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Network theory provides a powerful tool for the representation
and analysis of complex systems of interacting agents. Here, we
investigate the U.S. House of Representatives network of commit-
tees and subcommittees, with committees connected according to
‘‘interlocks,’’ or common membership. Analysis of this network
reveals clearly the strong links between different committees, as
well as the intrinsic hierarchical structure within the House as a
whole. We show that network theory, combined with the analysis
of roll-call votes using singular value decomposition, successfully
uncovers political and organizational correlations between com-
mittees in the House without the need to incorporate other
political information.

Congress � politics � hierarchical clustering � singular value decomposition

Much of the detailed work in making U.S. law is performed
by congressional committees and subcommittees, which is

in contrast to parliamentary democracies such as those of Great
Britain and Canada in which a larger part of the legislative
process is directly in the hands of political parties or is conducted
in sessions of the entire parliament. Although the legislation
drafted by committees in the U.S. Congress is subject ultimately
to roll-call votes by the full House of Representatives and Senate,
the important role played by committees and subcommittees
makes the study of their formation and composition vital to
understanding the work of the American legislature.

Several contrasting theories of committee-assignment strate-
gies have been developed in the political science literature
(mostly through qualitative studies, although there have been
some quantitative ones as well) (1–6), but there is no consensus
explanation of how committee assignments are initially deter-
mined or how they are modified from one session of Congress to
the next. A question of particular interest is whether political
parties assign committee memberships essentially at random or
if important congressional committees can be seen by using
objective analysis to be ‘‘stacked’’ with partisan party members.

The work presented here approaches these issues by using a
different set of analytical tools from those used previously. We
use the tools of network theory, which have been applied
successfully in recent years to characterize a wide variety of
complex systems (7, 8). As we show, network theory is particu-
larly effective at uncovering structure among committee and
subcommittee assignments without the need to incorporate any
specific knowledge about committee members or their political
positions.

Although there has been only limited previous work on
networks of congressional committees, there is a considerable
body of literature on other collaboration networks such as the
boards of directors of corporations (9–13), which occupy a
position in the business world somewhat analogous to that
occupied by committees in Congress. It has been shown that
board memberships and the networks that they create play a
major role in the spread of attitudes, ideas, and practices through
the corporate world, affecting political donations (10), invest-
ment strategies (14), and even the stock market on which a

company is listed (15). Studies of the structure of corporate
networks have shed considerable light on the mechanisms and
pathways of information diffusion (16–18), and it seems plau-
sible that the structure of congressional committees will be
similarly revealing.

Networks of Committees
We study the U.S. House of Representatives and construct
bipartite, or ‘‘two-mode,’’ networks based on assignments of
Representatives to committees and subcommittees (called just
‘‘committees’’ for simplicity hereafter) in the 101st–108th
Houses (1989–2004). (Table 1 lists the House leadership during
this period.) These networks have two types of nodes, Repre-
sentatives and committees, with edges connecting each Repre-
sentative to the committees on which they sit.

We project these two-mode committee-assignment networks
onto one-mode networks with nodes that represent the commit-
tees and edges that represent common membership, or ‘‘inter-
locks,’’ between committees. Fig. 1 shows a visualization of the
network of committees for the 107th House (2001–2002), an
example that we analyze in some depth.

The more common members that two committees have, the
stronger their connection is in the network. We quantify the
strength of connection by the ‘‘normalized interlock,’’ defined
as the number of common members divided by the expected
number of such common members if committees of the same
size were randomly and independently assigned from the
members of the House. Committees with as many common
members as would be expected by chance have a normalized
interlock value of 1, those with twice as many have an interlock
value of 2, those with none have an interlock value of 0, and
so forth.

Some of the connections depicted in Fig. 1 are expected and
unsurprising. For example, one finds that sets of subcommit-
tees of the same larger committee share many of the same
members, thereby forming a group or clique in the network.
For example, the four subcommittees of the 107th Permanent
Select Committee on Intelligence each include at least half of
the full 20-member committee and at least one third of each
of the other subcommittees. These tight connections result in
normalized interlocks with values in the range of 14.4–26.6,
which are substantially higher than average and cause these
five nodes to be drawn close together in the graph visual-
ization, forming the small pentagon in the middle right of
Fig. 1.

