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Abstract

A counterparty credit limit (CCL) is a limit imposed by a financial institution to cap
its exposure to a specified counterparty. CCLs help institutions mitigate counterparty risk
by enabling selective diversification of their exposures, and they can thereby reduce the
probability that an institution defaults after suffering one or more counterparty failures.
However, CCLs do not only apply during times of market stress. This raises the question of
how CCLs impact the prices that institutions pay for their trades during everyday trading.
In this paper, we examine this question both empirically and via a new model of trading
with CCLs. We study a high-quality data set for three liquid currency pairs in the foreign-
exchange spot market during May and June 2010, and we find that CCLs caused little
impact on trade prices during this period. However, our model highlights that, in some
situations, CCLs can have a major impact.

Keywords: Counterparty credit limits; counterparty risk; price formation; market design;
systemic risk.

1 Introduction

The international financial crisis of 2008 underlines the vital importance of understanding
counterparty risk. The collapse of Lehman Brothers and the ensuing defaults and near-defaults
by AIG, Bear Stearns, Fannie Mae, Freddie Mac, Merrill Lynch, the Icelandic banks, and the
Royal Bank of Scotland demonstrated how the complex and highly interconnected nature of
the modern financial ecosystem can cause counterparty failures to propagate rapidly between
institutions and can thereby amplify their severity [May et al., 2008]. Consequently, assessing
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and implementing measures to mitigate the risk of default contagions is an extremely important
task.

One mitigation measure, which is currently implemented by several multi-institution trading
platforms in the foreign-exchange (FX) spot market, is the use of counterparty credit limits
(CCLs). A CCL is a limit imposed by a financial institution to cap its exposure to a specified
counterparty. CCLs are designed to complement existing risk-based capital requirements by
protecting financial institutions from large losses resulting from sudden counterparty defaults.

Accompanying this benefit, the application of CCLs also entails an important drawback.
With CCLs in place, institutions can access only the subset of trading opportunities that are
offered by counterparties with whom they possess sufficient bilateral credit. Therefore, CCLs
restrict the set of trading opportunities that institutions can access. In extreme cases, this
restriction may be so severe that individual institutions experience a liquidity crisis and fail.
In this way, CCLs may themselves influence systemic risk.

Importantly, however, this restriction applies not only during periods of market-wide stress,
but also at all other times. One aim of the present paper is to assess the effect of CCLs on the
prices that institutions pay for their trades during everyday trading. To study this question,
we use an unusually rich data set that describes all trading activity for three liquid currency
pairs on Hotspot FX during all of May and June 2010. Hotspot FX is a large electronic trading
platform in the FX spot market that enables institutions to apply CCLs. Crucially, the Hotspot
FX data enables us to measure how CCLs impact the prices that individual institutions pay for
their trades. Because the period from May to June in 2010 was relatively calm, we are able to
study how much market participants pay, during ‘normal’ trading, as a consequence of CCLs.
To our knowledge, ours is the first study to investigate this topic.

We introduce the notion of the “skipping cost” of a trade to measure the additional cost
that an institution bears from the application of CCLs. In our data set, more than half of the
trades have a skipping cost of 0, and the mean skipping cost is less than half a basis point.
We do identify a handful of trades with large skipping costs, but we argue that the existence
of such trades is a natural consequence of the substantial heterogeneity in the types and sizes
of institutions that trade on Hotspot FX. These empirical results suggest that CCLs had very
little impact on trade prices for the trades that we study.

As our emprical CCL network is fixed (and not known to us), the study of historical
data provides no insight into how our results might change if institutions made substantial
modifications to their CCLs. We therefore complement our empirical analysis by investigating
a second research question: How does network structure affect the prices that institutions pay
for their trades in the presence of CCLs? We use simulations of an agent-based model of trade
in which institutions assign CCLs to their trading counterparties. In contrast to our empirical
analysis, in which the CCL network is fixed and unobservable to us, our model allows us to
investigate how varying the density and topology of the connections in a market’s CCL network
can affect the prices of trades.

Our simulations provide valuable insights into the roles of both density and topology. For
example, when the CCL network is dense (in the sense that most institutions can access most
trading opportunities), we find that CCLs have very little impact on the prices of trades.
However, as the edge density falls, we observe that the skipping costs of trades rise sharply.
The network topology also has a noticeable effect: For a given edge density, skipping costs are
markedly higher for a network with core—periphery structure than they are for an Erdés—Rényi
network (in which one places edges uniformly at random).

We also investigate the impact of CCL network properties on realized trade-price and
quote-price volatility. As the edge density falls, the trade-price volatility rises sharply, whereas
the quote-price volatility remains almost constant. The volatilities are also both considerably



higher for a core—periphery network than for an Erdés—Rényi network.

Together, our empirical and simulation results paint an interesting and complex picture
about the impact of CCLs, raising important questions for policy makers and regulators. Both
sets of results illustrate that the application of CCLs does not necessarily force many insti-
tutions to pay large skipping costs for their trades. Therefore, CCLs may provide market
participants with the benefits of selective diversification without causing them to incur large
additional costs during the course of their everyday trading. However, our model illustrates
how an aggressive application of CCLs can create large jumps in the trade-price series, even
when the quote-price series remain relatively stable. We thus argue that understanding and
monitoring how institutions set and adjust their CCLs is a vital step for regulators in assessing
how their implementation may impact market stability and, ultimately, whether they may lead
to localized liquidity crises that cause individual institutions to fail.

The paper proceeds as follows. In Section 2, we give an introduction to counterparty risk,
discuss the strengths and weaknesses of two well-known mechanisms designed to mitigate it,
and review a selection of relevant literature. In Section 3, we describe the CCL mechanism
in detail, and discuss how CCLs are currently implemented by several large electronic trading
platforms in the FX spot market. We present our empirical results in Section 4. In Section 5,
we introduce and study our model of how CCLs affect trade. We conclude in Section 6. In
the appendices, we give a detailed description of the data that forms the basis of our empirical
study, and we describe our methodology for estimating realized volatility.

2 Counterparty Risk

Counterparty risk is the risk that one or more of a financial institution’s counterparties will
default on their agreed obligations (see Gregory [2010]). Counterparty defaults can occur for a
wide variety of reasons, ranging from technical issues (such as computer system malfunctions)
to serious financial difficulties (such as insolvency). Irrespective of their cause, counterparty
defaults can cause significant financial distress and can push other institutions towards their
own defaults. This, in turn, can lead to a cascade of rapidly propagating institutional failures.
Counterparty risk is therefore a key factor in determining whether, and with what speed,
localized shocks escalate to systemic events that impact the global economy [The Counterparty
Risk Management Policy Group, 2005].

To date, the vast majority of work on counterparty risk has focused on the counterparty
credit risk that arises from derivative contracts (see, e.g., Brigo et al. [2013] for a detailed
survey). However, financial institutions also face several other important types of counterparty
risks [Gregory, 2010]. Prominent examples include liquidity risk, which is the risk of a liquidity
shortage arising from a counterparty default, and settlement risk, which is the risk of suffering
losses by delivering cash or assets to a counterparty that fails to settle the opposite leg of
an agreement. Several historical events, such as the near-catastrophic domino-effect defaults
caused by the failure of Bankhaus Herstatt in 1974 [Bank for International Settlements, 2002],
underline the severity of these forms of counterparty risk and provide strong motivation for
exploring safeguards against them.

2.1 Approaches to Mitigating Counterparty Risk

Among several possible approaches to mitigating counterparty risk, two have received particu-
lar attention. The first is to novate trade via a central counterparty (CCP); see Norman [2011]
and Rehlon and Nixon [2013] for detailed discussions. The role of a CCP is to guarantee the



obligations that arise from all contracts agreed between two counterparties. If one counter-
party fails, the other is protected via the default-management procedures and the resources of
the CCP. During the past decade, several prominent regulatory bodies (see, e.g., The Basel
Committee on Banking Supervision [2013] and The Counterparty Risk Management Policy
Group [2005]) have argued that CCPs are an effective tool for mitigating counterparty risk.
The second approach is to apply a credit valuation adjustment (CVA); see Brigo et al. [2013]
and Gregory [2010] for detailed discussions. In this framework, an institution adjusts the price
that it offers another institution to account for the risk of trading with it. In other words, an
institution may offer each other institution a different price for the same transaction to account
for its perceived risk of counterparty failure. In principle, an institution can use the additional
revenue that is generated by a CVA to construct or purchase a contingent claim whose payoff
is triggered by the default of the given counterparty, such that the resulting net loss is 0.

Despite their clear benefits, the above two approaches to mitigating counterparty risk also
suffer from important drawbacks. CCPs require that institutions reserve capital for margin
calls and contribute to a default fund. This reduces the amount of capital that institutions
have available to conduct trades during the course of everyday trading. Moreover, Pirrong
[2012] argued that CCP novation does not reduce the aggregate counterparty risk across all
institutions; instead, it concentrates all such risk into the CCP, which thus becomes a single
point of failure of systemic importance. Biais et al. [2012] noted that although CCPs allow
mutualization of the idiosyncratic risk faced by individual institutions, they cannot provide
protection against the aggregate risk that affects all institutions together. Menkveld [2015]
showed that standard methodologies for calculating default probabilities can greatly underesti-
mate the probability of clustered defaults, which place severe stress on a CCP. Finally, Koeppl
[2013] noted that CCPs generate moral hazard by removing the incentive for individual in-
stitutions to assess the creditworthiness of their trading counterparties. Given the historical
failures of several CCPs in a wide variety of asset classes — including FX, equities, and futures
[Gregory, 2010] — concerns about whether CCPs really mitigate risk, or simply repackage it,
seem to be well-founded.

