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We employ Chirikov’s overlap criterion to investigate interactions between subharmonic res-
onances of coherent structure solutions of the Gross–Pitaveskii (GP) equation governing the
mean-field dynamics of cigar-shaped Bose–Einstein condensates in optical superlattices. We
apply a standing wave ansatz to the GP equation to obtain a parametrically forced Duffing equa-
tion describing the BEC’s spatial dynamics. We then investigate analytically the dependence
of spatial resonances on the depth of the superlattice potential, deriving an order-of-magnitude
estimate for the critical depth at which spatial resonances with respect to different lattice har-
monics first overlap. We also derive a formula for the size of resonance zones and examine changes
in our estimates as the relative superlattice amplitudes corresponding to the different harmonics
are adjusted. We investigate the onset of global chaos and support our analytical work with
numerical simulations.
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1. Introduction

Bose–Einstein condensation was predicted in the
1920s by Satyendra Nath Bose and Albert Einstein
and was first observed experimentally in 1995 using
dilute vapors of sodium and rubidium that had
been cooled to temperatures near absolute zero
[Anderson et al., 1995; Davis et al., 1995]. A
magnetically-trapped gas was brought to temper-
atures of a few hundred nanokelvins by laser
cooling, left to expand by switching off the
confining trap, and subsequently imaged with opti-
cal methods. The gas was observed to reside in
the lowest quantum (ground) state, creating a
Bose–Einstein condensate (BEC), which consists

of several thousand to several million atoms. A
sharp peak in the velocity distribution observed
below a critical temperature indicated that con-
densation had occurred [Pethick & Smith, 2002;
Dalfovo et al., 1999; Ketterle, 1999; Burnett et al.,
1999].

BECs are inhomogeneous, so they can be
observed in both momentum and coordinate space
[Dalfovo et al., 1999]. They have two character-
istic length scales: the harmonic oscillator length
aho =

√
�/(mωho) (which is on the order of a few

microns), where � is Planck’s constant, m is the
mass of the atomic species, and ωho = (ωxωyωz)1/3

is the geometric mean of the trapping frequencies;
and the mean healing length χ = 1/

√
8π|a|n̄,
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where n̄ is the mean density and a, the (two-
body) s-wave scattering length, is determined by
the atomic species of the condensate [Pethick &
Smith, 2002; Dalfovo et al., 1999; Köhler, 2002;
Baizakov et al., 2002]. When a is positive, the
condensate atoms repel each other; when a is nega-
tive, the atoms attract each other; and when a = 0,
the atoms are in the ideal gas regime. Additionally,
the scattering length can be adjusted using a mag-
netic field in the vicinity of a Feshbach resonance
[Donley et al., 2001].

When considering two-body, mean-field
interactions, the condensate wave function
(“order parameter”) ψ(x, t) is described by the
Gross–Pitaevskii (GP) equation. When placed in
a cigar-shaped trap, BECs are modeled in the
quasi-one-dimensional (quasi-1D) regime, which
is valid when the transverse dimensions of the
condensate are on the order of its healing length
and its longitudinal dimension is much larger
than its transverse ones [Bronski et al., 2001a;
Bronski et al., 2001b; Bronski et al., 2001c;
Dalfovo et al., 1999]. In the quasi-1D regime,
one employs the 1D limit of a 3D mean-field
theory rather than a true 1D mean-field the-
ory, which would be appropriate for transverse
dimensions on the order of the atomic interaction
length or the atomic size [Bronski et al., 2001a;
Bronski et al., 2001b; Bronski et al., 2001c;
Salasnich et al., 2002; Band et al., 2003]. In this
situation, the GP equation has one spatial dimen-
sion and is written

i�ψt = −
[

�
2

2m

]
ψxx + g|ψ|2ψ + V (x)ψ, (1)

where |ψ|2 is the number density, V (x) is an exter-
nal potential, g = [4π�

2a/m][1 + O(ζ2)], and ζ =√|ψ|2|a|3 is the dilute gas parameter [Dalfovo et al.,
1999; Köhler, 2002; Baizakov et al., 2002].

Potentials V (x) of interest include harmonic
traps, periodic lattices, superlattices [Peil et al.,
2003; Rey et al., 2004] and periodically (and
quasiperiodically) perturbed harmonic traps. The
ability to conduct experiments on quasi-1D BECs
motivates the study of low-dimensional models
such as (1). The case of periodic and quasiperi-
odic potentials without a confining trap along the
dimension of the lattice or superlattice is of par-
ticular interest. Such potentials have been used,
for example, to study Josephson effects [Anderson
& Kasevich, 1998], squeezed states [Orzel et al.,

2001], Landau–Zener tunneling and Bloch oscilla-
tions [Morsch et al., 2001], the transition between
superfluidity and Mott insulation at both the clas-
sical [Smerzi et al., 2002; Cataliotti et al., 2003]
and quantum [Greiner et al., 2002] levels, and con-
trollable soliton manipulation [Porter et al., 2006].
Moreover, with each lattice site occupied by one
alkali atom in its ground state, BECs in opti-
cal lattices show promise as registers in quantum
computers [Porto et al., 2003; Vollbrecht et al.,
2004].

