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a  b  s  t  r  a  c  t

For  a long  time,  geographic  regions  were  considered  the  dominant  spatial  arbiter  of  international  migra-
tion  of  people.  However,  since  the  late  1970s,  many  scholars  have  argued  that  movements  reach  beyond
contiguous  regions  to  connect  distant,  dispersed,  and  previously  disconnected  countries  across  the  globe.
The precise  structure  of  world  migration,  however,  remains  an  open  question.  We  apply  network  analysis
that incorporates  spatial  information  to  international  migration-stock  data  to  examine  what  multilateral
structures  of world  migration  have  emerged  from  the interplay  of  regional  concentration  (local  cohesion)
and  global  interconnectedness  (global  cohesion)  for  the period  1960–2000.  In the  world  migration  net-
work  (WMN),  nodes  represent  countries  located  in  geographic  space,  and  edges  represent  migrants  from
an origin  country  who  live  in a destination  country  during  each  decade.  We  characterize  the large-scale
structure  and  evolution  of  the  WMN  by  algorithmically  detecting  international  migration  communities
(i.e.,  sets  of  countries  that  are  densely  connected  via  migration)  using  a generalized  modularity  function
for  spatial,  temporal,  and  directed  networks.  Our  findings  for the whole  network  suggest  that  move-
ments  in  the  WMN  deviate  significantly  from  the  regional  boundaries  of  the world  and  that  international
migration  communities  have  become  globally  interconnected  over  time.  However,  we observe  a  strong
variability  in  the distribution  of  strengths,  neighborhood  overlaps,  and  lengths  of  migration  edges  in  the
WMN.  This  manifests  as  three  types  of communities:  global,  local,  and  glocal.  We  find  that  long-distance
movements  in  global  communities  bridge  multiple  non-contiguous  countries,  whereas  local  (and,  to  a
lesser extent,  glocal)  communities  remain  trapped  in  contiguous  geographic  regions  (or  neighboring
regions)  for  almost  the  whole  period,  contributing  to a  spatially  fragmented  WMN.  Our  findings  demon-
strate  that  world  migration  is neither  regionally  concentrated  nor  globally  interconnected,  but  instead
exhibits  a heterogeneous  connectivity  pattern  that  channels  unequal  migration  opportunities  across  the
world.

© 2017  Elsevier  B.V.  All  rights  reserved.

1. Introduction

The migration of people is a self-perpetuating process
(Hägerstrand, 1957; Massey, 1990; Massey et al., 1998) such that,
once established, migratory movements tend to connect multiple
countries across the world in structured large-scale networks (Kritz
et al., 1992: 15). Mapping and analyzing the structure and evolu-
tion of networks of movements between countries can therefore
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advance understanding of how migration opportunities are dis-
tributed worldwide and what migration connections are likely to
form and evolve in the future. Although there is a growing agree-
ment that bilateral approaches to migration are insufficient and
that movement of people between each pair of countries is better
understood in the context of broader groups or networks of move-
ments (Kritz et al., 1992; Salt, 1989), there is much less consensus
about the structure of these networks and the basic mechanisms
from which they arose.

One body of literature views migratory movements between
countries as channeled within geographic regions (Abel et al., 2016;
DeWaard et al., 2012; Salt, 1989; Salt, 2001; Zlotnik, 1992). The
view of “regional concentration” of migration is an example of
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“geography of regions, not relations”, to paraphrase Batty (2005:
149). In the “geography of regions”, geographic boundaries come
first (Knappett et al., 2008: 1009). Migration relations between
regions, although acknowledged (Skeldon, 1997; Zlotnik, 1992),
are secondary and are rarely expected to alter regional bound-
aries. World migration is thus viewed as an agglomeration of
mostly local movements (within geographic regions and to neigh-
boring regions) that arise predominantly from physical proximity.
Another body of literature has argued that international migration
has become “global in scope” since the mid  1970s. They pointed
to the increasing number of world countries involved in migration
(Castles and Miller, 2009), the diversification of origin countries
(International Organization for Migration, 2003; Vertovec, 2007),
and the tendency of migration to defy spatial constraints, which
manifests in the many long-distance movements that span conti-
nents (King, 2002) and contribute to “global interconnectedness”
(Held et al., 1999: 284). In contrast to the view of regional con-
centration, global interconnectedness implies that long-distance
movements from multiple origins cut across regional boundaries,
thereby decoupling international migration from the regional map
of the world and creating an interconnected network of movements
over time.

Although features of these contrasting—regional and
global—tendencies are documented (see Held et al., 1999: Chap.
6), the implications for the large-scale structure of international
mobility remain an open question. What are the structures of
world migration that have emerged from the interplay of regional
concentration and global interconnectedness in world migra-
tion? How have these structures evolved and shaped migration
opportunities across the world? In this paper, we address these
questions by employing theoretical insights and formal methods
at the intersection of social network analysis (Borgatti et al.,
2009; Granovetter, 1973; Wasserman and Faust, 1994) and spatial
network analysis (Adams et al., 2012; Barthelemy, 2011; Expert
et al., 2011).

2. World migration as a social and spatial network

2.1. Spatial and social network analysis

Spatial and social network analyses provide theoretical
insights and tools for quantitatively describing and analyzing the
contrasting tendencies of spatial concentration and global inter-
connectedness in world migration. The spatial network structures
that emerged as an outcome of those tendencies have received lit-
tle attention, as prior research either prioritized one tendency over
another in world migration or focused on attributes of migration
movements rather than on their interactions (e.g., Massey et al.,
1998).

Spatial network analysis acknowledges that the formation (and
the strength) of an edge in geographic space is typically associ-
ated with a cost (e.g., travel and information costs), such that nodes
that are closer to one another are more likely to be connected to
each other (Barthelemy, 2011; Expert et al., 2011). Consequently,
one observes disproportionately more short-distance edges con-
necting nodes within the same neighborhood (spatial clustering)
than long-distance edges between different neighborhoods (Watts,
1999: 129). Spatial network analysis has the potential to shed
light on the spatial properties of migration (Hägerstrand, 1957;
Malmberg, 1997) and how geographic regions, in combination
with economic constraints (Mayda, 2010) and restrictive migra-
tion policies (Hatton and Williamson, 2002), can have a significant
localizing effect on migration movements of people by channeling
those movements between contiguous countries in a region. For
example, it has been estimated that about 80 percent of the move-

ments in the developing world are directed to a contiguous country
(e.g., Bangladesh to India) (Population Division of the Department
of Economic and Social Affairs, 2013; Ratha and Shaw, 2007).

However, there is more than physical space to interna-
tional migration. Despite being less numerous, long-distance and
global movements of people (but also information, goods, and
investments (Castells, 1996; Dicken et al., 2001)) now connect
geographically disperse countries (and broader regions) in novel
patterns of relationships. Social network analysis (Borgatti et al.,
2009; Wasserman and Faust, 1994) is particularly well-equipped
to describe, analyze, and predict such emerging patterns of rela-
tionships among interacting entities. Network structure is a source
of opportunities and constraints, and it can therefore influence the
outcomes (e.g., access to resources) of particular nodes and edges,
depending on their position in a network (Borgatti et al., 2009: 894;
Wasserman and Faust, 1994: 3). For example, research on inter-
national trade (e.g., Smith and White, 1992) has documented that
it is mostly the pattern of relationships between nation-states in
the global trade network—and, to a lesser extent, nation-states’
attributes (e.g., gross domestic product)—that determines the role
that a country plays in the global economy. Likewise, the network
structure of migration can have an impact on the distribution of
migratory movements from and to a particular country or region.

2.2. The world migration network (WMN)

To begin to account for the coexistence of regional concentra-
tion and global interconnectedness, we represent world migration
as a “social–spatial” network using data on international migra-
tion stocks that were reported in the Global Bilateral Migration
Database (Özden et al., 2011). A social–spatial network is a set of
nodes (e.g., countries, organizations, or individuals) located in geo-
graphic space that are connected to each other via a set of edges
associated with length (and cost) (Barthelemy, 2011; Newman,
2010; Wasserman and Faust, 1994). The world migration network
(WMN)  is a set of world countries (and territories) that are located
in geographic space (see Fig. 1A). The countries in the network
are connected to each other via migration edges of various dis-
tances, and an edge represents the number of migrants from a
sending country i who  live in in a receiving country j at a particu-
lar point of time. The spatial aspect of the WMN  comes both from
the topographical positions of nodes (i.e., countries) and from the
geographic constraints on edges between them. Because of tech-
nological advancements, migration is unlikely to diminish with an
increase of distance in a manner predicted by the “inverse-distance
rule” (Zipf, 1946), but the length of a migration edge is still asso-
ciated with a cost, so longer-distance migration is likely to bear a
higher cost (Barthelemy, 2011; Gastner and Newman, 2006).

