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Abstract—We apply spectral clustering and multislice mod-
ularity optimization to a Los Angeles Police Department field
interview card data set. To detect communities (i.e., cohesive
groups of vertices), we use both geographic and social information
about stops involving street gang members in the LAPD district
of Hollenbeck. We then compare the algorithmically detected
communities with known gang identifications and argue that
discrepancies are due to sparsity of social connections in the
data as well as complex underlying sociological factors that blur
distinctions between communities.

Index Terms—Clustering algorithms, network theory (graphs)

I. INTRODUCTION

Many networks can be partitioned into communities, such

that they consist of cohesive (and often dense) groups of

vertices with sparse connections between distinct groups [1].

In this paper, we algorithmically detect communities in a social

network based on sparse geosocial information. The data come

from the policing district Hollenbeck (see Fig. 1) in Los

Angeles and were collected using Field Interview cards (FI

cards) from 2009, which the Los Angeles Police Department

(LAPD) collected when interacting with the public. The vast

majority of these stops are noncriminal, and the data include

both the location of the stops and the individuals involved

in them. Using this information, we perform unsupervised

clustering on 748 known gang members to produce groups that

we subsequently compare with known gang affiliations. We

consider two graph-based community-detection techniques:

spectral clustering and multislice modularity optimization.

II. METHODS

To apply spectral clustering or modularity optimization, we

represent the data as a graph. We construct the graph using

a normalized adjacency matrix D−1W , where the matrix W
has edge weights

Wi,j = αSi,j + (1− α)e−d2
i,j/σ

2

, (1)

and D is a diagonal matrix whose ith nonzero entry Di,i =∑
j Wi,j is the strength (i.e., weighted degree) of vertex i. The

matrix S captures social interactions of individuals: Si,j = 1
if i and j met and Si,j = 0 otherwise. The second term in (1)

uses the Euclidean distance di,j between the mean locations

of individuals i and j to describe geographic similarity. The

scale parameter σ is chosen to be the length which is one
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Figure 1. Map of gang territories in the Hollenbeck area of Los Angeles.
[Figure courtesy of Matthew Valasik, UC Irvine.]

standard deviation larger than the mean distance between two

individuals who have been stopped together (but most results

are fairly robust to small changes in its value). The parameter

α ∈ [0, 1] allows us to control the relative contributions of the

social and geographic information in the construction of the

graph.

Spectral clustering [2], [3] uses the eigenvectors of a

graph’s adjacency matrix to cluster the vertices. The first k
eigenvectors of D−1W are approximate indicator functions

for the clustering that solves the NP-complete normalized

cut minimization problem [2], [4], [5]. Consequently, each

data point is given coordinates matching the corresponding

entries of the first k eigenvectors of the normalized geosocial
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adjacency matrix D−1W . Thus the j th data point (out of n
points) is given coordinates (v1j , . . . , v

k
j ), where the eigen-

vectors are vi, i, j = 1, . . . , k, with entries vij , j = 1, . . . n.

The network can subsequently be partitioned using k-means

clustering [6] on the new coordinates. Because the data set

contains members of 31 gangs, we prescribe 31 clusters for

the k-means algorithm. The geo-social data presented in this

paper is high-dimensional and contains a complex overlapping

cluster structure. The complex nature of the data, the simplicity

of the method’s construction, and the existence of efficient

solvers makes spectral clustering appropriate for this problem.

Modularity optimization [1], [7] is a community-detection

method that does not require prior knowledge of the number of

desired communities. It finds cohesive groups within a network

by comparing the network with a null model. One seeks a

partition that maximizes the quality function

Q =
1

2m

∑

i,j

[
(D−1W )i,j − γPi,j

]
δi,j , (2)

which measures the aggregate strength of edges within com-

munities compared to the aggregate strength obtained using

a random null-model network with entries Pi,j . We use

Pi,j =
didj∑

i
di

, which preserves the network’s expected strength

distribution but otherwise randomizes the data. We use a

resolution parameter γ to examine communities at multiple

scales [8], [9] (the canonical value for modularity optimization

is γ = 1), and we use the Kronecker delta δi,j to indicate the

event that vertices i and j belong to the same community.