CVA also brings important drawbacks. Calculating a CVA requires each institution to es-
timate a time-varying risk premium for each of its trading counterparties. This risk premium
depends heavily on the counterparty’s default probability, which is extremely difficult to esti-
mate in practice. Cesari et al. [2010] noted that even if an institution is able to estimate a risk
premium for a given counterparty, this estimation provides no insight into how to construct
a portfolio with the required payoff upon a counterparty default. Indeed, constructing this
portfolio is often impossible in practice. Moreover, CVAs are not suitable for assets that are
traded on an exchange in which many different institutions access the same centralized set of
trading opportunities (as in a limit order book (LOB); see Gould et al. [2013] for a detailed
introduction to LOBs), as implementing CVAs would require each institution to set different
prices for different counterparties trading the same asset.

These weaknesses suggest that, despite their widespread discussion and implementation,
neither CCP novation nor CVAs provides a panacea for counterparty risk. Their failure to
provide a conclusive solution is strong motivation for exploring alternative avenues.

2.2 Related Literature on the Role of Connectivity in Risk Analysis

Our work contributes to the rapidly growing literature on possible mechanisms for mitigating
counterparty risk. The vast majority of that literature deals with the performance of risk-
mitigation measures in the extreme circumstances for which they are designed, and it thereby
encompasses the analysis of systemic risk [De Bandt and Hartmann, 2000]. Our work is comple-



mentary, in that we examine the effects of risk-mitigation measures on everyday price formation
and trading, with a focus on the use of CCLs. Notwithstanding this different emphasis, it is
helpful to set the scene for our own work in relation to the existing literature.

As argued by Jarrow and Yu [2001], financial institutions face significant counterparty risks
whenever their exposures are concentrated in a small number of counterparties, because the
default of any counterparty is likely to cause severe financial distress. Therefore, many financial
institutions seek to diversify their counterparty risk exposures by trading with many different
counterparties. Moreover, establishing trading relationships with a wide range of other financial
institutions reduces the likelihood of experiencing a subsequent liquidity shortage. Several
authors have argued that such liquidity shortages can impact systemic risk through #lliquidity
contagions [Anand et al., 2012, Bardoscia et al., 2017, Gai et al., 2011].

Despite these clear benefits, diversification of counterparty risk also has important draw-
backs. As noted by Stiglitz [2010] and Roukny et al. [2013], when it comes to counterparty risk,
diversification and contagion are two sides of the same coin. All else being equal, the larger
the number of different counterparty credit exposures of a given financial institution, the more
likely it is to experience a counterparty default. Many authors have studied how the failure of
a single institution can propagate through a financial network as a default contagion (see, e.g.,
[Giesecke and Weber, 2004, Jorion and Zhang, 2009, May et al., 2008]).

In an early paper on the topic, Stiglitz [2010] introduced a model in which the failure of a
financial institution causes all of its counterparties to fail. In this setting, connectedness among
financial institutions leads to default contagion. More recently, other authors have studied more
complicated models to examine trade-offs between default contagion (whose drawback increases
with the density of counterparty credit exposures) and diversification (whose benefit increases
correspondingly) [Bardoscia et al., 2017, Battiston et al., 2012a,b, Tasca et al., 2017].

Battiston et al. [2012a] assumed that when an institution defaults, all of its counterparties
suffer a loss that equals their exposure to the defaulting institution. They then reasoned
that when a financial institution has a larger number of connections, one should expect it
to feel a smaller idiosyncratic shock if one of those counterparties fails, and they concluded
that diversification of exposures across many financial institutions has complicated effects on
systemic risk. Battiston et al. [2012b] studied a system of coupled stochastic processes to
simultaneously examine the impacts of a default contagion and the benefits of diversification.
They reported that their model leads to a non-monotonic (“U-shaped”) relationship between
the amount of connectivity in a financial network and the corresponding probability of a large
default cascade. In particular, they stressed that when agents are embedded in a densely-
connected network of mutual liabilities, a financial system becomes very unstable and is prone
to frequent and large crises. Similarly, Bardoscia et al. [2017] illustrated that processes such as
market integration and diversification, which are widely believed to stabilize financial systems,
can actually undermine systemic stability by creating cyclical credit-exposure structures that
amplify the effects of shocks. Tasca et al. [2017] studied a model in which systemic default is
related not only to financial institutions’ connections to each other, but also to their exposures
to external assets. They concluded that the probability of systemic failure is a non-monotonic
function of exposure to external assets, with an interior optimum corresponding to moderate
(rather than complete) diversification.

Other authors have focused on how the topology of counterparty exposures impacts default
cascades. Roukny et al. [2013] investigated how the size of default cascades varies between
Erdés-Rényi networks and networks with a heavy-tailed degree distribution.! When consider-
ing only the benefits of diversification, the authors concluded that network topology does not

"We follow a similar approach in Section 5 to compare skipping costs in Erdés-Rényi networks and core—
periphery networks.



impact default cascades. However, when also considering the impact of a default contagion,
they reported that network topology strongly impacts their results. In their study, they also
illustrated that no single market topology is always better than all others. Luu et al. [2018] ex-
amined how network topology affects the dynamics of collateral (and the consequent systemic
risk) in the presence of rehypothecation. They observed rather different dynamics for different
network topologies. Both Roukny et al. [2013] and Luu et al. [2018] argued that it is important
for regulators to be aware of network topology when making policy decisions.

Despite the considerable size of this literature, almost all published work to date on the role
of connectivity in risk analysis has focused on the question of how connections between different
financial institutions impact default contagions [Gai and Kapadia, 2010]. To our knowledge,
no publications have examined the related question of how such connections impact the prices
that institutions pay for their trades during the course of everyday trading. This is the primary
question that we investigate in the present paper, in the context of CCLs.

3 Counterparty Credit Limits

A key approach — and an alternative to those that we discussed in Section 2.1 — to mitigating
counterparty risk is to apply counterparty credit limits (CCLs). Consider a financial market
that is populated by a set of institutions, © = {61, 0, ...}, in which each institution 6; assigns
a CCL ¢(; 5y > 0 to each other institution 6;. The CCL ¢ ;) specifies the maximum level
of counterparty credit exposure that ¢; is willing to extend to 6;. Such counterparty credit
exposures occur in all financial markets in which the agreement and settlement of trades does
not occur simultaneously. In the FX spot market, for example, trades agreed on day D are
settled on day D + 2, so each trade entails exposure to the counterparty during the period
between day D and day D + 2.

Assigning a CCL to a given counterparty does not require posting collateral; instead, it
involves notifying the exchange of the relevant value c(; ;). Institution 6; cannot enter any trade
with #; that would make 6;’s total exposure to 6; exceed c(; ;) or that would make 6;’s total
exposure to ¢; exceed c(;;). The maximum amount that 6; and 6; can trade is therefore equal
to min (C(i’j), C(m)). We call this quantity the bilateral CCL between 0; and 0;. These bilateral
CCLs determine the subset of trading opportunities that is available to each institution. This
subset changes over time according to the relevant institutions’ trading activities.

If an institution 0; perceives another institution 6; to be unacceptably likely to default, then
0; can ensure that it never trades with 6; by setting c(; j) = 0. Alternatively, if 6; perceives 0;
to be extremely unlikely to default, then 6; can assign an unlimited amount of credit to 6; by
setting c(; j) = 0.

In contrast to trade novation via a CCP; CCLs do not require a single, centralized clearing
node that constitutes a single point of failure for an entire market.? In contrast to CVAs, the use
of CCLs does not require institutions to estimate the market value of their counterparty risk.
Instead, it enables them to specify an upper bound on each of their counterparty exposures.
Institutions can thereby use CCLs to mitigate counterparty risk by selective diversification of
their exposures.

Several major multi-institution electronic trading platforms in the FX spot market offer
institutions the ability to implement CCLs. On these platforms, each institution 6; privately
declares to the exchange their CCL c(; ;) for each other institution 6;. Trades occur via a mech-
anism similar to a standard limit order book (LOB), except that institutions can only conduct

2Note, however, that the use of CCLs does not exclude the subsequent clearing of trades via a CCP. We
return to this discussion in Section 6.



transactions that do not violate their bilateral CCLs. More precisely, when an institution 6;
submits a buy (respectively, sell) market order, the order matches to the highest-priority sell
(respectively, buy) limit order that is owned by an institution ¢; such that neither c(; ;) nor c(; ;)
is exceeded by conducting the given trade. We call this market organization a quasi-centralized
LOB (QCLOB), because different institutions have access to different subsets of the same
(otherwise centralized) LOB. For a detailed introduction to QCLOBs, see Gould et al. [2016].

Institutions trading on a QCLOB platform cannot, in general, see the state of the global
LOB (i.e., the set of all active orders owned by all market participants). Instead, each institu-
tion sees only the active orders that correspond to its own trading opportunities (i.e., that do
not violate any of its bilateral CCLs) at time ¢.*> More precisely, for each j # 4, the volume of
each separate limit order placed by 6; that is visible to 6; is reduced (if necessary) so that its
size does not exceed the bilateral CCL between 6; and 6;. Each institution therefore views a
subset, filtered according to its CCLs, of all active limit orders.

