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This special issue of the European Journal of Applied Mathematics features research

articles on networks, one of the most exciting areas of applied mathematics.

The study of networks incorporates tools from a wide variety of areas—including

graph theory (of course), dynamical systems, optimization, statistical physics, probability,

statistics, and more—and is important for applications in just about any area that one

might imagine. Scholars who study networks ask questions like the following: Who

are the most important people and collaborations in a network of political committee

memberships? How have ideas spread over Twitter and other social media in the #Brexit

debate, and how has this spread of ideas influenced opinions and events? What are the

properties of entropy and random walks in networks with multiple subsystems or with

multiple types of social ties? What is a good movie-recommendation strategy in a social

network? Which parts of a granular material are the least stable, and how should one

measure this? How can one improve transportation systems and building layouts to ease

traffic congestion? How can one control cascading failures in infrastructure or financial

networks? Which species are the most important ones in an ecosystem? What is the best

vaccination strategy to contain a disease? Which sets of genes and molecular interactions

are responsible for a given disease? Which molecular network properties explain the

comorbidity of two diseases?

In its broadest form, a network is an abstraction of a complex system of interacting

entities [17, 21, 24, 31, 33]. Most traditionally, a network is represented mathematically as

a graph, with “nodes” encoding entities and “edges” encoding the interactions between

those entities. However, the term “network” is more general than a graph, as a network

can encompass connections among an arbitrary number of entities, can have nodes and/or

edges that change in time, can include multiple types of edges, can have (and often do

have) associated dynamical processes both on the network and of the network, and

so on. Our special issue surveys a diverse cross section of topics in the mathematical
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study of networks—including a variety of methods and applications—but there are also

many others. A few of the many other popular topics in network science are multilayer

networks [4, 20], temporal networks [15, 16], spatial networks [3], network inference [19],

higher-order structures (e.g., simplicial complexes) in networks, percolation theory [9, 28],

random graphs, visualization of networks, games on networks [18], and more. The

applications of networks are even more diverse (and there are many review articles in a

multitude of fields that focus on applications of networks to those fields), and we only

touch on a few of them in this special issue.

Network analysis is a burgeoning area of both theoretical and applied mathematics.

There are a large number of annual conferences (e.g., NetSci, Sunbelt, SIAM workshops,

and many others) and journals that are devoted to networks, including an increasing

number that focus on applications in specific disciplines. Propelled by theoretical advances

and a deluge of data, the study of networks—as distinguished from more traditional

mathematical subjects like graph theory—is playing an increasingly important role in

industry, in government, and in mathematical and computational science departments

at universities throughout the world. Network analysis is now recognized widely as

one of the most important subjects in mathematics. A wealth of faculty positions

devoted to networks and/or data science have been advertised in mathematics and

applied mathematics departments over the last few years, and several new masters and

doctoral programmes (including a few doctoral training centres in England) on complex

systems and networks have been developed. Additionally, many mathematical institutes

have had recent focal semesters on topics related to networks. Examples include a Fall

2016 semester programme on Theoretical Foundations of Statistical Network Analysis

(https://www.newton.ac.uk/event/sna) at the Isaac Newton Institute for Math-

ematical Sciences, a Spring 2016 semester programme on Dynamics of Biologic-

ally Inspired Networks (https://mbi.osu.edu/programs/emphasis-programs/

previous-programs/spring-2016-dynamics-biologically-inspired-networks/)

at the Mathematical Biosciences Institute, and numerous others.

1 The articles in this issue

We now provide a brief description of the articles in this special issue. One can find many

of the key references in the burgeoning science of networks in the bibliographies of the

papers that comprise the issue. We have also included a few of them in this introductory

note (both above and below).