By maximizing the modularity Q in (2), which we do using

a (locally greedy) Louvain method [10], we aim to algorith-

mically detect communities with significantly stronger intra-

community connections than expected by chance. Modularity

was generalized by Mucha et. al [11] to “multislice” networks,

which consist of layers of ordinary networks in which vertex i
in one slice is connected to the corresponding vertex in other

slices, via a coupling constant ω. For our example, each slice

is a copy of the graph in which we wish to consider a different

value of the resolution parameter γ, and we connect each

vertex in every slice to the corresponding vertex in neighboring

slices (with the slices ordered according to the values of γ)

using interslice edges. This allows us to detect communities

simultaneously over a range of resolution parameters, while

still enforcing some consistency in clustering identical vertices

similarly across slices. We subsequently examine the output

of multislice modularity optimization using network diagnos-

tics such as the number of clusters, purity, and z-scores of

Rand coefficients. This application of multislice modularity

optimization to the FI card data set is an extension of what

was done in [12].

We investigate whether the geosocial information from the

LAPD FI card data suffices to detect community structures that

match the LAPD’s notion of the gang communities in Hol-

lenbeck. Both methods perform well in finding communities,

but we find that two factors conspire to make some clusters

inhomogeneous in their gang composition. First, the social

connections between gang members are very sparse in the data.

Second, sociological reality suggests that gang boundaries are

not as rigorous as is often believed. Just like other people,

gang members are known to play multiple social roles (only

one of which is being a fellow gang member) [13], as they

can also be fathers, sisters, colleagues, teammates, etc. Hence,

although 88.7% (423 out of 477) of all social connections in

our data are intra-gang contacts, inter-gang contact is not a

rare occurrence.

III. RESULTS
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Figure 2. Pie charts made using the network visualization code from Ref. [14]
for spectral clustering and α = 0.4. Each pie represents a community, and
its size indicates the number of gang members in it. The coloring, which
we obtain from the gang colors in Fig. 1, indicates the gang composition
of the communities (see the legend). Each pie is centered at the centroid
of the mean locations of the individuals in its corresponding cluster. The
numbering in the axes uses an arbitrary but fixed origin. For aesthetic reasons,
the units on each axes are approximately 435.42 meters. The connections
drawn between different pies indicate inter-community social connections (i.e.,
nonzero elements of S).

We compare the partition into gangs provided by the LAPD

with the communities that we obtained using spectral cluster-

ing and multislice modularity optimization using purity and

z-Rand scores. To compute purity, see for example [15], we

assign to all vertices in a given community the label of the

gang that appears the most often in that group (in case of a tie

between two or more gangs, the label of one of these gangs

is arbitrarily chosen for all the vertices in that group). The

purity is then given by the fraction of the correctly labeled

individuals in the whole data set. To obtain the z-Rand score,

we compute the number of pairs w of individuals who belong

to the same gang and who are placed in the same community
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by a clustering algorithm. We then compare this number to its

expected value under a hypergeometric distribution with the

same number and sizes of communities. The z-Rand score,

which is normalized by the standard deviation from the mean,

indicates how far the actual w value lies in the tail of a

distribution [16].
For spectral clustering, we compute the mean purity and

z-Rand scores, with error margins given by the standard

deviations, over 10 runs of k-means clustering. The mean

purity is about 0.55 within error margins independent of α,

unless α = 1 (i.e., when we only use social information),

for which the purity plummets to about 0.25. We see a

similar trend in the z-Rand scores, which fluctuate within error

margins around 140 for all values of α except near α = 1,

for which z-Rand is about 6. In Fig. 2 we show the resulting

clustering from a run of k-means clustering with α = 0.4.

