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a b s t r a c t

We use experiments, numerical simulations, and theoretical analysis to investigate the propagation
of highly nonlinear solitary waves in periodic arrangements of dimer (two-mass) and trimer (three-
mass) cell structures in one-dimensional granular lattices. To vary the composition of the fundamental
periodic units in the granular chains, we utilize beads of different materials (stainless steel, brass, glass,
nylon, polytetrafluoroethylene, and rubber). This selection allows us to tailor the response of the system
based on the masses, Poisson ratios, and elastic moduli of the components. For example, we examine
dimer configurations with two types of heavy particles, two types of light particles, and alternating
light and heavy particles. Employing a model with Hertzian interactions between adjacent beads, we
find good agreement between experiments and numerical simulations. We also find good agreement
between these results and a theoretical analysis of the model in the long-wavelength regime that
we derive for heterogeneous environments (dimer chains) and general bead interactions. Our analysis
encompasses previously-studied examples as special cases and also provides key insights on the influence
of heterogeneous lattices on the properties (width andpropagation speed) of the nonlinearwave solutions
of this system.

© 2009 Elsevier B.V. All rights reserved.
1. Introduction

Ever since the Fermi–Pasta–Ulam problem was first investi-
gated over a half a century ago, nonlinear oscillator chains have
received a great deal of attention [1–4]. Over the past few years,
in particular, chains of nonlinear oscillators have proven to be im-
portant in numerous areas of physics — including Bose–Einstein
condensation in optical lattices in atomic physics [5–7], coupled
waveguide arrays and photorefractive crystals in nonlinear op-
tics [8,9], and DNA double-strand dynamics in biophysics [10].
The role of ‘‘heterogeneous’’ versus ‘‘uniform’’ lattices and

the interplay between nonlinearity and periodicity has been
among the key themes in investigations of lattice chains [11].
Here we investigate this idea using one-dimensional (1D) lattices
of granular materials, which consist of chains of interacting
spherical particles that deform elastically when they collide.
The highly nonlinear dynamic response of such lattices has
been the subject of considerable attention from the scientific
community [12–28]. In contrast to traditionally-studied nonlinear
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oscillator chains, these systems possess a ‘‘double’’ nonlinearity
that arises from the nonlinear contact interaction between the
particles and a zero tensile response. This results in an asymmetric
potential, which has in turn led to the observation of several
new phenomena. In particular, some of the most interesting
dynamic properties of such highly nonlinear systems appear
for materials under precompression [12–15], at the interface
between two different highly nonlinear structures [17,18,22,23],
or at the interface between linear and nonlinear structures [24].
This completely new type of wave dynamics opens the door for
exciting, fundamental physical insights and has the potential to
ultimately yield numerous new devices and materials. Because
granular lattices can be created from numerousmaterial types and
sizes, their properties are extremely tunable [12–15]. Furthermore,
the addition of a static precompressive force can substantially
vary the response of such systems and allows the selection of
the wave’s regime of propagation between highly nonlinear and
weakly nonlinear dynamics [29]. Such tunability is valuable not
only for studies of the basic physics of granular lattices but also
in potential engineering applications. Proposed uses include shock
and energy absorbing layers [18,23,25,26], sound focusing devices
(tunable acoustic lenses and delay lines), sound absorption layers,
sound scramblers [16,17,28], and more.

http://www.elsevier.com/locate/physd
http://www.elsevier.com/locate/physd
mailto:daraio@caltech.edu
http://dx.doi.org/10.1016/j.physd.2008.12.010
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Fig. 1. (Color online) (a) Experimental setup for a dimer chain consisting of a
periodic array of cellswithN1 consecutive beads of onematerial (e.g., stainless steel)
and N2 consecutive beads of another material (e.g., PTFE). (b) Schematic diagram of
the composition of the sensors placed in the chain.

In the present work, we focus on one of the fundamental
physical properties of such chains. Namely, because they are highly
nonlinear, granular lattices admit a novel type of wave solution
whose qualitative properties differ markedly from those in weakly
nonlinear systems. Indeed, it was the experimental realization of
such waves and the theory developed for uniform lattice systems
of this type that has motivated the current broad interest in such
settings [12,13]. The remarkable property of these waves is that
they essentially possess a support that consists of just a few
lattice sites [12], providing perhaps the closest experimentally
tractable application of the notion of ‘‘compactons’’ [30,31] and
establishing the potential for the design and creation of systems
with unprecedented properties.
Our concern in this paper, which provides a detailed and

expanded description of work we reported in a recent letter [32],
is to extend the established theory for uniform granular lattices
to nonuniform ones. One way to do this is to study the effects of
defects, such as inhomogeneities, particles with different masses,
and so on. This has led to the observation of interesting physical
responses such as fragmentation, anomalous reflections, and
energy trapping [18–26]. In the present paper, on the other hand,
we examine the prototypical heterogeneities of granular chains of
‘‘dimers’’ and ‘‘trimers,’’ consisting of repetitions of multiparticle
cells composed, respectively, of two and three different types of
beads. Each lattice ‘‘cell,’’ which refers to the fundamental unit of
particles that is repeated periodically to form the chain, consists
of a single dimer or trimer (e.g., the dimer cell in Fig. 1 consists
of N1 steel beads followed by N2 polytetrafluoroethylene beads).
Such heterogeneities arise in a diverse array of physical settings,
including ferroelectric perovskites [33,34] and polymers [35],
optical waveguides [36,37], and cantilever arrays [38]. In our
granular setting, we use a variety of soft, hard, heavy, and
light materials to investigate the effects of different structural
properties in the fundamental components of such systems. We
also vary the number of beads of a given type in each cell in order
to examine the effects of different unit cell sizes (i.e., different
periodicities).
More specifically, we investigate solitary wave propagation us-

ing experiments, numerical simulations, and theoretical analysis.
We report very good agreement between experiments and nu-
merics. For the case of dimer chains, we also construct a long-
wavelength approximation to the nonlinear latticemodel to obtain
a quasi-continuum nonlinear partial differential equation (PDE)
that provides an averaged description of the system.We obtain an-
alytical expressions for wave solutions of this equation and find
good qualitative agreement between the width and propagation
speed of these solutionswith those obtained fromexperiments and
numerical simulations.
The rest of this paper is organized as follows. First, we

present our experimental and numerical setups. We then consider
chains of dimers and discuss our experimental and numerical
results. We subsequently use a long-wavelength approximation
to derive a nonlinear PDE describing the dimer setup in the
case of general power-law interactions between materials and
construct analytical expressions for the propagation speed, width,
and functional form of its solitary wave solutions. We then
compare this continuum theory to our experiments and numerical
simulations of the discrete system. Finally, we discuss our
experiments and numerical simulations for chains of trimers and
summarize our results.