We open our special issue with a pair of articles on the study of “mesoscale structures” in

networks. In such studies, which are among the most active topics in network science, one

seeks to coarse-grain networks into intermediate-scale structures (e.g., collections of nodes)

to try to infer properties such as circles of friends, functional groups in proteins, political

voting blocs, and more. The first paper, by Gleich and Kloster [13], leverages a PageRank

random walk [12] from a set of seed nodes to examine mesoscale network structures such

as community structure and core–periphery structure. In the second paper, Cucuringu et

al. propose and compare several novel techniques for studying core–periphery structure in

networks [7]. A “community”, which is the simplest type of mesoscale network structure,

consists of a densely-connected set of nodes that is connected sparsely to other dense sets
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of nodes [10, 11, 27]. By contrast, “core–periphery structure” involves one or more cores

of densely-connected nodes that also tend to be well-connected to peripheral nodes, but

the peripheral nodes tend to be connected only sparsely to other nodes.

Another major topic in network science is the study of dynamical processes on networks,

and several of the papers in our special issue address different aspects of this subject. One

of the most important questions is to ask how nontrivial structural connectivity affects

dynamical processes on networks [26]. For example, network structure can represent

social contacts, and structural features can profoundly impact the propagation dynamics

of diseases and memes [25]. Network architecture also has a huge effect on collective

behaviour in networks of coupled oscillators [1, 2] and many other phenomena. In the

special issue’s third paper, Do et al. [8] examine (as in the first two papers) how the

interplay of microscale constituents leads to the emergence of macroscale properties. They

exploit the network structure of Jacobian matrices from coupled dynamical systems to

yield insights on phenomena such as collective behavior, and they illustrate their results

using synchronization in a network of phase oscillators, including an “adaptive” [29]

setting in which network connectivity itself is coupled to oscillator dynamics. Our fourth

paper, by Coombes and Thul [6], extends the well-known “master stability function”

(which can be used to determine when coupled oscillators exhibit synchrony) to networks

of piecewise-smooth oscillators and then examines an application in neuroscience. When

studying dynamical systems on networks, it is also crucial to consider how to control such

dynamics [22]. The paper by Burbano L. et al. [5] analyses control strategies for achieving

consensus in heterogeneous multi-agent systems.

Another important application of dynamical systems on networks concerns the spread

of biological contagions, as illustrated in the paper by Vestergaard et al. [32], which ex-

amines the impact of spatially constrained sampling of temporal contact networks when

evaluating the risk of epidemics. In addition to discussing a fascinating application, this

paper considers several important issues in networks, such as data sampling (which is

ubiquitous in the study of networks), time-dependent interactions, and spatial constraints.

The importance of sampling in the study of networks is also examined in our penultimate

paper, by Grindrod et al. [14], which takes an inverse-problem approach and studies an

application to online brand allegiance in Twitter. Another central issue in networks is the

study of important nodes, edges, and other substructures [23]. The study of so-called “cent-

ral” (i.e., important) nodes in networks has an especially rich tradition in social network

analysis [33]. In the final paper of our special issue, Schoch and Brandes [30] reconcep-

tualize centrality, showing that some of the standard centrality measures can be cast into

a unified framework based on semirings associated with walks on graphs (and bringing

us back to the first paper in our special issue, which also considers walks on networks).

2 Conclusions

The study of networks is one of the most exciting areas of applied mathematics. It

is prominent in numerous fields of scholarship—both theoretical and applied—and it

interacts very closely with increasingly prominent applications and with data science. Our

selection of papers are exemplars of numerous exciting applications, and we hope that

our special issue serves as an invitation for readers to study networks of their own.
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[20] Kivelä, M., Arenas, A., Barthélemy, M., Gleeson, J. P., Moreno, Y. & Porter, M. A. (2014)

Multilayer networks. J. Complex Netw. 2, 203–271.

[21] Kolaczyk, E. D. (2009) Statistical Analysis of Network Data: Methods and Notes, Springer-

Verlag, Berlin, Germany.

[22] Liu, Y.-Y. & Barabási, A.-L. (2016) Control principles of complex networks. Rev. Mod. Phys.,

88, 035006.
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