Note that the z-Rand score of the partition into true gangs is

about 405.
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Figure 3. Number of communities, purity, and z-Rand scores (vertical axes)
as a function of resolution parameter γ (horizontal axes) for three values of
α and an interslice coupling constant of ω = 1.

Multislice modularity optimization determines the number

of clusters as part of its output. We plot this number, together

with the purity and z-Rand scores for the resulting network

partitions, as a function of the resolution parameter and for

different values of α in Fig. 3. We use an interslice coupling

constant of ω = 1. Small variations in the value of ω did

not qualitatively change the result. We seek plateaus in the

number of clusters that are near a local maximum of the z-

Rand score. The details differ slightly for different α, but the

general picture that arises is that the optimal number of clusters

for our data lies around 18 clusters with a resulting z-Rand

score of about 180. Purity is again roughly constant and again

near 0.5. Note, however, that comparing the purity scores of

two different partitions with different numbers of clusters is

not very meaningful, as purity is biased to favor partitions with

more communities.
For both of the clustering methods that we considered,

changing the value of α (as long as it is strictly less than

1) does not have a big influence on the resulting purity and

z-Rand scores. This suggests that the social component of

our data set is too sparse to significantly improve algorith-

mic clustering. To test whether an improvement might be

expected at all if more information on social interactions

becomes available in the future, we construct a ground-truth
derived social matrix GT (p, q) and run the spectral clustering

algorithm using GT (p, q) as our social matrix (and the same

geographical matrix as before).
The matrix GT (p, q) contains a fraction p of the possible

intra-gang connections (true positives), a fraction q of which

we change from true positives to false positives to simulate

noise. In a sense, p indicates how many connections are

observed and q can be construed as approximating how many

of those are between members of different gangs. The matrix

GT (1, 0) is the full intra-gang matrix; it contains nonzero

entries (of value 1) only for each pair of individuals from

the same gang. Sampling a fraction p of these connections

(uniformly at random) from the strictly upper triangular part

of the matrix, setting the others to 0, and then symmetrizing the

matrix, gives GT (p, 0). Finally, in GT (p, q), we set a fraction

q (again sampled uniformly at random) of all of the nonzero

entries from the strictly upper triangular part to 0, and we

set the same number of 0 entries to 1, and symmetrize again.

In this process, we preserve the diagonal entries at 1 and the

symmetry of the matrix.
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Figure 4. Plots of the purity using S = GT (p, q) in the spectral clustering
algorithm for different values of q (the different plots) and α (the different
curves in each plot) as a function of p. For each set of parameter values, we
compute a purity score from an average over 10 runs of k-means clustering,
and the error bars give the standard deviation over these runs. The dotted
vertical lines indicate the values of p for which the number of true positives
in GT (p, q) is equal to the number of true positives in S.

In Fig. 4, we show the mean purity scores over 10 runs

of k-means clustering as a function of p for various values

of q. The empirical values of p and q for our data set are

p ≈ 0.266 and q ≈ 0.1132 (see the dotted line in the lower

left panel of the figure). We see that increasing p, which can be
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interpreted as collecting more field data about the intra-gang

social connections, has a bigger impact on purity than lowering

q. Using these dotted lines as guidance, we also see that we

cannot expect our current data set to yield network partitions

of significantly higher purity than those we obtained.

We also apply a simple Gaussian mixture model and k-

means algorithm to compare with our spectral clustering and

multislice modularity results.

For the Gaussian mixture model [17], we run the MATLAB

function gmdistribution.fit on the mean location vec-

tors of the individuals in our data set. (It was not possible to

include the social data in the simple model that we used.) This

function uses an expectation maximization (EM) algorithm to

fit 31 two-dimensional Gaussians to the data. This results in

a set of 31 means and 31 standard deviations. To divide the

individuals over 31 different clusters, we assign each point to

its nearest mean using a normalized distance. (We normalized

the distance to each mean by the corresponding variance.)