In experiments, a weak harmonic trap is typi-
cally used on top of the optical lattice or superlat-
tice to prevent the particles from escaping. (The
lattice is generally turned on after the trap.) In
this paper, we consider superlattice potentials of
the form

V (x) = ε[V1 cos(κ1x) + V2 cos(κ2x)], (2)

where κ1 < κ2 without loss of generality, V1 =
V0 cos θ, and V2 = V0 sin θ. The superlattice’s
primary wave number is κ1 and its secondary
wave number is κ2. Varying θ allows one to
adjust the relative contributions of the superlat-
tice potential’s associated primary and secondary
harmonics. The wave numbers κi and superlattice
amplitudes Vi are also experimentally adjustable
[Peil et al., 2003].

The dynamics of BECs in superlattices has
recently started to garner some attention [Porter
& Kevrekidis, 2005; van Noort et al., 2004; Louis
et al., 2004; Louis et al., 2005; Eksioglu et al., 2004],
as this system has novel, stable spatially extended
states and can be used for controllable soliton
manipulation. Only the case κ2 = 3κ1, has been pre-
pared experimentally [Peil et al., 2003], but super-
lattices with other ratios (such as 2κ2 = 3κ1) can
be constructed by adjusting the laser beams used to
create the optical superlattice. In the present work,
we consider all real ratios κ2/κ1. The superlattice
potential (2) is quasiperiodic when κ2/κ1 is irra-
tional and periodic when it is rational.

The remainder of this paper is organized as fol-
lows. In Sec. 2, we derive a parametrically forced
Duffing oscillator, which describes the condensate’s
spatial dynamics, by applying a coherent structure
ansatz to the GP equation (1). This is followed by a
discussion in Sec. 3 of Chirikov’s overlap criterion,
which we apply to attractive BECs with both pos-
itive and negative chemical potentials to estimate
the lattice height required for the onset of glob-
ally chaotic dynamics. We also derive an expression
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for the size of resonance zones. In Sec. 4, we com-
pare our analytical estimates to numerically com-
puted Poincaré sections. We summarize our results
in Sec. 5.

2. Coherent Structures

We consider uniformly propagating coherent struc-
tures with the ansatz

ψ(x, t) = R(x) exp(i [θ(x) − µt]), (3)

where R is the amplitude of the wave function,
θ(x) determines its phase, v ∝ ∇θ is the parti-
cle velocity, and µ is the BEC’s chemical potential.
When the (temporally periodic) coherent structure
(3) is also spatially periodic, it is called a modu-
lated amplitude wave (MAW) [Brusch et al., 2000;
Brusch et al., 2001]. The orbital stability of MAWs
for the cubic NLS with elliptic function poten-
tials has been studied by Bronski and co-authors
[Bronski et al., 2001a; Bronski et al., 2001b;
Bronski et al., 2001c]. To obtain stability informa-
tion with sinusoidal potentials, one takes the limit
as the elliptic modulus k approaches zero [Lawden,
1989; Rand, 1994].

Substituting (3) into the GP equation (1) and
equating real and imaginary parts yields

�µR(x) = − �
2

2m
R′′(x) +

[
�

2

2m
[θ′(x)]2

+ gR2(x) + V (x)
]
R(x), (4)

0 =
�

2

2m
[
2θ′(x)R′(x) + θ′′(x)R(x)

]
.

This, in turn, yields the following nonautonomous,
two-dimensional system of nonlinear ordinary dif-
ferential equations [Bronski et al., 2001b; Porter &
Cvitanović, 2004a, 2004b]:

R′ = PR,

P ′
R =

c2

R3
− 2mµR

�
+

2mg

�2
R3 +

2m
�2

V (x)R,
(5)

where ′ denotes differentiation with respect to x and
the parameter c, determined by θ′(x) = c/R2, plays
the role of “angular momentum” [Bronski et al.,
2001b].

When c = 0, Eq. (3) describes a standing wave.
In this situation, Eq. (5) becomes

R′′ + δR + αR3 + εRV1 cos(κ1x)
+ εRV2 cos(κ2x) = 0, (6)

where δ = 2mµ/�, α = −2mg/�2, and ε = −(2m/
�

2)V0. We assume that the lattice depth is shallow,
so that |ε| � 1.

The unperturbed Hamiltonian (corresponding
to (6) with ε = 0) is

H(R,PR) =
1
2
P 2

R +
1
2
δR2 +

1
4
αR4. (7)

KAM theory guarantees that locally chaotic
dynamics occurs near resonances for arbitrarily
small ε > 0 [Guckenheimer & Holmes, 1983;
Lichtenberg & Lieberman, 1992]. Perturbations of
Hamiltonian systems that break integrability lead
to increasingly large regions of chaotic dynamics
in phase space as the size of the perturbation is
increased. Locally chaotic configurations have small
regions of phase space with trajectories that behave
erratically, but such trajectories still remain within
those regions. Under sufficiently large nonintegrable
forcing, however, trajectories travel from one region
of phase space to another, leading to global chaos
[Lichtenberg & Lieberman, 1992; Rand, 1994].

In this work, we employ Chirikov’s overlap cri-
terion to estimate the value of ε at which the
dynamics of (6) first becomes globally chaotic
[Rand, 1994; Lichtenberg & Lieberman, 1992].
Chaotic regions in phase space are identified from
fuzziness in Poincaré sections, whereas integrable
trajectories are represented by continuous curves.
In the context of BECs, increasing ε corresponds
to increasing the depth of the wells in the optical
superlattice. Fixing the other physical parameters,
we examine the development of chaotic dynam-
ics through spatial resonance overlap as the lat-
tice depth (which can be tuned experimentally) is
increased.

