂ψ(3)∂t

〉
= i�[Ȧn1A

∗
n2

+ Ȧn1A
∗
n3

+ Ȧn2A
∗
n1
Ȧn2A

∗
n3

+ Ȧn3A
∗
n1

+ Ȧn3A
∗
n2

+ νn1n1|An1|2

+ νn2n2|An2|2 + νn3n3|An3|2 + νn1n2An1A
∗
n2

+ νn1n3An1A
∗
n3

+ νn2n1An2A
∗
n1

+ νn2n3An2A
∗
n3

+ νn3n1An3A
∗
n1

+ νn3n2An3A
∗
n2

]

= i�


 3∑
i,j=1,i �≡j

ȦniA
∗
nj

+
3∑
i=1

νnini |Ani |2 +
3∑

i,j=1,i �≡j
νninj AniA

∗
nj


 . (28)

DenotingAnj asAj , the quadratic form(28)gives

iȦk =
3∑
j=1

DkjAj , (29)

where

D = Dkj =




ε1

�a2
−iµ12

ȧ

a
−iµ13

ȧ

a

iµ12
ȧ

a

ε2

�a2
−iµ23

ȧ

a

iµ13
ȧ

a
iµ23

ȧ

a

ε3

�a2


 , (30)
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the parameterεj ≡ εnj is thej th energy coefficient, andµij ≡ µninj = −µnjni �≡ 0 is a coupling coefficient for
the cross termAniA

∗
nj

(which is defined as before). The interaction strengthµij is nonzero when the fb quantum
numbers of theni th andnj th states are the same. When coupling coefficients vanish, the situation reduces to ones
examined previously. If they all vanish, the present system is integrable. If two sets of them vanish (because one
of the eigenstates has a different set of fb quantum numbers than the other two), then the dynamics of the present
system corresponds to that for two-term superposition states. We thus assume without loss of generality that none
of the coupling coefficients vanish, so that we are considering a new physical situation.

We transform the amplitudes|A1|2, |A2|2, and|A3|2 using a GBT (seeAppendix B). This yields nine variables
and five constraints, which implies that the system has two independent quantum-mechanical dof. One can also
count these dof in a different manner. The present situation involves three complex amplitudesAi , corresponding to
six real variables. The sum of their squares is unity (by conservation of probability) and the dynamics of the present
system are invariant under global phase shifts. Consequently, there are four independent real variables and hence
two dof.

Using GBVs, the kinetic energy may be expressed as

K = 2

3a2
([z12ε

−
12 + z13ε

−
13 + z23ε

−
23] + ε+) = 2

3a2
([z12ε

−
12 + (z12 + z23)ε

−
13 + z23ε

−
23] + ε+), (31)

where

ε−kl ≡ 1
2(εl − εk) (32)

as before and

ε+ ≡ 1
2(εk + εl + εm). (33)

The equations of motion describing this three-term superposition states are thus

ẋ12 = −ω12

a2
y12 − 2µ12Pz12

Ma
− P

Ma
[µ23x13 + µ13x23],

ẋ13 = −ω13

a2
y13 − 2µ13P(z12 + z23)

Ma
+ P

Ma
[µ23x12 − µ12x23],

ẋ23 = −ω23

a2
y23 − 2µ23Pz23

Ma
+ P

Ma
[µ13x12 + µ12x13], (34)

ẏ12 = ω12x12

a2
+ P

Ma
[µ13y23 − µ23y13], ẏ13 = ω13x13

a2
+ P

Ma
[µ23y12 − µ12y23],

ẏ23 = ω23x23

a2
+ P

Ma
[µ12y13 − µ13y12], (35)

ż12 = 2µ12Px12

Ma
+ P

Ma
[µ13x13 − µ23x23], ż23 = 2µ23Px23

Ma
+ P

Ma
[µ13x13 − µ12x12], (36)

ȧ = P

M
≡ ∂H

∂P
, Ṗ = −∂V

∂a
− ∂K

∂a
≡ −∂H

∂a
, (37)

where

∂K

∂a
= −4ε+

3a3
− 4

3a3
[z12ε

−
12 + (z12 + z23)ε

−
13 + z23ε

−
23] + 2

3a3
ε−12(2µ12x12 + µ13x13 − µ23x23)

+ 2

3a3
ε−13(µ12x12 + 2µ13x13 + µ23x23)+ 2

3a3
ε−23(−µ12x12 + µ13x13 + 2µ23x23) (38)
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since

∂z12

∂a
= ∂z12

∂t

∂t

∂a
≡ ż12

ȧ
= 2µ12x12

a
+ 1

a
[µ13x13 − µ23x23],

∂z23

∂a
= ∂z23

∂t

∂t

∂a
≡ ż23

ȧ
= 2µ23x23

a
+ 1

a
[µ13x13 − µ12x12]. (39)

Additionally, recall that

ωkl ≡ εl − εk
�

. (40)

The equilibria of the present 10-dimensional dynamical system(37)satisfyP = 0,xij = yij = 0, z212 + z12z23 +
z223 = 1, and

∂V

∂a
= 4

3a3
[ε+ + z12ε

−
12 + (z12 + z23)ε

−
13 + z23ε

−
23]. (41)

Applying the constraints(B.11)with xij = yij = 0 shows that there are three possible sets of values for thez-Bloch
variables:

(z12, z13 ≡ z12 + z23, z23) = (0,1,1), (1,0,−1), (−1,−1,0). (42)

Each of these equilibria corresponds to one type of pure state, as expected from our physical intuition. Let us
consider each of these in turn. Ifz12 = 0, then|A1|2 = |A2|2 = 0 and|A3|2 = 1, so the only state present is the
third one. Ifz13 = 0, then only the state with complex amplitudeA2 gives a nonvanishing contribution. Finally, for
z23 = 0, only the first pure state is present. When only thej th state is present at equilibrium, it has kinetic energy

Ej = εj

a2∗
, (43)

wherea∗ is the equilibrium radius. This, therefore, corresponds to the expected generalization from two-state
systems to three-state systems. The relation(41)becomes

∂V

∂a
(a∗) = 2εj

a3
, j ∈ {1,2,3}, (44)

which is the exact equilibrium relation we derived for one-term and two-term superposition states. The total number
of equilibria depends on the form of the external potentialV (a) just as for two-term Galërkin projections. That
is,V (a) determines the number of equilibrium radii for each pure state equilibrium. Mixed-state equilibria cannot
occur.