In addition to spatial considerations, the WMN  is directed (i.e.,
the edges have a direction that represents out- and in-migration)
and weighted (i.e., edges have weights that represent, in our study,
the volume of migrant stock between countries), and it evolves over
time. To account for temporal changes, we represent the WMN  as a
multilayer network (Kivelä et al., 2014). Each layer represents bilat-
eral migration stock between 226 world countries and territories
recorded in 1960, 1970, 1980, 1990, and 2000.

2.3. Regional concentration versus global interconnectedness

An extensive body of literature views cross-border migration
as concentrated within international migration systems (Bakewell,
2014; Fawcett, 1989; Kritz et al., 1992; Malmberg, 1997; Portes
and Böröcz, 1989), defined as “a group of countries that exchange
relatively large numbers of migrants with each other” (Kritz and
Zlotnik, 1992: 2). International migration systems seldom form
among random pairs of countries; instead, they arise among partic-
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Fig. 1. World migration networks (WMNs). (A) An example of international migration community structure in space. The color of the nodes indicates community membership,
and  the position of the nodes indicates the geographic location of countries and territories. The edges represent migratory movements between countries. (B) An example of
migration communities with different types of local and global connectivity. The 226 nodes in the WMN  are assigned to one of eight different communities. For visualization,
we  use code from Traud et al. (2009) and Jeub et al. (2015) in MATLAB; for the world map, we use the package “rworldmap” in R (South, 2011).

ular countries that are enmeshed in a multiplex of social, economic,
and cultural linkages that result from “prior contact” (Fawcett,
1989; Portes and Böröcz, 1989). Because the linkages are assumed
to correlate positively with geographic proximity, systems were
typically defined in regional terms (Kritz and Zlotnik, 1992: 4), such
that Europe (Massey et al., 1998) or Western Europe (DeWaard
et al., 2012; Salt, 1989; Salt, 2001) are construed as international
migration systems. In the same vein, recent empirical research
on European migration for 2003–2007 reported that systems are
“more or less geographically discrete” (DeWaard et al., 2012). Like-
wise, Abel et al. (2016) concluded that systems in world migration
for 1960–2010 are “geographically concentrated”.

Others have argued that there has been a process of restruc-
turing of world migration since the 1970s (Audebert and Doraï,

2010; Castles and Miller, 2009; King, 1993a; Vertovec, 2007).
An important aspect of the restructuring is the “compression”
or “shrinkage” of geographic and socio-cultural distances as a
consequence of technological advancements (Harvey, 1989) and
transformations in the world economy (Castells, 1996), such that
many previously-detached regions have become interconnected
via flows of goods, information, and people (Brunn and Leinbach,
1991: xvii–xviii; International Organization for Migration, 2003:
16; Lash and Urry, 1994: 26). Hence, many have observed that major
migratory movements are now over long distances (e.g., China to
the USA) rather than, as in the recent past, exclusively between con-
tiguous countries (e.g., Ireland to England) or bound by past colonial
relationships (e.g., Bangladesh to Britain) and bilateral agreements
(e.g., between Germany and Turkey) (Agnew, 2009: 170; Castles
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and Miller, 2009: 7–12; International Organization for Migration,
2003: 4; King, 2002: 94).

In further support of world-migration restructuring, some
scholars have emphasized the progressively increasing number
of countries that are involved in migration (Castles and Miller,
2009: 7–12; Audebert and Doraï, 2010: 203), focusing particularly
on the diversification of origins (Vertovec, 2007) and the shift to
newly emerging high-income destinations since the 1970s (Sassen,
2007). In the same vein, Vertovec (2010: 3–4) argued that post-
1945 migration patterns until the late 1970s involved mainly “large
numbers moving from particular places to particular places” (e.g.,
Algeria–France, Turkey–Germany), whereas global migration since
the 1980s has involved “small numbers moving from many places
to many places”. Some of the above propositions are supported by
recent research (Davis et al., 2013; Fagiolo and Mastrorillo, 2013)
that viewed the network of international migration as shifting from
geographic fragmentation in 1960 to a more interconnected struc-
ture in 2000.

Held et al. (1999: 283–326) argued that regional systems and
global interconnectedness coexisted in the latter half of the 20th
century, and their proposition is consistent with recent data on
global migration (Abel and Sander, 2014; Özden et al., 2011). In Held
et al.’s (1999) account, patterns of global interconnectedness were
represented in economic migrations to Europe, Australasia, North
America, and the Gulf countries. Those movements were global in
geographic scope (as they were both transoceanic and transconti-
nental), but they were less intense (i.e., there were fewer migrants)
than the migration in either regional systems or the “mass migra-
tion” (Hatton and Williamson, 1998) to the New World in the
period from 1850 to 1913 (Hirst and Thompson, 1999). Alongside
global movements, Held et al. (1999) observed features of regional
movements—contiguity, clustering, and high intensity—in Africa,
Latin America, and East Asia.

2.4. Network regions beyond geography

The coexistence of regional concentration and global intercon-
nectedness is likely to generate multilateral migration structures
that are irreducible to preexistent geographic boundaries or inde-
pendent migration exchanges between pairs of countries. To
characterize these emerging multilateral structures of migration,
we first decompose the WMN  into mesoscale network struc-
tures known as “communities” (also called “modules” or “cohesive
groups”), which consist of densely-connected nodes that are
connected relatively sparsely to other densely connected nodes
(Fortunato and Hric, 2016; Porter et al., 2009). An international
migration community1 is a tightly-knit group of countries with
dense internal migration connections (relative to a null model,
which describes random connections for a given distance range)
but sparse connections to and from other countries in a network
(see Fig. 1B). To detect international migration communities, we
employ generalizations of the widely-used method of modularity
maximization (Newman and Girvan, 2004) that were developed
for studying spatial networks (Expert et al., 2011; Sarzynska et al.,
2016), temporal networks (Mucha et al., 2010), and directed net-
works (Arenas et al., 2007; Leicht and Newman, 2008).

Prior research informed by the migration-systems approach
(Abel et al., 2016; DeWaard et al., 2012) and network theory
(Davis et al., 2013; Fagiolo and Mastrorillo, 2013) decomposed
international migration into communities based only on connec-

1 We use the term “community” in the standard sense of network analysis, so the
term refers to a set of densely-connected nodes. In our analysis, nodes represent
countries. Thus, throughout the manuscript, a “community” refers to a group of
countries rather than a group of people.

tivity information (that is, which countries are connected to each
other) and the volume of migration exchanges. They ignored node
attributes, such as location in geographic space. Consequently, in
the methodologies used in prior research, each country is supposed
to connect to any other country in the world with a probability
that is independent of geographic proximity. When spatial forces
are in places, as in international migration, failing to account for
the impact of distance yields communities that are shaped pre-
dominantly by geographic proximity. Consider a situation in which
countries i and k are close geographically and countries j and k
are also close to each other. Nodes i and j are thus also close
to each other, so they are likely to be connected to each other
because of geographic proximity, irrespective of their connection
to k. A methodology that insufficiently controls for underlying geo-
graphic effects is likely to overemphasize the impact of strong edges
and spatial concentration and to underemphasize the role of long-
distance (and perhaps weaker) migration in forming international
migration communities.

We account for spatial information by employing a modularity
null model for spatial networks (Expert et al., 2011). The model, in
the context of the WMN,  favors international migration commu-
nities that include pairs of countries that exchange more migrants
than expected based on the distance between them. This approach
can highlight the importance of “spatially surprising” migration
connections in the formation and evolution of international migra-
tion communities. Once the effect of geographic proximity is
disentangled from the network structure of world migration, one
can more readily detect communities that are generated by a mix-
ture of non-spatial2 mechanisms of social (e.g., similar language),
economic (e.g., capital flows via foreign direct investments), and
historical (e.g., former colonial relationship) nature, as theorized in
the literature on international migration (Fawcett, 1989) and glob-
alization (Sassen, 2007). Using a null model that incorporates space
also acknowledges the contribution of regional movements with
limited geographic reach that involve more migrants than expected
for that distance in the WMN.  A spatial null model therefore facil-
itates the identification of both patterns of substantial regional
concentration and patterns of global interconnectedness.