It is also important to keep experimental
limitations in mind. We do not incorporate a weak
harmonic trap in (6), assuming instead that the
superlattice is present for all x. From an experi-
mental perspective, it cannot be ignored after some
finite number of lattice minima. Thus far, BECs
in regular optical lattices with up to 200 wells have
been created experimentally [Pedri et al., 2001]. The
use of infinitely many wells is a standard theoretical
approximation and the resonance overlap we study
pertains experimentally to a finite number of wells
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away from the edges of the weak trap, for which it is
permissible to ignore perturbations due to the trap.

3. Chirikov’s Overlap Criterion

Chirikov’s overlap criterion is used to study
the transition from local to global chaos in
Hamiltonian systems. The last remaining KAM
surface between primary resonances is destroyed
when the sum of the half-widths of the two island
separatrices formed by the resonances equals the
distance between the resonances. The system’s
Hamiltonian is used to estimate the minimal per-
turbation strength ε for which these separatrices
begin to touch. We derive analytical approxima-
tions for the locations and sizes of the resonance
zones to estimate this critical ε when the two
primary resonances first overlap, leading to the
onset of global chaos [Rand, 1994; Lichtenberg &
Lieberman, 1992].

A Hamiltonian system has the form

dqi

dx
=

∂H

∂pi
,

dpi

dx
= −∂H

∂qi
, i ∈ {1, . . . , n}, (8)

where the Hamiltonian H = H(qi, pi, x; ε) can be
expanded in a power series in ε as follows:

H(qi, pi, x; ε) = H0(qi, pi, x) + εH1(qi, pi, x)
+ ε2H2(qi, pi, x) + O(ε3). (9)

The nonintegrable Hamiltonian of the paramet-
rically forced Duffing equation (which is a nonlinear
Mathieu equation) (6) is

H =
1
2
P 2

R +
1
2
δR2 +

1
4
αR4 + ε

R2

2
V1 cos(κ1x)

+ ε
R2

2
V2 cos(κ2x). (10)

We set ε = 0 to consider the unforced (integrable)
system,

R′′ + δR + αR3 = 0, (11)

which we solve approximately by keeping a single
harmonic,

R = A cos(ωx),

PR = R′ = −Aω sin(ωx).
(12)

One can alternatively solve (11) exactly using ellip-
tic functions, as has been done previously for appli-
cations of Chirikov’s overlap criterion to nonlinear
Mathieu equations [Zounes & Rand, 2001, 2002a,
2002b]. We substitute (12) into (11) and neglect all
harmonics beyond {cos(ωx), sin(ωx)} to obtain an

approximate expression for ω as a function of A,

ω =
s

δ +
3
4
αA2 . (13)

The next step is to transform to approximate
action-angle variables. Suppose the angle is given
by q = ωx, so that

R = A cos q, q′ = ω =
s

δ +
3
4
αA2. (14)

The action variable p is then defined so that

q′ =
∂H0

∂p
=

∂H0

∂A

∂A

∂p
=

s
δ +

3
4
αA2, (15)

where ∂H0/∂A = δA + (9/8)αA3. This yields the
differential equation,

∂p

∂A
=

δA +
9
8
αA3

s
δ +

3
4
αA2

, (16)

governing the dependence of p on A.
We substitute (12) into (10) and neglect higher

harmonics to obtain

H =
1
2
δA2 +

9
32

αA4

+ ε
A2

2
cos2 q[V1 cos(κ1x) + V2 cos(κ2x)]. (17)

We consider attractive (a < 0) condensates with
both positive (µ > 0) and negative (µ < 0) chemi-
cal potentials, although only the derivation for the
latter case is presented explicitly in this paper. The
same method works for attractive BECs with pos-
itive chemical potentials [Zounes & Rand, 2001,
2002a].

For negative chemical potentials, the parame-
ters are rescaled so that α = 1 and δ = −1, which
we substitute into (16) and (17) to obtain

∂p

∂A
=

−A +
9
8
A3

s
−1 +

3
4
A2

(18)

and

H = −1
2
A2 +

9
32

A4

+ ε
A2

2
cos2 q[V1 cos(κ1x) + V2 cos(κ2x)] . (19)

We integrate (18) to yield

p =
1
4
A2

√
−4 + 3A2 , (20)
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which implies that

A =
1
3

√
2d1/3 + 8d−1/3 + 4 , (21)

where d = 8 + 243p2 + 9p
√

48 + 729p2.
This gives an approximate canonical transfor-

mation from (R,PR) → (q, p):

R =
1
3

√
2d1/3 + 8d−1/3 + 4 cos q,

PR = −ω

3

√
2d1/3 + 8d−1/3 + 4 sin q.

(22)

The Hamiltonian (10) is thus written

H =
1
72

[d1/3 + 4d−1/3 + 2]2

− 1
9
[d1/3 + 4d−1/3 + 2]

+
ε

9
[d1/3 + 4d−1/3 + 2]

× cos2 q[V1 cos(κ1x) + V2 cos(κ2x)]. (23)

3.1. Near-identity transformations

In this section, we apply a near-identity transforma-
tion to the nonautonomous Hamiltonian (23). This
transformation has the general form [Rand, 1994;
Guckenheimer & Holmes, 1983]

qi = Qi + εΘ(1)
i (Qj , Pj) + ε2Θ(2)

i (Qj, Pj) + O(ε3),

pi = Pi + εΦ(1)
i (Qj, Pj) + ε2Φ(2)

i (Qj , Pj) + O(ε3),
(24)

where Θ(k)
i and Φ(k)

i are chosen so that the trans-
formation is canonical.