When calculating the eigenvalues of the present system’s equilibria, the degree-10 characteristic polynomial
always has two zero roots that factor out. This follows from the equations of motion for thez-Bloch variables.
One then factors the remaining degree-8 polynomial to determine the nontrivial eigenvalues. The present system is
Hamiltonian, so the remaining polynomial is a degree-4 polynomial inλ2. Moreover, as this system has three dof, its
equilibria have only three eigenvalues that give independent information. An equilibrium is elliptic whenever each
of its associated square eigenvaluesλ2 is negative. We may conclude by physical considerations (although we will
not prove this rigorously) that—just as for two-term superposition states—all the equilibria are elliptic provided the
quantity

E ≡ V (a)+K(zij , a) (45)

has a single minimum with respect to the displacementa. When this happens, the time-derivative of the momentumP

vanishes exactly once if one variesa quasistatically by holding thez-Bloch variables (and hence the probability am-
plitudesAj ) constant. In this event, there is exactly one configuration of the boundary corresponding to each pure state
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Fig. 3. Poincaŕe section for the cutx12 = 0 in the(a, P )-plane for a three-term superposition state. This plot shows fully chaotic regions similar
to those often observed in two-term superpositions.

equilibrium. If there were some sort of saddle structure (equivalently, if one or more of the equilibria were not elliptic),
thenṖ would necessarily vanish at multiple displacementsa∗ for each of the normal modes in question. The tran-
sitions in question are generalizations of saddle-center bifurcations, as shown explicitly for two-term superposition
states in a previous work[36]. (For one-term superposition states, one obtains canonical saddle-center bifurcations.)

We investigate the dynamics ofEq. (37)numerically when the billiard resides in the harmonic potential

V (a) = V0

a2
0

(a − a0)
2, (46)

for which all equilibria are elliptic since the electronic kinetic energyK is positive definite. As expected, the behavior
of the present system is more intricate than that observed in two-term superposition states. For some choices of
parameters and initial conditions, however, one obtains plots whose dynamics are very similar to those for two-term
superpositions.Figs. 3–15display plots exemplifying the dynamics of a three-term superposition consisting of
the ground state and the first two null angular-momentum(l = 0,m = 0) excited states of the radially vibrating

Fig. 4. Poincaŕe section for the cutx12 = 0 in the(a, P )-plane for a three-term superposition state.
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Fig. 5. A closer look at part of the Poincaré section for the cutx12 = 0 in the(a, P )-plane for a three-term superposition state.

spherical quantum billiard. We used the parameter values� = 1,M = 10,m = 1, ε1 = π2/2m ≈ 4.9348022,
ε2 = 4π2/2m ≈ 19.7392088,ε3 = 9π2/2m ≈ 44.4132198,V0/a

2
0 = 5, anda0 = 1.25. The resultant coupling

coefficients areµ12 = 4/3,µ13 = 3/4, andµ23 = 12/5.Fig. 3shows a Poincaré map (of the cutx12 = 0) projected
into the(a, P )-plane. The initial conditions for this plot arex12(0) = sin(0.95π) ≈ 0.156434,x13(0) = x23(0) =
0, y12(0) = y13(0) = y23(0) = 0, z12(0) = cos(0.95π) ≈ −0.987688,z23(0) = 0, a(0) ≈ 3.3774834, and
P(0) ≈ 7.2847682. In subsequent figures, we alter only the initial radius and conjugate momentum. The initial
values of the Bloch variables correspond to those used in a previous study of two-term superposition states[28,39].

Fig. 4shows thex12 = 0 Poincaré map projected into the(a, P )-plane. The initial radius isa(0) ≈ 2.2095438,
and the initial momentum isP(0) ≈ 3.6672913. The dynamics in this figure are almost integrable, but a closer
look reveals chaotic characteristics (seeFig. 5). There is evidence that this trajectory is near an orbit with period
6, although an additional plot reveals that another of its dof has departed quite a bit from a periodic or even

Fig. 6. Poincaŕe section for the cutx23 = 0 in the(a, P )-plane for a three-term superposition state. The initial conditions are the same as for
Fig. 4.
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Fig. 7. Poincaŕe section for the cutP = 0 in the(x12, y12)-plane for a three-term superposition state. The initial conditions are the same as for
Fig. 4.

quasiperiodic configuration.Fig. 6 shows thex23 = 0 Poincaré cut for the same initial conditions. The chaotic
behavior in this plot is less ordered, which demonstrates a different level of “excitation” corresponding to different
coupling coefficients and hence to differentfundamental coupling modesof the system. (We use the term “mode”
loosely in the present context. We are not referring to the eigenmodes of the wavefunction.) The Poincaré maps
for yij = 0 show behavior similar to that of the correspondingxij = 0 cut. Fig. 7 shows theP = 0 Poincaré
map projected into the(x12, y12)-plane of the Bloch ellipsoid.Fig. 8 is the same configuration projected into the
(x13, y13)-plane. Notice that this latter figure appears to be have departed further from an integrable configuration
than the former one. Again, different coupling modes can experience different degrees of excitation or departure
from integrability. That is, ad dof system may exhibit different levels of chaotic structure in its different fundamental
coupling modes, each one of which represents the interaction of one pure eigenstate with another. Hence, ford = 3,
we have three modes in this sense, corresponding to the three possible twofold interactions between the eigenstates
ψj . It is possible that an action–angle analysis of the present system will illuminate these features.

Fig. 8. Poincaŕe section for the cutP = 0 in the(x13, y13)-plane for a three-term superposition state. The initial conditions are the same as for
Fig. 4.
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Fig. 9. Poincaŕe section for the cutx12 = 0 in the(a, P )-plane for a three-term superposition state. The behavior in the plot appears quasiperiodic.