We also find more surprising connections between commit-
tees. For example, the nine-member Select Committee on
Homeland Security, formed in June 2002 during the 107th
Congress in the aftermath of the terrorist attacks of September
11, 2001, is observed to have a strong connection to the
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13-member Rules Committee (with a normalized interlock value
of 7.4 from two common members), which is the committee
charged with deciding the rules and order of business under
which legislation will be considered by other committees and the
full House (see http:��thomas.loc.gov). The Homeland Security
Committee is also connected to the seven-member Legislative

and Budget Process Subcommittee of Rules by the same two
common members (with a normalized interlock value of 13.7).
In the 108th Congress (data not shown), the Homeland Security
Committee swelled to 50 members but maintained a close
association with the Rules Committee (with a normalized inter-
lock value of 4.1 from six common members).

Table 1. U.S. House of Representatives leadership for the 101st–108th Congresses

Congress Speaker Majority Leader Minority Leader Majority Whip Minority Whip

101st (1989–1990) T. S. Foley R. A. Gephardt R. H. Michel T. Coelho, W. H. Gray, III D. Cheney, N. L. Gingrich
102nd (1991–1992) T. S. Foley R. A. Gephardt R. H. Michel W. H. Gray III, D. E. Bonior N. L. Gingrich
103rd (1993–1994) T. S. Foley R. A. Gephardt R. H. Michel D. E. Bonior N. L. Gingrich
104th (1995–1996) N. L. Gingrich R. K. Armey R. A. Gephardt T. D. DeLay D. E. Bonior
105th (1997–1998) N. L. Gingrich R. K. Armey R. A. Gephardt T. D. DeLay D. E. Bonior
106th (1999–2000) J. D. Hastert R. K. Armey R. A. Gephardt T. D. DeLay D. E. Bonior
107th (2001–2002) J. D. Hastert R. K. Armey R. A. Gephardt T. D. DeLay N. Pelosi
108th (2003–2004) J. D. Hastert T. D. DeLay N. Pelosi R. Blunt S. Hoyer

The Democrats held the House majority in the 101st–103rd Congresses (1989–1994), and the Republicans held it in the 104th–108th Congresses (1995–2004).

Fig. 1. Network of committees (■ ) and subcommittees (F) in the 107th U.S. House of Representatives, with standing and select committees labeled.
(Subcommittees tend to be closely tied to their main committee and, therefore, are unlabeled.) Each link between two (sub)committees is assigned a strength
that is equal to the normalized interlock. Thus, lines between pairs of circles or pairs of squares represent a normalized degree of joint membership between
(sub)committees (lines between squares are typically very light because of this normalization), and lines between squares and circles represent the fraction of
standing committee members on subcommittees. This figure was drawn by using a variant of the Kamada–Kawai spring-embedding visualization, which takes
link strengths into account (25).
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Structure of the House of Representatives
Connections between committees can be quantified in greater
detail by applying the technique of single-linkage clustering (19).
Starting with the complete set of committees for a given
Congress, committees are joined together sequentially starting
with the pair with the greatest normalized interlock value,
followed by the next greatest, and so forth. This process gener-
ates ‘‘clusters’’ of committees, which can be represented by using
a tree or dendrogram such as that shown in Fig. 2 for the 107th
House. There appear to be essentially four hierarchical levels of
clustering within this dendrogram: subcommittees, committees,
groups of committees, and the entire House (20). (There is also
some indication of a weaker fifth level of organization corre-
sponding to groups of subcommittees inside larger standing
committees.)