As well as viewing their filtered LOB, each institution in a QCLOB can access a trade-
data stream, which lists the price, time, and direction (buy or sell) of every trade that occurs.
All institutions can see all entries in the trade-data stream in real time, irrespective of their
bilateral CCLs. Therefore, although institutions in a QCLOB can see only a subset of the
trading opportunities that are available to other institutions, they have access to a detailed
historical record of all previous trades.

4 Empirical Results

Our empirical investigation uses a data set provided to us by Hotspot FX. The data describes all
trading activity on the Hotspot FX platform for the EUR/USD (euro/US dollar), GBP/USD
(pounds sterling/US dollar), and EUR/GBP (euro/pounds sterling) currency pairs* for the
entire months of May and June 2010. According to the 2010 Triennial Central Bank Survey
[Bank for International Settlements, 2010], global trade for these currency pairs constituted
about 28%, 9%, and 3% of the total turnover of the FX market, respectively. We give a
detailed description of the Hotspot FX data in Appendix A.

4.1 Skipping Costs

We first examine the impact of CCLs on the prices of individual trades. As we discussed in
Section 3, when an institution 6; on Hotspot FX submits a buy (respectively, sell) market order,
the order matches to the highest-priority sell (respectively, buy) limit order that is owned by
an institution 6; such that the bilateral CCL between 6; and 6; is not violated by the trade.
Therefore, due to the impact of CCLs, the price at which a given market order matches is not
necessarily the best price available to other institutions at that time.

The Hotspot FX data enables us to calculate the difference between the price at which a
buyer-initiated (respectively, seller-initiated) trade occurs and the lowest price among all sell
(respectively, highest price among all buy) limit orders at the same instant. It thereby enables
us to quantify precisely the additional cost that is borne by the institution that submits a
market order as a result of CCLs preventing this institution from accessing a better-priced
trading opportunity. We call this additional cost the “skipping cost”.

3Some QCLOB platforms, such as Reuters and Electronic Broking Services (EBS), offer an additional data
feed that, in exchange for a fee, provides snapshots of the global LOB at regular time intervals.

4 A price for the currency pair XXX /YYY denotes how many units of the counter currency YYY are exchanged
per unit of the base currency XXX.



For a given currency pair on a given trading day, let p;, denote the price of the & trade, and
let by and aj denote, respectively, the bid-price and ask-price in the global LOB immediately
before this trade occurs. The skipping cost of a trade is

oo ek, if the k™ trade is a buyer-initiated trade, 1)
ke by — pr, if the k™ trade is a seller-initiated trade.

In Equation (1), the sign difference between buyer-initiated and seller-initiated trades reflects
the fact that every trade has a non-negative skipping cost. In the extreme case with CCLs in
which all institutions always have access to all trading opportunities, all trades occur at the
best quotes at their time of execution, so py = g for all k. In this case, all trades have a
skipping cost of i = 0, so price formation is equivalent to that in a standard LOB.

Because the prices of trades vary across currency pairs and across time, we also normalize
each skipping cost by the mid-price m; = %(ak + br) immediately before a trade occurs.
Specifically, we calculate the normalized skipping cost

LT

Tk = mr ’ (2)
which we measure in basis points (where 1 basis point corresponds to 0.01%). We scale the
normalized price change 7, to be independent of the size of the underlying exchange rate; this
allows easier comparisons across different currency pairs. Note, however, that this normal-
ization makes the gap between successive values on a pricing grid (i.e., the scaled tick size)
different for each currency pair and also time-dependent.

In Figure 1, we show the empirical cumulative density functions (ECDFs) of normalized
skipping costs 7. More than half of all trades have a (normalized) skipping cost of 0, which
implies that they occurred at the best price available in the global LOB at their time of
execution. As illustrated by the log-survivor functions,® the distribution of normalized skipping
costs has a similar shape for all three currency pairs. This similarity extends to about the 99.9"
percentile of the distributions. Beyond this, the currency pair EUR/USD includes a handful
of trades with extremely large skipping costs; this does not occur for the other two currency
pairs.

In Table 1, we give summary statistics about the normalized skipping costs 7;. For each
of the three currency pairs, the mean normalized skipping cost is about 0.2 basis points and
the standard deviation of normalized skipping costs is about 0.5 basis points (i.e., 0.005%). As
with Figure 1, these results suggest that the statistical properties of normalized skipping costs
are similar for each of the three currency pairs.

Table 1: Summary statistics for the normalized skipping costs 7 (in basis points) of EUR/USD,
GBP/USD, and EUR/GBP trades on Hotspot FX during May—June 2010.

EUR/USD GBP/USD EUR/GBP

Minimum 0 0 0
Median 0 0 0
Maximum 30.31 9.65 5.62
Mean 0.19 0.21 0.21
Standard Deviation 0.46 0.43 0.45

5The survivor function is given by 1 minus the ECDF, and the log-survivor function is its logarithm.
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Figure 1: (Left) Empirical cumulative density function (ECDF) and (right) log-survivor func-
tion for the normalized skipping costs 7 of (solid green curves) EUR/USD, (dashed orange
curves) GBP/USD, and (dash-dotted purple curves) EUR/GBP trades on Hotspot FX during
May—June 2010.

When considering the raw skipping costs 7 (i.e., without normalization to account for
the mid-price), the mean skipping costs range from about 1.8 ticks (for EUR/GBP) to about
3.0 ticks (for GBP/USD). Given that the tick size for each of the three currency pairs is
0.00001 units of the counter currency (see Appendix A), these skipping costs correspond to a
mean additional cost of about £18.00 and $30.00, respectively, for an institution submitting a
market order with a size of 1 million units (which is the modal market order size for each of the
three currency pairs). Although these mean skipping costs are relatively small, some trades in
our sample have much larger skipping costs. The largest skipping cost that we observe exceeds
30 basis points, which corresponds to incurring a total additional cost of about $3630.00 when
submitting a trade of size 1 million euros.

On Hotspot FX, institutions can infer the approximate skipping cost of their trades by
comparing their local bid-price or ask-price (which they observe from the filtered set of limit
orders that they observe on the platform) to the prices at which other trades have recently
occurred (which, as we discussed in Section 3, they observe via their trade-data stream). Given
that this is the case, why do some institutions perform trades that have extremely large skipping
costs during the course of everyday trading?

We believe that the large heterogeneity in skipping costs that we observe is a consequence
of the substantial heterogeneity in the types and sizes of institutions that trade on Hotspot FX.
Hotspot FX serves a wide variety of institutions with varying levels of access to other trading
mechanisms, such as direct telephone trading or voice brokers. At times when submitting a
market order would entail a considerable skipping cost, large institutions would likely instead
perform the same trade via another mechanism. By contrast, small institutions rarely have
access to these other trading mechanisms, so they may have little option other than to accept
large skipping costs as a cost of their everyday trading. In a recent discussion of modern
financial markets, Luu et al. [2018] argued that the advent of trading platforms with relatively
low barriers to entry (such as Hotspot FX) have blurred the lines between the inter-bank market
and less-traditional markets. The significant heterogeneity that we observe in skipping costs
is consistent with the idea that a wide and heterogeneous population of financial institutions
indeed operate on such platforms, albeit with access to considerably different prices for their
trades.



4.2 Price Changes

We now examine price changes between successive trades. Recall that p; denotes the price of
the k™ trade for eachcurrency pair on a given trading day. For each k, let py denote the price
of the previous trade in the same direction as the k' trade. Similarly, let by, aj, and my
denote, respectively, the bid-, ask-, and mid-prices immediately before the previous trade in
the same direction as the k' trade. The change in trade price is

o= pr — pr,  if the k™ trade is a buyer-initiated trade, (3)
"\ pw —pr, if the k' trade is a seller-initiated trade.

Similar to Equation (2), we also calculate the normalized change in trade price,

:_ Je

fk; = m ; (4)
which is independent of the size of the underlying exchange rate; it thereby allows easier
comparisons across different currency pairs.

Our results in Section 4.1 reveal that skipping costs vary considerably across the trades
in our sample. The existence of some trades with a normalized skipping cost of several basis
points suggests that, due to their CCLs, some institutions have access to a relatively small
fraction of the trading opportunities that are available on the platform. This observation raises
the question of how strongly CCLs impact the price changes between successive trades. This
question is important, because if different institutions pay considerably different prices for the
same asset at a similar time (as our results in Section 4.1 suggest is the case), then the trade-
price series may include large fluctuations that do not reflect similar changes in an asset’s
fundamental value. Therefore, the price-formation process on a platform that implements
CCLs may be rather different from that on a platform in which all institutions can trade with
all others.

To study this question empirically, we introduce the following decomposition of each term
in the f; series into two constituent parts. We define the change in quote price between the
k™™ trade and the previous trade in the same direction by

| ap —ap, if the kM trade is a buyer-initiated trade, (5)
9k = by — by,  if the k™ trade is a seller-initiated trade.

Given a pair of trades k and k', we can similarly calculate the change in skipping cost:

b — (pr — ax) — (p — azr),  if the k™ trade is a buyer-initiated trade, (6)
o x — Pk') — (b — Pk if the trade is a seller-initiated trade.
k (b — p) — (b, — pr),  if the k™ trad 11 d trad

The three price-change series are not independent. For buyer-initiated trades, observe that

fr =i — Pr/
= (ax — ap') + ((px — ax) — (P — ay))
= g + hg . (7)

By a similar argument, the same result holds for seller-initiated trades.