Fig. 9shows ax12 = 0 Poincaré cut in the(a, P )-plane corresponding to the initial conditionsa(0) ≈ 1.8685499
andP(0) ≈ 0.6140458. It appears to display quasiperiodic motion, but a portion of the same plot suggests that
it is not quite integrable (seeFig. 10). KAM theory also implies that this is the case, as any nonzero perturbation
from an integrable configuration will cause some chaos (although it may be so small as to be impossible to resolve
numerically)[19,48]. Moreover, a close-up of the same plot in the(z12, z23)-plane (Fig. 11) reveals chaotic behavior
in the Bloch variables. Unlike the classical variables, thez-Bloch variables appear to have departed quite a bit from
integrability. Hence, we see that it is possible for the classical variables to behave in a nearly integrable fashion,
while the quantum variables behave quite chaotically. In principle, moreover, we expect that a parameter regime
can be found in which the quantum subsystem is very chaotic and the classical subsystem is almost completely
integrable. (In close-ups of most regions ofFig. 9, in fact, the behavior still appears to be integrable.) In such regimes,
the eigenstates (which depend on the nuclear variablea) will appear integrable in simulations of trajectories and

Fig. 10. A close-up of a portion of the Poincaré section for the cutx12 = 0 in the(a, P )-plane for a three-term superposition state that was
shown inFig. 9. This zoomed view reveals a small region which suggests that there may be some chaotic behavior.
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Fig. 11. Poincaŕe section for the cutx12 = 0 in the(z12, z23)-plane for a three-term superposition state. The behavior in the plot displays chaos.

Poincaré sections, whereas their probabilities of expression exhibit chaotic structure. That is ford-fold electronic
near-degeneracies withd ≥ 3, one may simultaneously observe a chaotic electronic structure and a nuclear structure
that cannot be distinguished in practice from being integrable. Further plots suggest that the present configuration
is almost integrable with respect to the coupling between the ground state and first excited states but chaotic with
respect to the other couplings. A Poincaré section in the(a, P )-plane corresponding to the cutx23 = 0 (Fig. 12)
reveals chaotic characteristics, lending further credence to this possibility. Time series (Figs. 13–15) suggest the
same phenomenon. Time series for the correspondingy-Bloch variables reveal similar features, whereas time
series for the radius and momentum reveal motion that is almost regular. Based on the observed behavior of the
classical and quantum-mechanical dof, it seems that this configuration is one for which the only irregularities of the
dynamics of the radius and the momentum are ones that are extremely difficult to observe numerically. In turn, the
eigenfunctions are very regular. Nevertheless, there is some chaotic structure due to the coupling between the first
and second excited electronic states. The presence of a triple electronic near-degeneracy has given rise to a situation
in which the ground state is almost integrable but the interaction of the two excited states is not.

Fig. 12. Poincaŕe section for the cutx23 = 0 in the(a, P )-plane for a three-term superposition state. The behavior in the plot displays chaos.
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Fig. 13. Time series inx12(t) from t = 0 to 25 revealing near-integrable behavior.

Though we often observe plots that show similar features as those from two-term superposition, the dynamics of
the present case are far more complicated. We have already discussed, for example, the simultaneous occurrence
of regular and chaotic behavior corresponding to different fundamental interactions (coupling modes). The present
system has three coupling coefficients{µ12, µ13, µ23} rather than only one. Each of these coefficients corresponds
to an interaction between two of the system’s normal modes. There are parameter values and initial conditions for
which some of these interactions are “excited” (chaotic) and others are not. Hence, the present system has three
fundamental interactions rather than one. If one of them is “excited”, one observes chaotic behavior. (Only two of
these relative frequencies are independent.) This leads naturally to the notion of thecommensurabilityof normal
modes (eigenstates), which generalizes the use of this term in the context of oscillators. In general, two frequencies
are called “commensurate” when their ratio is rational. In the canonical example of geodesic (constant velocity)
motion on a torus (and hence also for constant velocity motion on a stationary rectangular billiard), the angle of
the motion with respect to the base of the rectangle is determined by the relative frequency (and hence speed)

Fig. 14. Time series inx13(t) from t = 0 to 25 revealing chaotic behavior.
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Fig. 15. Time series inx23(t) from t = 0 to 25 revealing chaotic behavior.

of the horizontal and vertical motions. In the commensurate case, one obtains periodic motion, whereas in the
incommensurate situation, the motion is quasiperiodic[19,48]. In terms of KAM theory, commensurate frequencies
correspond to resonant tori (which are destroyed by all perturbations from integrability), and incommensurate ones
correspond to nonresonant tori (some of which survive depending on the strength of the perturbation and how
poorly the irrational number in question is approximated by a rational number). In the present situation, there are
three fundamental interactions, of which two are independent (because the system has two quantum-mechanical
dof). In the present context, two eigenstates are said to be “commensurate” when their interaction is regular (up
to the precision of our numerical simulations) and “incommensurate” when it is chaotic. In the latter case, the
corresponding fundamental coupling mode of the two eigenstates has been excited and clearly displays chaotic
features.

In general, when all the frequencies are completely excited, one expects to observe plots without KAM islands
(or with very few islands), whereas if one or more of the frequencies is unexcited or partially excited, we observe
complicated KAM island structures. (That is, there are regions of both chaotic and integrable behavior.) To phrase
the above analysis more rigorously, we remark that a two-term superposition state approximates an infinite dof
Hamiltonian system (which describes the full dynamics of the vibrating billiard) with a two dof Hamiltonian
system. As discussed previously, a two-term superposition state may be used to describe the nonadiabatic dynamics
of twofold electronic near-degeneracies in molecular systems. From a mathematical perspective, one ignores the
other dof of the vibrating quantum billiard. Although these dof contribute non-negligibly to the dynamics of the
billiard from a mathematical perspective, they are justifiably ignored on physical grounds. Likewise, three-term
superposition states yield athreedof Hamiltonian system to describe nonadiabatic dynamics in molecular systems
near triple electronic near-degeneracies. As a result one may observe more intricate behavior. In particular, this
implies that if a single nuclear dof of a molecular system is excited, it must have at least a triple electronic
near-degeneracy in order to exhibit Arnold diffusion, cross-resonance diffusion, and other forms of resonant chaos
[22,29]. Arnold diffusion has been studied in a two-dimensional Fermi bouncing-ball (“accelerator”) model[2,29].
Vibrating quantum billiards are a more general form of the Fermi accelerator model, so one expects to find Arnold
diffusion in vibrating quantum billiards with three or more dof. In the context of molecular vibrations, a molecule
with one excited nuclear mode, for example, must have at least a triple electronic near-degeneracy in order to
exhibit Hamiltonian diffusion. Such behavior may thus have important consequences to nonadiabatic dynamics in
polyatomic molecules, nanomechanical devices, and other mesoscopic systems[34,35,46,50].
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6. d-Term expansions

