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Abstract Multiplex networks are a type of multilayer network in which entities are con-
nected to each other via multiple types of connections. We propose a method, based on
computing pairwise similarities between layers and then doing community detection, for
grouping structurally similar layers in multiplex networks. We illustrate our approach using
both synthetic and empirical networks, and we are able to find meaningful groups of layers in
both cases. For example, we find that airlines that are based in similar geographic locations
tend to be grouped together in a multiplex airline network and that related research areas in
physics tend to be grouped together in a multiplex collaboration network.

Keywords Multilayer networks · Multiplex networks · Clustering · Mesoscale structures ·
Layer communities · Community detection

1 Introduction

A network is a widely-used representation to describe the connectivity of a complex system.
In a network, entities (represented by nodes) are adjacent to each other via edges [1]. The
best-studied type of network is a graph, but recently multilayer networks have been used
to encode increasingly complicated structures—such as multiplex networks, interconnected
networks, and time-dependent networks [2,3]—using a network formalism. In a multilayer
network, each entity is represented by a “physical node”, and the manifestation of a given
node in a specific layer (i.e., a node-layer) is a “state node”.

A multiplex network is a special kind of multilayer network in which physical nodes can
be adjacent to each other through different types of intralayer edges and a given entity on a
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layer can be adjacent to itself on another layer through an interlayer edge. One can thereby
represent networks with multiple types of relations. The study of multilayer networks is per-
haps the most active area of network science, and multiplex networks (i.e., multirelational
networks) in particular have been used to investigate many biological, social, and techno-
logical systems—including cellular interactions [4], contagions [5], social relationships [6],
scientific collaborations [7], and flight connections [8].

In many empirical multiplex networks, there are intralayer edges between the same pairs
of entities in numerous layers [9,10], leading to considerable edge overlap. When a lot of
edges overlap in a pair of layers, it is likely that those two layers possess many similar
structures in their connectivity patterns [9,11–14], and such similarities may be useful for
characterizing similarities among multiple types of connections. For example, in a multiplex
communication network (e.g., text messages, phone calls, and e-mails), in which the physical
nodes represent people and the layers represent different communication media, two people
who communicate in one layer may also be likely to communicate in other layers, yielding
edge overlaps [11].

In a prominent study of a multiplex network, Szell et al. examined six types of
interactions—friendship, communication, trade, enmity, aggression, and punishment—
between 300,000 players in a massively multiplayer online role-playing game (MMORPG)
called Pardus [10]. They found significant edge overlaps among positive interactions (com-
munication, friendship, and trade) and significant edge overlaps among negative interactions
(enmity, punishment, and aggression). This is sensible, as players who communicate with
each other are likely to be friends, and players who attack each other are likely to be enemies.
In other words, positive interactions are likely to possess edge overlaps with each other, and
the same is true for negative interactions. Understandably, Szell et al. also found few edge
overlaps between positive interactions and negative interactions, illustrating that different
types of interactions can sometimes fall into natural groups according to their structural
similarities. That is, in Pardus, the six interactions can be divided into a group of positive
interactions (friendship, communication, and trade) and a group of negative interactions
(enmity, aggression, and punishment).

The tendency for edge overlaps to occur in a heterogeneous manner that depends on
relationship type motivates us to introduce the concept of layer communities, a group of
structurally similar layers that are structurally dissimilar to other layers. A layer community
is a type of mesoscale structure that can occur in a multilayer network (such as a multi-
plex network). Studying mesoscale structures in networks can be very insightful, and many
different types of such structures have been examined. The best-studied type of mesoscale
structure is community structure [15–17], and other well-known types of mesoscale structure
are core–periphery structure [18] and roles and positions [19]. In contrast to standard com-
munity structure, we wish to cluster layers rather than nodes, and most mesoscale structures
that have been examined are concerned with clustering nodes. For example, a prototypical
community (which we will call a “node community”) consists of a set of densely connected
nodeswith sparse connections to other sets of nodes [15–17]. Therefore, edge densitieswithin
node communities tend to be high, and edge densities between node communities tend to be
low. One can also cluster edges to study “edge communities” [20], and in the present paper
we cluster layers to study “layer communities”.