2. Experimental setup

The experimental dimer and trimer chains were composed of
vertically-aligned beads in a delrin guide that contained slots for
sensor connections or in a guide composed of four vertical garolite
rods arranged in a square configuration (see Fig. 1(a)). Each ‘‘N1:N2
dimer’’ consisted of a variable number N1 ∈ {1, . . . , 7} of one
type of bead alternating with N2 ∈ {1, . . . , 7} of a second type of
bead in a periodic sequence. The ‘‘N1:N2:N3 trimers’’ we studied are
defined analogously. The predominant class of configurations we
considered included N1 high-modulus, large mass stainless steel
beads (non-magnetic, 316 type) and N2 low-modulus, small mass
polytetrafluoroethylene (PTFE) or Neoprene rubber elastomer
beads. We also examined steel:brass, PTFE:glass, and PTFE:nylon
dimers and 1:1:1 trimers of steel:brass:PTFE, steel:glass:nylon, and
steel:PTFE:rubber. The diameter of all spheres was 4.76 mm.
For each experiment, we connected four calibrated piezosen-

sors to a Tektronix oscilloscope (TDK2024) to detect force–time
curves. Three of the piezo-sensors were embedded inside particles
in the chain and a fourth one was positioned at the bottom (i.e., at
the wall). To fabricate the sensors, beads selected from the various
materials were cut into two halves, and slots for sensors and wires
were carved within them. Vertically poled lead zirconate titanate
piezo elements (square plates with 0.5 mm thicknesses and 3 mm
sides), supplied by Piezo Systems, Inc. (RC = 103 µs), were sol-
dered to custommicro-miniaturewires and gluedbetween the two
bead halves (see Fig. 1(b)).We calibrated the setup using conserva-
tion of momentum. Waves were generated in the chains by drop-
ping a striker from various heights. Inmost of our experiments, the
striker consisted of a stainless steel bead; for some configurations,
we also used a PTFE bead, a glass bead, and a PTFE:glass dimer. The
material properties for the various beads are shown in Table 1. In
our experimental setup,we canmeasure force amplitude as a func-
tion of time in selected particles.1

3. Numerical simulations

We model a chain of n spherical beads as a 1D lattice with
Hertzian interactions between beads [12,13]:

1 It is not possible (a priori and without additional assumptions) to infer the
nature of kinetic and potential energy distributions as a function of space and
time, although clearly this would be interesting because it would allow an in-depth
examination and comparison with experiments of theoretical results such as those
in Ref. [51].
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Table 1
Material properties (mass, elastic modulus E, and Poisson ratio ν) for stainless
steel [39,40], PTFE [16,41,42], rubber (McMaster-Carr) [43], brass [44,45], glass [46],
and nylon [47]. The value of the dynamic elastic modulus of the rubber beads was
extrapolated from the experimental data.

Material Mass (g) E ν

Steel 0.45 193 GPa 0.3
PTFE 0.123 1.46 GPa 0.46
Rubber 0.08 30 MPa 0.49
Brass 0.48 103 GPa 0.34
Glass 0.137 62 GPa 0.2
Nylon 0.0612 3.55 GPa 0.4

ÿj =
Aj−1,j
mj

δ
3/2
j −

Aj,j+1
mj

δ
3/2
j+1 + g,

Aj,j+1 =
4EjEj+1

(
RjRj+1
Rj+Rj+1

)1/2
3
[
Ej+1

(
1− ν2j

)
+ Ej

(
1− ν2j+1

)] , (1)

where j ∈ {1, . . . , n}, yj is the coordinate of the center of the
jth particle, δj ≡ max{yj−1 − yj, 0} for j ∈ {2, . . . , n}, δ1 ≡ 0,
δn+1 ≡ max{yn, 0}, g is the gravitational acceleration, Ej is the
Young’s (elastic) modulus of the jth bead, νj is its Poisson ratio,
mj is its mass, and Rj is its radius. The particle j = 0 represents
the striker, and the (n + 1)st particle represents the wall (i.e., an
infinite-radius particle that cannot be displaced). Our numerical
simulations incorporate the nonuniform gravitational preload due
to the vertical orientation of the chains in experiments but do not
take dissipation into account.
The initial velocity of the striker is provided by experimental

measurements, and all other particles start at rest in their
equilibrium positions, which are determined by solving a statics
problem (ÿj = 0 for all j). Each bead experiences a force from
gravity (one can also include a constant precompression fj, but that
is zero for the problem we study). One starts by considering the
bottomof the chainwith particlen against thewall. It experiences a
force F1 from the top that is the sum of all the forces acting through
the center of particle n and a force F2 from the wall (particle n+ 1)
acting through the nonlinear spring (the Hertzian interaction). The
expressions for F1 and F2,

F1 =
n∑
j=1

mjg,

F2 = mnAn,n+1(un − un+1)3/2, (2)
must be equal at equilibrium. The displacement of the wall un+1 =
0 is known, so Eq. (2) and the analogous equation for general k
can be solved for the equilibrium displacement of the kth particle
(k ∈ {1, . . . , n}) in terms of known quantities:

uk =


k∑
j=1
mjg

Ak,k+1


2/3

+ uk+1. (3)

One applies Eq. (3) to one particle at a time (from the bottom of the
chain to the top) to obtain all of the equilibrium positions.

4. Chains of dimers

Let us first discuss our results for chains of dimers. While we
focus our presentation on steel:PTFE dimers, we also investigated
steel:rubber, steel:brass, PTFE:glass, and PTFE:nylon dimers. Ad-
ditionally, our presentation includes discussions of 1:1, N1:1, and
1:N2 dimers. To compare numerical simulations with experiments,
for which the sensors are inserted inside the beads rather than at
the points of contact (see panel (b) of Fig. 1), we averaged the force
between adjacent beads, F = (Fj+Fj+1)/2, as discussed in detail in
Ref. [16]. To show the results of our numerical simulations for the
jth bead, we thus plot the force Aj−1,jδ
3/2
j − Aj,j+1δ

3/2
j+1 as a function

of time.
Our numerical and experimental results greatly expand the

previous work reported for chains of dimers composed of particles
with similar elastic moduli and different masses [12]. For example,
we include investigations of dimers composed of particles with
moduli of different orders of magnitude. We also study dimers
composed of different numbers of particles (N1:1 and 1:N2 chains),
thereby varying the ‘‘thickness’’ of the heterogeneous layers.