What does it mean for there to be an international migra-
tion community? First, international migration communities are
“functional regions” (Ratti et al., 2010) in the WMN.  Different com-
munities may  perform distinct functions in the WMN; these range
from channeling regional mobility to bridging distinct regions. Sec-
ond, as Simmel (Carrington and Scott, 2011; Martin, 2009; Simmel,
1950[1908]) observed, once cohesive structures crystallize, they
can maintain their own existence—and they can thereby confront
and enable further migration interactions—even when the reasons
that they arose initially have vanished. In parallel, a large body
of literature on migration perpetuation (Massey, 1990), migrant
networks (Palloni et al., 2001), and chain migration (MacDonald
and MacDonald, 1964) have documented how once two or more
locations are enmeshed in migration, they “have a tendency to
perpetuate themselves because migrations at any given time are
dependent on preceding migrations” (Hägerstrand, 1957: 130). The
property of self-perpetuation of migration suggests that move-
ments between two  or more countries in a migration community
increase the likelihood of remaining within the community in the
future. Community membership can thus be helpful for forecast-
ing future movements. Third, communities typically differ from

2 The expectation that one can uncover the impact of non-spatial (e.g., socio-
economic) factors after controlling for the impact of geographic proximity is based
on  the assumption that the two sets of factors are relatively uncorrelated (Cerina
et  al., 2012). When this assumption is not satisfied, attempting to factor out spatial
effects may  also disrupt the social structure of communities.
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how regional boundaries are drawn on economic and geographic
maps (Maoz, 2011: 37). An arrangement of relationships into net-
work communities typically cuts across a hierarchy of spatial scales
(Knappett, 2011: 10–11). Thus, international migration commu-
nities can encode various combinations of global (i.e., between
regions and continents) and regional (i.e., within regions) migra-
tion, and it can provide an opportunity to investigate the interplay
of these movements in a system.

2.5. Local versus global cohesion in the WMN

To distinguish a pattern of regional concentration from a pat-
tern of global interconnectedness across international migration
communities, we draw upon Granovetter’s strength-of-weak-ties
theory at the group level (Borgatti and Lopez-Kidwell, 2011;
Granovetter, 1973). The theory (Borgatti and Lopez-Kidwell, 2011:
42) postulates that networks with many strong edges are likely
to have strong local cohesion (tightly-knit communities) but weak
global cohesion (bridging edges between communities). In con-
trast, networks with many weak edges are more likely to have
strong global cohesion but weak local cohesion. Further, the dis-
tribution of local and global cohesion in a network is hypothesized
to have an impact on differences in social outcomes, such as social
mobilization (Borgatti et al., 2009: 894; Granovetter, 1973: 1375).

We define migration edge strength between a pair of countries
as the number of people from a sending country who live in a receiv-
ing country at a given time. The strength of a migration edge is a
local property, as it captures the intensity of migration between two
countries. Edge strength, which is equal to edge weight in our study,
lies on a continuum between weak and strong. Weak edges typi-
cally have a higher probability of overcoming spatial constraints,
whereas strong edges are likely to be induced by spatial factors in
social networks (Granovetter, 1973; Martin, 2009: 34).

In the context of the WMN,  the strength-of-weak-ties theory
proposes that a stronger migration edge between a pair of coun-
tries entails a higher probability that their neighborhoods overlap
(Granovetter, 1973; Onnela et al., 2007). That is, they are more
likely to connect to a set of common third countries. Neighborhood
overlap is a form of local clustering. The neighborhood overlap of
a migration edge between countries i and j is the number of coun-
tries that are adjacent (i.e., connected directly) to both i and j as a
proportion of all countries that are adjacent to either i or j (Easley
and Kleinberg, 2010: 52; Onnela et al., 2007). The positive rela-
tionship between edge strength and edge-neighborhood overlap
is likely to be stronger when network relationships are “localized”
not only in physical space but also in social space (Martin, 2009:
32–36). This is because individuals, groups, and societies are more
likely to interact if they are similar in relevant social characteris-
tics (e.g., language similarities in international migration (Fawcett,
1989)), a tendency that is known as “homophily” (McPherson et al.,
2001). Both physical and social spaces are likely to contribute to the
formation of tightly-knit communities associated with strong local
cohesion but weak global cohesion (e.g., the blue community in the
lower-right corner of Fig. 1B).

In contrast, bridging edges—i.e., edges that connect nodes from
distinct communities—are likely to be weak due to the tendency of
strong edges to cluster within communities. By implication, long-
distance movements that bridge regions in the WMN  are also likely
to be weak ties. This is because, as Martin (2009: 34) put it, “weak
ties are more likely to defy the closure implicit in spatial logic”.
Different definitions of bridges were proposed in the literature.
Originally (Granovetter, 1973: 1364–1365), a bridging edge was
defined as one that connects two nodes (or components) that will
disconnect if the bridging edge is removed. A more nuanced con-
cept is that of a local bridge, which refers to an edge that lies on a
shortest path between two nodes. To facilitate empirical investiga-

tion of larger networks, Onnela et al. (2007) proposed a definition
of “almost local bridges” for edges that have very low neighbor-
hood overlap. In the context of the WMN,  we expect migration
edges with low neighborhood overlap to be those that bridge sep-
arate migration communities, thereby generating global cohesion
in the WMN.  For an example of a community with strong global
cohesion (between communities) but weak local cohesion (within
communities), see the brown community in the center of Fig. 1B.

Consider the observation of increasing diversification of origin
countries in world migration (Vertovec, 2007) in the context of
the strength-of-weak-ties theory. Although some of the resulting
novel migration edges may  have been weak, thereby contributing
to an increasing ethnic diversity in the host societies (Vertovec,
2007), the important question is whether they were bridges in
world migration. If novel weak edges were formed between coun-
tries with overlapping neighborhoods (i.e., countries that exchange
migration with common third countries), those migration edges
should remain within communities. In this situation, although
novel, they would contribute little to the global interconnected-
ness in world migration. Instead, they would contribute to regional
concentration associated with network fragmentation. In contrast,
if many of the novel weak edges bridge distinct communities, one
should observe an increase of global interconnectedness in world
migration.

2.6. Research questions

Our study of spatial network structures in world migration
considers two levels of analysis: (1) mesoscale spatial network
structures and dynamics in the WMN  and (2) properties of interna-
tional migration communities over time. At a mesoscale level, we
ask whether the network regions in world migration align with (to
produce “regional concentration”) or deviate significantly from (to
yield “global interconnectedness”) the world’s regional boundaries
over time. This question is important, because international migra-
tion is known to exhibit self-perpetuating tendencies (Massey et al.,
1998). Hence, a spatially fragmented structure of world migration
is not a transient phenomenon, as it can perpetuate long-lasting
movements of people in geographically bounded regions over
decades. Similarly, a pattern of global interconnectedness enables
multilateral migration opportunities that are extensive in geo-
graphic scope.

Our second question concerns individual communities in inter-
national migration, with a focus on the distribution of local
cohesion and global cohesion across international migration com-
munities for the period 1960–2000. We  are interested in the extent
to which the global migration connectivity reported in the liter-
ature (Held et al., 1999) has spread relatively evenly across the
world versus the extent to which different tendencies predominate
in different communities over time. It is unrealistic to expect that
a pattern of global interconnectedness should be indicated in the
emergence of a single global migration community. Neither a single
global migration nor a single global labor market have material-
ized (Castells, 1996; Hirst and Thompson, 1999). A more realistic
indicator of global interconnectedness is a situation in which an
increase of global cohesion (through bridging migration edges)
across international migration communities has contributed to an
increased integration of the WMN  over time (as reflected by larger
edge weights across communities). In contrast, an uneven distribu-
tion of global cohesion across the WMN,  with some communities
appearing as isolated from the rest of the network in 2000 as they
were in 1960, would provide evidence for a heterogeneous network
structure.

Our contributions, which are mostly methodological and
empirical, are threefold. First, using recent advancements in net-
work analysis, we employ a method for network decomposition
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that accounts for key features of world migration—in particu-
lar, we incorporate temporality, edge directionality, and spatial
composition—and allows an in-depth examination of mesoscale
structures in world migration. Prior research (DeWaard et al., 2012;
Fagiolo and Mastrorillo, 2013) on large-scale structures in world
migration used methodology that pays insufficient attention to the
role of spatial attributes in the formation of mesoscale structures.
Second, we use tools from social and spatial network analyses to
test empirically-grounded propositions from international migra-
tion studies (Castles and Miller, 2009; Held et al., 1999; Kritz et al.,
1992; Salt, 1989), thereby helping adjudicate contrasting views
about the current structure of world migration. Third, to attempt
to understand the formation and evolution of boundaries in world
migration, we examine (in greater detail than in prior research
(DeWaard et al., 2012; Fagiolo and Mastrorillo, 2013)) international
migration communities, with a focus on the relationship between
intra-community and inter-community migration edge strength,
edge-neighborhood overlap, and edge length (as specified in Sec-
tion 3.2.2).

3. Data, methods, and diagnostics

3.1. Global migration-stock data

We  construct the WMN  from aggregate migration stocks
recorded in 1960, 1970, 1980, 1990, and 2000 and compiled in the
Global Bilateral Migration Database (Özden et al., 2011). In this
database, migrants were defined primarily on the basis of birth
country, but other criteria—e.g., country of citizenship—were also
considered (Özden et al., 2011). The database includes comprehen-
sive information about migration stocks (i.e., the number of people
that were born in country i and lived in country j) from national
decennial censuses and population registers for 226 countries and
territories, resulting in five 226 × 226 matrices. National census
surveys are typically carried out at the end of a decade, gathering
information about the number of foreign-born people (or foreign
citizens) that resided in a given country for at least one year during
the preceding decade.