First, we extend phase space, so that (23) is
written

H̃ = H + p2

=
1
72

[d1/3
1 + 4d−1/3

1 + 2]2

− 1
9
[d1/3

1 + 4d−1/3
1 + 2]

+
ε

9
[d1/3

1 + 4d−1/3
1 + 2]

× cos2 q1[V1 cos(κ1q2) + V2 cos(κ2q2)] + p2

≡ H̃0 + εH̃1, (25)

where d1 = 8 + 243p2
1 + 9p1

√
48 + 729p2

1, p1 = p,
q1 = q, and q2 = x. (The variable p2 is the conju-
gate momentum of q2.) The O(1) and O(ε) terms

in the transformed Hamiltonian are then

H̃0(qi, pi) =
1
72

[d1/3
1 + 4d−1/3

1 + 2]2

− 1
9
[d1/3

1 + 4d−1/3
1 + 2] + p2,

H̃1(qi, pi) =
1
9
[d1/3

1 + 4d−1/3
1 + 2]

× cos2 q1[V1 cos(κ1q2) + V2 cos(κ2q2)].

We use trigonometric identities to isolate harmonics
and obtain

H̃1(qi, pi) =
1
36

[d1/3
1 + 4d−1/3

1 + 2]

×{V1[cos(2q1 + κ1q2)
+ cos(2q1 − κ1q2) + 2 cos(κ1q2)]
+ V2[cos(2q1 + κ2q2) + cos(2q1

−κ2q2) + 2 cos(κ2q2)]}. (26)

We define another near-identity transforma-
tion, from (qi, pi) → (Qi, Pi) as

qi = Qi + ε
∂W1

∂Pi
+ O(ε2),

pi = Pi − ε
∂W1

∂Qi
+ O(ε2).

(27)

We choose a generating function W1 to simplify the
transformed Hamiltonian, K = K0 + εK1 + O(ε2),
given by

K0 = H̃0(Qi, Pi)

=
1
72

[D1/3
1 + 4D−1/3

1 + 2]2

− 1
9
[D1/3

1 + 4D−1/3
1 + 2] + P2,

K1 = H̃1(Qi, Pi) + {H̃0,W1}

=
1
36

[D1/3
1 + 4D−1/3

1 + 2]

×{V1[cos(2Q1 + κ1Q2) + cos(2Q1 − κ1Q2)
+ 2 cos(κ1Q2)] + V2[cos(2Q1 + κ2Q2)
+ cos(2Q1 − κ2Q2) + 2 cos(κ2Q2)]}

−h
∂W1

∂Q1
− ∂W1

∂Q2
, (28)

where D1 = 8 + 243P 2
1 + 9P1

√
48 + 729P 2

1, h =
(M/108)[D1/3

1 +4D−1/3
1 +2][D−2/3

1 −4D−4/3
1 ]−(M/27)

[D−2/3
1 + 4D−4/3

1 ], M = 486P1 + 9
√

48 + 729P 2
1 +

6561P 2
1/

√
48 + 729P 2

1, and {H0,W1} is the Poisson
bracket of H0 and W1 [Rand, 1994; Goldstein, 1980].
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The appropriate generating function has the
form

W1 = C1
+ sin(2Q1 + κ1Q2) + C1

− sin(2Q1 − κ1Q2)

+ C2
+ sin(2Q1 + κ2Q2) + C2

− sin(2Q1 − κ2Q2)
+ 2C3 sin(κ1Q2) + 2C4 sin(κ2Q2). (29)

We choose W1 so that the Poisson bracket {H̃0,W1}
eliminates all the trigonometric terms in K1 except
for a single term, a so-called “nonremovable” term
pertaining to the resonance zone of interest. There
are four possible choices for this term, which have
corresponding prefactors Ci

+ and Ci− for i ∈ {1, 2}.
One chooses i = 1 to examine resonances with
respect to the primary lattice harmonic and i = 2
for resonances with respect to the secondary
harmonic.

The coefficients C1
+, C1−, C2

+, C2−, C3, and C4

are given by the formulas

Ci
+ =

[D1/3
1 + 4D−1/3

1 + 2]Vi

36(2h + κi)
,

Ci− =
[D1/3

1 + 4D−1/3
1 + 2]Vi

36(2h − κi)
, i ∈ {1, 2},

C3 =
[D1/3

1 + 4D−1/3
1 + 2]V1

36
,

C4 =
[D1/3

1 + 4D−1/3
1 + 2]V2

36
.

(30)

The denominators in Ci
+ and Ci− vanish, respec-

tively, when 2h+κi = 0 and 2h−κi = 0, indicating
the presence of resonance zones. In the calculation
below, we consider resonances with respect to lat-
tice harmonics due to the latter condition. We find
the locations and sizes of these resonance zones
and use Chirikov’s overlap criterion to estimate
the value of ε at which globally chaotic dynamics
occurs.

