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We investigate financial market correlations using random matrix theory and principal component analysis.
We use random matrix theory to demonstrate that correlation matrices of asset price changes contain structure
that is incompatible with uncorrelated random price changes. We then identify the principal components of these
correlation matrices and demonstrate that a small number of components accounts for a large proportion of the
variability of the markets that we consider. We characterize the time-evolving relationships between the different
assets by investigating the correlations between the asset price time series and principal components. Using
this approach, we uncover notable changes that occurred in financial markets and identify the assets that were
significantly affected by these changes. We show in particular that there was an increase in the strength of the
relationships between several different markets following the 2007–2008 credit and liquidity crisis.
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I. INTRODUCTION

The global financial system is composed of a variety
of markets, which are spread across multiple geographic
locations and in which a broad range of financial products
are traded. Despite the diversity of markets and the disparate
nature of the products that are traded, price changes of
assets often respond to the same economic announcements
and market news [1–3]. The fact that asset prices depend
on the same signals implies that there is strong coupling
between prices, so price time series can exhibit similar
characteristics and be correlated. One of the primary concerns
of market practitioners is to estimate the strength of such
correlations [4].

There are many reasons for wanting to understand cor-
relations in price movements. Perhaps the most familiar
motivation is for risk management purposes, because large
changes in the value of a portfolio are more likely if the
prices of the assets held in the portfolio are correlated [4]. An
understanding of the correlation between financial products
is therefore crucial for managing investment risk. It has also
been shown that the strength of the correlations between some
markets can be explained by macroeconomic factors [5,6].
An understanding of correlations can therefore illuminate the
macroeconomic forces driving markets and help inform asset
allocation decisions [6].

In this paper, we use principal component analysis (PCA) to
produce a parsimonious representation of market correlations
and characterize the evolving correlation structures within
markets. PCA is an established tool in data analysis for generat-
ing lower-dimensional representations of multivariate data [7]
and has provided useful insights in a diverse range of fields
[8–11]. In finance, PCA has been used to identify common
factors in international bond returns [12,13] and to produce
market indices [14]. It has also been used in subjects such as
arbitrage pricing theory [15,16] and portfolio theory [17].

PCA is closely linked to random matrix theory (RMT),
which was developed to deal with the statistics of the energy
levels of many-body quantum systems [18,19]. The standard
financial application of RMT is to compare the eigenvalues
and eigenvectors of correlation matrices of asset returns
with the corresponding properties of correlation matrices for
randomly-distributed returns [4,20–24]. In prior studies, most
of the eigenvalues of market correlation matrices were found
to lie within the ranges predicted by RMT (for example, in
Ref. [4], 94% of the eigenvalues lie within the RMT range),
which is usually taken as an indication that to a large extent the
correlation matrix is random and dominated by noise [4,20,21].
In addition, the smallest eigenvalues of market correlation
matrices were found to be most sensitive to noise in the
estimation of the correlation coefficients [4]. Because the
eigenvectors corresponding to the smallest eigenvalues are
used to determine the least risky portfolios in Markowitz
portfolio theory [25], this result has important implications
for risk management [4,20,21,26].

Most prior investigations of markets using PCA and RMT
focused on specific markets. For example, there is a large
body of work investigating equity markets [4,20,21,26],
and there have also been investigations of emerging market
equities [27–29], the foreign exchange (FX) market [30], and
bond markets [12,13]. Many of these studies only consider a
single correlation matrix, although some also investigate the
temporal evolution of correlations [22,23]. The work in this
paper differs from these studies by investigating a diverse
range of asset classes and by studying the time evolution of the
correlations between these assets. By studying the temporal
dynamics of the correlations of many different markets, we
uncover periods during which there were major changes in the
correlation structure of the global financial system. We find
large increases in the strengths of correlations between many
different assets following the 2007–2008 credit crisis [31],
which has important implications for the robustness of
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financial markets [32]. Financial institutions are linked both
through credit relationships and as a result of holding similar
portfolios of assets [33]. If many assets are correlated and
prices fall, this can cause several financial institutions to
write down the value of their assets. These write-downs
can then impact the credit relationships between different
institutions [34]. The strength of correlations therefore affects
the stability of markets.

The rest of this paper is organized as follows. In Sec. II, we
discuss our data. We then discuss correlations between assets
in Sec. III, PCA and RMT in Sec. IV, the temporal evolution
of some properties of the correlation matrices in Sec. V,
correlations between individual assets and components
in Sec. VI, and individual asset classes in Sec. VII. We
summarize our results in Sec. VIII. We enumerate the
assets that we consider in Appendix A, provide examples
of the changes in the correlations between assets and
principal components (PCs) in Appendix B, and examine the
contribution of the assets to these correlations in Appendix C.

II. DATA

We examine time series for N = 98 financial products for
the period 8 Jan 1999–1 Jan 2010. These products include 25
developed market equity indices, three emerging market equity
indices, four corporate bond indices, 20 government bond
indices, 15 currencies, nine metals, four fuel commodities,
and 18 other commodities. (We enumerate and describe these
assets in Table I of Appendix A.) We include markets from sev-
eral geographical regions, so many are traded during different
hours of the day. For example, stocks included in the Nikkei
225 are traded on the Tokyo Stock Exchange, which operates
from midnight to 6 a.m. GMT, whereas stocks included in the
FTSE 100 index are traded on the London Stock Exchange,
which operates from 8 a.m. to 4:30 p.m. GMT. We use weekly
price data to minimize effects that might result from the
different trading hours for markets from different time zones.

III. CORRELATIONS

We denote the price of asset i at discrete time t as pi(t)
(i = 1, . . . ,N ) and define a weekly logarithmic return zi(t)
for asset i as

zi(t) = ln

[
pi(t)

pi(t − 1)

]
. (1)

We define a standardized return as ẑi(t) = [zi(t) − 〈zi〉]/σ (zi),
where σ (zi) =

√
〈z2

i 〉 − 〈zi〉2 is the standard deviation of zi

over a time window of T time steps and 〈· · ·〉 denotes a time
average over the same time window. We then represent the
standardized returns as an N × T matrix Ẑ, so the empirical
correlation matrix is

R = 1

T
ẐẐT , (2)

which has elements r(i,j ) ∈ [−1,1]. Because we have stan-
dardized the time series, the correlation matrix R of returns Ẑ
is equal to the covariance matrix �Ẑ of Ẑ.