Aggregate migration stocks have several shortcomings. The data
can overlook differences among types of migration (e.g., labor or
education) or dynamic forms of migration (e.g., “stepwise” migra-
tion (Paul, 2011)). Additionally, migration-stock data favor stability
at the expense of change, so they can overlook temporal fluctua-
tions in migration, particularly for evolution on a time scale that
is different from the 10-year measurement period. However, we
concur with Bilsborrow and Zlotnik (1994: 66) that in compari-
son to flow data, migration stocks represent “the long-term effects
of migration and [are] thus a more stable component” of interna-
tional migration. By recording non-transient exchanges, stock data
are instrumental for examining mesoscale network structures in
the WMN.

To account for the dissolution of countries, such as the former
Soviet Union (1922–1991), and the formation of new countries,
Özden et al., 2011 used the most current list (from the year
2000) of countries and territories over the entire time period.
To enable historical comparability, migration stocks were reas-
signed accordingly. (For example, movements from Czechoslovakia
were disaggregated, so migration from Slovakia to Germany were
reported for the entire time frame, even though Slovakia did not
exist as a country before 1993.)

To analyze the effect of geographic proximity, we compute the
great-circle (geographic) distance (Furrer et al., 2013) using the lon-

gitude and latitude of the capital cities3 of the 226 world countries
and territories.

3.2. Methods and diagnostics

3.2.1. Community detection
To characterize mesoscale structures of the WMN  and exam-

ine the extent to which they align with or depart from the
world’s regional boundaries, we  use recent generalizations of
the modularity-maximization method for community detection
(Fortunato and Hric, 2016; Porter et al., 2009) that can account for
the directionality (Leicht and Newman, 2008), time-dependence
(Mucha et al., 2010), and spatiality (Expert et al., 2011) of world
migration. Modularity (denoted by Q) is an objective function that
construes a good decomposition of a network as one in which there
is large total edge weight within communities but small total edge
weight between communities relative to what one would expect “at
random” according to some null model (Newman, 2006; Newman
and Girvan, 2004). The modularity function for weighted networks
is

Q  = 1
2W

∑

ij

[Wij − !Pij]ı(ci, cj), (3.1)

where ci denotes the community assignment of node i and cj is
the community assignment of node j, the Kronecker delta function
ı
(

ci, cj

)
is 1 if nodes i and j are placed in the same community

(i.e., ci = cj) and 0 otherwise, Wij is the weight of the edge from
node i to node j in the weighted adjacency matrix (for the WMN,
Wij ≥ 1 if a weighted edge between country i and j exists, and

Wij = 0 otherwise),
∑

ij

is the summation operation over pairs of

nodes (i and j) that are assigned to the same community (i.e., ı(ci,
cj) = 1), the null-model matrix P has elements Pij, the quantity !
is a resolution parameter (we  use a standard resolution of ! = 1),
and W = 1

2

∑

ij

Wij is the total edge weight in the network. The total

edge weight W is a normalization factor, so the modularity value Q
of a partition of the WMN  ranges from −1 (all edges are between
communities) to 1 (all edges are within communities).

One can factor out “statistically unsurprising” connectivity by
considering different null models, and which ones it is relevant to
consider depends on what constraints are hypothesized to have
an effect on mesoscale structures in a network (Expert et al., 2011;
Newman, 2012). Because patterns of out-migration differ from pat-
terns of in-migration in migration-stock data (Özden et al., 2011),
we take account of the directionality of edges in the WMN  using
Leicht and Newman’s (2008) modularity null model for directed
networks. In the LN null model, the expected weight Pij of an edge
between node i and j is

PLN
ij =

sout
i sin

j

W
, (3.2)

where sout
i and sin

j are the out-strength and in-strength of node i
and node j (these strengths are defined, respectively, as the sum

3 Admittedly, there are some limitations in using two points to represent distances
between a pair of areas (e.g., countries or regions). As Gleditsch and Ward (2001)
pointed out, distance measures that rely on midpoints, such as capital cities, typi-
cally overstate real distances, particularly for larger regions. This issue was examined
recently using ideas such as weighted distance (Mayer and Zignago, 2006) and min-
imum distance (Gleditsch and Ward, 2001). However, the databases associated with
these distance measures do not include estimates for a substantial fraction of the
226  countries and territories that we consider, and it is hard to obtain reliable infor-
mation about multiple longitude and latitude locations to impute the numerous
missing distances between countries.
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of the weights of the out-edges and in-edges attached to a node),
and W is the total edge weight in the network. Using the LN null
model, maximizing modularity estimates whether a partition of
the WMN  has more edge weight within international migration
communities than expected in a reference random network with
the same expected out-strength and in-strength sequences as the
WMN.

To account for the constraining role of geographic location on
the formation and weight of migration edges, we extend Expert
et al.’s (2011) spatial null model to directed networks:

PSpa
ij = Nout

i Nin
j f (dij), (3.3)

where PSpa
ij is the expected migration stock between countries i and

j, the quantities Nout
i and Nin

j measure the migration potential of
origin i and attractiveness of destination j (we measure migration
potential and attractiveness, respectively, as a country’s total out-
migration and in-migration), and the “deterrence function” f (dij)
measures the effect of distance. As in gravity models4 (Anderson,
2011; Haynes and Fotheringham, 1984), the intuition behind Expert
et al.’s spatial null model is that Nout

i and Nin
j are sources of oppor-

tunities (e.g., possible interactions between a pair of countries),
and the distance dij is a source of constraints. Expert et al. (2011)
proposed the following deterrence function:

f (d) =

∑
{i,j|dij=d}Wij

∑
{i,j|dij=d}N

out
i Nin

j

. (3.4)

In the context of the WMN,  the deterrence function f (d) is  the
weighted mean of the probability

Wij

Nout
i

Nin
j

for a migration edge

weight to exist from country i to country j at a certain distance
range. The deterrence function uses bins to calculate the expected
migration for a certain distance range. After examining several
choices of values, we set the bin size to 500 km. A larger posi-
tive value for spatial modularity QSpa indicates a higher density
of edge weights inside communities than one would expect for the
given distance range. The spatial null model is designed to allocate a
larger contribution to (spatially surprising) edges between distant
nodes than to edges between nearby nodes.

We represent the five time periods of the WMN  using a mod-
ularity function for multilayer networks (Mucha et al., 2010). In
a multilayer representation of a temporal network, the layers are
ordered so that contiguous layer are connected via interlayer edges
(Kivelä et al., 2014: 15). We  use a form of multilayer modularity that
incorporates a temporal resolution parameter ω that regulates the
strength of coupling between time layers. By varying the values of
ω, the strength of the connection between a node in layer l (at time
tl) and itself in layer r = l + 1 (at time tl+1) changes: nodes across lay-
ers are independent when ω = 0, and they have a stronger incentive
to belong to the same community as one increases ω. (We  report
results for ω = 1.) We  thus write multilayer modularity as (Bassett
et al., 2013; Mucha et al., 2010)

Q multilayer = 1
2#

∑

ijlr

{(Wijl − !lPijl)ılr + ıij"}ı
(

gil, gjr

)
, (3.5)

where gil is the community of node i in layer l (and gjr is the com-
munity of node j in layer r), the Kronecker delta ı(gil, gjr) = 1 if
node i in layer l and node j in layer r are placed in the same com-
munity and ı

(
gil,gjr

)
= 0 otherwise, " is the interlayer coupling

4 We note that gravity models are typically used in migration research to explain
bilateral migration (Mayda, 2010), while in Expert et al. (2011) the gravity model
serves as a baseline/null model. For a spatial null model for modularity maximization
that does not utilize the gravity model, see Sarzynska et al. (2016).

strength, the quantity Wijl is the element of the weighted adjacency
array of layer l, the null-model array element Pijl gives the expected
connectivity between nodes in layer l (see our above discussion of
possible choices), the quantity ! l is the intralayer resolution param-
eter for layer l (we take ! l = 1 for each layer), the quantity kjr is

the intralayer strength of node j in layer r, and # = 1
2

∑

jr

kjr is the

total edge weight in the network. Multilayer modularity explic-
itly incorporates dependence between layers, instead of assuming
independence, as is done when temporal networks are represented
as a sequence of time-independent networks (Bazzi et al., 2016;
Mucha et al., 2010).

Maximizing modularity is NP-hard (Brandes et al., 2007), and
it also has some well-studied limitations, such a resolution limit
and extreme near-degeneracies among local maxima with high
modularities (Good et al., 2010). The former limitation refers to
the tendency of modularity maximization to overlook commu-
nities that are smaller than some characteristic size (Fortunato
and Barthelemy, 2007), although one can ameliorate the issue by
incorporating a resolution parameter ! in the modularity function
(Porter et al., 2009; Reichardt and Bornholdt, 2006). The latter issue
refers to the numerous near degeneracies in the rugged landscape
of the modularity function, and partitions with similar high-
modularity scores can arise from rather dissimilar structures (Good
et al., 2010). To take into account near-degeneracies in the modular-
ity landscape, we  identify consensus partitions (Bassett et al., 2013;
Bazzi et al., 2016; Lancichinetti and Fortunato, 2012; Sarzynska
et al., 2016) across multiple optimizations (see Appendix A in Sup-
plementary material). Consensus partitions increase robustness to
variation across optimizations, thereby lessening the severity of the
near-degeneracy issue. We  optimize modularity using the general-
ized Louvain heuristic (Blondel et al., 2008; Jutla et al., 2011–2014).