We extend our analysis tod-term superposition states. Insert the wavefunction

ψ(d)(x, t; a) ≡
d∑
j=1

Anj (t)ψnj (x, t; a), (47)

which is a superposition ofn1st throughnd th eigenstates into the Schrödingerequation (5). Taking the expectation
of both sides of(5) for the state(47)of a one dov quantum billiard yields a generalization of the formulas obtained
above(14) and (28):〈

ψ(d)

∣∣∣∣− �
2

2m
∇2ψ(d)

〉
= K(|An1|2, . . . , |And |2, a),

i�

〈
ψ

∣∣∣∣∂ψ∂t
〉

= i�


 d∑
i,j=1,i �≡j

ȦniA
∗
nj

+
d∑
i=1

νnini |Ani |2 +
d∑

i,j=1,i �≡j
νninj AniA

∗
nj


 . (48)

DenotingAi ≡ Ani , the quadratic form(48) leads to the following amplitude equations:

iȦk =
d∑
j=1

DkjAj . (49)

In (49), the diagonal terms of the Hermitian matrixD ≡ Dkj are

Dkk = εnk

�a2
(50)

and the off-diagonal terms are given by

Dkj = −iµnknj
ȧ

a
. (51)

The parameterµkj ≡ µnknj = −µnknj �≡ 0 is the coupling coefficient for the cross termAnkA
∗
nj

. If a coupling
coefficient vanishes, the present situation reduces to a lower-dimensional case, so the assumption that none of these
coefficients vanishes does not remove any generality.

We transform the complex amplitudesAj to real variables using a GBT

xkl ≡ ρkl + ρlk, ykl ≡ i(ρlk − ρkl), zkl ≡ ρll − ρkk, (52)

wherek < l. Becausezi,i+s = zi,i+1 + · · · + zi+s−1,i+s , the GBVs are constrained to parameterize the surface of
a (d2 − 2)-dimensional ellipsoid:

d∑
i,j=1,i<j

[
d

2
(x2

ij + y2
ij )+ z2ij

]
= d − 1. (53)

As discussed previously, there are additional constraints on the Bloch variables. They are derived with essentially
the same calculation as for three-term superposition states, although it is significantly more tedious. With the
transformation(52), the kinetic energy may be expressed as

K = 2

da2

[∑
k<l

zklε
−
kl + ε+

]
, (54)
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where

ε−kl ≡ 1
2(εl − εk) (55)

and

ε+ ≡ 1

2

d∑
j=1

εj . (56)

One obtains(d − 1)d/2 equations of motion for thex-Bloch variables,(d − 1)d/2 equations of motion for the
y-Bloch variables,(d − 1) equations for thez-Bloch variables, and Hamilton’s equations forȧ andṖ . This gives a
total ofd2 − d + d − 1 + 2 = d2 + 1 coupled nonlinear ordinary differential equations. The equation forẋij takes
the form

ẋij = −ωijyij

a2
− 2µij Pzij

Ma
+ P

Ma

d∑
k=1,k /∈{i,j}

±µikxkj, (57)

whereωij ≡ (εj − εi)/� as before and the terms in the sum are all negative in the equation forẋ12. The terms
in the otherx-Bloch variable equations are then determined from consistency requirements. More specifically, the
Bloch variables are constrained to be on a subset of an ellipsoid. One differentiates the expression describing this
constraint (seeAppendix A) to obtain the equation

d∑
i,j=1,i<j

[d(xij ẋij + yij ẏij )+ 2zij żij ] = 0. (58)

In order to satisfy(58), the signs of the terms in the sum inEq. (57)must cancel each other out appropriately. One
can thereby determine all the appropriate signs in the equations of motion for thex-Bloch variables from the known
signs in the equation foṙx12, as the terms in question (that are of the formxijxkl) all come from dynamical equations
for otherx-Bloch variables.

The equations of motion for they-Bloch variables take the form

ẏij = ωijxij

a2
+ P

Ma

d∑
k=1,k /∈{i,j}

±(µikxkj − µjkyik), (59)

where all the terms are positive in the dynamical equation forẏ12 and the signs of the terms in the other equations
are determined using this fact andEq. (58). The equation foṙzi,i+1 takes the form

żi,i+1 = 2
µi,i+1Pxi,i+1

Ma
+ P

Ma

d∑
k=1,k /∈{i,i+1}

[µikxik + µk,i+1xk,i+1], (60)

because all terms withi as the left subscript or(i + 1) as the right subscript are necessarily positive. To obtain
Eq. (60), we used the fact thatµnq = −µqn. Hamilton’s equations,

ȧ = P

M
≡ ∂H

∂P
, Ṗ = −∂V

∂a
− ∂K

∂a
≡ −∂H

∂a
, (61)

are derived as before using the kinetic and potential energies and the dynamical equations for thez-Bloch variables
(60). In particular, one computes that

∂K

∂a
= − 4

da3


 d∑
i,j=1,i<j

zij ε
−
ij + ε+


+ 2

da3


ε−ij


2µijxij +

d∑
k=1,k /∈{i,j}

[µikxik + µkjxkj]




 . (62)
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The equilibria of the present(d2 + 1)-dimensional dynamical system(57) and(59)–(61)satisfyP = 0, xij =
yij = 0,

∑d
i,j=1,i<j z

2
ij = d − 1, and

∂V

∂a
= 4

da3


ε+ +

d∑
i,j=1,i<j

zij ε
−
ij


 . (63)