We create a time-evolving sequence of correlation matrices
by rolling the time window of T returns (recall that there is
one return for each time step) through the full data set. The
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FIG. 1. (Color online) Comparison of the distribution of correla-
tion coefficients as a function of time for time windows of length
T = 100, 150, and 200. (a) Mean correlation μ(r), (b) standard
deviation σ (r), (c) skewness y(r), and (d) kurtosis κ(r).

choice of T is a compromise between overly noisy and overly
smoothed correlation coefficients [35] and is usually chosen
such that Q = T/N � 1. Figure 1 shows that we identify the
same major changes in the distribution of correlation coeffi-
cients using different values of T ; however, some of the fea-
tures in the correlations are smoothed out for longer windows.
In this study, we fix T = 100 (each window then contains just
under two years of data and Q

.= 1.02), and we roll the time
window through the data one week at a time. By only shifting
the time window by one data point, there is a significant overlap
in the data contained in consecutive windows. However, this
approach enables us to track the evolution of the market
correlations and to identify time steps at which there were
significant changes in the correlations. The choice of T = 100
results in 475 correlation matrices for the period 1999–2010.

In Fig. 2, we show the distribution of all of the em-
pirical correlation coefficients from every time window. To
highlight interesting features in the correlations, we compare
the distribution to corresponding distributions for simulated
random returns and randomly shuffled returns. We generate
shuffled data by randomly reordering the full return time
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FIG. 2. (Color online) Distribution of all of the correlation
coefficients r(i,j ) from every time window for market and random
data. The shuffled and simulated data lie almost on top of each other.
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series for each asset independently. This process destroys
the temporal correlations between the return time series but
preserves the distribution of returns for each series. We then
produce correlation matrices for the shuffled returns by rolling
a time window of T time steps through the shuffled data
and calculating a correlation matrix for each position of
the window. We produce simulated data by independently
generating N time series of returns (where each series has the
same length as the original data) whose elements are drawn
from a Gaussian distribution with mean zero and unit variance.
We again roll a time window of length T through the data and
calculate a correlation matrix for each window.1

Figure 2 illustrates that the distribution of correlation
coefficients for the market data is significantly different from
the two random distributions, as the market data has more large
positive and negative correlations. The differences between the
distributions demonstrate that there are temporal correlations
between returns for financial assets that are incompatible with
the null models that we consider, which in turn implies that
financial market correlation matrices contain structure that
warrants investigation.

IV. PRINCIPAL COMPONENT ANALYSIS AND RANDOM
MATRIX THEORY

We investigate the structure of the correlation matrices
using PCA. The aim of PCA is to find the linear transformation
� that maps a set of observed variables Ẑ into a set of
uncorrelated variables Y [7]. We define the N × T matrix

Y = �Ẑ , (3)

where each row yk (k = 1, . . . ,N) corresponds to a PC of Ẑ
and the transformation matrix � has elements ωki . The first
row ω1 (which contains the first set of PC coefficients) of �

is chosen so that the first PC y1 is aligned with the direction
of maximal variance in the N -dimensional space defined by
Ẑ. Each subsequent PC accounts for as much of the remaining
variance of Ẑ as possible, subject to the constraint that the ωk

are mutually orthogonal. We further constrain the vectors ωk

by requiring that ωkω
T
k = 1 for all k.

The correlation matrix R is an N × N diagonalizable,
symmetric matrix that can be written in the form

R = 1

T
EDET , (4)

where D is a diagonal matrix of eigenvalues β and E is
an orthogonal matrix of the corresponding eigenvectors. It

1Return time series for some financial assets display “volatility
clustering,” which means that large-magnitude returns tend to be
followed by large-magnitude returns and small-magnitude returns
tend to be followed by small-magnitude returns [36,37]. The random
return time series that we investigate do not possess this property,
though such memory of volatility in individual time series would not
affect the results. We consider zero-lag correlations, and the zero-lag
autocorrelation is necessarily equal to 1 for any time series [38].
Given this, the results for an investigation of correlations at zero lag
for mutually uncorrelated time series with memory must be the same
as the results for mutually uncorrelated time series without memory.

is known [7] that the eigenvectors of the correlation matrix
correspond to the directions of maximal variance such that
� = ET , and one finds the PCs via the diagonalization in
Eq. (4). The signs of the PCs are arbitrary; if the sign of every
coefficient in a component yk is reversed, neither the variance
of yk nor the orthogonality of ωk with respect to each of the
other eigenvectors changes.

We compare the properties of the market correlation
matrices with correlation matrices for random time series. The
correlation matrix for N mutually uncorrelated time series of
length T with elements drawn from a Gaussian distribution
is a Wishart matrix [4,20]. In the limit N → ∞, T → ∞,
and with the constraint that Q = T/N � 1, the probability
density function ρ(γ ) of the eigenvalues γ of such correlation
matrices2 is given by [39]

ρ(γ ) = Q

2πσ 2(Ẑ)

√
(γ+ − γ )(γ− − γ )

γ
, (5)

where σ 2(Ẑ) denotes the variance of the elements of Ẑ, and
γ+ and γ− are the maximum and minimum eigenvalues of the
matrix. These eigenvalues are

γ± = σ 2(Ẑ)

(
1 + 1

Q
± 2

√
1

Q

)
. (6)

When Q = 1, the minimum eigenvalue is γ− = 0, the maxi-
mum eigenvalue is γ+ = 4σ 2(Ẑ), and the density ρ(γ ) diverges
as 1/

√
γ as γ → γ− = 0. Equations (5) and (6) are only valid

in the limit N → ∞. For finite N , there is a nonzero probability
of finding eigenvalues larger than γ+ and smaller than γ−. For
the returns that we investigate, σ 2(Ẑ) = 1 and γ+

.= 3.96.
In Fig. 3, we compare the distribution of all eigenvalues

from every time window for market data with the distributions
for shuffled and simulated data. In Fig. 3(a), we show that the
eigenvalue distribution for market correlations differs from
that of random matrices. There are many eigenvalues larger
than the upper bound γ+

.= 3.96 predicted by RMT, including
several eigenvalues that are almost ten times as large as the
upper bound. In prior studies of equity markets, the eigenvector
corresponding to the largest eigenvalue has been described as
a “market” component, with roughly equal contributions from
each of the N equities studied, and the eigenvectors corre-
sponding to the other eigenvalues larger than γ+ have been
identified as different market sectors [4,20]. In Sec. VI, we dis-
cuss the interpretation of the observed eigenvectors with eigen-
values β > γ+. For now, we simply note that the deviations of
the empirical distribution of eigenvalues from the predictions
of RMT again imply that the correlation matrices contain struc-
ture that is incompatible with the null models that we consider.