Past studies of layer similarities in multilayer networks have focused primarily on
node-characteristic similarities, such as interlayer degree correlations and node-community
similarities [7,13,14,21]. These ideas have yielded insights into the presence of nontrivial
multiplex correlations in networks and into their effects on phenomena such as percolation
and spreading processes [22,23]. For example, Iacovacci et al. used a node-characteristic sim-
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ilarity measure to find layer communities (though without explicitly developing the notion
of “layer communities” or proposing such terminology) in a collaboration network of pub-
lications in physics journals and a multiplex social network in the Department of Computer
Science at Aarhus University [6,7,24]. Recent work by Mondragón et al. [25] built on these
ideas. Using a complementary approach, Stanley et al. [26] examined the clustering of net-
work layers using a stochastic block model. De Domenico and Biamonte [27] defined a
quantum-entropy similaritymeasure by calculating Jensen–Shannon (JS) divergence between
two layers and used theirmeasure to cluster layers in amultiplex humanmicrobiome network.

To study layer communities, we define a novel measure of interlayer structural similar-
ity using calculations of edge overlaps. That is, rather than measuring similarity in node
characteristics or similarity in quantum entropy as in previous work, we directly measure
similarity in connection patterns. Importantly, our goal is to examine layer similarity rather
than layer redundancy, which can be used for aggregating layers in multilayer networks to
reduce system size [9,28–30]. We seek to develop a method that can meaningfully classify
different types of connections in multilayer networks using measures of layer similarities.
Such classification has the potential to help infer commonalities between different types of
connections in large networks (e.g., commonpurpose, physicalmechanisms, and constraints),
and we successfully demonstrate the utility of our approach using three multiplex networks
constructed from empirical data.

The rest of our paper is structured as follows. In Sect. 2, we propose a new interlayer
similarity measure, called connection similarity, which is based on pairwise similarity in
connection patterns.We then use thismeasure to cluster layers in syntheticmultiplex networks
in Sect. 3.1 and in three empirical multiplex networks in Sect. 3.2. We conclude in Sect. 4.

2 Connection Similarity

Consider a multiplex network that has M layers and N nodes in each layer, where we assume
for simplicity that every node exists on every layer and that there are no interlayer edges (so
that we are studying edge-colored multigraphs). Following convention [2,31], we use the
Roman alphabet to label nodes and the Greek alphabet to label layers. A multiplex network
G = {G1, . . . ,Gα, . . . ,GM } without interlayer edges is a set of M monolayer networks,
where Gα denotes the monolayer network on layer α; we represent Gα as an N ×N weighted
adjacency matrix Wα . An element wα

i j of W
α represents the weight of an intralayer edge

from node i to node j on layer α, where i, j ∈ {1, . . . , N } and α ∈ {1, . . . , M}. See [11] and
[12] for discussions of statistical-mechanical formulations for studying multiplex networks
and correlations between layers of such networks.

A simple way to quantify interlayer similarity is to count the number of edge overlaps
between two layers (ignoring the weights of the edges) [9,11–14]. There is an overlapping
edge between nodes i and j in layers α and β if and only if there is an edge between nodes
i and j in both α and β (i.e., θ(wα

i j ) = 1 and θ(w
β
i j ) = 1, where θ(x) = 1 if x > 0 and

θ(x) = 0 otherwise).
We consider the local overlap [32,33]

oαβ
i =

∑

j

θ(wα
i j )θ(w

β
i j ) ,

which counts the number of overlapping edges that are incident to node i in both layer α and
layer β. In an undirected multiplex network, the local overlap oαβ

i quantifies the similarity
between the connection patterns of node i in layer α and node i in layer β.

123



Layer Communities in Multiplex 1289

Fig. 1 Schematic illustrations of
(a) undirected local similarity

φ
αβ
i and (b) directed local

similarity φ
αβ
i,dir

The local overlap oαβ
i does not account for the intralayer degrees of node i in layers α and

β, even though degree contributes to the total number of overlapping edges. To take degree
into account in an undirected multiplex network, we define local similarity

φ
αβ
i = oαβ

i

kα
i + kβ

i − oαβ
i

∈ [0, 1] , (1)

where kα
i = ∑

j θ(wα
i j ) is the degree of node i in layer α. Local similarity φ

αβ
i calculates the

number of overlapping edges that are incident to node i in layers α and β as a proportion of
the number of unique edges that are incident to node i in the two layers (see Fig. 1a). The
local similarity φ

αβ
i = 1 if and only if all of the edges that are incident to node i in layers

α and β overlap, and φαβ = 0 if and only if none of the edges that are incident to node i in
layers α and β overlap.