Here, we are interested primarily in the third hierarchical
level: the connections between committees. For example, we see
near the eight o’clock position in Fig. 2 a tightly grouped cluster
that includes the House Rules Committee and the Select Com-
mittee on Homeland Security. Because assignments to select
committees are ordinarily determined by drawing selectively
from legislative bodies with overlapping jurisdiction, one might
naively expect a close connection between the Select Committee
on Homeland Security and, for example, the Terrorism and
Homeland Security Subcommittee (of the Intelligence Select
Committee), which was formed originally as a bipartisan ‘‘work-
ing group’’ and was designated on September 13, 2001, by House
Speaker Dennis Hastert (Republican, Illinois) as the lead
congressional entity assigned to investigate the September 11,
2001, terrorist attacks (see www.homelandsecurity.org�journal�

Fig. 2. Dendrogram representing the hierarchical clustering of the committees of the 107th U.S. House of Representatives, determined by single-linkage
clustering on normalized committee interlocks. Each committee is color-coded according to the mean ‘‘extremism’’ of its members (defined in Voting Patterns),
from less extreme (blue) to more extreme (red). The clusters at each level are color-coded according to the average of their constituent committee extremism
scores.
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articles�kaniewskilegislative.htm). However, the 107th Home-
land Security Committee shares only one common member
(normalized interlock value of 2.4) with the Intelligence Select
Committee (located near the one o’clock position in Fig. 2) and
has no interlock with any of the four Intelligence subcommittees.

Voting Patterns
An additional twist can be introduced by considering how the
network of interlocks between committees is related to the
political positions of their constituent Representatives. One way
to characterize political positions is to tabulate the voting
records of individuals on key issues, but such a method is
subjective by nature, and a method that involves less personal
judgment on the part of the observer is preferable. Here, we use
a singular value decomposition (SVD) (21) of voting records
(22–24). Other data-mining methods can also be used (see
www.ailab.si�aleks�politics).

We define an n � m voting matrix B with one row for each of
the n Representatives in the House and one column for each of
the m votes taken during the session. For example, the 107th
House had n � 444 Representatives (including midterm replace-
ments) and took m � 990 roll-call votes. The element Bij is �1
if Representative i voted ‘‘yea’’ on vote j and �1 if he or she voted
‘‘nay.’’ If a Representative did not vote because of absence or
abstention, the corresponding element is 0.

The SVD identifies groups of Representatives who voted in a
similar fashion on many votes. The grouping that has the largest
mean-square overlap with the actual groups voting for or against
each measure is given by the leading (normalized) eigenvector
u(1) of the matrix BTB, the next largest by the second eigenvector,
and so on (21, 24). If we denote by �k

2 the corresponding
eigenvalues (which are provably nonnegative) and by v(k) the
normalized eigenvectors of BBT (which have the same eigenval-
ues), then it can be shown that

Bij � �
k�1

n

�kui
�k�vj

�k�, [1]

and that the matrix B(r) with elements

Bij
�r� � �

k�1

r

�kui
�k�vj

�k� [2]

approximates the full voting matrix B, with the sum of the
squares of the errors on the elements equal to �k�r�1

n �k
2, which

vanishes in the limit r3 n. Assuming that the quantities �k, which
are called the ‘‘singular values,’’ are ordered such that �1 � �2 �
�3 …, then B(r) is an excellent approximation to the original
voting matrix if the singular values fall off sufficiently rapidly
with increasing k.

Alternatively, one can say that the kth term in the SVD (Eq.
1) accounts for a fraction �k

2��k�1
n �k

2 of the sum of the squares
of the elements of the voting matrix. For the 107th House, we
find that the leading eigenvector accounts for �45.3% of the
voting matrix, the second eigenvector accounts for �29.6%, and
no other eigenvector accounts for 	1.6%. Thus, to an excellent
approximation, a Representative’s voting record can be charac-
terized by just two coordinates, measuring the extent to which
they align (or do not align) with the groups represented by the
first two eigenvectors. That is,

Bij
�2� � �1ui

�1�vj
�1� � �2ui

�2�vj
�2� [3]

is a good approximation to Bij. Similar results are obtained for
other sessions of Congress, with two eigenvectors giving a good
approximation to the voting matrix in every case. It has been
shown previously by using other methods that congressional
voting positions are well approximated by just two coordinates