We obtain [Rand, 1994]

K
(i)
1 =

Vi

36
[D1/3

1 + 4D−1/3
1 + 2]

× [cos(2Q1 − κiQ2)], i ∈ {1, 2}, (31)

which yields the transformed Hamiltonian

K(i) =
1
72

[D1/3
1 + 4D−1/3

1 + 2]2

− 1
9
[D1/3

1 + 4D−1/3
1 + 2] + P2

+ ε
Vi

36
[D1/3

1 + 4D−1/3
1 + 2]

× [cos(2Q1 − κiQ2)] + O(ε2). (32)

3.2. Analytical estimate of the
critical lattice height

We obtain an autonomous, one degree-of-freedom
system (for a given i ∈ {1, 2}) with a linear, canon-
ical transformation,

X1 = 2Q1 − κiQ2, X2 = Q2

Y1 = P1, Y2 = P2 + κiP1.

The resulting Hamiltonian is

K(i) =
1
72

[G1/3
1 + 4G−1/3

1 + 2]2

− 1
9
[G1/3

1 + 4G−1/3
1 + 2] + Y2 − κiY1

+ ε
Vi

36
[G1/3

1 + 4G−1/3
1 + 2] cos X1 + O(ε2),

(33)

where G1 = 8 + 243Y 2
1 + 9Y1

√
48 + 729Y 2

1 .
After the transformation, X2 is no longer

explicitly present in K(i) so both Y2 and K(i) are
constant of motions [Rand, 1994]. Therefore,

K∗(i) = K(i) − Y2

=
1
72

[G1/3
1 + 4G−1/3

1 + 2]2

− 1
9
[G1/3

1 + 4G−1/3
1 + 2] − κiY1

+ ε
Vi

36
[G1/3

1 + 4G−1/3
1 + 2] cos(X1) + O(ε2)

= constant. (34)

We determine the equilibria from Hamilton’s
equations,

Y ′
1 = −∂K∗(i)

∂X1
= ε

Vi

36
[G1/3

1 + 4G−1/3
1 + 2] sin X1,

X ′
1 =

∂K∗(i)

∂Y1

=
N

108
(G1/3

1 + 4G−1/3
1 + 2)(G−2/3

1 − 4G−4/3
1 )

− N

27
(G−2/3

1 − 4G−4/3
1 )

−κi + εVi
N

108
(G−2/3

1 − 4G−1/3
1 ) cos(X1),

(35)

where N = 486Y1 + 9(96Y1 + 2916Y 3
1)/(2Y1√

48 + 729Y 2
1).
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The condition Y ′
1 = 0 implies that equilibria

(X∗
1 , Y ∗

1 ) satisfy sin X∗
1 = 0, so that X∗

1 = 0 or
X∗

1 = π. Substituting these values into (35) for
X ′

1 = 0 gives Y ∗
1 . For small ε, both values of X∗

1

give

Y ∗(i) ≈ −0.843 + 2.161κi + O(ε), (36)

where we have employed a power series expansion
to approximate the value of Y ∗(i). The integrable
Hamiltonian (34) has a pendulum-like separatrix.
We denote the location of its saddles by Y

(i)
s and

its maximum height by Y
(i)
m . One obtains Y

(i)
s when

X1 = π, and Y
(i)
m occurs at the same angle (X1 = 0)

as the center point of (35) and has the same Hamil-
tonian value as the saddles (because it too lies on
the separatrix). Therefore,

K∗(X∗
1 = 0, Y1 = Y (i)

m )

= K∗(X∗
1 = π, Y1 = Y (i)

s ), i ∈ {1, 2}. (37)

This gives the equation

1
72

[G(i)
m

1/3
+ 4G(i)

m
−1/3

+ 2]2

− 1
9
[G(i)

m

1/3
+ 4G(i)

m

−1/3
+ 2] − κiY

(i)
m

+ ε
Vi

36
[G(i)

m

1/3
+ 4G(i)

m

−1/3
+ 2]

=
1
72

[G(i)1/3

s + 4G(i)−1/3

s + 2]2

− 1
9
[G(i)1/3

s + 4G(i)−1/3

s + 2] − κiY
(i)
s

− ε
Vi

36
[G(i)1/3

s + 4G(i)
s

−1/3
+ 2], (38)

where G
(i)
m = 8 + 243Y (i)2

m + 9Y (i)
m

r
48 + 729Y (i)2

m ,

G
(i)
s = 8 + 243Y (i)2

s + 9Y (i)
s

r
48 + 729Y (i)2

s , Y
(i)
m =

Y
(i)
s + δi is to be determined, and Y

(i)
s ≈ −0.843 +

2.161κi is known.
We set δi = ki

√
ε + O(ε) and write Eq. (38) in

the form

F (Y (i)
s + ki

√
ε) + εB(Y (i)

s + ki

√
ε)

= F (Y (i)
s ) − εB(Y (i)

s ) , (39)

where F (Y (i)
s ) = (1/72)[G(i)1/3

s + 4G(i)−1/3

s + 2]2 −
(1/9)(G(i)1/3

s + 4G(i)−1/3

s +2)−κiY
(i)
s and B(Y (i)

s ) =

(Vi/36)[G
(i)1/3

s + 4G(i)−1/3

s + 2].