We then define connection similarity

φαβ = 1

N

∑

i

φ
αβ
i ∈ [0, 1] (2)

to calculate the mean local similarity between layers α and β, and we thereby quantify the
similarity between the connection patterns in the two layers.

Thus far, we have considered connection similarity in an undirected multiplex network,
but it is straightforward to generalize this notion to directed multiplex networks. First, we
distinguish between the number of overlapping edges that are incident to node i in layers α

and β [specifically, we calculate oαβ
i,in = ∑

j θ(wα
i j )θ(w

β
i j )] and the number of overlapping

edges that are incident from node i in layers α and β [specifically, we calculate oαβ
i,out =

∑
l θ(wα

li )θ(w
β
li )]. We also need to distinguish between in-degree kα

i,in = ∑
j θ(wα

j i ) and
out-degree kα

i,out = ∑
l θ(wα

il).
We define connection similarity in a directed multiplex network as

φαβ = 1

2N

∑

i

(
φ

αβ
i,in + φ

αβ
i,out

)
, (3)

where

φ
αβ
i,dir = oαβ

i,dir

kα
i,dir + kβ

i,dir − oαβ
i,dir

(4)

for dir ∈ {in, out} (see Fig. 1b). Equations (2) and (3) are equivalent in an undirectedmultiplex
network, because wα

i j = wα
j i in that case.
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Vörös et al. recently defined a layer similarity measure similar to connection similarity
[34]. Their similarity measure is

Jαβ = nαβ
11

nαβ
11 + nαβ

10 + nαβ
01

, (5)

where

nαβ
mn =

∑

i< j

I [θ(wα
i j ) = m, θ(wα

i j ) = n] , m, n ∈ {0, 1} , α, β ∈ {1, . . . , M} , (6)

where I (A) is the indicator function of the set A. Rewriting their similarity measure using
our notation yields

Jαβ = Oαβ

mα + mβ − Oαβ
, (7)

where Oαβ = ∑
i< j θ(wα

i j )θ(w
β
i j ) is the global edge overlap and mα is the total number of

edges on layer α (and mβ is defined analogously). The quantity Jαβ is a Jaccard similarity
between layers α and β.

In comparison to Jaccard similarity, connection similarity puts more emphasis on local
overlap than global overlap. Vörös et al. [34] used their similarity measure to cluster layers
in a high-school social network and thereby reduce system size. In Sect. 3.2.4, we compare
the layer communities that we find using connection similarity with those that we find using
their Jaccard similarity measure.

3 Detection of Layer Communities

To find layer communities in a multiplex network G, we create a monolayer network GL

with adjacency matrix A in which the nodes are the layers in G and the edge weights are the
interlayer similarities between the layers in G. One can then detect node communities in GL

using any of the myriad available methods [17]. In this paper, we use the Louvain method
[35] and InfoMap [36,37] on GL to find layer communities of a multiplex network G. We
examine both synthetic networks and empirical networks.

Iacovacci et al. also constructed a similarity network from a multiplex network to cluster
layers [7,24], but they used an interlayer node-similarity measure rather than connection
similarities. To define a measure of layer similarity, they used the idea of a network ensemble
[38,39]. A network ensemble (i.e., a probability distribution on networks) is a set of possible
networks that satisfy some structural constraints, such as certain node properties (e.g., the
degree or community assignment in a specified layer) and the probability of drawing each
network from the collection. Let qα

i ∈ {1, . . . , Qα} (where Qα is the maximum value of the
property) denote some property of node i in layer α. Given some property qα

i , Iacovacci et
al. defined the class cα

i = f (kα
i , qα

i ) ∈ {1, . . . ,Cα} (where Cα denotes the total number of
classes in layer α) of a node for some function f . They then defined the entropy of layer α

with respect to node property qα
i as

�kα• ,qα• = log

[ ∏

c<c′

(
nα
c n

α
c′

eα
c,c′

) ∏

c

(
nα
c (nα

c′ − 1)/2

eα
c,c

)]
, (8)

where eα
c,c′ is the number of edges between nodes in class c and nodes in class c′. The entropy