Fig. 3. SVD of the voting record of the House of Representatives in the 102nd–107th U.S. Congresses. Each point represents a projection of a Representative’s
votes onto eigenvectors corresponding to the leading two singular values. The two axes are denoted ‘‘partisan’’ and ‘‘bipartisan,’’ as described in Voting Patterns.
Democrats (�) are shown on the left, and Republicans (E) are shown on the right. The few independents (*) are also shown.
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(see www.voteview.com), but the SVD does so in a particularly
simple fashion directly from the roll-call data. In Fig. 3, we plot
the two coordinates for every member of the House for each of
the 102nd–107th Congresses.

We find that one of the two leading eigenvectors (the first in
the 101st–105th Houses; the second in the 106th and 107th
Houses) corresponds closely to the acknowledged political party
affiliation of the Representatives, with Democrats (�) shown on
the left and Republicans (E) shown on the right in the plots.
Therefore, we call this the ‘‘partisan coordinate,’’ and Repre-
sentatives who score highly on it (either positively or negatively)
tend often to vote with members of their own party. From the
partisan coordinate, we also compute a measure of ‘‘extremism’’
for each Representative as the absolute value of their partisan
coordinate relative to the mean partisan score of the full House.
That is, we define the extremism ei of a Representative by ei �
 pi � � , where pi is the Representative’s partisan coordinate,
and � is the mean of that coordinate for the entire House (which
is usually skewed slightly toward the majority party). In Table 2,
we list the most and least partisan Representatives from each
party computed from the roll call of the 107th House. We also
compare the vote reconstruction to those obtained by using an
alternative method, the Optimal Classification technique of
Poole and Rosenthal (23) (as applied only to the 107th House).

In contrast, the other leading eigenvector groups essentially all
Representatives together regardless of party affiliation and thus
appears to represent voting actions in which most members of
the House either approve or disapprove of a motion simulta-
neously. We call this the ‘‘bipartisan coordinate,’’ because Rep-
resentatives who score highly on it tend often to vote with the
majority of the House.

Using our SVD results, we also can calculate the positions of
the votes (as opposed to the voters) along the same two leading
dimensions to quantify the nature of the issues being decided.
We show this for the 107th House in Fig. 4. One application of
this analysis is a measurement of the reproducibility of individual

Table 2. SVD rank ordering of the most and least partisan
Representatives in the 107th U.S. House

Least partisan Farthest left Farthest right

K. Lucas (R) J. D. Schakowsky (D) T. G. Tancredo (R)
C. A. Morella (R) J. P. McGovern (D) J. B. Shadegg (R)
R. M. Hall (D) H. L. Solis (D) J. Ryun (R)
R. Shows (D) L. C. Woolsey (D) B. Schaffer (R)
G. Taylor (R) J. F. Tierney (D) P. Sessions (R)
C. W. Stenholm (D) S. Farr (D) S. Johnson (R)
R. E. Cramer (D) N. Pelosi (D) B. D. Kerns (R)
V. H. Goode (R) E. J. Markey (D) P. M. Crane (R)
C. John (D) J. W. Olver (D) W. T. Akin (R)
C. C. Peterson (D) L. Roybal-Allard (D) J. D. Hayworth (R)

The first column gives the least-partisan Representatives as determined by
an SVD of the roll-call votes. The second column gives the SVD rank ordering
of the most partisan Representatives. They are all Democrats; thus, this also
gives the rank of the Representatives farthest to the left. The third column
gives the rank of the Representatives farthest to the right. The SVD rank
ordering was determined for Representatives after midterm replacements
(432 total congressmen) using all 990 roll calls; it classifies 92.7% of individual
votes correctly. By contrast, in Poole and Rosenthal’s Optimal Classification
method (23), a rank ordering of the Representatives in the 107th House is
determined by using 443 total Representatives and 749 of 990 roll calls (votes
with 
0.5% of the votes in the minority were removed from consideration).
It classifies 92.8% of the individual Representatives’ votes correctly. R, Repub-
lican; D, Democrat.