3.2.2. Diagnostics
To discriminate between overlapping and bridging migration

edges, we  compute their neighborhood overlap Oij = N(i) ∩ N(j)
N(i) ∪ N(j) . The

neighborhood overlap Oij of an edge between nodes i and j is the
number N of neighbors that nodes i and j have in common normal-
ized by the total number of neighbors of either i or j (Easley and
Kleinberg, 2010: 52; Onnela et al., 2007: 7334). The neighborhood
overlap Oij ranges from 0 to 1.

High edge-neighborhood overlap is typically associated with
stronger edges and geographic proximity (Granovetter, 1973).
Neighborhood overlap is a property that involves more than two
countries and is thus multilateral, whereas edge strength and edge
length are dyadic properties of a pair of countries. In the WMN,  the
strength of a migration edge is the number of migrants from coun-
try i that live in country j in each of the five decades. The length
of a migration edge is the distance of the edge from country i to
country j multiplied by the number of migrants that have traveled
that distance.

A central question in our analysis is the extent to which migra-
tion has been trapped in tightly-knit communities (i.e., regional
concentration) for geographic, economic, or policy reasons and the
extent to which long-distance migration edges bridge international
migration communities across the globe (i.e., global interconnect-
edness). To address this question, we compute E–I indices to
measure the proportion of external (E) to internal (I) edge strength,
edge-neighborhood overlap, and edge length for each international
migration community. An E–I index is a widely-used measure of
local (i.e., internal) and global (i.e., external) group cohesion in net-
work analysis (Hanneman and Riddle, 2011; Krackhardt and Stern,
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1988). (A related measure is conductance; see Jeub et al. (2015)).
We generalize the E–I index to weighted networks by calculating

E-I index = Ew − Iw
Ew + Iw

. (3.6)

The index (3.6) compares the amount Iw of internal weight to the
amount Ew of external weight. An E–I index takes values between
−1 to +1. As the value of an E–I index approaches −1, most edge
weights are inside international migration communities. As the
value approaches +1, most edge weights are outside the commu-
nities. We  compute E–I indices (1) for the whole WMN  across time
points to measure the distribution of local and global cohesion
given the community structures that we identify by maximizing
multilayer modularity for directed and spatial networks and (2)
for individual communities to measure variations in their local and
global cohesion. In addition to edge weights, we also compute the
community-level E–I indices for edge-neighborhood overlap and
migration-edge length.

4. Results

4.1. Mapping the landscape of the WMN

The first step of our analysis is to detect migration communi-
ties using modularity maximization and two different null models:
the LN null model for directed networks and a directed spatial null
model. We  will refer to using the LN null model as “maximizing
LN modularity” and to using the spatial null model as “maximiz-
ing spatial modularity”. The two procedures yield different results,
which we describe in Sections 4.1.1 and 4.1.2, respectively.

4.1.1. Communities detected by maximizing multilayer LN
modularity

In Fig. 2A, we show world maps5 of consensus community
assignments for each decade from 1960 to 2000 that we  obtain by
maximizing multilayer modularity with the LN null model, which
is designed for directed networks. We  observe eight6 international
migration communities in 1960. As one can see, geographic dis-
tance and regional boundaries play important roles in demarcating
the structure of more than half of the international migration com-
munities, including those centered on India (IND)7 the former
Soviet Union (RUS), and China (CHN), as well as those confined to
Sub-Saharan Africa (COD) and West Africa (CIV).

In support of the proposition that international migration often
arises from “prior contact” (Fawcett, 1989; King, 1993b), two  inter-
national migration communities consist of countries with former
colonial relationships: France and countries in North Africa (FRA);
and countries in South Europe, South America, and Angola in Africa
(ARG). Although the geography of “prior contact” correlates pos-
itively with physical proximity in the former community (FRA),
the cross-continental grouping between the latter set of countries
(ARG) is relatively independent of distance.

We also identify cross-continental communities that overcome
geographic constraints. This tendency occurs in the largest com-
munity in 1960 (USA), which includes North America, Australia,
New Zealand, and the bulk of Western, Central, and Northern

5 We use the package “rworldmap” in R (South, 2011) to plot the maps that
illustrate community structure in the WMN.

6 Compared to the original partitions, the consensus partitions tend to decom-
pose a network into a smaller number of communities that are more similar across
different runs of the Louvain-like heuristic for maximizing modularity.

7 We label international migration communities with the ISO 3166-1 alpha-3 code
of  the country that has the largest intra-community migration strength, where a
country’s “intra-community strength” indicates its out- and in-migrations that are
within the its own  community.

Europe. This community is fairly unexpected, because it groups
long-distance migration between non-contiguous, geographically
dispersed countries in a period that precedes advancements in
transportation. In addition to the USA community, the groupings
of South America and Mediterranean countries in Europe (ARG)
and of North Africa and France in 1960 (FRA) suggest that cross-
continental migration may  play an important role in mesoscale
structures in world migration. This illustrates that migration group-
ings need not be confined to the world’s continental boundaries, an
assumption that many (e.g., Massey et al., 1998; Salt, 1989) needed
to make in the past due to the lack of available world-migration
data.

The aggregate structure of communities remains mostly intact
in the subsequent three decades (1970, 1980, and 1990), but
one change is worth noting. Since 1970, the global community
(USA) involving Western, Northern, and Central Europe extended
to Eastern Europe and reached Turkey in the South, reflecting the
increased migration exchanges between Germany and Turkey that
followed the bilateral recruitment agreement between the two
states that was  signed in 1961 (King, 1993b).

Mesoscale structures in the WMN  changed more noticeably
in 2000. Aside from the United Kingdom, all European coun-
tries (which were previously separated into two  communities) are
now assigned to one integrated community (DEU). This result is
consistent with Salt’s (2001: 3) observation that a characteristic
feature of European migration in the mid  and late 1990s is “[t]he
increasing incorporation of Central and Eastern Europe into the
European migration system as a whole”. However, European migra-
tion is not separated from other continental “wholes”, as it includes
North African countries. Although movements from North Africa to
Europe are well-reported in the literature (e.g., King, 1993a; Zlotnik,
1998), this is not reflected in the demarcation of migration sys-
tems, which is often done on the basis of regional boundaries (e.g.,
Western Europe) (see Salt, 1989; Zlotnik, 1992; Salt, 2001) or geo-
political divisions (e.g., the European Union) (see, e.g., Massey et al.,
1998: 110). However, our findings from maximizing multilayer
modularity using the LN null model suggest that migration from
North Africa to Europe is larger than one may expect by chance, and
those intercontinental migration connections appear to be more
stable over time than many intracontinental groupings. Therefore,
groupings that include cross-continental areas seemingly not only
better reflect prior movements but also improve our ability to fore-
cast future movements. Finally, the United Kingdom, Australia, and
New Zealand are no longer part of the largest international migra-
tion community, but instead form a Commonwealth community
that also includes countries in Southeast Africa (GBR). This com-
munity exemplifies the role of “prior contact” and homophily (e.g.,
language similarity) in connecting geographically dispersed coun-
tries.

4.1.2. Communities detected by maximizing multilayer spatial
modularity

Although the international migration communities that we
identified by maximizing multilayer LN modularity reflect some
instances of homophilous relationships between distant countries,
particularly in year 2000, the communities generated by maximiz-
ing multilayer spatial modularity capture more refined non-spatial
structures over time. For example, although Europe appears to
become increasingly integrated over time when using LN modu-
larity, maximizing modularity with the spatial null model suggests
the opposite tendency (see Fig. 2B). European migration breaks
into a set of small, spatially-noncontiguous communities. This is
particularly noticeable in the year 2000. The community bound-
aries often escape the typical classification of Western, Northern,
Southern, and Eastern Europe, a finding that disagrees sharply with
previous research that reported that international migration sys-
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Fig. 2. International migration communities detected by maximizing multilayer (A) LN modularity and (B) spatial modularity at resolution values of ! = 1 and ω = 1. The
colors  indicate community assignments.

tems in Europe are “more or less geographically discrete” (DeWaard
et al., 2012). For example, Poland is no longer tied to Germany, but
instead it is part of a spatially-noncontiguous community centered
on France.