�kα• ,qα• measures the amount of information in layer α with respect to property qα
i . They then

calculated a z-score
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�
kα• ,qβ• =

Eπ [�
kα• ,π(qβ• )

] − �kα• ,qα•

σπ [�
kα• ,π(qβ• )

] (9)

to quantify the amount of information on layer α relative to a uniformly random permuta-
tion π of node properties qβ

i on layer β. Here, Eπ [�
kα• ,π(qβ• )

] is the expected entropy and

σπ [�
kα• ,π(qβ• )

] is the standard deviation over the random permutation π . Finally, Iacovacci et

al. defined a symmetric indicator function

�S
αβ = 1

2

(�
kα• ,qβ•

�kα• ,qα•
+

�
kβ• ,qα•

�
kβ• ,qβ•

)
(10)

to quantify the similarity between layers α and β with respect to property qα
i . In this article,

we refer to the indicator function �S
αβ as the mesoscopic similarity between layers α and β.

The crucial difference between our approach and that of Iacovacci et al. [7,24] is that
we measure the connection similarity (an edge-centric property) between two layers instead
of a similarity of a node property. We also calculate layer similarity based on a measure of
edge overlaps instead of using an explicitly information-theoretic approach. In Sect. 3.2.4,
we compare the layer communities that we find using our approach and those that we find
using the approach of Iacovacci et al. in a network constructed from empirical data.

Domenico et al. proposed a layer similarity measure that quantifies the Jensen–Shannon
(JS) distance between the Von Neumann entropies of two layers [9]. They defined the Von
Neumann entropy of a layer α as

h(wα
i j ) = −Tr(Lα log Lα) , (11)

where

Lα
i j = 1∑

i< j θ(wα
i j )

[
diag(kα

i ) − θ(wα
i j )

]
(12)

is an element of Lα . They defined the JS distance between layers α and β as

Dαβ
JS =

√

h

(
1

2

[
wα
i j + w

β
i j

])
− 1

2

[
h

(
wα
i j ) + h(w

β
i j

)]
∈ [0, 1] . (13)

Domenico et al. showed that 1 − Dαβ
JS can be used to quantify similarity between layers α

and β. They used a quality function based on such a measure to cluster layers and thereby
reduce the number of layers in a multilayer network. In our subsequent discussions, we refer
to the quantity 1 − Dαβ

JS as the JS similarity between layers α and β. Instead of focusing on
the difference in information contained in the two layers, our goal is to directly compare the
connection patterns of pairs of layers. In Sect. 3.2.4, we compare the layer communities that
we find using the connection similarity measure and the JS similarity measure.

3.1 Layer Communities in Benchmark Networks

To test our approach, we construct multiplex benchmark networks with M layers, N nodes
in each layer, and Q planted layer communities. The planted layer community assignment is
indicated by the vector SB, where Sα

B ∈ {1, . . . , Q} is the planted layer community of layer
α (and we use analogous notation for the planted layer community of layer β).

To create one of these benchmark networks, we connect nodes i and j on layer α with
probability pα

i j ∈ [0, 1]. In other words, for each i and j (with i �= j), we set θ(wα
i j ) = 1 with

probability pα
i j and θ(wα

i j ) = 0with probability 1− pα
i j . To introduce interlayer similarity into
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these benchmarks, we sample pα
i j from a multivariate Gaussian copula. The Gaussian copula

is a distribution over the cube [0, 2p]MN (N−1)/2, where p ∈ [0, 0.5]. In other words, pαβ
i j

is uniformly distributed between 0 and 2p, where p is the mean probability that two nodes
are adjacent. We construct the copula’s correlation matrix so that pα

i j and pβ
i j are positively

correlated if and only if layers α and β are in the same layer community. Specifically, the
correlation between pα

i j and pβ
i j is ρ ∈ [0, 1], where ρ > 0 if Sα

B = Sβ
B and ρ = 0 otherwise.