We expand (39) in a power series in
√

ε

using F (Y (i)
s + ki

√
ε) = F (Y (i)

s ) +
√

εF ′(Y (i)
s )ki +

(1/2)εF ′′(Y (i)
s )k2

i + O(ε3/2) to obtain

F (Y (i)
s ) +

√
εF ′(Y (i)

s )ki +
1
2
εF ′′(Y (i)

s )k2
i

+εB(Y (i)
s ) + O(ε3/2) = F (Y (i)

s ) − εB(Y (i)
s ).
(40)

At O(
√

ε), we see that F ′(Y (i)
s ) = 0. At O(ε), we

obtain

ki = 2

√√√√√√−B(Y (i)
s )

∂2F

∂Y
(i)2
s

, i ∈ {1, 2}. (41)

Recall that κ2 > κ1. As ε is increased, individual
resonance regions associated with each of the lat-
tice harmonics begin to overlap when the minimum
of the separatrix height Y

(2)
m for the κ2 resonance

band equals the maximum of the separatrix height
Y

(1)
m of the κ1 resonance band. Equation (41) also

gives an estimate for the separatrix size, which is

Wi = 2δi = 2ki

√
ε + O(ε). (42)

Resonance overlap occurs when

−0.843 + 2.161κ2 − k2

√
ε

= −0.843 + 2.161κ1 + k1

√
ε, (43)

which yields the order-of-magnitude estimate

εcr ≈ [2.161]2
(

κ2 − κ1

k1 + k2

)2

≈ 4.670
(

κ2 − κ1

k1 + k2

)2

(44)

for the critical lattice height at which the transi-
tion from local to global chaos occurs. We simi-
larly obtain an equation to estimate the critical
ε for α = 1 and δ = 1 with the same analytical
procedure:

−3.908 + 3.430κ2 − k2

√
ε

= −3.908 + 3.430κ1 + k1

√
ε. (45)

While our analysis is only guaranteed to
give an order-of-magnitude estimate for εcr, our
numerical simulations (discussed in the next sec-
tion) reveal that this estimate can sometimes
perform far better in practice. By construction,
estimates obtained using Chirikov’s overlap cri-
terion give an upper bound for εcr because one
is examining the overlap of resonance bands
when all pertinent KAM tori have been destroyed
[Lichtenberg & Lieberman, 1992; Rand, 1994].
Strictly speaking, the series approximation (36)
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removes this guarantee, but one still nearly always
obtains upper bounds in practice. (In particular,
our estimate provided an upper bound for every
example we studied.)

4. Numerical Simulations

To support our analytical work, we numerically sim-
ulated Eq. (6) for several values of V1 = V0 cos(θ)
and V2 = V0 sin(θ). We examined situations with
different relative contributions of the two lattice
harmonics. Specifically, we considered θ = nπ/16
for n ∈ {1, . . . , 7}. (When θ = 0 and θ = π/2, one
of the forcing terms is identically zero, so only one
resonance is being excited.) In our simulations, we
scaled (6) so that V0 = 1.

We tabulate our analytical and numerical esti-
mates for α = 1, δ = −1 in Tables 1–3 and for α =
1, δ = 1 in Tables 4–6. The critical lattice depths

Table 1. Critical lattice depths for the onset of glob-
ally chaotic dynamics for a quasi-1D BEC in a super-
lattice with integer wave number ratio. Adjustments in
θ indicate different relative contributions of the lattice
harmonics. In this table, we consider attractive conden-
sates with negative chemical potentials. The parameters
are α = 1, δ = −1, and κ2 = 3κ1 = 3. As discussed
in the text, the analytical results give a rough upper
bound for the numerical estimates. Note additionally that
V0 (and hence V1 and V2) can be scaled so that εcr

is small enough for the perturbative analysis to be valid.

θ V1 V2 Analytical ε Numerical ε

π/16 0.981 0.195 1.181 0.754
π/8 0.924 0.383 0.819 0.686

3π/16 0.831 0.556 0.667 0.521
π/4 0.707 0.707 0.592 0.422

5π/16 0.556 0.831 0.558 0.413
3π/8 0.383 0.924 0.559 0.414
7π/16 0.195 0.981 0.597 0.429

Table 2. Same as Table 1, except the superlattice has a
rational wave number ratio. The parameters are α = 1,
δ = −1, and κ2 = 3κ1/2 = 3.

θ V1 V2 Analytical ε Numerical ε

π/16 0.981 0.195 0.149 0.143
π/8 0.924 0.383 0.116 0.106

3π/16 0.831 0.556 0.102 0.099
π/4 0.707 0.707 0.095 0.085

5π/16 0.556 0.831 0.095 0.087
3π/8 0.383 0.924 0.101 0.089
7π/16 0.195 0.981 0.117 0.104

Table 3. Same as Table 1, except the superlattice has an
irrational wave number ratio. The parameters are α = 1,
δ = −1, and κ2 =

√
2κ1 =

√
2.

θ V1 V2 Analytical ε Numerical ε

π/16 0.981 0.195 0.089 0.054
π/8 0.924 0.383 0.068 0.031

3π/16 0.831 0.556 0.060 0.028
π/4 0.707 0.707 0.056 0.025

5π/16 0.556 0.831 0.056 0.026
3π/8 0.383 0.924 0.059 0.026
7π/16 0.195 0.981 0.069 0.032

Table 4. Same as Table 1, except for an attractive con-
densate with a positive chemical potential. The parameters
are α = 1, δ = 1, and κ2 = 3κ1 = 3. Recall that V0 (and
hence V1 and V2) can be scaled so that εcr is small
enough for the perturbative analysis to be valid.