Equation (7) enables us to decompose each change in trade price into the corresponding
constituent change in quote price and change in skipping cost: The price change between any
pair of trades in the same direction is the sum of the price change of the best quotes and the
change in skipping costs of the two trades.
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We now report several statistical comparisons of the fx, gi, and hg series to quantify the
relative impact of CCLs, versus that of quote revisions, on changes in trade price. In the left
panel of Figure 2, we show a quantile—quantile (QQ) plot of the fj series versus the g series.
In this plot, the quantile points cluster tightly along the diagonal, implying that the shape of
the distribution of the fi series is very similar to that of the g series. In the right panel of
Figure 2, we show a QQ plot of the fi series versus the hj series. In this case, the distribution
of changes in skipping costs is concentrated more tightly around O than is the distribution of
changes in trade prices, suggesting that the changes in skipping cost account for only a small
fraction of the total price change between successive trades.

Q-Q Plots
o ,’ o ,/
o V% o A s
— ‘/ — Al ,/
‘/ ] /,
o o ’
o] o L’
0 0 2
X X 4
g o g o
N o o= o ,,
ki ki .
s o EUR/USD , o EUR/USD
S e m GBP/USD S L m GBP/USD
T A A EUR/GBP T A EUR/GBP
T T T T I T T T T I
-100 -50 0 50 100 -100 -50 0 50 100
Ok (ticks) hy (ticks)

Figure 2: Quantile-quantile (QQ) plots for (left) changes in trade price f; versus changes
in quote price g and (right) changes in trade price f versus changes in skipping costs hy
for EUR/USD (green circles), GBP/USD (orange squares), and EUR/GBP (purple trian-
gles) trades on Hotspot FX during May—June 2010. In each plot, the points indicate the
0.01,0.02,...,0.99 quantiles of the empirical distributions. The dashed black lines indicate the
diagonal.

To assess whether the similarities and differences that we highlight in Figure 2 also hold
at the trade-by-trade level (and not only at the level of the unconditional distributions), we
make scatter plots of the individual terms of the series. In the left column of Figure 3, we show
scatter plots of the fi series versus the g series. For GBP/USD and EUR/GBP, the points
cluster strongly along the diagonal, which indicates that for each trade, the change in trade
price is very similar to the change in quote price. Some points in the EUR/USD plot occur
away from the diagonal, but the vast majority of data points cluster along the diagonal. In the
right column of Figure 3, we show scatter plots of the fj, series versus the hj series. In contrast
to the plots of fi versus g, these plots do not reveal any visible relationship between the f
and hy, series for any of the three currency pairs.

To examine the relationships between the fr, gx, and hj series across all trades in our
sample, we also calculate the sample Pearson correlation p between these series (see Table 4.2).
For each currency pair, the sample Pearson correlation between the f and g, series is very close
to 1, with a very small standard error. This quantifies the strong relationship between changes
in trade price and changes in quote price (see the left panels of Figure 3) and suggests that
changes in trade price are strongly correlated with corresponding changes in the underlying
quotes. By contrast, the sample Pearson correlations between the fi and hj series are very
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Figure 3: Scatter plots of changes in trade price f; versus (left column) changes in quote price
gr and (right column) changes in skipping costs hy for (top row) EUR/USD, (middle row)
GBP/USD, and (bottom row) EUR/GBP trades on Hotspot FX during May-June 2010. The
solid black lines indicate the diagonal.
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close to 0, and they have similar orders of magnitude to the corresponding standard errors.
This provides further evidence that changes in skipping cost are uncorrelated with changes in
trade price.

EUR/USD GBP/USD EUR/GBP
Panel A: fi versus gi

0.94 0.97 0.99

P (<001)  (<001)  (<0.01)
Panel B: fi versus hy

—0.04 0.00 0.00

P (0.03) (< 0.01) (0.02)

Table 2: Sample Pearson correlation p between (Panel A) changes in trade price fi and changes
in quote price g and (Panel B) changes in trade price f and changes in skipping cost hy, for
EUR/USD, GBP/USD, and EUR/GBP trades on Hotspot FX during May—June 2010. The
numbers in parentheses are the corresponding standard errors, which we estimate by calculating
the sample standard deviation of p across 10000 bootstrap samples of the data.

Taken together, our results in this section suggest the following interpretation of Equation
(7). Each change in trade price consists of two components: a change in the underlying quotes
and a change in the skipping cost. The change in trade price is strongly correlated with the
change in quotes, but it has little or no correlation with the change in skipping cost. Therefore,
although the change in skipping cost sometimes constitutes a considerable fraction of the total
change in trade price, this impact manifests itself as (additive) uncorrelated noise in the trade-
price series.

From an economic perspective, the strong positive correlation between the f; and g series
and the absence of significant correlation between the fi and hy, series suggests that, during the
course of everyday trading, fundamental revaluations in trade prices arise due to corresponding
changes in the best quotes. One can regard the fi series as a noisy observation of the g
series, where the uncorrelated, additive noise arises from the restriction of institutions’ trading
activities to their bilateral trading partners. The strength of this effect varies across institutions
because of the heterogeneity in their CCLs.

We conclude that CCLs have a small effect on trade-to-trade price changes, and thus on
volatility, for the trades that we study. On the one hand, this may arise from the fact that our
data describes a relatively calm period for financial markets. On the other hand, it may be
because of the underlying network structure of CCLs, which is unobservable to us. Therefore,
studying historical data is only one aspect of understanding how CCLs can affect financial
markets, because such analysis does not provide insight into how our results may change if
institutions make substantial modifications to their CCLs. It is thus important to examine
CCL network topology and its effects on a model of trading.

5 A Model of Trade with CCLs

To explore the role of the CCL network’s topology, we simulate a trading model with CCLs.
In our model, each institution updates its buy and sell prices for a single asset and performs a
trade whenever it identifies a trading counterparty that is offering to buy or sell at a mutually
agreeable price. A crucial feature is that not all institutions can trade with all others; instead,
each institution can trade only subject to its CCLs. These trades occur at prices that depend
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not only on other institutions’ buy and sell prices, but also on the underlying network of
bilateral CCLs between them.

As in the model of Luu et al. [2018], we examine a simple trading mechanism — ignoring
many features of real markets — to highlight the relationship between the underlying network
topology and the consequent trades. Our motivation is to provide a direct link between the
institutions’ interaction topology (via the network of CCLs) and the corresponding trade prices.
More precisely, for two different types of network topologies, we perform numerical simulations
to study how the density of edges in the CCL network impacts the trade-price series. Our
approach is similar to Roukny et al. [2013], who examined how the size of default cascades
varies as a function of the mean number of edges per node, for both Erd6s—Rényi networks and
networks with a heavy-tailed degree distribution (see Section 2.2).

In order to focus on how restricting the trading opportunities available to institutions
affects both the prices of individual trades and the realized volatility of the quote-price and
trade-price series, we fix all parameters except those related to the CCL network edge density
and topology. Modelling approaches that ignore the heterogeneous impact of CCLs are not
appropriate for such an investigation, while ours provides a natural framework for studying
this problem. Motivated by our empirical results in Section 4, we study properties (including
volatilities) of the trade-price, quote-price, and skipping cost series.

The setting for our model is an infinite-horizon, continuous-time market populated by a set
of N institutions, © = {0,609, ...,60x}, that trade a single risky asset. Each institution 6; € ©
maintains a private buy-valuation B and a private sell-valuation A%. The values of B! and
Al vary across the different institutions to reflect differences in their view of the likely future
value of the asset, as well as differences in their inventory, cash-flow, financing constraints, and
so on.% To focus on the impact of CCLs without considering the impact of strategic activity
(which could make our results more difficult to interpret), we model these prices using stylized
stochastic processes.

For each institution 6;, we rewrite the buy and sell prices in terms of a mid-price M; =
(Bf 4+ A%)/2 and spread st = A — B}, so that

i

7
St
2’ 2

B = M} — 5

A} = M} +
We describe the dynamics of the spread in detail in Section 5.1; for now, we remark only that
the values of sj are constrained to never fall below the minimum value so > 0.

5.1 Temporal Evolution

Before simulating the temporal evolution of our model, we choose an initial state in which
no trading is possible. We give details of this initialization in Section 5.5. Leaving aside the
behaviour of st and M at trade times, which we describe in Section 5.3, we assume that
between trades the s¢ are governed by

dst = —k (s} — s9) dt, (8)
for some constant x > 0, and that the M} are governed by

AM = M dwM" | 9)

SWe use capital letters to denote institutions’ buy and sell valuations to avoid confusion with the (global)
bid- and ask-prices, as defined in Section 4.1.
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where v > 0 is the mid-price volatility (with units of (time)fé) and WM are mutually inde-
pendent Brownian motions.”

Equation (8) causes each institution’s spread to approach its minimum value sp as time
progresses after a trade. In the absence of trading, the processes M} are drift-free geometric
Brownian motions. Our model minimizes the complications associated with the mixing of price
and time scales in the model parameters; the temporal evolution is influenced directly only by
the parameter v (whose inverse defines a time scale) and by trading via the network of CCLs.
Although a geometric Brownian motion with no drift has constant mean, its variance increases
with time. Without trading, our mid-prices thus spread out progressively and indefinitely over
time. As we will see in Section 5.3, however, the occurrence of trades ensures that prices
remain grouped together. By using the same values of v for each institution, we ensure that
the behavior of each institution is ex-ante identical apart from their different access to trading
opportunities because of the heterogeneous CCL network. We discuss this feature in more
detail in Section 5.2.