4.1. 1:1 Dimers

We begin by discussing our results for 1:1 dimers. In Fig. 2,
we show experimental and numerical results for 1:1 dimers of
steel:PTFE [panels (a, b)] and steel:rubber [panels (c, d)] particles.
The steel:PTFE chain consisted of 38 beads, and the steel:rubber
chain had 19 beads; in each case, we used a steel bead as the
striker. The dynamics indicate that the initial excited impulse
develops into a solitary wave within the first 10 particles of the
chain. Observe in the steel:PTFE numerics the presence of small-
period oscillations after the large solitary pulse. These arise as
residual ‘‘radiation’’ emitted by the tail of the wave as it attempts
to progress through the highly nonlinear lattice. This is reminiscent
of radiative phenomena in different classes of nonlinear lattices, as
discussed, for example, in Ref. [48].
Interestingly, even the chains composed of alternating steel and

Neoprene rubber beads (inherently nonlinear elastic components)
support the formation of solitary-like pulses. However, this
configuration is highly dissipative and the solitary waves are
consequently short-lived (although this feature is not incorporated
in the theoretical model considered herein). As shown in Fig. 2(c,
d), the initially very short pulse is quickly transformed into amuch
wider and slower pulse compared to the dimer composed of steel
and PTFE particles. Additionally, the presence of dissipation in the
steel:rubber configuration tends to dampen the propagation of the
pulses after the first 15 beads. Incorporating dissipative effects is a
natural direction for the refinement of the model [49].
To illustrate the robustness of solitary-wave formation, we

also studied dimer chains composed of other types of materials,
including steel:brass (38 total particles), PTFE:glass (34 particles),
and PTFE:nylon (33 particles) configurations. Two important
properties of the pulses observed in these systems are their
propagation speeds and widths (measured by the full width at half
maximum, or FWHM). We compute the pulse speed using time-
of-flight measurements for both experiments and computations.
To do this, we first measure the peak force of the pulse at each
bead and determine the times at which these peaks occur.We then
estimate the velocity of the pulse at each bead by examining how
long it takes for the pulse (as measured at the peak time) to travel
from an earlier bead to a later one. For the numerical calculations,
we use the same bead separation distance as in corresponding
experiments. For example, for the 1:1 steel:PTFE dimer chain
experiments, we measured forces at the beads in positions 13 and
24, so in the numerics we use time-of-flight measurements with
an interval of 11 beads.
We depict the results for steel:brass in Fig. 3(a, b) and for

PTFE:glass in Fig. 3(c, d). The steel:brass dimer chain included 38
total particles; its striker was a steel bead, which was dropped
from about 9.5 cm. We investigated this chain in order to examine
a configuration with two different types of large-mass materials
with relatively large elastic moduli. It is evident from both
experiments and numerical simulations that the system supports
the formation and propagation of highly nonlinear solitary waves.
These waves have a pulse speed, as measured by time of flight
between the first and second sensors, of 499 m/s experimentally
and 588 m/s numerically. Their FWHM was measured at 2.0
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Fig. 2. (Color online) Force versus time response obtained from chains of dimers consisting of 1 stainless steel bead alternating with (a, b) 1 PTFE or (c, d) 1 rubber bead.
Panels (a, c) show experimental results, and (b, d) show the corresponding numerical data. For both configurations, the initial velocity of the striker was 1.37m/s on impact.
The y-axis scale is 2 N per division in (a, b) and 20 N per division in (c, d). The numbered arrows point to the corresponding particles in the chain. In (a, b), the second curve
(showing the results for particle 24) represents a PTFE bead and the other curves represent steel beads. In (c, d), particle 1 is steel and particle 6 is rubber. The force on the
rubber particle is magnified by a factor of 20 for clarity.
Fig. 3. (Color online) Force versus time response obtained from chains of dimers consisting of (a, b) 1 steel bead alternating with 1 brass bead and (c, d) 1 PTFE bead
alternating with 1 glass bead. Panels (a, c) show experimental results, and (b, d) show the corresponding numerical data. The numbered arrows point to the corresponding
particles in the chains. For the steel:brass configuration, a steel striker impacted the chain with an initial velocity of 1.21 m/s. The y-axis scale is 5 N per division in (a) and
20 N per division in (b). For the PTFE:glass configuration, a glass striker impacted the chain with an initial velocity of 1.17 m/s. The y-axis scale is 1 N per division in (c) and
3 N per division in (d).
beads (1.0 cells) and 2.1 beads (1.05 cells) in experiments and
numerics, respectively. PTFE:glass dimer chains provide another
configuration consisting of two different particles with similar
masses, but in this case the masses are smaller than with
steel:brass and the elastic moduli and (especially) Poisson ratios of
the two materials are rather different. Although it is composed of
lighter and softer particles, this dimer chain nevertheless supports
the formation and propagation of solitary-like pulses. The signal
speed is significantly reduced (it is 152 m/s in experiments and
221 m/s in the numerics), and the pulse FWHM is 2.0 beads
(1.0 cells) experimentally and 2.1 beads (1.05 cells) numerically.
In addition, secondary oscillations can be observed both in
experiments and (to a lesser extent) in numerical simulations [see,
in particular, the bottom (wall) signal in Fig. 3(d)]. Finally, the
PTFE:nylon chain (with a PTFE striker dropped from a height of
2.5 cm) provides a configurationwith one small mass and a second
mass that is extremely small. Unlike rubber, the nylon beads do not
lead to severe dissipation. However, this configuration appears to
have greater difficulty in forming and supporting solitarywaves, at
least in the chain lengths studied (33 beads).
As we have suggested, dimer chains have decidedly different