Thej th equilibrium corresponds to thej th complex amplitude|Aj | having a value of unity and all others vanishing.
That is, every equilibrium corresponds to a pure eigenstate with energy

Ej = 2εj
a2∗
, (64)

wherea∗ is the value of the displacement at equilibrium. Eachz-Bloch variable must have a value of either 1, 0,
or −1 at equilibrium. As a result, the condition(63)may also be expressed as

∂V

∂a
(a∗) = 2εj

a3∗
, j ∈ {1, . . . , d}, (65)

as shown previously ford = 2,3. Depending on the form of the external potentialV (a), there may be more than
one equilibrium corresponding to thej th normal mode. If all the equilibria are elliptic, however, there can only be a
single equilibrium corresponding to a given pure state. That is, if one variesa and holds the probability amplitudes
constant, the time-derivative of the momentumṖ can vanish precisely once. Thus, since

Ṗ = −∂V
∂a

− ∂K

∂a
, (66)

it follows for d-term superposition states of one dov billiards that if the energy

E ≡ V (a)+K(zij , a) (67)

has exactly one minimum with respect toa, then all equilibria are elliptic. In particular, every equilibrium is elliptic
for any single-well potentialV (a) (including the harmonic potential).

7. Infinite-term expansions

In order to discuss the infinite-term Galërkin expansions that corresponds to the exact dynamics of the system, we
treat things in a more abstract context. (We do not consider infinite-term projections in which a finite number of terms
are ignored.) A vibrating quantum billiard on ans-dimensional Riemannian manifold(X, g) has wavefunctions
defined on the Hilbert space

H = L2(X| |xj | ≤ 1,dx) (68)

of square-integrable wavesψ with Lebesgue measure dx [41]. In the above space, the parameterj ∈ {1, . . . , s}
represents thej th coordinate. Although|xj | ≤ aj (t), observe that each coordinate is normalized to unity. The
time-dependent boundary componentsaj (t) of the billiard appear only as scaling factors in the wavefunctionψ in
the Born–Oppenheimer approximation. That is, the wavefunctionψ is expressible as

ψ(xj (t), t; aj (t)) =
s∏
j=1

aj (t)
αj ψ

(
xj

aj (t)
, t

)
∈ H, (69)

whereαj is the power ofaj needed for normalization. InEq. (69), the variable displacements appear as constant
normalization factors in front of the molecular wavefunctionψ and as scalings of the relevant displacement variable.
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One may therefore incorporate this scaling in the definition of the Hilbert spaceH in which the wavefunction resides.
A single normal modeψn has the normalization factor

cj

s∏
j=1

aj (t)
αj , (70)

wherecj are constants that may be different for each normal mode. On the other hand, theaj -dependence in the
normalization factor is the same for each eigenfunction.

Using this geometric description, we see that vibrating quantum billiards have an infinite-dimensional Hamiltonian
structure with Hamiltonian given by the energy

E[ψ, a, ȧ] =
∫

{|xj |≤aj }
‖∇ψ‖2 dx +

s∑
j=1

Mj

2
ȧ2
j + V (a1, . . . , as). (71)

Using ȧj = Pj/Mj , we obtains equations describing the mechanical motion of the billiard boundary:

Mj äj = Ṗj = −
∫

{|xj |=aj }
‖∇ψ‖2 dσ(x)− ∂V

∂aj
, (72)

where dσ(x) is a Lebesgue measure on the boundary of the billiard. Finally, note that this formulation is fors dov
vibrating quantum billiards.

Now that we have discussed the Hilbert space setting of the present system, let us consider the Lie group structure
of the associated wavefunctionψ . Since the wave is normalized, we immediately restrict ourselves to the unitary
group onC

d , whered is the number of terms in the superposition state. Because of their scale-invariance—two
wavefunctions are equivalent if one is a multiple of the other—wavefunctions may be treated as elements of the
complex projective spaceCP

d−1, which is the set of lines inCd , or equivalently the setCd/{change of scales}. If
one is not taking a Galërkin truncation, thend = ∞ and one has a basis of infinitely many normal modes with
coefficientsAi ∈ C. In this case, we are dealing with the groupC

∞ and henceCP
∞. The infinite-dimensional

projective spaceCP
∞ is given by the union

CP
∞ =

⋃
j≥0

CP
j . (73)

It is well-defined because of the embeddingCP
j ↪→ CP

j+1, which is defined by appending a 0 to thelast coordinate
of any pointζ j ∈ CP

j .
By conservation of probability, the sum of the squared amplitudes|Aj |2 is unity. This entails restrictions on the

density matrixρjk = AjA∗
k , which we may write as a projection operator

ρ ≡ Pϕ, (74)

wherePϕψ = 〈ψ, ϕ〉ϕ for the{ϕ}-basis. For a given basis{ψj }, a wave function is determined by its amplitude tuple
{Aj } ≡ {Am1, . . . , Amj , . . . }. Conservation of probability,

∑d
j=1 |Aj |2 = 1, follows from the fact thatψ ∈ U(Cd).

Furthermore, as the global phase of wave-functionψ is unimportant,ψ is actually an element of the quotient group

U(Cd)

{eiθ I } , (75)

where{eiθ I }, the set of all global phase shifts, is the center of the group U(Cd). (Recall that the center of a group
is the subgroup whose elements commute with every element of the group[17]. In a quantum-mechanical setting,
this corresponds to the set of all global phase factors.) Ifd is finite, thenψ ∈ U(d)/{eiθ I }. There is thus a natural
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action of the group U(d)/{eiθ I } : C
d → C

d which induces an action fromCP
d−1 to CP

d−1 by the invariance of
wavefunctions under scaling. The group U(d)/{eiθ I } is the invariance group of the action described above. In the
infinite-term case, one similarly has an action

U(Cd)

{eiθ I } : CP
∞ → CP

∞ (76)

under the invariance group U(Cd)/{eiθ I }.
In the present abstract setting, one definesψ to be an element of its invariant Lie group, as on the normalized

Hilbert spaceH (in which the time-dependence ofa(t) makes no difference), it is completely determined by its
coefficientsAj (and hence by its associated Bloch variables):

ψ =
∑
j

Ajψj . (77)

This leads to another way for determining well-posedness of vibrating quantum billiards. One can do this with
Hilbert spaces (as we did above), or one can simply proceed by hand. Using the latter perspective, the vibrating
quantum billiard problem is well-posed by choosing a basis of eigenfunctions{ψj } accompanied by initial complex
amplitudesAj(0).