5.2 The CCL Network

We assume that each institution 6; assigns a CCL to each other institution 6;. To perform a
time-stationary investigation, we assume that each institution’s access to trading opportunities
does not depend on time, and, specifically, that it does not vary according to the trading
history. Therefore, for each pair of institutions, 6; and 6;, we model the bilateral CCL with
a binary indicator: Either 6; and 6; are trading partners, or they are not. For simplicity, we
allow trading partners to trade arbitrarily large amounts.

In a real financial market, a pair of financial institutions can access each other’s trading
opportunities until they reach their bilateral CCL (see Section 3). Therefore, our modeling
framework is a simplification of the way that real CCLs operate in real markets. However,
there are three important benefits to this approach in the present context. First, institutions
in the FX spot market routinely trade huge volumes of FX each day, yet the modal size of
market orders for each of the three currency pairs on Hotspot FX is just 1 million units of
the base currency. If a given pair of institutions have a sufficient bilateral CCL to access each
other’s trading opportunities once, then they are likely to be able to do so again. Second, in
the FX spot market, trades agreed on day D are settled on day D + 2. Given this relatively
short time interval, if an institution 6; cannot access a trading opportunity that is offered by
6, we claim that it is more likely that this is because their bilateral CCL is actually 0, rather
than because they have gradually accumulated a very large exposure. Third, this framework
makes our model time-stationary. By contrast, tracking the cumulative exposure between a
pair of institutions and allowing them to trade only up to their bilateral CCL would yield a
model that is non-stationary in time. We opt for this significant gain in model simplicity in
what we regard to be an adequately realistic equilibrium-pricing framework, instead of the
more complex route of tracking each pair of institutions’ cumulative exposures.

We encode CCLs with an undirected, unweighted network in which the nodes represent the
institutions and the edges represent the extant bilateral credit relationships: 6; and 6; can trade
with each other if and only if the edge ¢; <+ 0; exists in the network. We require this network,
which we call a CCL network, to be connected; otherwise, the disconnected components can

A possible refinement of the model is to include a common market factor w}* in addition to the idiosyncratic
noise terms. In that case, dM; = yM; (pi dW/" + /1 — p? thM'L), where p; is a (common) Pearson correlation

coefficient. We also performed simulations of this more complex model, but we found that this additional
complication adds little to our analysis. We therefore restrict our discussion to the simpler model, without a
common market factor.
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drift apart, as there is no means to link them together. We show some example CCL networks
in Figure 4.
Any network with N nodes (and no self-edges or multi-edges) has at most N(N — 1)/2
edges. A CCL network with N nodes and n edges has an edge density
2n
d= m . (10)
With our model, we can consider CCL networks with any number of nodes and any configura-
tion of edges. However, throughout this section, to highlight the most salient features of our
results, we restrict our discussion to two classes of networks with specific topological structures.

The first class that we discuss are Erdds—Rényi networks G(N,n) [Erdés and Rényi, 1960,
Newman, 2018], in which we place a specified number of edges uniformly at random between
pairs of nodes. We use this class of networks to model a market in which institutions choose
their trading partners uniformly at random. Although this assumption is likely to be a poor
reflection of how institutions set CCLs in a real market, studying Erd6s—Rényi networks enables
us to investigate the temporal evolution of our model in a simple, stylized framework with no
deterministic structure.

To construct Erdés—Rényi networks, we fix the edge density d and then use Equation (10)
to calculate the required number of edges n. We place these n edges uniformly at random
among the N nodes of the network, and we then check whether the network consists of a single
connected component that spans all nodes. If so, we accept it; if not, we reject it and construct
an alternative network using the same rules.?

For a given choice of d, we construct a sample of 1000 such CCL networks, and we then
simulate 1000 independent runs of our model for each of these 1000 CCL networks, where
each run uses a different seed for a Mersenne Twister pseudo-random number generator (which
controls the temporal evolution of the model). In the left panel of Figure 4, we illustrate a
single instantiation of an Erdés—Rényi network with N = 12 institutions and n = 14 edges.

The second class of CCL networks that we consider are core—periphery networks (see Cser-
mely et al. [2013], Rombach et al. [2017]), which have two types of nodes: core nodes and
peripheral nodes. Each core node is adjacent to all other core nodes. Each peripheral node
is adjacent to exactly one core node, so the degrees of no two core nodes differ by more than
1. In the right panel of Figure 4, we illustrate a core—periphery CCL network with N = 12
institutions, with 3 core nodes and 9 peripheral nodes.

We use core—periphery networks to model a market in which a core group of institutions
assign each another very high CCLs, but in which all other institutions have a credit line only
with one large institution within the core. Several recent studies of market organization have
suggested that many large financial markets have an approximate core—periphery structure,
with a core that consists of large, international banks and a periphery that consists of smaller
financial institutions, such as small banks, hedge funds, or mutual funds (see, e.g., Craig and
von Peter [2014], Fricke and Lux [2012], Iori et al. [2008]). Therefore, our core-periphery
structure represents an approximation of the complex structure of real markets, although we
have simplified it to a convenient deterministic form.

To construct core—periphery networks, we first fix the fraction v of peripheral nodes. When
1) = 0, all institutions are core institutions, so the CCL network is complete and all institutions
are able to trade with all others. For a given choice of 1) (and therefore of d), we construct a
single CCL network, and we then simulate 1000 independent runs of the model for it. Each
run uses a different seed for the pseudo-random number generator.

8Recall from Section 5.2 that we restrict our attention to cases in which the CCL network is connected, as
we wish to prevent disconnected components from drifting apart.
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7%
Figure 4: Schematics of CCL networks. (Left) An Erd6s-Rényi network with N = 12 insti-

tutions and n = 14 edges and (right) a core—periphery network with N = 12 institutions, of
which 3 nodes are core nodes (dark grey) and 9 nodes are peripheral nodes (light grey).

Our choice of these two classes of networks resembles those in Luu et al. [2018], who used
similar network structures to investigate the dynamics of collateral, and the consequent systemic
risk, in the presence of rehypothecation (see Section 2.2). They reported different dynamics
when when the underlying network is an Erd6s—Rényi network than when it has core—periphery
structure. We give a more detailed comparison of our results to those of Luu et al. [2018] in
Section 5.7.

5.3 Trading

We assume that a trade occurs at each time ¢* such that a pair of institutions, 6; and 6;, with
a bilateral CCL have prices that satisfy Bl = Al,. We call this price the trade price.

In our empirical results in Section 4, recall that we classified trades according to whether
they are buyer-initiated or seller-initiated. To aid comparisons between the output of our model
and our empirical results, we use the following simple rule to classify trades. Let

B 1M
Mt:N;MtZ (11)

denote the empirical mean of the IV institutions’ mid-prices at time ¢. Consider a trade that
occurs between 6; and 6; at time t* and with trade price p = Bl = AJ.. If p > M,, we label
this trade as buyer-initiated, and we call 8; the initiator and 6, the acceptor. Otherwise, we
label this trade as seller-initiated, and we call §; the initiator and 6; the acceptor.

For each trade, we think of the initiator as having submitted a market order at the trade
price, and we think of the acceptor as having owned a limit order — which is then matched by
this market order — at the trade price. The initiator trades at a relatively unfavorable price;
the fewer bilateral CCLs that the initiator has, the further we expect this price to be from M;.
We thus mimic the relative competitive disadvantage of poorly-connected institutions.

Whenever a buyer-initiated (respectively, seller-initiated) trade occurs, we record the lowest
price among all institutions’ sell prices (respectively, the highest price among all institutions’
buy prices) to calculate the skipping cost of the trade. We then adjust the mid-prices of 6;
and 6; by subtracting so/2 from M. and adding so/2 to M}. (respectively, subtracting so/2
from Mtj* and adding so/2 to M}.) and widening each of si and s/ by s/2. Finally, we reset
the values of Bz*, Ai*, Bg*, and Ag* according to these new mid-prices and spreads. This
separates Bl and Ag*, which are equal, by 3s9/2. All other prices (including Bi; and AL.)
remain unchanged. This feature models a decrease in trading desire from the initiator and
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acceptor due to the execution of the trade. At a technical level, widening the spread removes
the undesirable possibility of the initiator’s price and acceptor’s price being equal infinitely
often in an arbitrarily small interval after they first meet.

We now see how trading stops the mid-prices from spreading out. If the mid-prices of 6;
and 6; diverge by the mean of their spreads, then the buy price of one trader meets the sell
price of another from below and a trade is triggered. The mid-prices then move closer together
by sg, reversing the previous separation. The spreads then revert towards sg, which stops them
from growing indefinitely as trades occur.

5.4 Adjustments for Discrete Time-Stepping

We simulate the evolution of our model in discrete time, with a time step At > 0, using a simple
explicit (Euler—-Maruyama) difference scheme. In general, this choice produces an overshoot
before we detect that a trade should take place. Therefore, whenever a buyer-initiated trade
occurs between a buyer 6; and a seller 0, we actually observe B} > A, rather than B} = A].
In the simplest (and, for small spreads, generic) case, no other relevant prices are sandwiched
between the buy and sell prices in question. Whenever this happens, we deem a trade to have
taken place at the end of the time step and at a price equal to the mean of B} and Al

In a small number of cases, the overshoot caused by discrete time-stepping may be so large
that it creates more than one trading opportunity. For example, the price moves that occur in
a discrete time step may cause 6;’s buy price to exceed the sell prices of both 6; and a third
institution 0. In such a case, we first deal with the trade that occurs furthest from M;. After
recording this trade and changing the buyer’s and seller’s mid-price, spread, buy price, and
sell price (see Section 5.3), if other trading opportunities exist, we then process the one whose
trade price is furthest from the updated M;; and we repeat this procedure until there are no
further trading opportunities to consider.