We henceforth use the term “probability correlation” for ρ.
We distinguish our notation for the layer communities that we find using the Louvain

method [35] from the layer communities that we find using InfoMap [36,37] by writing the
former as SLouv and the latter as SInfo.

A community assignment is a vector whose components indicate the community of each
node. To compare two community assignments X and Y, we calculate normalized mutual
information (NMI) [40,41] between them:

NMI(X,Y) = H(X) + H(Y) − H(X,Y)

H(X)H(Y)
, (14)

where H(X) is the Shannon entropy of community assignment X (and H(Y) is the Shannon
entropyof community assignmentY) and H(X,Y) is the joint Shannonentropyof community
assignments X and Y.

When NMI(X,Y) = 1, the two layer community assignments X and Y are equivalent.
That is, Xα = Xβ if and only if Y α = Y β and Xα �= Xβ if and only if Y α �= Y β . When
NMI(X,Y) = 0, the two layer community assignments X and Y are independent of each
other.

In Fig. 2, we show that as the correlation ρ increases, there is a sigmoid-like transition
in NMI(SLouv,SB) from 0 to 1. This suggests that our method is able to detect the planted
layer communities when the correlation ρ is above some threshold. However, we find in these
computations that InfoMap [36,37] clusters all of the layers into the same layer community.
Hence, in our computations, NMI(SInfo,SB) = 0 for all correlations ρ. This suggests that
InfoMap [36,37] is unable to find the correct planted layer communities, and we see that our
approach gives different results for different node-community detectionmethods. In contrast,
the Louvain method [35] is able to detect the planted layer communities when ρ is above a
certain threshold.

Wealsofind (seeFig. 2) that the sigmoid-like transition becomes delayed andprogressively
more gradual as the probability p decreases from 0.5 to 0.1. This result is reasonable, because
the width of the Gaussian copula decreases as p decreases. Thus, for the same amount of
correlation, layers in different layer communities are less dissimilar at p = 0.1 than they are
at p = 0.2.

3.2 Layer Communities in Empirical Multiplex Networks

We now demonstrate that our approach is able to detect meaningful layer communities in
empirical multiplex networks.

3.2.1 Sampson Monastery Multiplex Social Network

In the 1960s, Sampson recorded eight types of relational ties between 18 members in an
isolated American monastery for 12 months. The eight relations ties are the following: Like,
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Fig. 2 Normalized mutual
information (NMI) between the
layer communities that we obtain
using the Louvain method [35]
and planted layer communities
for different values of the
probability correlation ρ and the
mean probability p that two
nodes are adjacent. The
benchmark multiplex networks in
panel (a) have 500 nodes, 20
layers, and 5 layer communities.
The benchmark multiplex
networks in panel (b) have 300
nodes, 200 layers, and 10 layer
communities. Each data point is a
mean over 100 simulations
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Esteem, Influence, and Praise; and their negative counterparts1 [45,46]. Sampson asked each
respondent to rank the top-three members for each type of relational tie; examples included
“List in order those three brothers whom you most esteemed” and “List in order those three
brothers whom you esteemed least” [45–48]. Following [46], we label the eight relational ties
as follows:Like(+), Like(−), Esteem(+), Esteem(−), Influence(+), Influence(−), Praise(+),
and Praise(−).

Most of the data were collected after several members were expelled from the monastery;
the exception was Like(+), which was collected in three stages. We use the labels Like1(+),
Like2(+), and Like3(+), where Like1(+) and Like2(+) were collected before the expulsion,
but Like3(+) was collected after the expulsion. Using data provided by [49], we construct
a multiplex monastery network with M = 8 layers and N = 18 nodes in each layer. Each
node represents a member of themonastery, intralayer edges represent relational ties between
members, and different layers represent different types of relational ties.