Using this technique, we again find a purity of about 0.55,

which again demonstrates that geography alone does indeed

account for most of the purity. The z-Rand score is about

100, which is worse than the results that we get with spectral

clustering. Clearly, the inclusion of social data (even sparse

social data) improves the z-Rand score. In this context, it is

noteworthy that the z-Rand score for spectral clustering for

α = 0 is about 120, with a standard deviation of about 19.

Hence, the z-Rand score for the Gaussian mixture model is

only slightly more than one standard deviation removed from

the α = 0 spectral clustering score. It is not trivial to include

the social data in the Gaussian mixture model, so spectral

clustering seems preferable for situations like the present that

combine different types of data.

To implement k-means directly, we run the MATLAB

function kmeans on the columns of the matrix D−1W . We

compute averages over 10 k-means runs, and we find mean

purity scores of about 0.56, which is again comparable (within

about one standard deviation) to the spectral clustering results,

for all α up to about α = 0.8. Among these α-values, the mean

z-Rand scores vary quite a bit, but again they typically lie

within one standard deviation (usually with a somewhat higher

value) of their spectral clustering counterpart. Interestingly,

however, for larger values of α, k-means clustering by itself

performs quite a bit worse than spectral clustering (using the

same α values). Clearly, the embedding using the eigenvectors

of D−1W which spectral clustering uses, is needed to make

the complicated geosocial data structure amenable to k-means

clustering. Our results from Fig. 4 demonstrate that, while for

the current sparse social data the added benefit of incorporating

this data into our method is limited, if the social data were

slightly less sparse (i.e., if the value of p were higher), there

would be a clear benefit from including it, especially when α is

large. The results using the k-means algorithm by itself show

that, exactly for these high α values, k-means performs worse

than spectral clustering, suggesting that spectral clustering

is preferable to k-means clustering by itself, if less sparse

social data become available. Because optimization of multi-

slice modularity performed at a comparable level to spectral

clustering on the data that we studied, we can also draw

similar conclusions when comparing Gaussian mixture model,

k-means algorithm, and optimization of multislice modularity.

IV. CONCLUSIONS

We study communities among gang members in the LAPD

division Hollenbeck by applying spectral clustering and mul-

tislice modularity optimization to an LAPD FI card data set

from 2009. Using only information about where and with

whom the gang members were stopped by the police, we par-

tition a network representation of this data into communities

that correspond to their actual gang affiliations with a purity of

about 0.5. We demonstrated, however, that this lack of purity

seems to arise from the sparsity of intra-gang connections in

the data. It is an interesting question whether this sparsity

is due to the data collecting methods—that is, whether or

not there are many additional unrecorded and/or unobserved

intra-gang social interactions in public—or whether it is an

inherent property of the system (e.g., perhaps members of

the same gang do not interact with each other particularly

often in public). The additional fact that each individual in

the data set is on average connected to only 1.2754 ± 1.8946

(with the number always nonnegative, of course) other people

suggests that the former explanation might play a dominant

role. Indeed, the maximum number of connections for an

individual in the data set is 23, but 315 of the 748 gang

members (42%) are not connected to any other individual,

and it seems all but inconceivable that such a high percentage

of gang members truly never interact with any other gang

members in public.

It has been documented that gangs can vary substantially

in their extent of internal organization [18]. The large mixed-

gang community that we observe in Fig. 2 near the coordinates

(4549, 1287) is located in an area of a housing project where

several gangs claimed turf. At the time the data were collected,

this project had been recently reconstructed and had displaced

resident gang members. However, even with these individuals

scattered across the city, they seemed to remain tethered to

their social spaces in their established territories. [19], [20]

Further studies of mathematical, data analytical, and so-

ciological nature will hopefully shed additional light on the

question whether gangs are sharply delineated social groups.

In the current study, we have attempted to illuminate one piece

of this puzzle.
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