In the action of the invariant group, one generally has an∞ : 1 map. However, if one restricts one’s attention to
thefinite-dimensionalsubgroup U(d)/{eiθ I } ⊂ U(C∞)/{eiθ I }, one instead obtains ad : 1 map. This procedure is
equivalent to taking ad-term Galërkin projection. In general, ford ≥ n (includingd = ∞), one obtains ann : 1 map
by restricting the wave-functionψ ∈ U(n)/{eiθ I }.) In other words, the act of taking ad-term Galërkin projection
corresponds to restricting the Lie group in which the wave-function resides. (The fact that the map isd : 1 implies,
for instance, that one takesd roots of unity in the inverse map.) This, in turn, is accomplished by restricting the
coefficient tuple{Aj } to be an element ofCd (and retaining the invariance properties of the coefficients that are
consequences of the invariance properties ofψ).

By consideringd-term superposition states, we thus see that the Lie algebrau(d)/{eiθ I} of the Lie group
U(d)/{eiθ I } is isomorphic to the Lie algebrasu(d) of su(d). However, their associated Lie groups are not themselves
isomorphic. Whend is odd, for example, U(d)/{eiθ I } has a trivial center, whereas−I is in the center of SU(d).
Moreover, whend = 2, the group U(2)/{eiθ I } is isomorphic to the rotation group SO(3), which is not isomorphic
to SU(2), as the latter group is simply connected and the former is not. Nevertheless, because their Lie algebras are
isomorphic, there necessarily exists a map from the neighborhood of the identity of one group onto a neighborhood
of the identity of the other group which is a homomorphism where it is defined. In other words, U(d)/{eiθ I } and
SU(d) are “locally isomorphic”[15].

As briefly mentioned above, the analysis in the present section shows that the vibrating quantum billiard problem
is well-posed whether or not one approximates the system with a finite-term superposition (Galërkin projection).
This follows from the well-definedness of the Hilbert space structure. We note that we did not need to form a basis
of eigenstates in order to demonstrate this. Nevertheless, the well-posedness of the present problem may also be
demonstrated using such an explicit basis.

In addition to discussing the symmetries of vibrating quantum billiards, one may utilize infinite-term Galërkin
expansions to write such systems as infinite sets of coupled nonlinear ordinary differential equations. The dynamical
equations for the complex amplitudes are given by

iȦk =
∞∑
j=1

DkjAj , (78)
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where the matrix elementsDkj are defined as before. Although the dynamics of the quantum dof of vibrating
quantum billiards can be written usingEq. (78), it is not convenient to analyze these systems in this manner. Using
an action–angle formulation would simplify the resulting equations, but for now we stop at the present geometric
treatment. With such analysis, the techniques of geometric mechanics[31] may eventually prove quite fruitful for
vibrating quantum billiards and related molecular systems.

8. d-Term expansions in quantum billiards with two or more dov

The ideas discussed in the present paper may also be applied to quantum billiards with more than one dov. Recall
that the dov of a quantum billiard refer to the classical dof describing the dynamics of the billiard boundary. Thus,
a two-mode Galërkin expansion of a two dov quantum billiard has three total dof (as there is also one quantal dof).
Such a configuration could therefore exhibit Hamiltonian diffusion. An important difference between such systems
and those discussed previously are the relative numbers of fast and slow dof. That is, a two-term superposition state
of a two dov quantum billiard is very different from a three-term superposition state of a one dov quantum billiard,
even though both problems are three dof Hamiltonian systems. The former system has two slow dof and one fast
one, whereas the latter one has one fast dof and two slow ones.

9. Conclusions

We considered superposition states of various numbers of terms in order to analyze vibrating quantum billiards
from a semiquantum perspective. We discussed the relationship between Galërkin methods, inertial manifolds, and
other differential equations such as NLS equations. We then studied vibrating quantum billiards by considering
one-term, two-term, three-term,d-term, and infinite-term superposition states. We derived a GBT that is valid for
any finite-term superposition and numerically simulated three-mode Galërkin expansions of the radially vibrat-
ing spherical quantum billiard with null angular-momentum eigenstates. We discussed the physical interpretation
of d-term superposition states in terms ofd-fold electronic near-degeneracies and thereby justified the use of a
Galërkin approach to the study of vibrating quantum billiards. Finally, we applied geometric methods to analyze
the symmetries of infinite-term superpositions.
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Appendix A. Semiquantum chaos

Semiquantum chaos refers to chaos in systems with both classical and quantum components[9]. Although
typically studied in the context of conservative systems (so that one is considering Hamiltonian chaos in the
semiquantum regime), semiquantum chaos can occur in dissipative systems as well[16,35,37].

Semiquantum descriptions typically arise from the dynamic Born–Oppenheimer approximation, which is applied
constantly in molecular physics[4,7,8,35,46]. Part of the value of semiquantum physics is that one may observe chaos
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even in low-energy systems, such as nuclei that have been coupled to two-level electronic systems consisting of the
ground state and the first excited state of appropriate symmetry[28,35,39]. In the setting of quantum chaology (i.e.,
quantized chaos), which is the type of quantum chaos ordinarily considered, one typically focuses on highly energetic
states[9,20,21]. Thus, the semiquantum regime is important for capturing the chaotic dynamics of low-energy
states. As this phenomenon has been observed experimentally in molecular systems[46], semiquantum chaos is an
important type of quantum chaotic behavior.

Both the classical and quantal components of semiquantum systems can behave chaotically. Chaos in the quantum
subsystem manifests in the quantum probabilities. Even the chaotic dynamics of the classical subsystem has quantum
consequences, however, as the quantum normal modes and eigenenergies of a semiquantum system depend on its
classical dof. Hence, the wavefunctions of semiquantum chaotic systems exhibit quantum-mechanicalwave chaos
[8,39]. Additionally, as the lengthscales of the wavefunctions are determined by the classical dof, semiquantum
chaos leads to a chaotic superposition of chaotic normal modes.