In Fig. 3a, we show the layer communities that we obtain using the Louvain method [35].
The negative relational ties are assigned to the same layer community, and except for Like(+),

1 In his original paper, Sampson used the terms Affect, Esteem, Sanctioning, and Influence (and their coun-
terparts). We use the labels “Praise(−)” and “Like(+)” instead of “Sanctioning” and “Affect”, respectively, in
this article.
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(b)(a)

Like3(+)Like( ) Like2(+)

Like1(+)Esteem( )

Praise( )

Praise(+)Esteem(+)

)

Esteem(+)

Praise( )Like( )

)
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Like1(+)

Like3(+)Like2(+)

Praise(+)

Fig. 3 Layer communities in the Sampson monastery data set detected using (a) the Louvain method [35] and
(b) InfoMap [36,37].We plot the figures using the SpringVisCom algorithm [42,43] from [44].We color-code
the layer communities and use shapes to represent different layer communities

all of the positive relational ties are assigned to the same community. This suggests that the
connectivity patterns of Like1(+), Like2(+), and Like3(+) are structurallymore similar to each
other than they are to those of the other positive relational ties. This is reasonable, because
Like1(+), Like2(+), and Like3(+) describe the same type of relational tie at different times.
However, this result appears to differ from a prior observation that Like1(+), Like2(+), and
Like3(+) reflect a change in group sentiment over time [49].

In Fig. 3b, we show the layer communities that we obtain using InfoMap [36,37]. We find
that the negative relational ties are assigned to one layer community and the positive relational
ties are assigned to another layer community. Similar to the positive and negative interactions
in Pardus (see Sect. 1), the negative relational ties are structurally similar, and the positive
relational ties—Like(+), Esteem(+), Praise(+), and Influence(+)—are structurally similar.
Our results are also consistent with the findings in Boyd [46] that positive relational ties are
highly correlated with each and negative relational ties are highly correlated with each other.
To obtain this insight, Boyd [46] calculated a Pearson correlation between the elements in the
weighted adjacency matrices of different layers. (He flattened the two matrices into vectors
and then calculated the Pearson correlation between the vectors.)

3.2.2 Airline Network

We construct a multiplex airline network using data from [8]. The data set includes the flight
connections between 450 airports for 37 different airlines. All of the airports in the data set are
located in countries that are part of the EuropeanUnion (at the time of data collection in 2011).
The airline multiplex network has M = 37 layers and N = 450 nodes in each layer, although
nodes do not have intralayer edges on all layers. The network is undirected and unweighted.
Each layer represents a different airline, each node in a layer represents an airport, and each
intralayer edge represents an airline-specific flight connection between two airports.

In Fig. 4a, we show the layer communities that we obtain using the Louvain method
[35]. This method partitions the 37 airlines into 10 airline communities, and airlines based
in the same country or in a similar geographic region tend to be assigned to the same layer
community. For example, community 1 consists of all airlines that are based in Turkey,
community 7 includes all airlines that are based in Belgium, and community 5 includes all
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Fig. 4 Layer communities in the airline network detected using (a) the Louvainmethod [35] and (b) InfoMap.
We plot the figures on the left using the SpringVisComm algorithm [42,43]. We color-code and number the
layer communities

airlines that are based in Scandinavian countries. In Fig. 4b, we show the airline communities
that we obtain using InfoMap [36,37]. Airlines that are based in the same country or a similar
geographic region again tend to be assigned to the same layer community.

To build on the above observations, we construct a benchmark community assignment SB
such that Sα

B = Sβ
B if and only if airlines α and β are based in the same country or in the same

geographic region. More specifically, we assign Wideroe, Finnair, Norwegian Air Shuttle,
and Scandinavian Airlines to one layer community because it is all based in Scandinavian
countries, and we assign each of the other airlines to a layer community that corresponds to
the country inwhich it is based.We calculate the pairwise NMIs between SLouv, SInfo, and SB.
In Fig. 5, we show that NMI(SLouv,SB) and NMI(SInfo,SB) are both above 0.8. This result
indicates that the airline communities correspond roughly to the countries or geographic
regions in which the airlines are based. We obtain NMI(SLouv,SInfo) ≈ 0.8942, so the two
community assignments are similar. In fact, many airlines are assigned to exactly the same
layer community. For example, communities 1, 2, 5, 8, 9, and 10 in Fig. 4a are identical to
communities in Fig. 4b.
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Fig. 5 Pairwise NMIs between SLouv, SInfo, and SB in the airline network

Our results are consistent with past research. Cardillo et al. [8] found that major airlines
largely follow a hub-and-spoke structure, as there are a few airport hubs in the major cities of
a country and many smaller airports scattered around the country that connect to these hubs.
This kind of structure allowsmajor airlines—and, in particular, national airlines—to cover an
entire country or geographic region [8,50,51]. Following a hub-and-spoke structure, airlines
that primarily serve the same country or region tend to choose similar large cities in which
to set up hubs to connect to remote airports. Consequently, one expects them to have large
overlapping connections centered around these common hubs.