5.5 Parameter Choices and Implementation

Our primary aim is to investigate how CCLs affect skipping costs. We therefore fix the values
of v, k, and sgp; and we study how our model’s output varies for different CCL networks (see
Section 5.2).

We first set My = 1 and sg = €My, where we take the dimensionless parameter € to be
0.001, implying spreads of about 0.1%. We choose k = 1, which sets the (otherwise arbitrary)
time unit as 1/k = 1, and we set the volatility 7 = ey/k = 0.001 to balance the changes in the
spread and the changes in the mid-price.

We initialize the mid-prices M® by drawing them randomly from a normal distribution
with mean My and standard deviation €, and we set all the spreads equal to sg. We then run
the trade-processing algorithm that we described in Section 5.3 to adjust the mid-prices and
spreads of all institutions for whom this initial state would cause trading to occur. We repeat
this trade-processing step until no trading opportunities remain (i.e., until Bfo < A , for each
pair of institutions for which 6; <> 6;).

The final parameter in our model is the discretization time step. The dominant term in the
discrete temporal evolution of the system is the noise term, which in relative terms (i.e., relative
to the value of the relevant quantity at the beginning of the time step) is O(yv/At). Accurate
discretization of the stochastic processes requires that this term be small. Moreover, we wish
to avoid the situation in which the discrete time steps regularly create multiple simultaneous
trading opportunities. We expect the separation of the mid-prices to be O(eMy/N), and we
would like this to be at least three times the standard deviation of the noise term. We therefore
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take At = 1/3N?2. This choice of At is also sufficiently small that errors associated with the
numerical integration of the stochastic differential equations are negligible.

For the simulation results that we present in Section 5.6, we use N = 128 institutions.’ For
each CCL network that we study, we simulate the temporal evolution of our model from ¢ =0
to t = 10. We discard all activity before ¢ = 2 as a burn-in period to remove the transient
behaviour that occurs before the model settles into its equilibrium state. We verified that these
choices are sufficiently large by examining the numerical stability of our results using a variety
of different burn-in periods and total time lengths. Specifically, our results are numerically
stable for all burn-in periods longer than about ¢ = 1 (which, for the parameter choices that
we use in our simulations, is the temporal scale for the reversion of B} and A%) and for all total
time periods that are larger than about ¢t = 2.

In Figure 5, we show a single simulation of the model in which we use N = 3 institutions,
the parameter values in Section 5.5, and a CCL network in which 6; < 0y and 67 < 03,
but in which #5 and 03 cannot trade with each other. As the figure illustrates, the prices of
subsequent trades can deviate considerably from each other. Therefore, our model does a good
job of capturing how heterogeneity in institutions’ access to trading opportunities (which arise
as a direct consequence of their CCLs) can manifest in the trade-price series.

1.05

Price
1.00

0.95
I

Figure 5: An example simulation of our model on a CCL network with N = 3 institutions
in which 61 < 02 and 6, < 63, but in which 6y and 63 cannot trade with each other. The
blue curves indicate the institutions’ private buy valuations B}, and the red curves indicate the
institutions’ private sell valuations A%. The black crosses indicate trades.

5.6 Simulation Results

We study buyer-initiated and seller-initiated trades separately via the trade-classification algo-
rithm that we described in Section 5.3. In line with our expectations (due to the symmetry of
buyers and sellers in our model), our results are qualitatively the same for buyer-initiated and
seller-initiated trades. To increase the size of our samples, we present our results for all trades
together (i.e., we aggregate buyer-initiated and seller-initiated trades).

9We also repeated these simulations with several different choices of N in the range 100 to 1000 (and with
appropriately modified values of At), and we found that our results were qualitatively similar in each case.
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In Figure 6, we plot the number of trades that occur for each edge density d. For both
Erdés—Rényi networks and core—periphery networks, CCL networks with lower edge densities
have fewer trades. The intuition is simple: The lower the edge density, the lower the number
of bilateral trading partners in the population; this, in turn, leads to a smaller number of
trades occurring within a given time horizon. Figure 6 also illustrates that the mean number of
trades that occur for a given CCL network depends on the network topology (and not just its
edge density). Specifically, the mean number of trades that occur in a core—periphery network
is much smaller than the mean number of trades that occur (on average) in an Erdés-Rényi
network with the same edge density. This result is interesting from a practical perspective,
because it suggests that the influence of CCLs depends not only on the number of trading
partners of each institution has, but also on the identities of those trading partners.

80000

Number of trades

—— Random network
—— Core-periphery network

T T T
0.0 0.2 0.4 0.6 0.8 1.0
Edge density

Figure 6: Mean number of trades for the (green) Erdés—Rényi networks and (orange) core—
periphery networks. Solid curves indicate the mean across all independent runs of the model;
dashed curves indicate one standard deviation away from these means.

In Figure 7, we plot the mean skipping costs of the trades that occur for each edge density d.
For both Erdés—Rényi networks and core—periphery networks, CCL networks with lower edge
densities have larger skipping costs. Intuitively, this result illustrates that the more restrictive
CCLs are to institutions’ access to trading opportunities, the larger the skipping costs that
institutions pay for their trades.

Figure 7 again illustrates that the CCL network’s topology, and not just its edge density,
plays an important role in market dynamics. For any edge density d, the mean skipping cost of
trades for an Erdés—Rényi network is skipping cost among trades for a core—periphery network.

For both classes of networks, the mean skipping cost decreases rapidly as the edge density
increases from 0 to about 0.1. For Erd6és—Rényi networks, the mean skipping cost is very close
to 0 for all edge densities above about 0.3. In this case, CCLs have a very small impact on
individual trade prices. For core—periphery networks, the mean skipping cost remains much
larger before eventually decreasing to 0 as the edge density reaches 1 (at which the CCL network
is complete, so all trades have 0 skipping cost by definition). Moreover, the standard deviation
of skipping costs is much larger for core—periphery networks than for the Erd6s—Rényi networks.

Because our model allows us to observe all trades that occur between the agents that trade
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Figure 7: Mean skipping costs of trades for (green) Erdés—Rényi networks and (orange) core—
periphery networks. Solid curves indicate the mean across all independent runs of the model;
dashed curves indicate one standard deviation.

in it, we are also able to study the realized volatility of both the quote-price and trade-price
series. We describe our methodology for measuring the realized volatility in Appendix B. In
Figure 8, we plot the trade-price and quote-price volatility for each edge density d.
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Figure 8: Realized trade-price volatility for Erdés—Rényi (green) and core—periphery (orange)
networks, and realized quote-price volatility for the same Erdds—Rényi (purple) and core—
periphery (pink) networks. Solid curves indicate the mean across all independent runs of the
model; dashed curves indicate one standard deviation.

For the Erdés—Rényi networks, the trade-price volatility exceeds the quote-price volatility
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when the CCL networks have a very low edge density. As the edge density increases, the
trade-price volatility decreases faster than the quote-price volatility. For edge densities larger
than about 0.1, the trade-price volatility is approximately equal to the quote-price volatility.

This result is intuitively sensible because quote-price volatility is determined by the maxi-
mum among all buy prices (respectively, the minimum among all sell prices) in the market, and
it is therefore influenced only by the extreme prices in the population. By contrast, trade-price
volatility depends on the prices of all trades that are conducted by all institutions. As the edge
density increases, the influence on the number of bilateral CCLs for the institution with the
maximum among all buy prices (respectively, the minimum among all sell prices) is relatively
small, because only a small fraction of all possible edges in the CCL network involve this in-
stitution. Therefore, its influence on the quote-price series is much smaller than its influence
on the trade-price series, which is affected by all bilateral CCLs among all institutions.

For the core—periphery networks, quote-price volatility is approximately stable across all
edge densities, except for values of d that are close to 0 or 1. By contrast, trade-price volatility
first increases sharply as d increases slightly above 0, and it subsequently decreases gradually
and then decreases sharply as d increases beyond about 0.95. This result illustrates that, for the
core—periphery networks, edge density has a much stronger influence on trade-price volatility
than it does on quote-price volatility.

In a market with CCLs, one can regard trade-price volatility as the underlying volatility
that is observable in the best quotes; there is then an additional contribution due to the CCLs.
Therefore, consistent with our results for skipping costs (see Figure 7), Figure 8 suggests that
as the edge density of a CCL network decreases, the strength of this additional impact on trade-
price volatility from CCLs also increases for both Erdos—Rényi networks and core—periphery
networks.

In Figure 9, we plot the log-ratio z of the realized quote-price volatility and the realized
trade-price volatility:

{ log (vg/vy) , for seller-initiated trades,
z = . (12)
log (va/ve) , for buyer-initiated trades.

A positive value of z indicates that trade-price volatility exceeds quote-price volatility, whereas
a negative value of z indicates that quote-price volatility exceeds trade-price volatility.