To consider the wavefunction lengthscales of vibrating quantum billiards in more detail, note that the displacement
a(t) considered in this work represents a characteristic length of the eigenstates because the argument of each of
the normal modes of one dov quantum billiards (before normalization) is proportional toa−1. For example, the
one-dimensional vibrating quantum billiard[8,9] contains modes of the following form:

cos

(
kπx

a

)
, sin

(
kπx

a

)
. (A.1)

The inverse displacementa(t)−1 thus plays the role of a wavenumber anda(t) plays the role of a wavelength.
Consequently, chaotic behavior ina(t) represents chaotic evolution in normal mode wavelengths. The momentum
P(t) measures the change in the wavefunction’s lengthscale, as the dynamics of the wavelengths of each of the
eigenfunctions are described by the motion ofa. (Each of these wavelengths is a constant multiple ofa(t).) This
interpretation also holds for multiple dov quantum billiards—there is a characteristic lengthscale corresponding to
each dov.

The signature of semiquantum chaos in real space is the sequence of intersections with a fixed displacement
that nodal surfaces make at any instant subsequent to a number of transversal times[28]. At t = t1, the normal
modesψj ≡ ψj (x, y, z, t; a(t)) each vanish for a countably infinite set of values of(x, y, z) (which are determined
by a(t1)). At t = t2 > t1, ψj vanishes for another countably infinite set of values of(x, y, z), etc. (The notation
ψj is used to denote thej th eigenfunction in ad-mode Galërkin expansion.) The number of transversal times in
the sequence{t1, . . . , tk} refers to the numberk, which describes how many times the system of interest has been
strobed (i.e., the number of dots in a Poincaré section).

In the language of Blümel and Reinhardt[9] as well as our previous work[28,38–40], vibrating quantum
billiards can exhibit semiquantum chaos. One has a classical system (the walls of the billiard) coupled to a
quantum-mechanical one (the particle enclosed by the billiard boundary). Considered individually, each of these
subsystems is integrable provided there is a single classical dof. When a vibrating billiard’s classical and quantum
components interact, however, one observes chaotic behavior in each of them. Note finally that quantizing the
motion of the billiard walls leads to a higher-dimensional, fully quantized system that exhibits so-called quantized
chaos[9].

Appendix B. Generalized Bloch representations

In this appendix, we derive a canonical “generalized Bloch representation” (GBR) corresponding tod-term
superpositions[15,49]. We begin with a discussion of the geometry underlying this representation, which yields a
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“generalized Bloch sphere” (GBS). We then discuss the casesd = 2 and 3 and briefly generalize the analysis to
higher-term superposition states. Ford = 2, we utilize the standard Bloch sphere, whereas ford = 3, we make a
transformation by hand to obtain variables that are more convenient for our analysis than the canonical GBR.

The appropriate function space of ad-term Galërkin projection is ad-dimensional Hilbert spaceH. The group
End(H) of linear operators (“endomorphisms”) overH is metrizeable in several manners[17]. In the present context,
we use the metric

d(A,B) =
√

1
2〈A− B,A† − B†〉 (B.1)

induced by the Hilbert–Schmidt inner product〈A,B〉. The Lie algebra of Hermitiand × d traceless matricessu(d)
is aD-dimensional (D = d2 − 1) real subspace of End(H) [15]. We choose a basis{τj }Dj=1 of su(d) so that
〈τj , τk〉 = 2δjk. The setB1 of Hermitian operators with unit trace is aD-dimensional hyperplane of End(H). Any
elementρ ∈ B1 may be written in the form

ρ(λ) = 1

d
I + 1

2

D∑
j=1

λj τj , (B.2)

where the vectorλ ≡ (λ1, . . . , λD) ∈ R
D is the GBR ofρ. Eq. (B.2)defines a mapm : B1 → R

D that associates
with anyρ its GBR vector, soρ ≡ ρ[m(ρ)] [49].

SupposeRD is endowed with the canonical Euclidean inner product. LetSD−1 ⊂ R
D be the(D−1)-dimensional

hypersphere with radius

Rd =
√

2

(
1 − 1

d

)
, (B.3)

and letBD be the ball bounded bySD−1. If d = 2, one finds thatR2 = 1, which recovers the Bloch sphereS2. In
the context of the present paper, one transforms the complex amplitudesA1 andA2 to (real) Bloch variables via the
transformation

x ≡ ρ12 + ρ21, (B.4)

y ≡ i(ρ21 − ρ12), (B.5)

z ≡ ρ22 − ρ11, (B.6)

whereρqn = AqA∗
n is the density matrix[27]. Because|A1|2 + |A2|2 = 1, it follows thatx2 + y2 + z2 = 1.

Ford ≥ 3, it is more convenient for our purpose to use a slightly different transformation. We therefore generalize
the explicit form of the two-dimensional Bloch transformation rather than the geometric aspect highlighted above.
We construct these transformations ford = 3 and 4. One should note several facts regarding GBRs. The radii of
“Bloch ellipsoids” (which are described by one of our constraints) depend on the normalization of theD generators
of su(d). The geometric description above reduces to the standard representation ford = 2 (Pauli spin matrices)
andd = 3 (Gell–Mann matrices).

A generic Hermitian matrix is described byd2 independent parameters. In the present case, however, the constraint

tr(ρ) =
d∑
j=1

|Aj |2 = 1 (B.7)

coupled with the fact that the physical manifestation of wavefunctions is invariant under changes in theabsolute
phaseof the system reduces the number of Bloch variables by 2 to(d2−2). (The second statement says that one can
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shift everynormal mode by the same phase without altering the physics. However, the relative phases of the normal
modes are very important. The operation of ignoring the system’s absolute phase corresponds mathematically to
modding out by the group{eiϑI }, whereϑ is an arbitrary phase.) This number of Bloch variables does not correspond
to the number of quantum dof of the present system, which isd − 1. (In ad-term Galërkin projection, one hasd
complex amplitudes and hence 2d real variables. Because of the normalization constraint and invariance under global
phase shifts, one obtains(2d−2) independent real variables and hence(d−1) quantal dof.) Consequently, the nine
Bloch variables for three-term superpositions are accompanied by five constraints, and the 18 Bloch variables for
four-term superpositions require 10 constraints. Thus, this naive construction becomes cumbersome rather quickly.
Nevertheless, it can be insightful to derive it for small values ofd.