In parallel to the tendency towards fragmentation in European
migration, a distinctive feature of the communities that we obtain
from maximizing spatial modularity is the tendency to merge many
distant regions and countries. For example, France and Romania are
part of the same spatially-discontiguous community in 1960, 1970,
and 1980. Moreover, almost all countries in Europe are assigned
to communities that reach other continents. Finally, large parts
of North and South America are part of the same community for
the whole period. This suggests that processes of cross-regional
and cross-continental integration appear to have accompanied the
processes of spatial fragmentation.

A body of literature in migration studies provides evidence in
support of the above pattern of European migration (King, 1993a).
It has been observed that movements in 1950–1960 were predom-
inantly intracontinental, directed from “south” (e.g., Italy, Spain,

Portugal, and Yugoslavia) to “north” (e.g., Germany and France).
Many of those movements were between relatively nearby coun-
tries and based on bilateral agreements (Skeldon, 1997: 78; White,
1993). Since 1970, the pattern has been different, as there were
many migratory movements from distant ex-colonial regions (e.g.,
West Indies, South Asia, and sub-Saharan Africa) to Europe (King,
1993b: 20). More changes have occurred since the 1980s: ori-
gins and destinations have diversified and have evolved relatively
independently from geographic proximity and former colonial
relationships (Bonifazi, 2008; Golini et al., 1993: 70; King, 2002;
Skeldon, 1997: 45; Vertovec, 2007).

Maximizing spatial modularity yields a community structure
with regional fragmentation and cross-continental integration that
is consistent with the migration patterns that have been reported
in the literature, thereby advancing understanding of migration
patterns beyond maximizing LN modularity and what was ascer-
tained in prior research (Davis et al., 2013; DeWaard et al., 2012;
Fagiolo and Mastrorillo, 2013). The reasons for the effectiveness of
maximizing modularity with the spatial null model are twofold.
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Fig. 3. Relationship between migration weights (i.e., edge strengths) that are inter-
nal  and external to international migration communities and geographic regions.

First, this approach minimizes8 the contribution to modularity of
migratory movements between nearby countries. Because geo-
graphic space “glues” together nearby nodes, extracting the effect of
geographic distance leads naturally to spatially-fragmented com-
munities. Second, maximizing spatial modularity also increases
the contribution of small migratory movements between distant
nodes, giving non-contiguous countries a higher probability to be
assigned to the same international migration community.

4.2. Increasing interconnectedness of the WMN

Our first question (see Section 2.6) tests the extent to which the
structure of the WMN  is fragmented, with migration movements
trapped in regions (based either on network structure or on geog-
raphy), and the extent to which global cohesion has increased due
to movements that bridge relatively distinct communities or geo-
graphic regions. By computing E–I strength indices for the whole
network between 1960 and 2000 (see Fig. 3), we find that the
preponderance of inter-community over intra-community migra-
tion edge strengths has increased since the 1990 census, implying
an increase in the global interconnectedness of the WMN  over
time. The changes in the E–I strength indices over time are more
pronounced in the communities that we detect by maximizing
spatial modularity (−0.66 in 1960, −0.36 in 2000) than by maxi-
mizing LN modularity (−0.59 in 1960, −0.50 in 2000). This makes
sense, because the spatial null model factors out “statistically
unsurprising” migration connectivity between nearby countries,
thereby recovering patterns of global interconnectedness that are
underrepresented when maximizing LN modularity. Our results are
significant compared to an expected value specified in a permuta-
tion null model,9 and they are consistent with the findings reported
by Davis et al. (2013) and Fagiolo and Mastrorillo (2013).

8 An undesirable outcome that is associated in part with the minimized contri-
bution of migration exchanges between nearby countries in spatial modularity is
the detection of singleton communities (i.e., communities that consist of only one
country).

9 Because mesoscale properties, such as internal and external community connec-
tivity, can be conditioned on global properties, such as network density, we compare
our mesoscale E–I indices to a permutation null model. In each case, we  perform
1,000 permutations and compute the number of times that the observed E–I index
is  significantly smaller than the expected E–I index measured in an ensemble of
permuted WMNs  in which rows (out-migration) and columns (in-migration) are
simultaneously shuffled (using a uniform shuffling). We find that the observed E–I
index is significantly different (p < 0.01) from the expected E–I index for each time
point and modularity null model (see Fig. 3). We conclude that the distribution of
intra-community and inter-community movements reflects mesoscale properties
of  the WMN,  rather than being exclusively an outcome of global connectivity.

The WMN  maps (see Fig. 2) illustrate that a geographic signature
is imprinted in several communities that are confined to geograph-
ical regions (e.g., South America and West Africa) and geo-political
regions (e.g., Russia). The alignment of regional boundaries and
migration movements supports claims that international migra-
tion systems are “more or less geographically discrete” (DeWaard
et al., 2012) and “geographically concentrated” (Abel et al., 2016).
To examine the relationship between geographic and migration
boundaries, we compare the E–I strength indices for our interna-
tional migration communities to corresponding E–I indices that we
compute using the geographic continents and mesoscale regions
(e.g., Northern Europe and Southern Europe) that are described in
the United Nations (UN) Statistical Division.10 The E–I indices that
we report in Fig 3 indicate that, compared to established continen-
tal and regional divisions, the international migration communities
that we  obtain by maximizing LN and spatial modularities include
substantially more migration within communities than between
them. Moreover, for all decades (and particularly after 1960), we
observe more migration between geographic regions rather than
within them. The tendency for world migratory movements to
operate across geographic regions rather than within them after
1960 suggests that a regional approach for boundary specification
of migration systems (as advocated in Zlotnik (1992)) has become
less useful for delimiting migration patterns. Continental bound-
aries appear to include more migration internally than externally
until the 2000 census. In 2000, the amount migration within con-
tinents is approximately equal to that between continents.

The E–I indices for both the continental and regional divisions
increase monotonically over time. This indicates that geographic
divisions have become decreasingly effective at grouping world
migration since 1960. This tendency is particularly noticeable for
the geographic regions, which include more migration externally
than internally throughout the studied period, but it is also present
for the continents, which in 2000 include almost as much migration
internally as externally.

4.3. Global and local cohesion of international migration
communities

Our second question (see Section 2.6) concerns the distribution
of local cohesion and global cohesion across individual commu-
nities. We  quantify the distribution of global and local cohesion
using three indicators: edge strength, edge-neighborhood overlap,
and edge length. We focus on the communities that we detect by
optimizing multilayer spatial modularity. To examine individual
communities, we first generate “community adjacency matrices”
for edge strength (we use the notation CS for these matrices),
edge-neighborhood overlap (CO), and edge length (CL) across each
decade (see Fig. 4A–C). We  define such a matrix as follows. Con-
sider CS , the community adjacency matrix of edge strengths. For
each decade, we distinguish internal edge strengths from external
edge strengths, depending on whether migration stocks remains
within a community or lie between two  communities. We  then
sum over, for each community, all intra-community migration
edge strengths between the countries assigned to that commu-
nity; and we also perform such sums for the inter-community edge
strengths between pairs of countries that are assigned to differ-
ent communities. In the resulting community adjacency matrices
for each decade, the edge strengths that remain within com-
munities appear on the main diagonal, and the edge strengths
between communities appear off of the diagonal. We  follow the
same procedure for CO and CL . As Hanneman and Riddle (2011)

10 Retrieved on 15 August 2014 from http://unstats.un.org/unsd/methods/m49/
m49regin.htm
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Fig. 4. Normalized community adjacency matrices for migration (A) edge strengths, (B) edge-neighborhood overlaps, and (C) edge lengths. Each column and row in the
matrices indicates one of the communities in Fig. 2B. Intra-community migration edges appear on the main diagonal, and inter-community migration edges appear off of
the  main diagonal. The values range from low (in blue) to strong (in yellow). We exclude communities that consist of two or fewer countries. (D) Dendrogram of migration
communities on the basis of E–I edge strength, E–I edge-neighborhood overlap, and E–I edge length for all 27 communities that we obtain by maximizing spatial modularity
across  the five decades. We use agglomerative hierarchical clustering to partition the 27 communities. Specifically, we employ Euclidian distance to determine pairwise
(dis)similarities and then use average linkage clustering (Wasserman and Faust, 1994: 381) to sequentially group communities into a dendrogram. The color of the branches
represents the three detected factions. (To intepret the comments about color, see the online version of this article.)

discussed, the propensity of an edge to occur within or between
communities is constrained by the number of communities, their
relative size, and network density. To ensure that the proper-
ties of international migration communities are not influenced
too heavily by global network properties (e.g., density or num-
ber of communities), we normalize community adjacency matrices
using a corresponding community matrix Cmean that records a
corresponding mean intra-community and inter-community edge
quantity. That is, we calculate Cnorm = C /Cmean for each time
period and for edge strength, edge-neighborhood overlap, and edge
length.

In Fig. 4A, we show that international migration communi-
ties have very different distributions of internal versus external
edge strengths. The communities centered on India, Russia, and
China have considerably larger internal edge strengths than those
centered on the USA, GBR, and France. Further, the latter set of

communities is more likely to exchange migration with other
communities. Finally, there is a clear pattern of increasing inter-
community edge strengths over the decades.