For the Erd6és—Rényi networks, the log-ratios are close to 0 (and sometimes even slightly
negative) for edge densities that are larger than about 0.1, and they are positive for edge
densities that are smaller than about 0.1. For the core—periphery networks, the log-ratios are
positive, and they are often large for almost all edge densities. In these cases, the application
of CCLs causes the volatility in the trade-price series to exceed the volatility that is observable
in the underlying quotes by a considerable margin. When this happens, only a very small
fraction of the volatility in the trade-price series is explained by a corresponding volatility in
the underlying best quotes.

5.7 Discussion of Simulation Results

Consistent with our expectations, we find that the more that institutions’ CCLs restrict their
access to trading opportunities, the less those institutions trade and the larger the skipping
costs that they pay when they do. We also observe that CCLs have a considerable impact
on trade-price volatility, but a much smaller impact on quote-price volatility: As the CCLs
become progressively more restrictive, the log-ratio z (which measures the relative magnitudes
of the volatility in the trade-price and quote-price series) increases considerably. Moreover, by
comparing different network structures, it is apparent that a CCL network’s topology, and not
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Figure 9: Mean of the log-ratio z of the realized quote-price volatility and the realized trade-
price volatility for (green) Erd6s—Rényi and (orange) core—periphery networks. Solid curves
indicate the mean across all independent runs of the model; dashed curves indicate one standard
deviation.

just its edge density, plays an important role in the determining the extent to which CCLs
impact trade prices and volatility.' The strong variability in log-ratios that we observe in
Figure 9 is attributable directly to the impact of CCLs in our model. This result is very
interesting from a practical perspective, because it suggests that CCLs can strongly influence
the price-formation process via institutions’ access to the set of available trading opportunities.

Together, our model simulations suggest that when CCLs cause severe restrictions to in-
stitutions’ access to trading opportunities, they can significantly impact both trade prices and
volatility. Two features are particularly interesting. First, as the edge density of a CCL network
decreases, both the skipping costs of individual trades and the trade-price volatility increase.
This increase is not accompanied by a similar increase in quote-price volatility, so the log-ratio
decreases. Second, the impact of CCLs depends not only on the edge density, but also on
the specific topology of the CCL network. Therefore, forecasting how a difference in the edge
density d impacts skipping costs and trade-price volatility also requires knowledge of the CCL
network’s topology. Intuitively, this result implies that understanding the possible impact of
CCLs in financial markets requires knowledge not only of how many institutions are trading
partners, but also of which institutions are trading partners with each other.

It is also important to note some limitations of our approach. First, the institutions in
our model do not attempt to implement trading strategies, nor do they adopt any strategic
behaviour (such as not conducting a trade at a particularly bad price). Instead, we model the
temporal evolution of their buy and sell prices via the simple, stochastic diffusions that we
described in Section 5.1. The strategic actions that are undertaken by real market participants
can entail the dynamics of real markets to differ considerably from those in our model. Second,
we do not attempt to model the complex process by which real market participants choose their
personal buy and valuations. In real markets, the probability of experiencing a counterparty

10We also investigated the volatility of our empirical price series from Section 4, but the results were uninfor-
mative and we do not report on them here.

23



default can be an important factor that influences a given institution’s personal spread (i.e.,
its choice of s¢). By using CCLs to prevent trading with counterparties that it perceives to
be unreasonably likely to default, a financial institution may choose to offer other financial
institutions (i.e., those with whom it is willing to trade) a smaller spread than would otherwise
be the case. In short, in our model, the progressively restrictive application of CCLs progres-
sively increases the skipping costs of trades; however in real markets, the ability to implement
CCLs may actually convince some institutions to narrow their spread and thereby offer other
institutions better prices than would otherwise be available in the absence of CCLs.

We end by comparing our findings with those of two other models of how networks of
relationships between different financial institutions can impact trade. First, we recall the
model of Luu et al. [2018], which uses similar network topologies to investigate the dynamics
of collateral, and the consequent systemic risk, in the presence of rehypothecation (see Section
2.2). Luu et al. [2018] reported that contagion effects vary much more rapidly as a function of
edge density for a core—periphery network than they do for an Erd6s—Rényi network. Consistent
with these findings, we also find that the impact of CCLs on trade prices varies much more
sharply as a function of edge density for a core—periphery network than it does for an Erd&és—
Rényi network. Luu et al. [2018] argued that “network structures with highly concentrated
collateral flows [such as core—periphery networks| are ...characterised by a trade-off between
liquidity and systemic risk”. In other words, a core—periphery network is more preferable than
an Erd6s—Rényi network in terms of liquidity, but less preferable than an Erdés—Rényi network
in terms of default contagion. We demonstrate that from the perspective of skipping costs, a
core—periphery network with a given edge density produces a larger impact on trade prices (on
average) than does a corresponding Erdés—Rényi network with the same edge density.

Second, we compare our results with those of Roukny et al. [2013], who studied how a
trading network’s topology can impact default cascades. Roukny et al. [2013] reported that
when considering only load-redistribution (i.e., diversification) effects, network topology does
not heavily influence their results. However, they reported that in the presence of a contagion
effect, network topology becomes an important factor for default cascades. In our model, a
larger edge density leads to a lower mean skipping cost — much like the version of the Roukny
et al. [2013] model that considers only load-redistribution effects. However, our simulation
results illustrate that the topology of a CCL network can significantly impact both skipping
costs (see Figure 7) and the corresponding volatility of the trade-price and quote-price series
(see Figures 8 and 9). Moreover, Roukny et al. [2013] argued that “hubs” (i.e., nodes with
particular large degrees) promoting and inhibitory roles for market stability, because they
both diversify shocks and serve as transmission hubs for default contagions. In our model,
we see that a core—periphery network with lower edge density (i.e., with fewer core nodes and
more periphery nodes) has considerably higher mean skipping costs than a core—periphery
network with higher edge density. Therefore, in the context of our model, hubs always create a
promoting effect, because they provide trading opportunities to a wide range of other financial
institutions, many of which are otherwise very poorly connected to other institutions.

6 Conclusions and Discussion

We investigated how the application of CCLs impacts the prices of trades during the course
of everyday trading. We first examined this issue empirically by studying a data set from
a large electronic trading platform in the FX spot market that utilizes CCLs. Although we
observed that CCLs have little or no impact on most of the trades in our sample, we also
found that CCLs contribute a considerable skipping cost for some trades. We argued that
this substantial heterogeneity in skipping costs is a natural consequence of the heterogeneity
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in the types and sizes of institutions that trade on the platform. By implementing CCLs,
Hotspot FX can facilitate trade for a wide variety of different financial institutions while letting
them decide for themselves whether or not to trade with specific counterparties. Because of
this direct control of counterparty exposures, there is no need for the platform to set high
barriers to entry for new participants. Indeed, two recent Triennial Central Bank Surveys from
Bank for International Settlements both noted that a new trend for direct participation from
small, non-bank institutions has been a key driver for sustained growth in FX volumes [Bank
for International Settlements, 2010, 2013]. Our findings are consistent with the hypothesis
that a wide variety of different financial institutions, with access to different sets of trading
opportunities, interact simultaneously on Hotspot FX.

To complement our empirical analysis, we also introduced a model of a single-asset mar-
ket with CCLs. In our model, a network of CCLs gives explicit control over the interaction
topology between different institutions. By fixing the model parameters and varying only the
CCL network topology, we studied how CCLs impact trade in our artificial market. Our main
observation is that both the edge density and the network topology are important for deter-
mining the skipping costs of trades and the corresponding volatility in the trade-price series.
When the restrictions that are imposed by CCLs are particularly severe, they can lead to large
skipping costs and a high level of volatility in the trade-price series, without causing a similarly
high quote-price volatility.

Several possible extensions to our model may provide further insight into the impact of
CCLs. For example, one can modify the temporal evolution of institutions’ buy and sell prices
to incorporate jumps or stochastic volatility to more closely reflect behaviour in real markets.
There are also several possible ways to incorporate strategic considerations into our model. As
one example, different institutions can implement different time-update rules for their buy and
sell prices to reflect heterogeneity in their trading styles. As another example, each institution
can also choose how to update its buy and sell prices according to its CCLs. For example,
institutions may be less willing to revise their buy price downward or their sell price upward
if they can see from the price of recent trades that they are already likely to be paying a
large skipping cost. We anticipate that these extensions will provide useful avenues for future
research.

We believe that our results help illuminate several important questions about the impact of
CCLs on everyday trading. To our knowledge, ours is the only empirical or theoretical study to
explore the use of this mechanism in a quantitative framework. Our empirical results indicate
that CCLs do not strongly impact the prices of the vast majority of trades during everyday
trading on Hotspot FX. We therefore argue that one can regard the application of CCLs
(and the consequent creation of skipping costs) as a necessary consequence of providing direct
market access to a broader selection of different financial institutions, rather than a weakness
of this market design. However, our model simulations also suggest that as CCLs become
progressively more restrictive, skipping costs and trade-price volatility can escalate rapidly. In
such situations, it seems plausible that the presence of CCLs may exacerbate systemic risk by
severely restricting institutions’ access to trading opportunities. Therefore, much like credit
valuation adjustments and trade novation via a central counterparty (see Section 2), CCLs
do not provide a simple solution to the problem of counterparty risk. However, our empirical
results suggest that CCLs can be a sensible approach to this problem under normal market
conditions, when CCLs do not overly restrict institutions’ access to trading opportunities.