Whend = 3, there are three complex amplitudesA1, A2 andA3. Fork < l, define

xkl ≡ ρkl + ρlk, ykl ≡ i(ρlk − ρkl), zkl ≡ ρll − ρkk. (B.8)

The transformations (B.8) yields nine variables, so there must be two associated constants of motion, since we seek
to describe a seven-“ellipsoid”. (There are then three additional constants of motion, so one is actually considering
subsets of this ellipsoid.) It is apparent thatz13 = z12 + z23, and one can compute that∑

k<l

[ 3
2(x

2
kl + y2

kl)+ z2kl] = 2(|A1|2 + |A2|2 + |A3|2) = 2 · 1 = 2. (B.9)

Definingz1 ≡ z12 andz2 ≡ z23 yields a Bloch seven-ellipsoid with eight generators{x12, x13, x23, y12, y13, y23,

z1, z2} and the constraint

3

2

(∑
k<l

x2
kl +

∑
k<l

y2
kl

)
+ 2(z21 + z1z2 + z22) = 2. (B.10)

We now derive the other constraints. From the standard Bloch variable construction[1], observe that

x2
12 + y2

12 + z212 = [1 − |A3|2]2, x2
13 + y2

13 + z213 = [1 − |A2|2]2,

x2
23 + y2

23 + z223 = [1 − |A1|2]2. (B.11)

Taking the square root ofEqs. (B.11)produces two constraints:

z12 =
√
x2

23 + y2
23 + z223 −

√
x2

13 + y2
13 + (z12 + z23)2,

z23 =
√
x2

13 + y2
13 + (z12 + z23)2 −

√
x2

12 + y2
12 + z212. (B.12)

We obtain a final constraint by summing the threeequations (B.11):

2 =
3∑
k<l

√
x2

kl + y2
kl + z2kl. (B.13)

Let us briefly consider the case of generald. Fork < l, define

xkl ≡ ρkl + ρlk, ykl ≡ i(ρlk − ρkl), zkl ≡ ρll − ρkk, (B.14)

as before. This yields 3d!/[2 · (d − 2)!] variables, which needs to be reduced to(d2 − 1) variables. We also
need to find several constraints for the reduced set of variables in order to obtain [2(d − 1)] independent variables
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(corresponding the system’s(d − 1) dof). To find the constraint associated with the Bloch ellipsoid, one needs to
find constantsα andβ such that

d∑
i,j=1,i<j

[α(x2
ij + y2

ij )+ z2ij ] = β. (B.15)

The above equation is satisfied if and only ifα = d/2 andβ = d − 1. Ford = 2, one obtains the constraint
x2 + y2 + z2 = 1. The cased = 3 also reproduces our previous result. Ford = 4, we find thatα = 2 and
β = 3. The relative contributions ofxij andyij increase faster than those ofzij , so using this explicit GBR generates
ellipsoids rather than spheres ford > 2. The constraints ford = 3 are tractable, but things become ridiculously
messy ford = 4. We illustrate this construction in the present paper, but we restrict our numerical simulations to
d ≤ 3.

One reduces the number of variables by considering onlyzij such thatj − i = 1. Thus, ford = 4, we use the
variablesz12, z23, andz34 to obtain 15 Bloch variables with a normalization constraint that gives us a 14-ellipsoid.
It follows from Eq. (B.8)that

zik ≡ ρkk − ρii = (ρkk − ρjj )+ (ρjj − ρii ) ≡ zij + zjk. (B.16)

Applying (B.16)recursively then implies that

zi,i+s = zi,i+1 + · · · + zi+s−1,i+s . (B.17)

For example,z14 = z12 + z23 + z34. The other six constraints for thed = 4 case are derived from the six equations

x2
ij + y2

ij + z2ij = [1 − |Ak|2 − |Al |2]2, (B.18)

wherei, j , k, andl are distinct indices in{1,2,3,4}. Three of these equations take the form√
x2

ij + y2
ij + z2ij +

√
x2

kl + y2
kl + z2kl = 1, (B.19)

where all the indices are again distinct. (One then inserts the appropriate relations between thez-Bloch variables.)
The other three equations are

−
√
x2

12 + y2
12 + z212 +

√
x2

34 + y2
34 + z234 = z14 + z23 = z12 + 2z23 + z34,

−
√
x2

13 + y2
13 + z213 +

√
x2

24 + y2
24 + z224 = z12 + z34,

−
√
x2

14 + y2
14 + z214 +

√
x2

23 + y2
23 + z223 = z12 − z34, (B.20)

where we have utilized the previously derived conditions for thez-Bloch variables. This analysis, then, gives a
prescription for explicit GBVs to complement the equivalent Lie group formulation presented earlier (for which the
number of dof of the system was not directly evident).

A different transformation to obtain real variables related to the complex amplitudesAk is to use action–angle
coordinates[35,46]. In this construction, one defines thekth actionnk andkth angleθk with the relation

Ak ≡ √
nk eikθ . (B.21)

This producesd−1 dof because of conservation of probability and invariance of wavefunctions under global phase
shifts. In this new notation, conservation of probability implies that the actions satisfy the condition

d∑
k=1

nk = 1. (B.22)
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Analysis of vibrating quantum billiards in this action–angle formulation should be a fruitful endeavor. This formula-
tion, in fact, arises frequently in the chemical physics literature, so there is precedent for this perspective[32,46,50].
Action–angle coordinates have the advantage that the number of quantum dof become more transparent. On the
other hand, the GBR has the advantage that the geometric structure of vibrating quantum billiards (and Galërkin
truncations thereof) is more easily seen. (Moreover, the use of Bloch variables circumvents the need for the so-called
“Langer modification”[23].) Although we take the latter approach in the present paper, we note that an action–angle
approach will allow more analytical discussions of semiquantum chaos and diffusion. This will thus be the subject
of future work.
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