properties from uniform chains. We find numerically that the
solitary pulse in uniform chains has an FWHM of about 2.1 cells
(i.e., 2.1 beads), consistent with prior observations (see, e.g., Fig.
1.4 in [12]). Because of the similar masses in the steel:brass and
PTFE:glass chains, the pulse width in those 1:1 dimer chains
is similar to that obtained for uniform chains. We observe this
feature both experimentally and numerically. (As discussed later,
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Fig. 4. (Color online) Force versus time response obtained from chains of dimers consisting of (a, b) 2 and (c, d) 5 stainless steel beads alternating with 1 PTFE bead. The
total number of beads is 38 in each case. Panels (a, c) show experimental results, and (b, d) show the corresponding numerical data. For both experimental configurations,
the striker had an impact velocity of 1.37 m/s with the chain. The y-axis scale is 2 N per division for (a, c) and 1 N per division for (b, d). The numbered arrows point to the
corresponding particles in the chain. For both configurations, the second curve (showing the results for particle 24) represents a PTFE bead and the other curves represent
steel beads.
the theoretical prediction for the mean FWHM in dimer chains
depends only on the mass ratio of the two bead materials because
the elasticmodulus and Poisson ratio can both be scaled out; future
studies will address the effects of changing E and ν. The existence
of the dimer is built into the long-wavelength asymptotics used
to derive this result.) This suggests that there is a ‘‘critical’’ mass
ratio m1/m2 necessary for the system to become ‘‘sensitive’’ to
the existence of the dimer. This poses an interesting question
concerning what is the critical point (mass ratio) for the dynamics
to resemble that of a chain with periodic ‘‘defects.’’ That is, how
large (or small) should m2 be to obtain bona fide dimer dynamics
(increased pulse width, etc.)?
In the case of homogeneous chains, asymptotic analysis predicts

a wave width of about 5 cells from tail to tail [12]. The propagation
speed of the pulses in steel is quite large; for steel strikers with
an impact velocity of 1.37 m/s, we found numerically that the
pulse propagates at almost 700 m/s, and other authors have
found large experimental propagation speeds with other initial
conditions [47]. In contrast, as discussed in detail below, pulses
in dimers have a shorter width in terms of number of cells. With
a steel striker with a velocity of 1.37 m/s on impact, we find
for 1:1 steel:PTFE dimer chains a propagation speed of 168 m/s
numerically and 128 m/s experimentally. In Section 4.3, we
present an asymptotic analysis of the width of highly nonlinear
solitary waves in 1:1 dimer chains, which we compare to the
previously-studied limiting cases of monomer chains and 1:1
dimers with beads of mass m1 and m2 � m1 [12]. Preliminary
experiments andnumerical simulations on 1:1 dimers, considering
only materials with elastic moduli of the same order of magnitude
(and mass ratios m1/m2 of 2, 4, 16, 24, and 64), are described in
Ref. [12].

4.2. N1:1 and 1:N2 dimers

We consider configurations with different periodicities by
varying thenumber of steel andPTFEparticles in steel:PTFEdimers.
We obtain robust pulses for N1:1 dimers with N1 > 1 (with N1 as
high as 7 in experiments and as high as 22 in numerics), though the
transient dynamics and spatial widths of the developed solitary-
like waves are different. This is clearly illustrated in Fig. 4 through
experimental and numerical results for 2:1 and 5:1 steel:PTFE
dimers. The difference in transient dynamics can be intuitively
understood in terms of the increasing difficulty of the system in
forming a single solitary pulse as N1 increases (due to the presence
of the 1 bead of different type in each cell of an otherwise uniform
chain). On the other hand, the spatial widths differ through a
mechanism similar to the one that wewill explain analytically (see
the discussion below) for the 1:1 configurations. Each bead in a
given cell (i.e., each instance of the dimer) responds differently
but consistently throughout the chain. For example, in the 2:1
chain, the second steel bead in a cell possesses a cleaner and more
solitary-like shape than the first or third bead. This is especially
evident in the numerical simulations.
For the 5:1 dimers, there is a critical length scale difference

between the pulse size one would obtain in a uniform chain of
beads (for which the predictedwidth is about 5 particles long [12])
versus the pulse size one would obtain in a 5:1 chain (about 30,
corresponding to the presence of 5 unit cells with 6 particles each).
The observed pulse width encompasses a smaller number of cells
than for 1:1 dimers. More generally, we observed both numerically
and experimentally that thewidth (in terms of the number of cells)
of the solitary waves decreases gradually with increasing numbers
N1 of steel beads in a single dimer (cell) from the 5-cell width
expected for Hertzian interactions. It takes roughly six cells to
achieve a stable pulse for the 2:1 configuration, whereas it takes
12 cells for the 5:1 configuration. (It also takes roughly 6 cells for
the pulse in the 3:1 chain to stabilize and roughly 11 cells for that
in the 4:1 chain to stabilize.) This difficulty in creating a ‘‘clean’’
and stationary solitary pulse reflects the increased difficulties in
considering an N1:1 cell as a ‘‘quasiparticle’’ as N1 increases.
We observe in our experiments that the width of the solitary

waves (in terms of the total number of cells) decreases with N1,
although the number of ‘‘participating’’ beads increases with N1.
For the numerics, the FWHM seems to be steady at first, but it is
smaller for N1 = 4 as the aforementioned length scale difference
arises. We observe that the pulse speed increases with increasing
N1 in both experiments and numerics. This is physically justified
because the increase in the number of steel particles makes
the system generally ‘‘stiffer.’’ For each configuration, the scaling
between the pulse’s maximum force and its speed of propagation
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Fig. 5. (Color online) Rising shape comparison of two different solitary waves
recorded in the middle of the chain for different dimer configurations. Each panel
displays the evolution of the force (in N) with time (in microseconds). Curve 1
corresponds to the experimental points, and curve 2 represents the numerical
values. The depicted examples are (a) steel:brass dimer curves detected in particle
12 and (b) PTFE-glass dimer curves detected in particle 12. Note that in order to
compare the shapes, the experimental curves have been multiplied by an arbitrary
factor to obtain the same force amplitude as that found in the numerical data (where
no dissipation is present).