θ V1 V2 Analytical ε Numerical ε

π/16 0.981 0.195 3.105 1.508
π/8 0.924 0.383 2.456 1.221

3π/16 0.831 0.556 2.245 1.043
π/4 0.707 0.707 1.657 0.882

5π/16 0.556 0.831 1.782 0.893
3π/8 0.383 0.924 2.237 1.187
7π/16 0.195 0.981 2.452 1.254

Table 5. Same as Table 4, except the superlattice has a
rational wave number ratio. The parameters are α = 1,
δ = 1, and κ2 = 3κ1/2 = 3.

θ V1 V2 Analytical ε Numerical ε

π/16 0.981 0.195 1.721 0.556
π/8 0.924 0.383 1.324 0.519

3π/16 0.831 0.556 1.152 0.505
π/4 0.707 0.707 1.077 0.510

5π/16 0.556 0.831 1.069 0.542
3π/8 0.383 0.924 1.128 0.601
7π/16 0.195 0.981 1.294 0.692

Table 6. Same as Table 4, except the superlattice has an
irrational wave number ratio. The parameters are α = 1,
δ = 1, and κ2 =

√
2κ1 =

√
2.

θ V1 V2 Analytical ε Numerical ε

π/16 0.981 0.195 1.721 0.642
π/8 0.924 0.383 1.333 0.511

3π/16 0.831 0.556 1.167 0.453
π/4 0.707 0.707 1.096 0.421

5π/16 0.556 0.831 1.093 0.410
3π/8 0.383 0.924 1.159 0.409
7π/16 0.195 0.981 1.340 0.394
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for κ2/κ1 = 3 are shown in Tables 1 and 4, those
for κ2/κ1 = 3/2 are shown in Tables 2 and 5, and
those for κ2/κ1 =

√
2 are shown in Tables 3 and

6. Strictly speaking, our perturbative analysis does
not apply to the numerical results in Tables 1, 4–6
because ε is too large. However, one can rescale the
parameter V0 to reduce the size of εcr so that the
analysis leading to (45) is valid. From (41), we see

that ki ∝
√

V0 and hence that εcr ∝ 1/V0. We nev-
ertheless use V0 = 1 in Tables 4–6 to allow a more
direct comparison with the results in Tables 1–3.

When ε is small, resonance regions arise from
invariant tori of the form (1/2)P 2

R + (1/2)δR2 +
(1/4)αR4 = Ci = constant, where i ∈ {1, 2}
denotes whether the resonance is respect to the
primary or secondary lattice. Poincaré sections for
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Fig. 1. Poincaré sections, strobed at 2mπ/κ1 = 2mπ (for integer m), for Eq. (6) for an attractive condensate with a negative
chemical potential. These plots, whose horizontal axis is R and whose vertical axis is PR = R′ = dR/dx, depict the case
θ = π/4, so that the primary and secondary lattices contribute equally. The initial conditions for the inner (red) and outer
(blue) Poincaré sections are (R, R′) = (1.624, 0) and (R, R′) = (2.452, 0), respectively. (We use initial conditions with both
positive and negative R(0) in appropriate plots.) The lattice depths are (a) ε = 0, (b) ε = 0.20, (c) ε = 0.41, (d) ε = 0.45, and
(e) ε = 0.70. Observe the onset of global chaos in the inner trajectory.



954 V. P. Chua & M. A. Porter

(e)

Fig. 1. (Continued )

an attractive BEC with a negative chemical poten-
tial and parameters κ1 = 1, κ2 = 3κ1 = 3,
θ = π/4, and ε = 0, 0.20, 0.41, 0.45, 0.70,
are depicted in Fig. 1. (Numerical integration was
performed using a Runge–Kutta integrator with
step size 0.01.) The inner curves correspond to res-
onances with respect to the primary lattice har-
monic. The outer curves correspond to resonances
with respect to the secondary lattice harmonic.

Initial conditions for the inner and outer curves
were obtained by substituting Y ∗(i) = P

(i)
1 ≈ p

(i)
1 =

p(i) and q(i) = 0 for i ∈ {1, 2} into (22) to deter-
mine R(0) when R′(0) = 0. (The approximation
of P

(i)
1 by p

(i)
1 is better for smaller ε and exact for

ε = 0. We use initial conditions obtained from ε = 0
in our numerical simulations.) The spatial profiles
R = R(x) for ε = 0.41 and ε = 0.45 are shown in
Figs. 2 and 3, respectively.
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Fig. 2. Spatial profiles R = R(x) for an attractive condensate with a negative chemical potential. Trajectories are plotted
at the same initial conditions as in Fig. 1. The parameters are κ1 = 1, κ2 = 3, θ = π/4, and ε = 0.41. (a) Trajectories from
x = 0 to x = 200. (b) Magnified view of trajectories from x = 0 to x = 40.
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Fig. 3. Spatial profiles R = R(x) for an attractive condensate with a negative chemical potential. Trajectories are plotted
at the same initial conditions as in Fig. 1. The parameters are κ1 = 1, κ2 = 3, θ = π/4, and ε = 0.45. (a) Trajectories from
x = 0 to x = 200. (b) Magnified view of trajectories from x = 0 to x = 40.