In Figs. 3(b) and 3(c), we illustrate that the distributions
for shuffled and simulated data are very similar and that they
agree very well with the analytical distribution given by Eq. (5)
over most of the range of γ . In particular, both distributions
have an upper bound close to the theoretical maximum γ+

.=
3.96. However, for Q

.= 1.02 (the value that corresponds to the

2Note that we use β to denote the eigenvalues of the correlation
matrices calculated from the data, but we use γ to denote the
eigenvalues predicted by random matrix theory.
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FIG. 3. (Color online) Distribution of eigenvalues ρ(β) of the
correlation matrices for all time windows for (a) market, (b) shuffled,
and (c) simulated data. The insets show the distributions of the largest
eigenvalues. In (b) and (c), we show the eigenvalue probability density
functions ρ(γ ) for random matrices given by Eq. (5) for Q

.= 1.02
and 1.

selected T and N ), the observed distribution of eigenvalues for
random data does not fit the distribution in Eq. (5) as γ → 0.
For both the simulated and shuffled data, we observe a much
higher probability density near γ = 0 than that predicted by
RMT. The high probability density near zero is a result of the
fact that T ≈ N . When we simulate eigenvalue distributions
for data with T 	 N , we observe a much smaller probability
density near zero. In Figs. 3(b) and 3(c), we also show the
theoretical distribution for Q = 1. In this case, ρ(γ ) diverges
as γ → 0, which fits the randomly generated distributions
reasonably well.

We obtain similar results for the distributions of the
elements ωki (the PC coefficients) of the eigenvectors of
the correlation matrices. Correlation matrices R are real
symmetric matrices, so we compare the eigenvector prop-
erties of the matrices R with those for real symmetric
random matrices. Such random matrices display the universal
properties of the canonical ensemble of matrices known as the
Gaussian orthogonal ensemble (GOE) [20,21]. For the GOE,
the probability density ρ(ωk) is Gaussian with zero mean and
unit variance [40]. We find that the distributions for shuffled

and simulated data closely match a Gaussian distribution,
but there are differences between these distributions and the
distributions for market correlations. These differences are
most pronounced for the first and second PCs. In particular,
there are asymmetries in the distributions for market data that
are not present in the random distributions.

V. TEMPORAL EVOLUTION

In prior sections, we studied aggregate results for all time
steps and illustrated that the eigenvalues and eigenvectors of
financial market correlation matrices suggest that there are
correlations that are incompatible with the random null models
that we consider. We now investigate the temporal evolution
of financial market correlations by examining changes in the
eigenvalues and eigenvectors.

A. Proportion of variance

We begin by considering the eigenvalues of the correlation
matrices. The covariance matrix �Y for the PC matrix Y can
be written as

�Y = 1

T
YYT = 1

T
�ẐẐT �T = D, (7)

where D is the diagonal matrix of eigenvalues β. The total
variance of the returns Ẑ for the N assets is then

N∑
i=1

σ 2(ẑi) = tr(�Ẑ) =
N∑

i=1

βi =
N∑

i=1

σ 2(yi) = tr(D) = N,

(8)

where �Ẑ is the covariance matrix for Ẑ and σ 2(ẑi) = 1 is the
variance of the vector ẑi of returns for asset i. The proportion
of the total variance in Ẑ explained by the kth PC is then

σ 2(yk)∑N
i=1 σ 2(zi)

= βk

β1 + · · · + βN

= βk

N
. (9)

In other words, the ratio of the kth largest eigenvalue βk to the
number of assets N is equal to the proportion of the variance
from the kth PC.

In Fig. 4, we show as a function of time the fraction of
the variance βk/N due to the first five PCs (k = 1, . . . ,5).
From 2001 to 2004, the fraction of the variance explained by
the first PC increased. Between 2004 and 2006, it decreased
before gradually increasing again. In particular, a sharp rise
occurred when the week including 15 Sep 2008 entered the
rolling time window. This was the day that Lehman Brothers
filed for bankruptcy and Merrill Lynch agreed to be taken over
by Bank of America. Both events represented major shocks to
the financial system [31]. The variance explained by the first
PC peaked as the week ending 5 Dec 2008 entered the rolling
window—this was the week during which the National Bureau
of Economic Research officially declared that the U.S. was in
a recession—at which point it accounted for nearly 40% of the
variance in Ẑ.

The large variance in market returns explained by a single
component implies that there is a large amount of common
variation in financial markets. The increase in the variance
accounted by the first PC between 2001 and 2010 also suggests
that markets have become more correlated in recent years. In
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FIG. 4. (Color online) Fraction of the variance in Ẑ explained
by the first five PCs versus time. The top curve shows the variance
explained by the first PC, the next curve shows the variance explained
by the second PC, and so on. The horizontal axis shows the year of
the last data point in each time window.

particular, the significant rise in the variance of the first PC
following the collapse of Lehman Brothers demonstrates that
markets became more correlated during the period of crisis
following the failure of this major bank.

Although the changes in the variance from other high PCs
are smaller than those for the first PC, from 2001 until the
collapse of Lehman Brothers, the variance explained by the
second and third PCs appears to be negatively correlated
with the variance explained by the first PC. This is to be
expected because the total variance is constrained to sum
to N [see Eq. (8)], so when the first PC accounts for a
higher proportion, less remains to be explained by the other
components. Following Lehman’s bankruptcy, there is a sharp
increase in the variance explained by the first PC, for which
the small decreases in the variances of the next four PCs do
not account. Instead, the increase in the variance of the first
PC arises from small decreases in the variances of many other
PCs. From 19 Sep 2008 to 5 Dec 2008, the variance explained
by the first PC increased by 10%. Over the same period, the
variance explained by only four other PCs increased (with a
maximum increase of 0.02% for the ninth PC). The variances
due to all other PCs decreased. For example, the second, third,
fourth, and fifth PCs fell by 0.6%, 1.3%, 0.7%, and 0.5%,
respectively. The combined decrease in these PCs offsets the
sharp rise in the first PC.