is Vs ∼ F
1/6
m , whose validity we verify analytically for 1:1 dimers

using long-wavelength asymptotics (see below). We compare the
shapes of the experimental and numerical pulses at equilibrium for
example 1:1 chains in Fig. 5.
We performed analogous experiments and numerics for

relatively short chains consisting of 38 particles assembled in a
1:N2 setup (i.e., 1 stainless steel and N2 > 1 PTFE particles). We
show the results for N2 = 2 in Fig. 6(a, b) and those for N2 = 5 in
Fig. 6(c, d). For N2 = 2, we again observed solitary waves, though
some additional smaller amplitude structures were also present.
For N2 = 5, we did not obtain robust, individual solitary pulses
in either experiments or numerical simulations of short chains but
instead observed a complex ‘‘rattling’’ between the particles,which
resulted in the formation of trains of pulses of different amplitudes.
Some structure was more apparent in the longer 1:N2 chains we
simulated numerically, but we still did not obtain robust solitary
waves (see the discussion below).
To confirm that robust solitarywaves formeven for dimerswith

larger numbers of steel particles in a cell (i.e., large N1 in N1:1
steel:PTFE dimer chains) despite the longer timeneeded to develop
stationary solitary pulses, we conducted additional numerical
investigationswith a large number of particles.We used horizontal
chains of beads (setting g = 0) to avoid the ‘‘linearizing’’ effects of
gravity [15,29] due to the significant gravitational precompression
arising from the large number of particles.
In panel (a) of Fig. 7, we show a space-time plot for a 15:1

steel:PTFE chain of 1000 particles. As the figure demonstrates, one
obtains well-formed localized pulses even for larger N1 when the
chain is sufficiently long. However, the shape of the pulse never
stabilizes fully, as there are fluctuations in the peak aswell asmore
extensive fluctuations next to the peak than what one sees near
the peaks for smaller N1 (for which we do observe stabilization).
Panel (b) of Fig. 7 shows a space-time plot for a 1:10 steel:PTFE
chain of 500 particles. While a relatively large peak is clearly
observable, one does not obtain a pulse that is significantly larger
than its surrounding peaks the way one does for dimers with
several consecutive large-mass particles. We thus conclude that
dimers with several consecutive large-mass beads behave rather
differently in certain respects thandimerswith several consecutive
small-mass particles. This asymmetry would be interesting to
study systematically in the future, as it might provide insights into
considering the lattice chain discretely versus as a continuum. For
example, we expect different excitation modes to arise in lighter
versus heavier particles.

4.3. Theoretical analysis

In our theoretical considerations, we investigate the prototypi-
cal dimer chain composed of 1:1 dimer cells containing beads with
different masses (denoted by m1 and m2). We derive for the first
time the long-wavelength equation for an arbitrary mass ratio and
a general interaction exponent k. (We included a brief synopsis of
this derivation in Ref. [32].) The relevant rescaled dynamical equa-
tions can be expressed as [12]

m1üj = (wj − uj)k − (uj − wj−1)k, (4)

m2ẅj = (uj+1 − wj)k − (wj − uj)k, (5)

where uj (wj) denotes the displacement of the jth bead of massm1
(m2). We present our analysis for the nonlinear wave in the case of
Fig. 6. (Color online) Force versus time response obtained from chains of dimers consisting of 1 steel bead alternating with (a, b) 2 and (c, d) 5 PTFE beads. In each case,
the total chain length was 38 particles. Panels (a, c) show experimental results, and (b, d) show the corresponding numerical data. For both configurations, the striker (a
steel bead) had an impact velocity of 1.37 m/s with the chain. The y-axis scale is 1 N per division in (a, c) and 2 N per division in (b, d). The numbered arrows point to the
corresponding particles in the chain. In (a, c), both particle 14 and particle 27 are made of PTFE. In (b, d), particle 14 is PTFE and particle 26 is steel.
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Fig. 7. (Color online) Space–time diagrams for long chains of (a) 15:1 and (b) 1:10 steel:PTFE dimers. For both configurations, the striker had a velocity of 1.37 m/s on
impact. The striker was made of steel for the 15:1 dimer and made of PTFE for the 1:10 dimer.
general power-law interactions to illustrate the generality of the
approach. We subsequently use Hertzian contacts (i.e., the special
case of k = 3/2) in order to compare our theoretical analysis with
our experimental results. The k = 1 case corresponds to linear
interactions between particles.
The distance from uj to wj (from uj to uj+1) is denoted by D

(2D). This gives a small parameter, allowing us to develop a long-
wavelength approximation (LWA) by Taylor-expanding Eqs. (4)
and (5)). In particular, we express uj+1 (wj−1) as a function of uj
(wj). The resulting PDEs (one for each mass ‘‘species’’) need to be
‘‘homogenized.’’ To accomplish this, we follow [50], postulating a
consistency condition between the two fields:

w = λ
(
u+ b1Dux + b2D2uxx + b3D3uxxx + b4D4u4x + · · ·

)
. (6)

We then self-consistently determine the coefficients λ and bi by
demanding that Eqs. (4) and (5) be identical at each order. Note that
the subscripts in the LWA denote derivatives. For some technical
issues regarding the consistency condition, we defer the interested
reader to the discussion in [50] [see, in particular, Eqs. (3.2)–(3.7)
and the accompanying discussion]. The parameter λ can take the
values 1 (for acoustic excitations) or −m1/m2 (for optical ones).
Given that our initial excitation generically produces in-phase
(acoustic) waveforms, we restrict our considerations to λ = 1 in
the following exposition. Observe that for optical (out-of-phase)
excitations to be produced, a fundamentally different and more
complex experimental setup is necessary (in comparison to the
experiments discussed herein).
A direct comparison of the resulting PDEs for the twomass types

at orders Dk–Dk+3 results in the following consistency constraints:

b1 = 1, (7)

b2 =
m1

m1 +m2
, (8)

b3 =
2m1 −m2
3(m1 +m2)

, (9)

b4 =
m1(m21 −m1m2 +m

2
2)

3(m1 +m2)3
. (10)

We note in passing that these results accurately capture the
uniform-chain limit of m1 = m2. In this case, wj becomes
effectively uj+1 and hence the consistency condition of (6) becomes
the Taylor expansion of uj. The quantity D, which equals the sum
of the radii of consecutive beads in the case of dimer chains, is the
radius of this expansion.
The resulting PDE bearing the leading-order discreteness

corrections (i.e., incorporating terms that areD2 below the leading-
order term) is of the form

uττ = uk−1x uxx + Guk−3x u3xx + Hu
k−2
x uxxuxxx + Iuk−1x u4x, (11)
where τ = t
√
2kDk+1/(m1 +m2) is a rescaled time. The constants

arising in Eq. (11) are given by

G = D2
(2− 3k+ k2)m21
6(m1 +m2)2

, (12)