As expected, migration edges with large edge-neighborhood
overlaps are more likely than those with small overlaps to be within
communities (see Fig. 4B). Instances of large inter-community
edge-neighborhood overlap are rare and typically involve geo-
graphically close communities (e.g., India and China, and Uganda
and Ivory Coast). Similar to edge strength, edge-neighborhood
overlap is distributed unevenly across international migration
communities. For example, for all decades, the communities
centered on Russia, Ivory Coast, and India have greater edge-
neighborhood overlaps than those centered on the USA.

To evaluate the relationship between internal and external
migration edge strength, edge-neighborhood overlap, and length,
we compute E–I indices for the three diagnostics for each individual
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community in Fig. 4A–C. We  then use the resulting indices—which
we denote by EIS , EIO, and EIL—to classify international migra-
tion communities into types with different characteristic patterns
of local cohesion and global cohesion in the WMN.  In Fig. 4D,
we show a classification of international migration communi-
ties into three factions. We  use a permutation-based ANOVA test
(Borgatti et al., 2002) to evaluate alternative—specifically, two, four,
and five—numbers of factions, and find (using 10,000 permuta-
tions) that a three-faction partitioning maximizes the ratio F of
inter-faction variance to intra-faction variance in EIS (we obtain
F2,24 ≈  62.9), EIO (with F2,24 ≈  102), and EIL (with F2,24 ≈  39.6) at
the p < 0.001 significance level.11 In the resulting classification, we
obtain (1) international migration communities centered on the
USA and on France, Germany, and Great Britain in 2000; (2) com-
munities associated with India and China, as well as communities
that involve European countries (e.g., Germany and France), before
2000; and (3) communities centered on Russia before 2000.

The strength-of-weak-ties hypothesis (Granovetter, 1973) sug-
gests that the overlap of node neighborhoods increases with edge
strength, and such overlap is typically induced by proximity in
social and geographic space. Applied to the WMN,  the hypothe-
sis suggests that two countries that are strongly connected to each
other via migration stock are more likely to connect to common
third countries, thereby forming a tightly-knit community. Con-
versely, edges that bridge communities are likely to be associated
with weaker migration. As we show in Fig. 5, linear regression mod-
els fit to the E–I indices suggest that edge strength (R2 ≈  0.607)
and edge length (R2 ≈  0.681) correlate strongly with the variation
in edge-neighborhood overlap. International migration communi-
ties with larger internal edge strengths and edge lengths are likely
to have high local cohesion, and vice versa. This pattern suggests
a heterogeneous distribution of local and global cohesion across
international migration communities.

4.4. Typology for migration communities

We  define a typology of international migration communities
based on their global and local cohesion.

4.4.1. “Local” migration communities
We say that a cluster of international migration communities

with negative scores for E–I migration strength, overlap, and length
indices are local. We  find such a cluster that consists of four com-
munities centered at Russia (see Fig. 4D). As we  show in Fig. 5,
local communities are characterized by strong local cohesion—i.e.,
densely clustered, strong, and relatively short-distance migration
edges—but weak global cohesion (i.e., lack of weak, bridging ties
across communities), resulting in tightly-knit migration interac-
tions that are largely fragmented from the rest of the WMN.  Local
communities epitomize the view of international migration as
“geographically discrete” and/or “geographically concentrated”, as
advanced in Abel et al. (2016), DeWaard et al. (2012), and Salt
(1989). Given the structure of local communities, they are likely
to channel regional migratory movements, while simultaneously
providing very few opportunities for inter-community migration.
Movements of people that originate from local communities are
largely constrained to remain within communities due to the lim-
ited number of inter-community edges that allow migration to
other communities.

11 Partitions with two, four, and five factions tend to under represent variation in
EIO . However, apart from this limitation, four-faction and five-faction partitionings
are  also viable choices. Partitions with six or more factions yield groups with very
few  communities, and a two-faction partitioning has high intra-group variability.

4.4.2. “Global” migration communities
We say that international migration communities that occupy

the positive end of the E–I migration edge strength, overlap, and
length continuum are global communities. We  find eight such
communities (see Fig. 4D). In comparison to local communities, a
characteristic feature of global communities is the preponderance
of external bridging edges over internal edges, as reflected in the
large EIO. Consequently, global communities group countries that
are likely to be connected to countries from different communities
and also likely to have few migration edges to common third coun-
tries, thereby contributing to the global interconnectedness of the
WMN.  Another indication of the bridging nature of global commu-
nities is a large EIL, which reflects the long distance of migration
edges from and to other communities (see Fig. 5). Global interna-
tional migration communities tend to provide better opportunities
than other communities for both cross-community exchanges and
cross-continental exchanges, as they often group noncontiguous
countries and even countries from different continents.

4.4.3. “Glocal” migration communities
We refer to the international migration communities in the mid-

dle of the E–I migration edge strength, edge-neighborhood overlap,
and edge length values as glocal communities. We  find fifteen glocal
communities (see Fig. 4D). Wellman (2002) used the term “glocal-
ized” connectivity to refer to the simultaneous presence of strong
local relationships and weak relationships that are global in geo-
graphic scope. Some glocal communities tend to resemble local
communities with respect to their prevalent internal, strong migra-
tion edges, as indicated by the small and negative values of EIS.
Simultaneously, a substantial number of glocal communities have
values of E–I edge-neighborhood overlap and, especially, E–I edge
length that are comparable to the corresponding indices of global
communities (see Fig. 5). The fact that glocal communities have
longer edge lengths but smaller edge-neighborhood overlaps than
local communities indicates that they are likely to channel strong
migration between relatively distant regions. Examples of glocal
communities include those that connect France and countries from
North Africa in 1960 and 1970 and those that connect the Gulf States
and South Asia. In contrast to global communities, which bridge
various communities across the globe, the glocal communities are
likely to channel migration between particular geographic regions.

4.5. Continuity and changes in international migration
communities

Has the connectivity of the WMN  changed over the latter half of
the 20th century? A body of literature on international migration
(Castles and Miller, 2009; Held et al., 1999; Vertovec, 2007) argued
that large-scale migration patterns changed in the mid 1970s (after
the 1973 oil crisis): novel origin–destination connections have
arisen and numerous globe-spanning movements have occurred,
and such movements often were smaller in magnitude than earlier
movements that developed as a response to “prior contact”, bilat-
eral agreements, and proximity. To examine these propositions, we
divide the period under study into two parts: before (1960–1970)
and after (1990–2000) the hypothesized change in the mid  1970s.
Migration stocks for 1980 include a mixture of movements before
and after the hypothesized change, and we therefore exclude them
from this comparison.

As Fig. 5 indicates, the bridging role of global communities has
increased from the first two decades (1960–1970) to the last two
decades (1990–2000) in our data, as reflected in the increasing E–I
edge-neighborhood overlap (see Fig. 5.2A). Likewise, we observe a
statistically significant increase in E–I edge strength and E–I edge
length (see Figs. 5.2B and 5.2C, respectively). Based on these results,
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Fig. 5. A characterization of individual international migration communities based on the relationship between internal and external indices (E–I indices) for migration edge
strengths, edge-neighborhood overlaps, and edge lengths. (1A–1C) Regression models examining relationships between the E–I indices for edge strength, edge-neighborhood
overlap, and edge length. The ellipses indicate errors at the 95% confidence interval for the corresponding community type, and *** indicates that the p-value is P < 0.001.
(2A–2C)  ANOVA tests of mean differences in migration edge strength, overlap, and length across community types for two  time periods (1960–1970 and 1990–2000). Error
bars  represent the 95% confidence interval.

we conclude that the global cohesion of the WMN  has increased
over time.

However, connectivity appears to be distributed unevenly in the
WMN.  Key spatial network properties of local communities and glo-
cal communities have not changed significantly during the period
1960–2000. The spatial concentration and edge-neighborhood
overlap of those communities in 1990–2000 were very similar to
those in 1960–1970. The impact of distance shrinkage and the
increase of weak edges between diverse origins and destinations
are concentrated in global communities; they do not substan-
tially impact other areas of the WMN.  Therefore, the processes of
increased global interconnectedness that we observe for the net-
work as a whole are in fact local: they operate in some regions of
the network but not in others.

5. Conclusions

In this study, we examined spatial network structures and
dynamics of international movements of people worldwide using
longitudinal migration-stock data. By operationalizing world
migrations as a social–spatial network, we were able to identify
not only spatially-induced migration groupings but also multilat-
eral groupings of distant countries and more migration edges across
groupings. Together, these overcome the fragmentation tenden-
cies present in geographic proximity and thereby contribute to
integration of the WMN.  Thus, our spatial-network perspective
helps adjudicate contrasting propositions in the literature about
the structure of world migration.