It is also instructive to consider the combined variance
explained by the first few PCs. In 2001, the first 12 PCs
accounted for about 65% of the variance of market returns.
By 2010, however, the first five PCs accounted for the same
proportion. The fact that only a few components accounted for
such a large proportion of the variance implies that there is a lot
of common variation in the return time series of many financial
assets and highlights the close ties between different markets.
It also suggests that market correlations can be characterized
by much fewer than N components.

B. Significant principal component coefficients

An increase in the variance for which a PC accounts
might be the result of increases in the correlations among
only a few assets (which then have large PC coefficients)
or a marketwide effect in which many assets begin to
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FIG. 5. (Color online) Participation ratio [Ik]−1 as a function
of time for the three PCs with the largest variance (k = 1,2,3).
The horizontal solid line shows the PR (averaged over 100 000
simulations) of the first PC for randomized returns, and the horizontal
dashed lines show one standard deviation above and below the mean.

make significant contributions to the component. This is
an important distinction, because the two types of changes
have very different financial implications. For example, in
optimal portfolio selection, it becomes much more difficult
to reduce risk by diversifying across different asset classes
when correlations between all assets increase. In contrast,
increases in correlations within an asset class that are not
accompanied by increases in correlations between asset classes
have a less significant impact on diversification. A marketwide
increase in correlations might also imply a change in the global
macroeconomic environment. If many assets are correlated,
this suggests that the same macroeconomic force is driving
different markets.

We use the inverse participation ratio (IPR) [21,40] to
investigate temporal changes in the number of assets that make
significant contributions to each component. The IPR Ik of the
kth PC ωk is defined as

Ik =
N∑

i=1

[ωki]
4. (10)

The IPR quantifies the reciprocal of the number of elements
that make a significant contribution to each eigenvector. Two
limiting cases help one to understand it: (1) An eigenvector
with identical contributions ωki = 1/

√
N from all N assets

has Ik = 1/N ; and (2) an eigenvector with a single component
ωki = 1 and remaining components equal to zero has Ik = 1.
We also define a participation ratio (PR) as 1/Ik . A large PR
for a PC indicates that many assets contribute to it.

In Fig. 5, we show as a function of time the PR of the
first three PCs. The PR of the first PC increased from 2001 to
2010, and there were sharp increases when the weeks ending 12
May 2006 and 19 Sep 2008 entered the rolling time window.
The second increase coincided with the market turmoil that
followed the collapse of Lehman Brothers and occurred at
the same time as a significant increase in the variance that
was explained by the first PC (see Fig. 4). The first increase
coincided with surging metal prices. During the week ending
12 May 2006, the price of gold rose to a 25-year high, reaching
over $700 per ounce, and the prices of several other metals
also rose to record levels. Platinum and copper reached record
highs, aluminum hit an 18-year peak, and silver prices rose to
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their highest levels since February 1998. During the same
week, corporate bond prices reached a two-year high and
the prices of emerging market equities reached record levels.
Although these events coincided with a significant increase in
the PR of the first PC, this increase was not accompanied by a
sharp rise in the variance explained by this component.

The sharp rise in the PR of the first PC following the
collapse of Lehman Brothers implies that many assets were
highly correlated during the ensuing financial crisis. Based on
the value of the PR, over 70% of the studied assets contributed
significantly to the first PC. To test the significance of the PR of
the first PC, we compare it to the corresponding PR for random
returns. Figure 5 illustrates that between 2006 and 2010, the
PR of the observed returns was significantly larger than that ex-
pected for random returns, which emphasizes the large number
of different assets that were correlated during this period.

The temporal evolutions of the PRs of the higher compo-
nents are rather different. For example, from 2001 to 2003, the
PR of the second PC doubled; it then fluctuated around the
same level until the collapse of Lehman Brothers, at which
point it decreased sharply. Similarly, the PR of the third
PC increased from 2001 until Lehman’s collapse, and then
it also fell sharply. This suggests that, following Lehman’s
bankruptcy, the first PC influenced many assets at the expense
of higher components. The dominance of a single PC again
implies that there is a large amount of common variance in
asset returns. It also suggests that the key market correlations
can be described using only a few PCs.

From 2001 to 2002, the PR of each of the first three PCs was
below the value expected for random returns for all but nine
weeks. For random returns, there are only small differences
in the PRs for the different PCs. For example, using 100 000
simulations, we find that the mean PRs of the first, second,
and third PCs are 38.3, 37.7, and 37.3, respectively. The
standard deviations are 4.0, 4.1, and 4.2, respectively. This
implies that eigenvectors for correlation matrices of random
returns are extended, as many different assets contribute to
them [21]. In contrast, from 2001 to 2002, the eigenvectors for
the correlation matrices for market data are localized; fewer
assets contribute to the eigenvectors than would be expected
for correlation matrices for random, uncorrelated returns.

Inspection of the first three eigenvectors over this period
suggests that they correspond to bonds, equities, and curren-
cies, and the PRs of the first three PCs support this observation.
We study 24 bond indices (government and corporate), 28
equity indices, and 15 currencies. At the beginning of 2001,
the PRs of these first three PCs were 32.6, 40.3, and 14.9,
respectively. As expected, these PRs are larger than the
number of bonds, equities, and currencies that we study. The
different asset classes have some common variance with other
types of assets, which inflates the PR. Taking this effect into
account, the PRs are consistent with localized eigenvectors
that represent specific asset classes.

From 2001 to 2010, the first PC changed from a localized
state, in which only bonds contributed significantly, to an
extended state, in which nearly all of the assets that we consider
contributed. We discuss this in more detail in Sec. VI. The
large PR during the post-Lehman period and the small PR
from 2001 to 2002 are both indicative of correlations that are
incompatible with uncorrelated asset returns.
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FIG. 6. (Color online) (a) A scree plot, which gives the magnitude
of the PC eigenvalues as a function of the eigenvalue index, where
the eigenvalues are sorted such that β1 � β2 � · · · � βN . We show
curves for random correlation matrices and for correlation matrices
for time windows ending on 9 Mar 2001 and 27 Nov 2009. The
inset zooms in on the region in which the two example curves for
observed data cross the curve for random data. (b,c) Number of
significant components as a function of time determined using (b) the
Kaiser-Guttman criterion and (c) by comparing the scree plots of the
observed and random data.

C. Number of significant components

We now attempt to determine how many PCs are needed
to describe the primary market correlations. PCA is widely
used to produce lower-dimensional representations of multi-
variate data by retaining a few “significant” components and
discarding all other components [7]. Many heuristic methods
have been proposed for determining the number of significant
PCs, but there is no widespread agreement on an optimal
approach [41].