H = D2
(k− 1)(2m1 −m2)
3(m1 +m2)

, (13)

I = D2
(m21 −m1m2 +m

2
2)

3(m1 +m2)2
. (14)

Given the nature of the excitation propagating through the
chain of beads, we seek traveling wave solutions u ≡ u(ξ),
where ξ = x − Vsτ is the standard traveling wave variable with
(renormalized) speed Vs = dx

dτ . This ansatz results in an ordinary
differential equation (ODE) for uξ = v [this change of variables
reduces the equation to third order]. In all of the integrations
that follow, we consider solutions with homogeneous Dirichlet
boundary conditions far from the wave.
We now need to use some tools from the theory of ODEs to

further reduce the order of the equation. In particular, we change
variables using v = zp, where the power p is chosen so that
terms proportional to zp−3z3ξ disappear for z = z(ξ). The necessary
power is

p1,2 =
(H + 3I)±

√
(H + 3I)2 − 8I(G+ H + I)
2(G+ H + I)

. (15)

Observe that there are two possible values of p that lead to this
reduction, but this does not change the essence of the results in
what follows. We obtain an ODE of the form

V 2s pz
p−1zξ = pzkp−1zξ + pIzkp−1zξξξ

+
[
3p(p− 1)I + p2H

]
zkp−2zξ zξξ . (16)

In Eq. (16), we use an integrating factor za, with

a = 1− kp+ 3(p− 1)+ pH/I, (17)

to convert it to a tractable second order ODE,

zξξ = µzη − σ z, (18)

whereµ = V 2s /[I(p+a)], η = 1+p(1−k), and σ = 1/[I(kp+a)].
One can find exact periodic solutions of Eq. (18) that take the form

uξ ≡ v ≡ zp = B cos
2
k−1 (βξ), (19)

where B =
(
µ/[β2s(s− 1)]

)1/(k−1), β = √σ(1 − η)/2, and
s = 2/(1− η).
The coexistence of such an exact trigonometric solution

with nonlinear dispersion in the LWA of our model suggests
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the potential existence of finite-width solutions that consist
of a single arch of the profile of Eq. (19) [12]. Two key
experimentally testable properties of such solutions are as
follows:

• The amplitude–velocity scaling B ∼ V 2/(k−1)s . Observe that
this scaling does not change from the single-species case [12,
15]. Accordingly, we conclude that this is a geometrical result
that arises from the power of the nonlinearity (i.e., from the
geometry of the contacts between consecutive particles).
• The solution width that is equal to π/β and which, conse-
quently, depends directly on the mass ratio.

Among these two properties, the width is the one that naturally
showcases the relevance and novelty of the general dimer theory
developed herein in comparison with the monomer theory that
can be found in [12]. The advantage of the present theory is
that it allows us to obtain an explicit, closed-form expression
for the width that is valid for all k. Although the formula is
too lengthy to write explicitly in the general case, we present
here the expression for β in the experimentally relevant case
of k = 3/2: β = (30 − 8ω + 8ω2)−1(

√
3(8 − 5ω +

5ω2 −
√
4− 4ω + 13ω2 − 18ω3 + 9ω4)(((1 + ω)2(15 − 4ω +

4ω2))/(D2(34 − 42ω + 59ω2 − 34ω3 + 17ω4 + (−8 + 5ω −
5ω2)
√
4− 4ω + 13ω2 − 18ω3 + 9ω4)))1/2), where ω = m2/m1.

One of the appealing features of this result is that it naturally
generalizes all previously-known limiting cases — namely, the
monomer case (m1 = m2), for which β =

√
10/(5D) [resulting

in pulses extending to 5π/
√
10 ≈ 5 sites], and the case with one

mass that is much larger than the other (m1 � m2) [resulting
in pulses of

√
10π ≈ 10 sites, consisting of 5 cells with 2

sites each] [12]. For the case of a 1:1 steel:PTFE dimer, ω =
0.123/0.45 ≈ 0.273. This implies that β ≈ 0.414/D, which gives
a mean pulse width of about 7.59 sites.
Before presenting a comparison between our theoretical and

experimental results, we wish to briefly highlight that there is an
inherent asymmetry in the quantity β in Eq. (19). This quantity
is scaled to the spatial wavelength of D = R1 + R2 and depends
intrinsically on the ratio of the radii and masses of consecutive
particles through the parameter combination ρ2/ρ1 × R32/R

3
1

(where ρj is the density of particle j). Consequently, one should not
expect the resulting expression forβ to be symmetric aboutω = 1,
so that it matters whether R1 or R2 is larger. In Fig. 8, we show this
asymmetry for the case of ρ2/ρ1 = 1 and Hertzian interactions.
Observe in the inset, however, an approximate local symmetry
about ω1/3 ≈ 0.5 and the consequent consistency in the derived
wavelengths of 10D ≈ 10R1 for ω = 0 (where β = 1/

√
10) and

5D = 5(R1 + R2) = 10R1 for ω = 1 (where β = 1/
√
10 again).

This also brings up the question ofwhen it is appropriate to employ
continuum versus discrete treatments of the granular chains.
Note additionally that it would be nontrivial to extend the

analysis in this section to N1:N2 dimers or to trimers. Even for
2:1 dimer chains, one would need to keep track of the dynamical
equations like (4) and (5) for three different types of beads, as the
second particle of type 1 experiences different forces than the first
one. This would cause an already lengthy calculation to expand
considerably further and although the process is algorithmic in
principle, it becomes extremely tedious. We do not pursue that
direction further here.

4.4. Comparison between experiments, numerical simulations, and
theory

First, we discuss a relation for the scaling of the maximum
dynamic force Fm of the solitary waves versus their (rescaled)
propagation speed Vs. From the theory, we find that Fm ∼ Bk ∼
Fig. 8. The parameter β as a function of the dimensionless mass-ratio parameter
ω1/3 for a system with k = 3/2, ρ2/ρ1 = 1, R1 = 1, and R2 ∈ [0, 10]. Note the
approximate local symmetry in the inset.