Nicosia and Latora [14] reported that (due to competition) there is a small overlap in the
activity pattern of airlines that operate in the same region. Moreover, traditional airlines such
as Lufthansa tend to have a large overlap in activity pattern with other airlines, whereas low-
cost airlines such as easyJet tends to avoid such overlaps. DeDomenico et al. [9] reported that
their algorithmwas unable to substantially reduce the number of layers in themultiplex airline
network from [8] via aggregation of layers that are similar in structure based on JS similarity,
and they reasoned that airlines tend to minimize edge overlaps to avoid competition. Our
results show that airlines that operate primarily in the same region tend to have more edge
overlaps than airlines that operate primarily in different regions. We are also able to identify
airlines that operate in similar regions by grouping them into layer communities.

3.2.3 American Physical Society (APS) Collaboration Network

The American Institute of Physics developed the Physics and Astronomy Classification
Scheme (PACS) to identify fields and subfields of physics in journals such as theAPS journals.
PACS codes are divided into sections (e.g., “10. The Physics of Elementary Particles and
Field”) and subsections (e.g., “11. General theory of fields and particles” and “12. Specific
theories and interaction models; particle systematics”).

We construct a multiplex APS collaboration network (with N = 2598 nodes and M = 65
edges) from an APS journal data set [52]. We include papers that were coauthored by 10
or fewer people and were published between 2010 and 2014. Each layer in the multiplex
network represents a PACS subsection (e.g., “21. Nuclear structure”). A node in a layer
represents an author, and there is an edge between two authors in a layer if and only if they
coauthored a paper that is classified in the PACS subsection corresponding to that layer. Each
person exists on every layer, but nodes do not possess an intralayer edge on all layers.

In Fig. 6a, we show the PACS-subsection layer communities that we obtain using the
Louvain method [35]. As expected, these layer communities correspond to related research
areas in physics. For example, community 5 includes PACS subsections associated with
nuclear physics, and community 7 includes PACS subsections associated with astrophysics.
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Fig. 6 Layer communities in a physics collaboration network. We detect layer communities using (a) the
Louvain method [35] and (b) InfoMap [36,37]. We plot the figures on the left using the SpringVisCom
algorithm [42,43]
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Fig. 7 Pairwise NMIs between SLouv, SInfo, and SB in the APS collaboration network

Our results are also consistent with Iacovacci et al.’s finding that layers related to condensed-
matter physics and interdisciplinary physics are assigned to the same layer community using
their algorithm [7].

In Fig. 6b, we show the PACS-subsection layer communities that we obtain using InfoMap
[36,37]. Community 4 in Fig. 6a is nearly identical to community 3 in Fig. 6b, with the
exception that “26. Nuclear astrophysics” is in the latter but not in the former. Additionally,
community 3 in Fig. 6a is a combination of communities 1 and 2 in Fig. 6b. These results
suggest that both the Louvain method and InfoMap are able identify structural similarities in
these layers. The NMI between these partitions is NMI(SLouv,SInfo) ≈ 0.4968, suggesting
that the layer community assignments are similar (though far from identical).

We now compare SLouv and SInfo with a benchmark community assignment SB. We use
PACS sections as the benchmark communities. To illustrate, subsections “21. Nuclear struc-
ture” and “23. Radioactive decay and in-beam spectroscopy” both belong to the benchmark
layer community “20. Nuclear Physics”, whereas subsection “01. Communication, educa-
tion, history, and philosophy” belongs to the benchmark layer community “00. General”.
We calculate that NMI(SLouv,SB) and NMI(SInfo,SB) are about 0.45 (see Fig. 7), which
suggests that the layer communities have a strong similarity (though are far from identical)
to classification based on PACS sections.