We apply two techniques to find the number of significant
components. The first is the Kaiser-Guttman criterion [42],
which assumes that a PC is significant if its eigenvalue
β > 1/N . Any component that satisfies this criterion accounts
for more than a fraction 1/N of the variance of the system. It
is considered significant because it is assumed to summarize
more information than any single original variable. The
second approach is to compare the observed eigenvalues to
the eigenvalues for random data and can be understood by
considering the scree plot in Fig. 6(a). A scree plot displays the
magnitudes of the eigenvalues as a function of the eigenvalue
index, where the eigenvalues are sorted such that β1 � β2 �
· · · � βN . The leftmost data point in a scree plot indicates
the magnitude of the largest eigenvalue, and the rightmost
data point indicates the magnitude of the smallest eigenvalue.
The number of significant PCs is given by the number of
eigenvalues in the scree plot for which the eigenvalue for
the observed data is larger than the corresponding eigenvalue
for random data. For example, in Fig. 6(a), there are three
significant eigenvalues for 27 Nov 2009 and six significant
eigenvalues for 9 Mar 2001.

026109-6



TEMPORAL EVOLUTION OF FINANCIAL-MARKET . . . PHYSICAL REVIEW E 84, 026109 (2011)

FIG. 7. (Color online) The absolute correlation |r(ẑi ,yk)| between each asset and the first six PCs (k = 1, . . . ,6) as a function of time. Each
point on the horizontal axis represents a single time window, and each position along the vertical axis represents an asset.

Figures 6(b) and 6(c) illustrate that there are large dif-
ferences in the number of significant components identified
using the two techniques, though both agree that the number
decreased between 2001 and 2010. The discrepancies in
the results suggest that one cannot reliably determine the
exact number of significant PCs using these two methods.
Nevertheless, the similar trends obtained using the two
techniques provide evidence that the number of significant
components decreased from 2001 to 2010. This again implies
that markets have become more correlated in recent years.
Both methods also agree that the number of significant
components is much lower than the number of assets that
we considered. Therefore, although one cannot determine
precisely the number of significant components using the
methods described in this section, our results nonetheless
suggest that market correlations can be characterized by much
fewer than N components.

VI. CORRELATIONS BETWEENS ASSETS
AND COMPONENTS

We now return to the question of the interpretation of
the eigenvectors with eigenvalues β larger than the upper
bound γ+ predicted by RMT. To do this, we investigate the
correlations r(ẑi ,yk) between the asset return time series ẑi

and the PCs yk . These correlations are closely related to the PC
coefficients, which represent the weighting of each asset on the
PCs. However, because the correlations r(ẑi ,yk) are confined
to the interval [−1,1], they are easier to interpret than the PC
coefficients. We use the correlations r(ẑi ,yk) to measure the
strengths of the asset-PC relationships and to determine which

assets contribute to each PC. In doing this, we also determine
the number of PCs that need to be retained to describe the main
features of the correlation matrices.

We write the covariance matrix of the return Ẑ with PCs Y
as

�YẐ = 1

T
YẐT = 1

T
�ẐẐT = ��T D
 = D�. (11)

This implies that the covariance of the returns of asset i and
the kth PC is given by �(ẑi ,yk) = ωkiβk . Additionally, the
correlation r(ẑi ,yk) is given by

r(ẑi ,yk) = ωkiβk

σ (ẑi)σ (yk)
= ωki

√
βk, (12)

where σ (ẑi) = 1 is the standard deviation of ẑi over T returns
and σ (yk) = √

βk . The correlations between the PCs and the
original variables are therefore equal to the PC coefficients
scaled by the appropriate eigenvalue. The signs of the PC
coefficients are arbitrary, so the signs of the PCs and the signs
of the correlations r(ẑi ,yk) are also arbitrary. To avoid having to
choose a sign for each correlation coefficient, we consider ab-
solute correlations |r(ẑi ,yk)|. Although we can then no longer
tell whether an asset is positively or negatively correlated with
a PC, this step is reasonable because we are interested only in
determining which assets contribute to each component.

A. Assets correlated with each component

In Fig. 7, we show the variation through time of the
correlation of every asset with each of the first six PCs. (In
Appendix B, we show example plots of |r(ẑi ,yk)| as a function
of time for specific assets.) This figure highlights that there
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are significantly fewer high correlations for the components
with larger k. For example, many of the correlations in the first
PC are greater than 0.8, but the correlations between the asset
returns and the sixth PC rarely exceed 0.5. As one considers
increasingly higher components, the maximum correlation
decreases until all correlations are less than 0.2 for the highest
components. The low correlations between the asset return
time series and the higher PCs implies that much of the key
structure from the correlation matrices is contained in the first
few PCs. Because the assets contribute to the PCs, some of
the correlation |r(ẑi ,yk)| between the ith asset and the kth
PC is attributable to asset i. We discuss the effect of these
“self-correlations” in Appendix C.

Figure 7 demonstrates the changing correlations between
the different asset classes. From 2001 to 2002, all of the
corporate and government bonds (except Japanese government
bonds) were strongly correlated with the first PC. Over
the same period, most of the equity indices were strongly
correlated with the second PC and most of the currencies were
strongly correlated with the third PC; six grain commodities
(soybean, soybean meal, soybean oil, corn, wheat, and oats)
were strongly correlated with the fourth PC; and fuel com-
modities were strongly correlated with the fifth PC. Therefore,
over this period, each of the first five PCs corresponded to
a specific market, and the separation into components gave
low correlations between different asset classes. During 2002,
however, these relationships began to break down as bonds
and equities both became strongly correlated with the first PC
and both types of assets had a correlation of about 0.5 with the
second PC. The strong correlation of both bonds and equities
with the same PCs marked the start of a period during which the
coupling between asset classes increased and different markets
became more closely related.