V 2k/(k−1)s , which for k = 3/2 yields Vs ∼ F 1/6m , the same
relation as for monomer chains [12]. We tested this result both
experimentally using 1:1 steel:PTFE dimer chains and numerically
for both 1:1 steel:PTFE and 1:1 steel:rubber chains. In all cases, the
chains have 38 beads in total. In the experiments, we dropped a
striker (a stainless steel bead) from heights between 0 and 1.2 m
andmeasured the peak force in beads 15 and 34.We averaged their
amplitudes [Fm = (F15m+F34m)/2] and obtained the corresponding
wave speed (Vs) using time-of-flightmeasurements.We computed
Fm and Vs in exactly the samemanner in our numerical simulations
and obtained good agreement, as indicated in Fig. 9(a). We show
error bars for the experimental results. The errors in the force
amplitude stem from oscilloscope noise and sensor orientation
(their calibration varies a bit because they are aligned with
the horizontal cut); those in the propagation speed arise from
oscilloscope noise and the difficulty in determining exact time-
of-flight distance between the peaks. In conducting our numerical
simulations, we performed a least-squares fit to the obtained force
and velocity values. To compare the numerical results with the
theory, we repeated the numerical simulations in the absence of
gravity, obtainingVs ∼ F 0.167m , which is in excellent agreementwith
the theory (even though we used a small number of particles). We
remark that the inclusion of gravity, which decreases the exponent
γ in Vs ∼ F γm , has a larger effect on the force–velocity scaling
in dimer configurations that include very light particles (such as
steel:rubber dimers). We verified numerically that the Vs ∼ F

1/6
m

force–velocity scaling also holds for N1:1 steel:PTFE dimer chains
with larger N1 and for 1:1:1 trimer chains.
We saw earlier that the FWHM of solitary waves in a dimer

chain is larger in terms of number of particles (though smaller
in terms of number of cells) than that in a monomer chain. The
physical mechanism behind this observation can be explained
using the ‘‘homogenized’’ theory (that is, the long-wavelength
asymptotics) derived above. We demonstrate this by examining
the evolution of the FWHMas thewave propagates down the chain
of beads. As shown in Fig. 9(b), the numerical and experimental
results are in good agreement with each other and with the
long-wavelength approximation that captures the average of the
FWHM oscillations. The maximum dynamic forces (Fm) in the
numerics and experiments alternate from one bead to another
because consecutive beads are composed of different materials.
From Fig. 9(b), it is clear that the average FWHM of the dimer
differs both from that of a homogeneous chain (m1 = m2) and
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Fig. 9. (Color online) Comparison of experiments, numerical simulations, and
theory. (a) Scaling of the maximum dynamic (dimensional) force F̄m versus
(dimensional) pulse propagation speed V̄s in a 1:1 stainless steel:PTFE dimer chain.
[In contrast to the main text, we employ the notation F̄m and V̄s to stress the
use of dimensional quantities in this figure.] The numerical simulations (including
the effects of gravity) are shown by the top (purple) curve and the experimental
results are shown by points (with error bars). The bottom (green) curve shows the
numerical results using the elasticmodulus E = 0.6GPa for PTFE, the nominal static
value reported inmost of the literature [16,41]. (b) Evolution of solitary wavewidth
(the FWHM) as a function of bead number. The experimental values are shown by
solid (green) squares and the numerical values are shown by open (red) circles. (In
both cases, we include curves between the points as visual guides.) The theoretical
value for the FWHM with m1 � m2 is given by line (1), that for the 1:1 steel:PTFE
chain is given by line (2), and that for a homogeneous chain is given by line (3).

from that of the m1 � m2 limiting case discussed in [14]. The
average value of this width is reasonably close (for the proper ratio
of masses) to the homogenized theory derived above, indicating
the relevance of our theoretical approach. To provide a quantitative
measure of the theory’s accuracy, we compute the relative error
of the theoretical prediction versus the computational-average
FWHM and compare it to those for the two limiting cases. We
calculated the percentage errors using the formula: Relative Error
= 100 × |[FWHMth − FWHMnum]/FWHMnum|, where FWHMth
denotes the FWHM computed using the theoretical analysis and
FWHMnum denotes the steady-state mean FWHM (averaged over
the two types of beads) computed using numerical simulations in
the absence of gravity. We find errors of 43.4% form1 = m2, 13.3%
for m1 � m2, and 13.2% for the correct mass ratio.2 Observe that
using the correct mass ratio underestimates the FWHM, whereas
using m1 � m2 overestimates it. While the pulses appear at first
to gradually converge to the ‘‘correct’’ width, dissipation ultimately
acts as a linearizing effect that further increases the width.
We now comment briefly on the relative importance of

gravitational effects for chains of beads with small and large
numbers of particles. First, because of the chain lengths and the
pulse amplitudes considered in our experimental configurations,
the pulse propagation can be safely assumed to be within the
highly nonlinear regime. We consequently neglected the effects
of gravity in the theoretical analysis, in accordance with the
discussion of Ref. [29]. However, for vertical chains of beads that
contain a large number of particles (several hundred or more)

2 We reported these error values incorrectly in Ref. [32] as a result of a
typographical error in a Maple file. The corresponding horizontal lines in Fig. 3(b)
in that paper are also in incorrect spots.
or are excited by smaller-amplitude pulses, the presence of the
nonuniform gravitational precompression should be taken into
account. As discussed in Ref. [29], this leads to a 1/3 power-law
scaling in the wave width as a function of particle number as well
as a power-law drift in the pulse speed.