Poincaré sections for an attractive BEC with a
positive chemical potential and parameters κ1 = 1,
κ2 = 3, θ = π/4, and ε = 0, 0.52, 0.83, 0.96, 1.15
are depicted in Fig. 4. The inner and outer curves

are defined as above. The spatial profiles R = R(x)
for ε = 0.83 and ε = 0.96 are shown in Figs. 5 and
6, respectively. Initial conditions were determined
just as for the case of negative chemical potentials.
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Fig. 4. Poincaré sections, strobed at 2mπ/κ1 = 2mπ (for integer m), for Eq. (6) for an attractive condensate with a positive
chemical potential. These plots, with axes defined as in Fig. 1, depict the case θ = π/4, so that the primary and secondary
lattices contribute equally. The initial conditions for the inner (red) and outer (blue) Poincaré sections are (R,R′) = (0.873, 0)
and (R,R′) = (2.366, 0), respectively. The lattice depths are (a) ε = 0, (b) ε = 0.40, (c) ε = 0.83, (d) ε = 0.96, and
(e) ε = 1.15. Observe the onset of global chaos in the inner trajectory.
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Fig. 4. (Continued )
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Fig. 5. Spatial profiles R = R(x) for an attractive condensate with a positive chemical potential. Trajectories are plotted at
the same initial conditions as in Fig. 4. The parameters are κ1 = 1, κ2 = 3, θ = π/4, and ε = 0.83. (a) Trajectories from x = 0
to x = 200. (b) Magnified view of trajectories from x = 0 to x = 40.
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Fig. 6. Spatial profiles R = R(x) for an attractive condensate with a positive chemical potential. Trajectories are plotted at
the same initial conditions as in Fig. 4. The parameters are κ1 = 1, κ2 = 3, θ = π/4, and ε = 0.96. (a) Trajectories from x = 0
to x = 200. (b) Magnified view of trajectories from x = 0 to x = 40.

5. Conclusion

In this work, we derived analytically an upper
bound for the critical lattice depth at which the
spatial dynamics of BECs in superlattice poten-
tials exhibits a transition from local to global chaos.
This transition arises from overlap between spatial
resonances with respect to individual lattice har-
monics. We considered attractive BECs with both

positive and negative chemical potentials and inves-
tigated the change in the derived estimate as the
relative superlattice amplitudes from its two har-
monics are adjusted. We also extracted the sizes of
the associated resonance zones. To obtain our esti-
mates, we examined coherent structure solutions of
the Gross–Pitaevskii equation governing the mean-
field dynamics of BECs and applied Chirikov’s
overlap criterion to the resulting parametrically
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forced Duffing oscillator describing the BEC spatial
dynamics. We supported our analytical work with
numerical simulations.
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Deconinck, B., Kutz, J. N. & Promislow, K. [2001a]
“Stability of attractive Bose–Einstein condensates in
a periodic potential,” Phys. Rev. E 64, 056615.

Bronski, J. C., Carr, L. D., Deconinck, B. & Kutz,
J. N. [2001b] “Bose–Einstein condensates in standing
waves: The cubic nonlinear Schrödinger equation with
a periodic potential,” Phys. Rev. Lett. 86, 1402–1405.

Bronski, J. C., Carr, L. D., Deconinck, B., Kutz, J. N.
& Promislow, K. [2001c] “Stability of repulsive Bose–
Einstein condensates in a periodic potential,” Phys.
Rev. E 63, 036612.

Brusch, L., Zimmermann, M. G., van Hecke, M.,
Bär, M. & Torcini, A. [2000] “Modulated amplitude
waves and the transition from phase to defect chaos,”
Phys. Rev. Lett. 85, 86–89.

Brusch, L., Torcini, A., van Hecke, M., Zimmermann,
M. G. & Bär, M. [2001] “Modulated amplitude waves
and defect formation in the one-dimensional complex
Ginzburg–Landau equation,” Physica D 160, 127–
148.

Burnett, K., Edwards, M. & Clark, C. W. [1999] “The
theory of Bose–Einstein condensation of dilute gases,”
Phys. Today 52, 37–42.

Cataliotti, F. S., Fallani, L., Ferlaino, F., Fort, C.,
Maddaloni, P. & Inguscio, M. [2003] “Superfluid

current disruption in a chain of weakly coupled Bose–
Einstein condensates,” New J. Phys. 5, 71.1–71.7.

Dalfovo, F., Giorgini, S., Pitaevskii, L. P. & Stringari, S.
[1999] “Theory of Bose–Einstein condensation in
trapped gases,” Rev. Mod. Phys. 71, 463–512.

Davis, K. B., Mewes, M.-O., Andrews, M. R., van
Druten, N. J., Durfee, D. S., Kurn, D. M. &
Ketterle, W. [1995] “Bose–Einstein condensation in
a gas of sodium atoms,” Phys. Rev. Lett. 75, 3969–
3973.

Donley, E. A., Claussen, N. R., Cornish, S. L., Roberts,
J. L., Cornell, E. A. & Weiman, C. E. [2001] “Dynam-
ics of collapsing and exploding Bose–Einstein conden-
sates,” Nature 412, 295–299.

Eksioglu, Y., Vignolo, P. & Tosi, M. [2004] “Matter-wave
interferometry in periodic and quasi-periodic arrays,”
Opt. Commun. 243, 175–181.

Goldstein, H. [1980] Classical Mechanics, 2nd
edition (Addison-Wesley Publishing Company, Read-
ing, MA).

Greiner, M., Mandel, O., Esslinger, T., Hänsch, T. &
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