We found three major changes in the correlations between
2002 and 2009; these are most clearly seen by examining
the second PC in Fig. 7. The first change corresponded to
a local peak in corporate bond prices; the second change
corresponded to surging metal prices; and the third (and most
striking) change occurred following the collapse of Lehman
Brothers. After Lehman declared bankruptcy, the first PC
became strongly correlated with nearly all assets—including
equities, currencies, metals, fuels, other commodities, and
some government bonds. The major exceptions were corporate
bonds and (to a lesser extent) government bonds, but both sets
of bonds were strongly correlated with the second PC. During
this period, only a few assets were strongly correlated with
the third PC; these included EURUSD, CHFUSD, gold, silver,
and platinum. (The acronyms are explained in Appendix A.)
Additionally, very few assets were strongly correlated with the
higher PCs. The strong correlations between the majority of the
studied assets and the first PC following Lehman Brothers’ col-
lapse further demonstrates the strength of market correlations
during this crisis period and highlights the common behavior of
nearly all markets. It also suggests that many different markets
were being driven by the same macroeconomic forces.

Figure 7 also illustrates that for a system in which the first
few PCs account for a significant proportion of the variance,
a consideration of the correlations between these components
and the original variables provides a parsimonious framework
to uncover the key relationships in the system. Instead of

having to identify important correlations in a matrix with
1
2N (N − 1) elements, one only needs to consider correlations
between the N variables and the first few PCs, which reduces
the number of correlations to consider by a factor of N . As
one can see in Fig. 7, this allows us to uncover the changing
relationships between the different asset classes. The figure
also highlights assets, such as Japanese government bonds,
whose behavior was unusual. As we have discussed above,
this approach also uncovers notable changes that occurred in
markets as well as the assets that were significantly affected
by these changes.

B. Financial factor models

Several models have been proposed that attempt to explain
return time series using linear combinations of one or more
financial market factors [38,43]. Some of these models are
closely related to PCA, so we discuss them briefly. One of the
most widely studied factor models is the capital asset pricing
model (CAPM) [44,45], which relates the return of equities to
the returns of a single factor—the “market portfolio”—which
is usually taken as the return of a marketwide index such as
the Standard and Poor’s 500 Index [43]. Empirical evidence
indicates, however, that the CAPM does not explain the
behavior of all asset returns [43]. This implies that other factors
might be needed to fully explain return time series, which has
led to the development of models with multiple factors. One
general model is the arbitrage pricing theory (APT) [46], which
provides an approximate model of expected asset returns using
an unknown number of unidentified factors. The problem then
becomes to identify the factors.

The approaches for identifying factors fall into two basic
categories: statistical and theoretical. The theoretical models
are based on specifying macroeconomic variables (such as
gross national product or changes in bond yields [47]) or
firm-specific variables (such as market capitalization [38]) as
factors. Relationships between the variables and the return
time series are then often determined using linear regression.
Statistical methods make no assumptions about which vari-
ables correspond to which factors and instead identify the
factors directly from the return time series. Two commonly
used statistical methods are factor analysis and PCA [38,43].

Many prior studies that use PCA to find factors focus on
equity markets [38,43]. In this approach, the return time series
are used to construct portfolios that represent factors. The PCs
define different portfolios in which the weights of the assets
are based on the PC coefficients. One of the issues in defining
factors in this way is that the factors depend strongly on the
time period that the return time series cover [43].

In contrast to many factor models, we consider different
types of asset instead of focusing on a particular asset class.
This does not prevent us from using PCA to identify portfolios
of assets that represent the factors. However, as we showed
in Fig. 7 and discussed in Sec. VI A, we found significant
variations in the assets that contributed to each PC during
different time periods. For example, from 2001 to 2002,
the first PC corresponded to bonds, whereas a wide range
of different assets contributed to this component following
the collapse of Lehman Brothers. These variations result in
significant changes in the portfolios corresponding to each
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FIG. 8. (Color online) For individual asset classes, we show the
fraction of the variance in the returns explained by the first PC versus
time. The horizontal axis shows the year of the last data point in each
time window.

factor, implying that the PCs do not represent the same factors
through time. Consequently, there is no simple interpretation
of the PCs as specific financial factors.

VII. INDIVIDUAL ASSET CLASSES

We repeat some of our analysis using correlation matrices
that only include similar types of assets. For some classes,
we possess only a few time series, so we combine asset
classes. We consider equities, currencies, bonds (government
and corporate), and commodities (which includes all assets
categorized as metals, fuels, and commodities in Table I).

A. Fraction of variance for asset classes

In Fig. 8, we show as a function of time the fraction of the
variance explained by the first PC for correlation matrices that
only include one type of asset. The changes in the variances
for equities, commodities, and currencies are similar to those
that we observed in Fig. 4 for all assets. In particular, the
variance explained by the first PC increased from 2001 to
2010, and there was a sharp rise in September 2008 following
the collapse of Lehman Brothers. In contrast, the variance in
bond returns for which the first PC accounted decreased over
the same period. From 2001 to 2010, the variance explained by
the first five PCs increased from 68.6% to 89.6% for equities,
from 44.8% to 60.3% for commodities, and from 76.1% to
82.1% for currencies, but it decreased from 92.4% to 86.7%
for bonds.

The decrease in the variance of bond returns explained
by the first PC following the collapse of Lehman Brothers
implies that bonds became less correlated during this period.
To explain this change, we consider the correlation between
government bonds for the following European countries:
Finland, Ireland, Greece, the Netherlands, France, Austria,
Belgium, Portugal, Spain, Italy, and Denmark. All of these
countries except for Denmark use the Euro, and the value of
the Danish krone is pegged to the Euro. (The peg between
the Danish krone and the Euro means that the value of the
krone is matched to the value of the Euro.) For the period 8
Jan 1999–12 Sep 2008, the mean correlation between these

bonds was 0.98 and the standard deviation was 0.01. The
high correlation implies that the return time series for the
different countries’ bonds were very similar prior to
the crisis. For the period 19 Sep 2008–1 Jan 2010, however,
the mean correlation fell to 0.83 and the standard deviation
was 0.11. During the crisis, financial uncertainty increased and
market participants became more concerned about the higher
default risk for particular countries [48]. These concerns were
heightened by the downgrading of the sovereign debt ratings
of Greece, Spain, and Portugal, and a flight to safer bonds,
such as German bunds, increased variations in the behavior
of different bonds [48]. The increased variations resulted in
lower correlations between bond returns and a reduction in the
variance explained by the first PC.