When we consider the spatial community structure of the WMN
as a whole, our findings provide evidence that the interconnected-
ness of world migration has increased moderately over the second
half of the 20th century. This has manifested in the increasing

movements that cut across international migration communities in
a way that bridges noncontiguous countries, distinct regions, and
continents, thereby expanding opportunity structures for migra-
tion over decades. Our finding sheds light on the observation that
an increasing number of diverse origins have been involved in
international migration since the 1970s (Castles and Miller, 2009;
Vertovec, 2007). Although some of the novel migration connections
were between countries that were already part of the same com-
munity, indicating the continuing importance of spatial constraints
in certain regions of world migration, we also observed a moder-
ate increase in the importance of inter-community migrations that
bridge disconnected areas of origin and destination over time.

Our findings also suggest that while continental divisions of the
world provided a somewhat useful approximation of migration
groupings in 1960, since then, the preponderance of move-
ments between continents over movements within continents
has become more prominent over the decades. In 2000, there
were equal numbers of movements between continents as within
continents. Geographic regions (as defined by the UN Statistical
Division) are even less informative than continents: there were
more migrants outside than inside geographic regions for the whole
period 1960–2000. Because continental and regional boundaries
have become less instrumental than before in characterizing world
migration as a whole, research in large-scale international migra-
tion would benefit from algorithmic methods for group discovery.
This is the approach that we  employ in the present paper. Meth-
ods to detect dense sets of nodes (“communities”) in a network,
when tailored to the nature of world migration, can recover use-
ful “functional regions” (Ratti et al., 2010) that perpetuate different
patterns of migration movements. Moreover, they can help provide
a basis for forecasting future mobility patterns and thereby inform
migration-policy debates.
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Our findings about individual international migration commu-
nities indicate a substantial variability in community structure
and dynamics. We  developed a typology of three different cat-
egories of communities in the WMN  that exhibit characteristic
intra-community and inter-community connectivity, as reflected
in dyadic (edge strength), network (edge-neighborhood over-
lap), and spatial (edge length) properties. “Global” communities
have strong global cohesion, which manifests in the preponder-
ance of long inter-community (and thus bridging) edges. “Local”
communities, by contrast, exhibit strong local cohesion that is asso-
ciated with the preponderance of strong intra-community over
inter-community edges, edge-neighborhood overlaps, and short-
distance movements. “Glocal” communities are characterized by
glocal cohesion, in which significant internal edge strength coex-
ists with relatively long-distance edges that typically connect two
distinct geographic regions. The three community types provide
very different migration opportunity structures. Global commu-
nities and glocal communities contribute, respectively, to world
and cross-regional interconnectedness, with multilateral possibili-
ties for migration across regions. In contrast, local communities are
largely fragmented from the rest of the WMN  in a way  that traps
movements within regional boundaries. Considered together, our
findings point to the existence of a network structure that is hetero-
geneous in strength, clustering, and length of migration exchanges.

We found that heterogeneity is also encoded in the patterns of
change. While the prevalence of bridging and long-distance edges
in global international migration communities have increased sig-
nificantly over time, changes in local and glocal communities have
been less pronounced (and rarely are statistically significant).

Going back to the contrasting propositions from the interna-
tional migration literature, which has argued either for increasing
interconnectedness or for regional concentration of international
migration, our findings suggest that migration interconnectedness
has increased gradually among groups of countries while cer-
tain geographic regions have remained largely isolated from the
dynamics of global interconnectedness. In the presence of hetero-
geneous processes of global and local cohesion, our results appear
to support a skeptical argument that globalization has widened the
gap between relatively constraint-free global mobility and local
migrations that are trapped in bounded geographic regions (Hirst
and Thompson, 1999; Wallerstein, 1974).

Our analysis can be extended in several ways. First, upon data
availability, one can stratify the edges in the WMN  by type of migra-
tion (e.g., highly-skilled professionals, workers, students, refugees,
and family unification) and construct a multilayer network (Kivelä
et al., 2014) in which countries are connected via multiple types of
migration exchanges. Second, if one is considering a single type of
migration exchange, then given the multilateral nature of current
migration, one can explore the possibility of countries belonging to
more than one community using approaches for discovering over-
lapping community structure (see, e.g., Gopalan and Blei (2013)
for a scalable method). Third, understating of migration would
improve if the flow of people is examined in conjunction with flows
of information, goods, and capital. Recent research (e.g., Belyi et al.,
2017) has examined some of these flows and may  provide help-
ful insights to further examine global and local cohesion in a wide
variety of flows. Finally, the ubiquity of online information in the
public domain provides an opportunity to collect data about human
mobility (e.g., geolocated career records in LinkedIn (e.g., State et al.,
2014)) and thereby draw a map  of local and global connectivity
in world migration using self-reported data instead of administra-
tive data. Our approach for investigating global and local cohesion
in world migration can be extended to multiple movements and
data sources, and it can thus shed light on emerging transnational
patterns of migration interactions and possibilities.
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Appendix A: Consensus Partitions 
 

To identify robust communities (i.e., communities that do not change substantially from 

one run to another of a computational heuristic) in the WMN and ameliorate the issue of 

the numerous near-degeneracies (Good et al., 2010) in the modularity objective function, 

we employ a technique for finding consensus partitions (Bassett et al., 2013; 

Lancichinetti and Fortunato, 2012). As we discussed in the main text, we maximize 

multilayer modularity using both the LN null model (Leicht and Newman, 2008) and a 

spatial null model (Expert et al., 2011). For each of the two multilayer modularity 

maximizations, we use the same consensus technique, which involves the following steps 

(Bassett et al., 2013; Bazzi et al., 2016; Sarzynska et al., 2016). First, we perform 100 

maximizations of multilayer modularity (Mucha et al., 2010) of the WMN using a 

Louvain-like heuristic (Jutla et al., 2011–2014) with an intralayer resolution-parameter 

value of ! = 1 for each layer and an interlayer resolution-parameter value of ! = 1. Note 

that one maximization assigns each “node-layer” (i.e., a country at a specific time point) 

to a community. Second, from our 100 partitions, we construct a co-association matrix 

!!""#$, in which each off-diagonal entry is the number of times that a pair of node-layers 

is assigned to the same community. (The diagonal entries of !!""#$ are 0.) Because there 

are N = 226 countries in each layer and T = 5 layers (from the censuses in 1960, 1970, 

1980, 1990, and 2000), !!""#! is an NT × NT = 1130 × 1130 matrix. 

Given the large number of possible pairwise associations in !!""#$, one needs to 

account for the probability that two node-layers are assigned to the same community by 

chance. To factor out random co-assignments, our community detection for 

!!""#$  uses modularity maximization with the uniform null model !!"! = !!
!"(!"!!)  

(Bassett et al., 2013; Sarzynska et al., 2016), where ! and ! index the node-layers and w is 

the total edge weight in the graph with adjacency matrix !!""#$. We employ a Louvain-

like heuristic (Jutla et al., 2011–2014) to maximize modularity for !!""#$ with ! = 1 and 

the null model !!"! to detect the consensus international migration communities that we 

presented in Fig. 2 in the main manuscript. In these consensus partitions, strongly 

associated countries in a given layer (i.e., countries that are often assigned to the same 
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community in multilayer modularity maximization for a given time point) are likely to be 

part of the same international migration community in that layer. 

!
References(
Bassett, D.S., Porter, M.A., Wymbs, N.F., Grafton, S.T., Carlson, J.M., Mucha, P.J.,  

2013. Robust detection of dynamic community structure in networks. Chaos 23, 
013142. 

Bazzi, M., Porter, M.A., Williams, S., McDonald, M., Fenn, D.J., Howison, S.D., 2016.  
Community detection in temporal multilayer networks, with an application to 
correlation networks. Multiscale Model. Simul. 14, 1–41. 

Expert, P., Evans, T.S., Blondel, V.D., Lambiotte, R., 2011. Uncovering space- 
independent communities in spatial networks. Proc. Natl. Acad. Sci. 108, 7663–
7668. 

Good, B.H., de Montjoye, Y.-A., Clauset, A., 2010. Performance of modularity  
maximization in practical contexts. Phys. Rev. E 81, 046106. 

Jutla, I., Jeub, L.G.S., Mucha, P.J., 2011–2014. A generalized Louvain method for  
community detection implemented in MATLAB (version 2.0), 
http://netwiki.amath.unc.edu/GenLouvain. 

Lancichinetti, A., Fortunato, S., 2012. Consensus clustering in complex networks.  
Sci. Rep. 2, 336. 

Leicht, E.A., Newman, M.E.J., 2008. Community structure in directed networks. Phys.  
Rev. Lett. 100, 118703. 

Mucha, P.J., Richardson, T., Macon, K., Porter, M.A., Onnela, J.-P., 2010. Community  
structure in time-dependent, multiscale, and multiplex networks. Science 328,  
876–878. 

Sarzynska, M., Leicht, E.L., Chowell, G., Porter, M.A., 2016. Null models for  
community detection in spatially embedded, temporal networks. J. Complex 
Netw. 4, 363–406. 

 
!