Fig. 4. SVD of the roll call of the 107th House projected onto the voting coordinates. Points represent projections of the votes cast on a measure onto
eigenvectors corresponding to the leading two singular values. There is a clear separation between measures that passed (E) and those that did not (�). The
four corners of the plot are interpreted as follows: measures with broad bipartisan support (north) all passed; those supported mostly by the right (east) passed
because the Republicans constituted the majority party of the 107th House; measures supported by the left (west) failed because of the Democratic minority;
and the (obviously) very few measures supported by almost nobody (south) also failed.
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votes and outcomes. By reconstituting the voting matrix using
only the information contained in the two leading singular values
and the corresponding eigenvectors and subsequently summing
the resulting approximated votes over all Representatives, we
derive a single score for each vote. Making a simple assignment
of ‘‘pass’’ to those votes that have a positive score and ‘‘fail’’ to
all others successfully reconstructs the outcome of 984 of the 990
total votes (�99.4%). [Overall, 735 (�74.2%) of the votes
passed; thus, simply guessing that every vote passed would be
considerably less effective.] If we throw out known absences and
abstentions, the analysis still identifies 975 of the 990 results
correctly. Even with the most conservative measure of this
computation’s success rate, in which we throw out abstentions
and absences first and then examine yeas�nays of the individual
Representatives (�92.7% of which are correctly identified by the
sign of the elements in the projection of the voting matrix), the
two-dimensional reconstruction still identifies 939 (�94.8%) of
the votes correctly. We repeated these calculations for the
101st–106th Houses and found similar results in each case.
[The remarkable accuracy of SVDs in reconstructing votes
was observed previously for the example of the U.S. Supreme
Court (24).]

The SVD analysis gives a simple way of classifying the voting
positions of Representatives without making subjective judg-
ments. In Fig. 2, we have combined our clustering analysis of
committees with the SVD results by color coding each commit-
tee according to the mean ‘‘extremism’’ of its members, so that
committees populated by highly partisan members of either
party appear in red and committees containing more moderate
Representatives appear in blue. Taking again the examples of
Intelligence and Homeland Security, the figures immediately
identify the former as moderate and the latter as more partisan.
Indeed, the Select Committee on Homeland Security has a larger
mean extremism than any of the 19 standing committees and has
the fourth largest mean extremism among the 113 committees of
the 107th House, which perhaps is not so surprising when we see
that its constituent Representatives included House Majority
Leader Richard Armey (Republican, Texas), Majority Whip
Tom DeLay (Republican, Texas), and Minority Whip Nancy
Pelosi (Democrat, California). However, this characterization of
the committee was made mathematically, using no knowledge
beyond the roll-call votes of the 107th House. As another
example, the 107th House Rules Committee is the second most
extreme of the 19 standing committees (after the Judiciary
Committee) and ranks 18th out of 113 committees overall. By

contrast, the Permanent Select Committee on Intelligence of the
107th House has a smaller mean extremism than any of the 19
standing committees, and the Intelligence Committee and its
four subcommittees all rank among the 10 least extreme of all
113 committees.

Conclusions
To conclude, a network-theory approach coupled with an SVD
analysis of roll-call votes is demonstrably useful in analyzing
organizational structure in the committees of the U.S. House of
Representatives. We found evidence of several levels of hierar-
chy within the network of committees and, without incorporating
any knowledge of political events or positions, identified some
close connections between committees, such as that between the
House Rules Committee and the Select Committee on Home-
land Security in the 107th Congress, as well as correlations
between committee assignments and political positions of the
Representatives. Our analysis of committee interlocks and vot-
ing patterns strongly suggests that committee assignments are
not determined at random (i.e., that some committees are indeed
stacked) and also indicates the degree of departure from ran-
domness. We have discussed here a few observations in detail,
but a rich variety of other results can be derived from similar
analyses. We hope that additional studies using similar tech-
niques will provide key insights into the structure of the House
of Representatives and other political bodies.
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