B. Correlations between assets and PCs

We also calculate the correlations between assets and PCs
for each asset class to determine which assets contributed to
each PC. For equities, nearly all of the indices were strongly
correlated with the first PC over the full period. The exceptions
were the Nikkei, New Zealand All Ordinaries Index, Austrian
Traded Index, and Athens General Index. However, all of
these indices were strongly correlated with the first PC after
Lehman’s bankruptcy. The strong contribution of nearly all
equities to the first PC is consistent with prior studies in
which this eigenvector was identified as a market factor that
affected all stocks [4,20,21]. During some time periods, the
second PC corresponded to a group of peripheral Euro-zone
countries (including Switzerland, Portugal, Belgium, Ireland,
and Austria), whereas it corresponded to emerging market
equities during other periods. Similarly, the third PC was
correlated with different groups of indices during different
time periods. The higher PCs tended to be strongly correlated
with single indices, which suggests that they represented
country-specific factors. There were frequent changes in the
indices correlated with the higher PCs. This is the result of
changes in the variances of the index returns for the different
assets, which affect the ordering of the PCs.

From 2001 to 2010 all of the bond indices except Japanese
government bonds were strongly correlated with the first PC.
During most of this period, the second PC was correlated
with corporate bonds. The assets that contributed to the third
and fourth PCs changed through time. From 2001 to 2002
and from 2004 to 2010, the third PC corresponded to New
Zealand and Australian government bonds, and the fourth PC
corresponded to Japanese government bonds. From 2002 to
2004, Japanese bonds were strongly correlated with the third
PC, and New Zealand and Australian bonds were strongly
correlated with the fourth PC. The localization of these
eigenvectors suggests that the PCs represented asset-specific
factors, and the change in the identities of the two PCs is again
the result of the changing variances of the return time series. As
with equities, the higher PCs tended to be correlated with single
assets.

The correlations between assets and PCs for commodities
and currencies were similar to those shown in Fig. 7 for
the correlation matrices of all assets. From 2001 to 2002,
the first few PCs for the commodities were correlated with
particular types of assets. For example, grain commodities
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FIG. 9. (Color online) Examples of the absolute correlation |r(ẑi ,yk)| between various assets and the first five principal components
(k = 1, . . . ,5) as a function of time. We show Danish government bonds (DEGATR), AA-rated corporate bonds (MOODCAA), Nikkei 225
(NKY), the exchange rate between Australian dollars and United States dollars (AUDUSD), gold (XAU), oil (CO1), and soybean futures (S 1).
The first row shows correlations for the first PC, the second row shows them for the second PC, and so on. The horizontal red lines show the
values of the 99th percentile of the distribution of absolute correlation coefficients for the corresponding PC for random data. As we increase
k from 1 to 5, the 99th percentile of |r(ẑi ,yk)| for random matrices decreases from 0.47 to 0.43.

were correlated with the first PC and heating oil, crude oil,
and base metals (copper, aluminum, lead, nickel, and tin) were
correlated with the second PC. By 2010, however, nearly all of
the commodities (with the exception of orange juice, lumber,
lean hogs, and pork bellies) were strongly correlated with the
first PC, and few assets were strongly correlated with any of
the other PCs. Similarly, during 2010, all of the currencies
were strongly correlated with the first PC, with the exception
of the “safe haven” currencies JPY and CHF [49].

For all of the asset classes, the low correlations between
the asset return time series and the higher PCs again indicate
that much of the key structure from the correlation matrices is
contained in the first few PCs.

VIII. SUMMARY

We used principal component analysis to investigate the
time-evolving correlation structure of financial markets and to
study common features of different markets. We found that
the percentage of the variance in market returns explained
by the first principal component steadily increased starting
in 2006, and that there was a sharp rise following the 2008

collapse of Lehman Brothers. We also found that the number
of significant components decreased and that the number
of assets making significant contributions to the first PC
increased over this period. The strength of the correlations
across asset classes following Lehman’s bankruptcy suggests
that many different markets were being driven by the same
macroeconomic forces during the financial crisis. We also
showed, however, that both the proportion of the variance
explained by the first principal component and the participation
ratio of this component increased starting in 2006, which
implies that pairwise correlations between a variety of different
assets increased for several years before the crisis. It is
conceivable that the steady increase in correlations starting
in 2006 might be associated with a concomitant growth in
the internationalization of financial markets [50], though more
research would be necessary to support such a conclusion.

We also studied the time-evolving relationships between the
different assets by investigating the correlations between the
asset price time series and the first few PCs. From 2001 to 2002,
each of the first five PCs corresponded to a specific market.
However, after 2002, these relationships broke down; by 2010,
nearly all of the assets that we studied were significantly
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correlated with the first PC. We observed similar behavior
for correlation matrices of individual asset classes.
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APPENDIX A: LIST OF ASSETS

In Table I, we provide details of all of the assets that we
study. We selected the assets so that the data include price time
series for all of the major markets. The number of assets N that
we include is limited by the constraint that Q = T/N � 1 and
the fact that the correlation coefficients are overly smoothed if
T is too large. Because of these constraints, we use indices for
some markets (instead of individual assets) in order to obtain
an aggregate view of the market. For all of the commodities,
we use futures contracts because commodities are most widely
traded in the futures market. We use exchange rates of the form
XXXUSD, which denotes the number of United States dollars
that one would receive in exchange for one unit of currency
XXX. For example, the AUDUSD exchange rate is the number
of United States dollars that one would receive in exchange
for one Australian dollar. In the “Description” column, we
label each exchange rate by the currency that one would be
exchanging for United States dollars.

APPENDIX B: EXAMPLE CORRELATIONS BETWEENS
ASSETS AND COMPONENTS

In Fig. 9, we show example plots of the absolute correlation
|r(ẑi ,yk)| as a function of time for specific assets. These figures
correspond to horizontal slices through the plots shown in
Fig. 7. Figure 9 highlights that there are many time steps
at which the absolute correlation between the PCs and asset
return time series are significantly larger than the values
for random matrices. For example, the correlation between
Danish government bonds (DEGATR) and the first PC exceeds
0.9 at some time steps and is above the 99th percentile for
random matrices at every time step until the collapse of
Lehman Brothers. After Lehman’s collapse, the correlation
of DEGATR with the first PC falls sharply, but its correlation
with the second PC increases to about 0.8. We observe similar
behavior for AA-rated corporate bonds (MOODCAA), but
there is also a period in 2003 during which corporate bonds
were significantly correlated with the second PC. We can make
similar observations for assets from other classes. For example,
the absolute correlations of the AUDUSD exchange rate and
oil futures (CO1) with the first PC are both significant after the
collapse of Lehman Brothers; the correlation of gold (XAU)
with the third PC is significant over the same period; and the
correlation of the price of soybean futures (S 1) is initially
significantly correlated with the fourth PC and then becomes

significantly correlated with the first PC. Figure 9 demonstrates
that we can gain insights into the changes taking place in
markets by considering the changes in the magnitudes of the
correlations between the PCs.