5. Chains of trimers

To examine more intricate heterogeneous chains, we also per-
formed experiments and numerical simulations for various trimer
configurations. In Fig. 10(a), we depict the basic experimental
setup of a trimer chain in which each cell consists of N1 consec-
utive beads of one type, N2 consecutive beads of a second type,
and N3 consecutive beads of a third type. We focused on N1 =
N2 = N3 = 1 and considered various material components
with different masses, elastic moduli, and Poisson ratios. The 1:1:1
configurationswe investigatedwere composed of steel:brass:PTFE
(steel striker, 36 particles), steel:glass:nylon (steel striker, 33 parti-
cles), and steel:PTFE:rubber (steel striker, 27 particles). Our specific
choices of configurations were motivated by the desire to examine
various combinations of hard, soft, heavy, and light materials (see
the summary in Table 2).
As with the dimer chains, we calculated the pulse speed for

each configuration using time-of-flight measurements between
the sensors. We obtained very good qualitative and reasonable
quantitative agreement (very good, given the lack of dissipation in
the models) between the results of experiments and numerics. In
Fig. 10(b, c), we show the force versus time response for a chain
of 1:1:1 steel:brass:PTFE trimers. We observed the formation of
robust solitary waves with a pulse propagation speed between
the first and second sensor of about 115 m/s experimentally
and 143 m/s numerically. The FWHM is about 4.2 particles (1.4
cells) experimentally and 6.3 particles (2.1 cells) numerically.
The quantitative difference in the FWHM notwithstanding, one
can see the correspondence between experiments and numerical
simulations using a direct comparison of the pulses in Fig. 11. We
also obtained good agreement between experiments and numerics
in the other configurations. In Fig. 12, we show the force versus
time response for chains of steel:glass:nylon trimers (left panels)
and steel:PTFE:rubber trimers (right panels). The steel:glass:nylon
trimer chain had a steel striker dropped from 4 cm; its pulse speed
was about 220 m/s experimentally and 286 m/s numerically. The
FWHM was about 1.6 cells both experimentally and numerically.
The steel:PTFE:rubber trimer chain had a steel striker dropped
from 15 cm; its pulse velocity was about 33.9 m/s experimentally
and 56.0 m/s numerically. (Recall that the dissipative effects are
larger for rubber than for other materials.) The FWHM was about
1.4 cells both experimentally and numerically.
For each configuration, we demonstrated the formation and

propagation of solitary waves. These waves can be clearly
discerned both experimentally and numerically for the steel:brass:
PTFE and steel:PTFE:nylon chains but only numerically for the
trimer chain containing rubber, in which dissipation is much
more important. The presence of small secondary pulses in the
configurations can also typically be observed. Additionally, one can
see in both the experiments and the numerical simulations that the
pulses are not perfectly symmetric near the tops of the chains. This
skewness disappears as a pulse moves down a chain.

6. Conclusions

We examined the propagation of solitary waves in heteroge-
neous, periodic granular media consisting of chains of beads us-
ing experiments, numerical simulations, and theory. Specifically,
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Fig. 10. (Color online) (a) Experimental setup for trimer chain consisting of a periodic array of N1 consecutive beads of one material, N2 consecutive beads of a second
material, and N3 consecutive beads of a third material. (b, c) Force versus time response obtained from chains of trimers consisting of 1 steel particle, 1 brass particle, and
1 PTFE particle. Panel (b) shows experimental results and (c) shows numerical ones. A steel striker was dropped with a velocity of 0.54 m/s on impact, and the y-axis scale
is 1 N per division in both plots. The numbered arrows point to the corresponding particles in the chain. The 12th particle is PTFE, the 20th particle is brass, and the 28th
particle is steel.
Table 2
Summary of the trimer configurations that we investigated in terms of their relative masses, elastic moduli E, and Poisson ratios ν.

Configuration Properties of bead 1 Properties of bead 2 Properties of bead 3

Steel:brass:PTFE Large mass, large E, small ν Large mass, large E, medium ν Small mass, small E, large ν
Steel:PTFE:rubber Large mass, large E, small ν Small mass, small E, large ν Very small mass, very small E, large ν
Steel:glass:nylon Large mass, large E, small ν Small mass, medium E, very small ν Very small mass, small E, medium ν
Fig. 11. (Color online) Rising shape comparison of two different solitary waves
recorded in the middle of the chain for different trimer configurations. Each plot
displays the evolution of the force (in N) with time (in microseconds). Curve 1
corresponds to the experimental points, and curve 2 corresponds to the numerical
ones. The depicted examples are (a) steel–glass–nylon trimer curves detected in
particle 13 and (b) steel:brass:PTFE curves detected in particle 12. Note that in
order to compare the shapes, the experimental curves have been multiplied by an
arbitrary factor to obtain the same force amplitude as that found in the numerical
data (where no dissipation is present).

we investigated 1D granular lattices of dimers and trimers com-
posed of varying numbers of particles (yielding different peri-
odicities) that were made of different materials. We found both
experimentally and numerically that such heterogeneous systems
robustly support the formation and propagation of highly local-
ized nonlinear solitary waves, with widths and pulse propagation
speeds that depend on the periodicity of the chain (that is, the
length of its unit cell).
For dimer chains consisting of cells composed of N1 particles

of dense materials such as steel doped by 1 light particle such
as PTFE, we find that the width (expressed as the number of
unit cells) decreases with N1, whereas the propagation speed
increases with N1. We also observe an increased difficulty of
systems in forming a single solitary pulse for N1 ≥ 4, although
robust localized pulses nevertheless form even in this case. We
showed numerically, experimentally, and analytically (using a
long-wavelength approximation) that the force–velocity scaling
for chains of dimers follows the same relation as that for
homogeneous chains. We also found good agreement for the
solitary-wavewidths (which depend on themass ratio of the dimer
materials) using all three approaches, generalizing previous results
from all known limiting cases. Finally, we demonstrated both
experimentally and numerically the formation and propagation
of robust, strongly-localized solitary waves in trimer lattices
consisting of chains of cells composed of 1 particle of each of three
varieties.
The qualitative and quantitative understanding of the dynamics

of dimer and trimer chains obtained in the present work, and their
characterization as possessing highly nonlinear solitary waves
with similarities (e.g., force–velocity scaling) as well as differences
(e.g., in the width) versus the standard monomer chain, paves the
way for studies in increasingly heterogeneous media in both one
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Fig. 12. (Color online) Force versus time response for chains of 1:1:1 trimers consisting of (a, b) steel:glass:nylon and (c, d) steel:PTFE:rubber. Panels (a, c) show experimental
results and panels (b, d) show numerical results. In (a, b), a steel striker was dropped with a velocity of 0.89 m/s on impact; the y-axis scale is 1 N per division in (a) and 2 N
per division in (b). In (c, d), a steel striker was dropped with a velocity of 1.72 m/s on impact; the y-axis scale is 0.5 N per division in both (c) and (d). The numbered arrows
point to the corresponding particles in the chain. In panels (a, b), both depicted beads are made of steel; in panels (c, d), the 7th bead is made of steel and the 17th is made
of PTFE.
and higher dimensions. Such studies are currently in progress and
will be reported in future publications.
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