3.2.4 Comparison with Jaccard, JS, and Mesoscopic Similarities

We now compare connection similarity with Jaccard, JS [9], and mesoscopic [7] similarites
by applying them to cluster airlines in the airline data set that we discussed in Sect. 3.2.2.

To calculate the mesoscopic similarity between layers, we first use the Louvain method
to find node communities on each layer. We then use the algorithm of Iacovacci et al. [53] to
calculate mesoscopic similarity with respect to these node communities.

We use the Louvain method [35] to cluster airlines in the interlayer similarity matrices
that we obtain from these similarity measures. We denote the layer communities that we
find using connection similarity measure as S, those that we find with the Jaccard similarity
measure as SJ, those that we find with the JS similarity measure as SJS, and those that we find
with the mesoscopic similarity measure as Sθ . As in Sect. 3.2.2, we construct a benchmark
layer community SB such that Sα

B = Sβ
B if and only if airlines α and β are based in the same

country or in the same geographic region.
In Fig. 8, we show the airline communities that we obtain using the four different similarity

measures. In Fig. 9, we plot the pairwise NMIs between S, SJ, SJS, Sθ , and SB. The airline
communities that we find using connection similarity are similar to those that we obtain using
Jaccard similarity and JS similarity, but they are rather different from those that we find using
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Fig. 8 Airline layer communities that we find using (a) Jensen–Shannon (JS) distance, (b) the mesoscopic
similarity indicator function, (c) Jaccard similarity, and (d) connection similarity. We detect these layer com-
munities using the Louvain method [35]

mesoscopic similarity. We obtain an NMI between S and SJ of about 0.82, an NMI between
S and SJS of about 0.58, and an NMI between S and Sθ of only about 0.24.

We compare the airline communities that we find using connection, JS, and mesoscopic
similarities with the benchmark community SB.We calculate that NMI(S,SB)≈ 0.83 is larger
than the other NMI values: NMI(SJ,SB )≈ 0.81, NMI(SJS,SB)≈ 0.69, and NMI(Sθ ,SB )≈
0.42. Among these approaches, the airline communities that we find using connection simi-
larity most resemble the benchmark layer communities in the airline data set.

We also calculate that NMI(S,SJS)≈ 0.58, which suggests that the two approaches yield
somewhat similar airline communities. This result is consistent with the findings of De
Domenico et al. [9]. When De Domenico et al. used a measure of JS distance to cluster
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Fig. 9 Pairwise NMIs between S, SJS, Sθ , SB, and SJ in the airline network

layers with the aim of reducing the number of layers (and thus system size), they tended to
combine layers with a large number of edge overlaps [9]. Connection similarity quantifies
layer similarity based directly on edge overlaps, so it is sensible thatwefind similar clusterings
for connection and JS similarity.

4 Conclusions

We proposed a new measure—“connection similarity”—to quantify similarity in connection
patterns between two layers in a multiplex network. We used connect similarity to cluster
layers in both synthetic and empirical multiplex networks. In the latter, we obtained layer
communities that have real-world interpretations and appear to be mostly consistent with
past studies. For example, our approach grouped airlines that are based in the same regions
into layer communities in an airline network.

Naturally, one can obtain different layer communities by using different node-community
detection algorithms (see Sect. 3.1). For example, we found that InfoMap [36,37] was unable
to find the planted layer communities in our synthetic multiplex networks, and it would be
interesting in future work to explore benchmark multiplex networks with intricate interlayer
dependencies [54,55]

We proposed a measure of interlayer similarity based on edge overlaps, but there are also
many otherways ofmeasuring interlayer structural similarities [13,14], so there are alsomany
ways of grouping layers into layer communities. The development and analysis of approaches
for grouping layers would benefit from further research into inherently multiplex structural
measures to complement quantities like edge overlaps and interlayer degree correlations
[21,56]. Moreover, because connection similarity does not take edge weights into account in
its quantification of layer similarity, it is also important to pursue layer similarity measures
that incorporate edge weights (e.g., a pairwise correlation coefficient of the edge weights in
two layers [57]).
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