APPENDIX C: CONTRIBUTION OF ASSETS
TO THE CORRELATIONS

The PCs are defined as linear combinations of the asset
return time series ẑi [see Eq. (3)]. Because the assets contribute
to the PCs, some of the absolute correlation |r(ẑi ,yk)| between
the ith asset and the kth PC is attributable to asset i. To
understand the effect of these self-correlations, we calculate
the correlation between the return time series ẑi and each of
the PCs with the contribution from the ith asset removed. For
each asset i, we define k = 1, . . . ,N adjusted PCs wk with
elements given by

wk(t) =
N∑

i 
=k

ωki ẑi(t) (C1)

and calculate the absolute correlation |r(ẑi ,wk)| between each
asset and the adjusted PCs.

In Fig. 10, we plot the distribution of the absolute-
correlation difference |r(ẑi ,yk)| − |r(ẑi ,wk)| for each of the
first five PCs. The absolute correlations are very similar
for k = 1, which implies that the self-correlations do not
dominate the correlations between PCs and assets. However,
for larger k, the differences between |r(ẑi ,yk)| and |r(ẑi ,wk)|
become more pronounced. This is expected because fewer
assets make significant contributions to the higher PCs, so
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FIG. 10. (Color online) Distribution of the absolute-correlation
difference |r(ẑi ,yk)| − |r(ẑi ,wk)| for each of the first five PCs. As
explained in the text, |r(ẑi ,yk)| denotes the absolute value of the
correlation between the ith asset and the kth PC, and |r(ẑi ,wk)|
denotes the absolute value of the correlation the ith asset and the
kth PC with the contribution of the ith asset removed from the
PCs. For each component k, we show in a single distribution the
absolute-correlation differences |r(ẑi ,yk)| − |r(ẑi ,wk)| for all assets
i (where i = 1, . . . ,N ) over all time steps.
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TABLE I. Enumeration and details of all of the assets that we study.

Ticker Asset class Description Ticker Asset class Description

AEX Equities Netherlands AEX Index CADUSD Exchange rates Canadian dollar
AS30 Equities Australian All Ordinaries Index CHFUSD Exchange rates Swiss franc
ASE Equities Athens General Index CZKUSD Exchange rates Czech koruna
ATX Equities Austrian Traded Index EURUSD Exchange rates Euro
BEL20 Equities Belgium BEL 20 Index GBPUSD Exchange rates Pounds sterling
BVLX Equities Portugal PSI General Index IDRUSD Exchange rates Indonesian rupiah
CAC Equities France CAC 40 Index JPYUSD Exchange rates Japanese yen
DAX Equities Germany DAX Index KRWUSD Exchange rates Korean won
FTSEMIB Equities Italy FTSE MIB Index MXNUSD Exchange rates Mexican peso
HEX Equities Helsinki SX General Index NOKUSD Exchange rates Norwegian krone
HSI Equities Hong Kong Hang Seng Index NZDUSD Exchange rates New Zealand dollar
IBEX Equities Spain IBEX 35 Index PHPUSD Exchange rates Philippines peso
INDU Equities Dow Jones Industrial Average Index SEKUSD Exchange rates Swedish krona
ISEQ Equities Irish Overall Index ZARUSD Exchange rates South African rand
KFX Equities OMX Copenhagen 20 Index HG1 Metals Copper
NDX Equities NASDAQ 100 Index LA1 Metals Aluminum
NKY Equities Nikkei 225 Index LL1 Metals Lead
NZSE Equities New Zealand All Ordinaries Index LN1 Metals Nickel
OBX Equities Norway OBX Stock Index LT1 Metals Tin
OMX Equities OMX Stockholm 30 Index XAG Metals Silver
RTY Equities Russell 2000 Index XAU Metals Gold
SMI Equities Swiss Market Index XPD Metals Palladium
SPTSX Equities S&P/Toronto SX Composite Index XPT Metals Platinum
SPX Equities Standard and Poor’s 500 Index CL1 Fuels Crude oil, WTI
UKX Equities FTSE 100 Index CO1 Fuels Crude oil, brent
GDDUEMEA Equities EM: Europe, Middle East, Africa HO1 Fuels Heating oil
GDUEEGFA Equities EM: Asia NG1 Fuels Natural gas
GDUEEGFL Equities EM: Latin America BO1 Commodities Soybean oil
ATGATR Govt. bonds Austria C 1 Commodities Corn
AUGATR Govt. bonds Australia CC1 Commodities Cocoa
BEGATR Govt. bonds Belgium CT1 Commodities Cotton
CAGATR Govt. bonds Canada FC1 Commodities Coffee
DEGATR Govt. bonds Denmark JN1 Commodities Feeder cattle
FIGATR Govt. bonds Finland JO1 Commodities Orange juice
FRGATR Govt. bonds France KC1 Commodities Coffee
GRGATR Govt. bonds Germany LB1 Commodities Lumber
IEGATR Govt. bonds Ireland LC1 Commodities Live cattle
ITGATR Govt. bonds Italy LH1 Commodities Lean hogs
JNGATR Govt. bonds Japan O 1 Commodities Oats
NEGATR Govt. bonds Netherlands PB1 Commodities Frozen pork bellies
NOGATR Govt. bonds Norway QW1 Commodities Sugar
NZGATR Govt. bonds New Zealand RR1 Commodities Rough rice
PTGATR Govt. bonds Portugal S 1 Commodities Soybean
SPGATR Govt. bonds Spain SM1 Commodities Soybean meal
SWGATR Govt. bonds Sweden W 1 Commodities Wheat
SZGATR Govt. bonds Switzerland MOODCAAA Corp. bonds Moody’s AAA rated
UKGATR Govt. bonds U.K. MOODCAA Corp. bonds Moody’s AA rated
USGATR Govt. bonds U.S. MOODCA Corp. bonds Moody’s A rated
AUDUSD Exchange rates Australian dollar MOODCBAA Corp. bonds Moody’s BAA rated

the removal of a single asset can have a larger effect. This
highlights the fact that many assets contribute to the lower

PCs, whereas the higher PCs are localized and have only a
few assets contributing to them.
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