Our model simulations suggest that the impact of CCLs is determined not only by the
edge density of a CCL network, but also by its topology. This presents a difficult question for
regulators: How can one monitor the state of the CCL network between institutions in real
markets in real time? In our opinion, to paint a realistic picture of market dynamics, financial
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stability policies must consider network effects.

Throughout this paper, our work has examined the question of how CCLs impact trade
prices during the course of everyday trading. An important topic for future work is to analyze
CCLs during periods of market stress. Specifically, it would be extremely interesting to assess
whether institutions modify their CCLs during periods of market stress to reflect the heightened
probability of experiencing a counterparty failure. It would also be interesting to examine
whether (and when) such modifications cause a significant impact on the statistical properties
of the trade-price series, when compared to those of the everyday series that we have studied.

An important open question is whether (and how) CCLs can be implemented alongside
other measures to mitigate counterparty risk. For example, it is possible that a platform could
offer institutions the ability to apply CCLs even if trades are still novated by a CCP. This
configuration may, in principle, provide institutions with a double-layered protection: Trades
are still novated by a CCP, but in the event of a CCP failure, institutions can ensure that
they are exposed only to specified counterparties and only up to a pre-specified limit. Before
such a configuration could be adopted, however, many important questions about the possible
interactions between these two mechanisms need to be addressed. How should trades that are
novated by the CCP count towards a given institution’s CCLs? Should they count at all? Or
should institutions also have a separate CCL directly with the CCP to limit their exposure
in the case of a CCP failure? Given the relatively low impact of CCLs that we observed on
Hotspot FX, we strongly encourage further research in this area to help address the many open
questions on this topic and to improve understanding of this deeply interesting but hitherto
unexplored market mechanism.
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Appendix A: The Hotspot FX Data

In this appendix, we provide a detailed description of the data that forms the basis of our
empirical analysis. We describe the same data in a more discursive fashion in Gould et al.
[2016].

Sample Selection

During our sample period, three major multi-institution trading platforms dominated electronic
trading volumes in the FX spot market: Reuters, Electronic Broking Services (EBS), and
Hotspot FX.!' All three of these platforms use similar trading mechanics; in particular, all

1See Bech [2012] for an estimated breakdown of transaction volumes between platforms during this period.
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three implement CCLs via QCLOBs. Importantly, however, EBS and Reuters primarily serve
the interbank market, whereas Hotspot FX serves both the interbank market and a broad range
of other financial institutions, such as hedge funds, commodity trading advisers, corporate
treasuries, and institutional asset managers.

Hotspot FX operates continuous trading: 24 hours per day and 7 days per week. However,
the vast majority of activity on the platform occurs on weekdays during the peak trading hours
of 08:00:00-17:00:00 GMT. We exclude all data from outside these time windows to ensure that
our results are not influenced by unusual behaviour during inactive periods. We also exclude 3
May (May Bank Holiday in the UK) and 31 May (Spring Bank Holiday in the UK; Memorial
Day in the US), because market activity on these days was extremely low. We also exclude
any days that include a gap in recording lasting 30 seconds or more.

After making these exclusions, our data set contains the peak trading hours for each of 30
trading days. In Figure 10, we plot the total volumes of market orders and limit orders for each
of the three currency pairs on each of these days. In Table 3, we provide the corresponding
summary statistics. Consistent with the market-wide volume ratios that were reported by
the Bank for International Settlements [2010], the mean daily volume of market orders for
EUR/USD exceeds that of GBP/USD by a factor of about 3 and that of EUR/GBP by a

factor of about 9.
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Figure 10: Total daily volumes of (top) market orders and (bottom) limit orders for (green
circles) EUR/USD, (orange squares) GBP/USD, and (purple triangles) EUR/GBP activity on
Hotspot FX on each day in our sample, measured in units of the counter currency. See Table

3 for the corresponding summary statistics.
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EUR/USD GBP/USD EUR/GBP | EUR/USD GBP/USD EUR/GBP
Panel A: Volume of Market Orders Panel A: Number of Market Orders
Min 2.5 x 109 7.4 %108 1.0 x 108 3.3x 103 1.6 x 10° 1.6 x 102
Median 4.4 %108 1.5 x 109 3.6 x 108 5.4 x 103 2.9 x 10° 4.9 x 102
Max 7.5 x 10° 2.5 x 10° 1.2 x 10° 8.7 x 10° 4.3 x 103 1.2 x 103
Mean 4.6 x 107 1.5 x 107 4.0 x 108 5.6 x 103 2.9 x 103 5.1 x 102
St. Dev. 1.2 x 10° 4.2 x 108 2.4 x 108 1.4 x 103 6.2 x 102 2.1 x 102
Panel C: Volume of Limit Orders Panel D: Number of Limit Orders
Min 72%x 10127 55x 10127 3.7 x 1012 3.5 x 106 3.0 x 10° 2.0 x 108
Median 9.4 x 102 78x102 6.2 x 102 4.4 x 108 4.4 % 108 2.9 x 106
Max 1.4 %1018 9.7x102 7.6x 102 6.0 x 106 5.3 x 108 3.6 x 106
Mean 1.0x 10"  7.9x 102 6.2 x 102 4.5 x 106 4.4 x 106 2.9 x 108
St. Dev. | 1.9 x 102 9.9x 10" 7.9 x 10! 6.5 x 10° 5.1 x 10° 3.5 x 10°

Table 3: Summary statistics for the total daily (A) volume of market orders, (B) number of
market orders, (C) volume of limit orders, and (D) number of limit orders for EUR/USD,
GBP/USD, and EUR/GBP activity on Hotspot FX during May—June 2010. All volumes are
in units of the counter currency.

Data Format

For each currency pair and each day, the Hotspot FX data consists of two files. The first file
is the tick-data file, which lists all limit order arrivals and departures. For each limit order
arrival, this file lists the price, size, direction (buy or sell), arrival time, and a unique order
identifier. For each limit order departure, this file lists the departure time and the departing
order’s unique identifier (which is assigned at its arrival). A limit order departure can occur
for two reasons: because the order is matched by an incoming market order, or because the
order is cancelled by its owner. The second file is the trade-data file, which lists all trades. For
each trade, this file lists the price, size, direction (buy or sell), and trade time. In both files, all
times are recorded in milliseconds. For our three currency pairs, the platform’s minimum order
size is 0.01 units of the base currency, and the platform’s tick size (i.e., the smallest permissible
price interval between different orders) is 0.00001 units of the counter currency. For further
details, see Knight Capital Group [2015].

The Hotspot FX data has several features that are particularly important for our study.
First, the tick-data files list all limit order arrivals and departures, irrespective of each order’s
ownership, so we can determine the complete set of all limit orders (irrespective of their owners’
CCLs) for a given currency pair at any time during the sample period. By doing this at the
time of each trade, we are able to calculate detailed statistics regarding the impact of CCLs
on trade prices. Second, the small tick sizes on Hotspot FX enable us to observe market
participants’ price preferences (i.e., the prices at which they place orders) with a high level of
detail. Data from platforms with larger tick sizes (such as Reuters and EBS) provide a more
coarse-grained view of such price preferences; that makes results more difficult to interpret,
particularly among trades for which the CCLs exert a small influence. Third, all limit orders
represent actual trading opportunities that were available in the market. This is not the case
on some other FX spot-trading platforms, which allow institutions to post indicative quotes
that do not constitute a firm commitment to trade. Fourth, the trade-data files include explicit
buy/sell indicators, which allow us to identify trades without the need for trade-classification
inference algorithms (such as the one introduced by Lee and Ready [1991]), which can produce
inaccurate results.

For the purposes of our investigation, the Hotspot FX data also has some limitations.
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First, the data does not provide any way to identify financial institutions, nor to ascertain
which institutions participated in which trades. Therefore, our statistical analysis is limited
to studying aggregate behaviour across all institutions, rather than more detailed conditional
properties. Second, the tick-data files do not include information about hidden orders, so there
are some trades listed in the trade-data file for which no corresponding limit order departures
are reported in the tick-data file. For each of the three currency pairs, these trades account
for approximately 5% of the total traded volume. In the absence of further details about these
trades, we choose to exclude them from our study. Third, in some extremely busy periods,
several limit order departures can occur at the same price in very rapid succession. Therefore,
for some trades, it is not possible to determine exactly which limit order departure corresponds
to a given trade. For each such trade, we use the limit order departure whose time stamp
is closest to the reported trade time. We regard any incorrect associations made in this way
to be a source of noise in the data. To ensure that this approach does not influence our
conclusions, we repeated all of our calculations when excluding all trades for which it is not
possible to associate exactly one limit order departure, and we found that all of our results
were qualitatively the same as those that we report throughout the paper.

If a market order matches to several different limit orders, each partial matching is reported
as a separate line in the trade-data file, with a time stamp that differs from the previous line by
at most 1 millisecond. In the absence of explicit details regarding order ownership, we regard
all entries that correspond to a trade of the same direction and that arrive within 1 millisecond
of each other as originating from the same market order, and we record the corresponding
statistics for this market order only once. For trades that match at several different prices
(i.e., they “walk up the book”), we record the volume-weighted average price (VWAP) as the
price for the whole trade, and we calculate the corresponding skipping cost using this VWAP
price.'?

Although the Hotspot FX data does not include information about market activity on
Reuters or EBS, we do not regard this to be an important limitation in the present study.
Due to the greater heterogeneity among member institutions on Hotspot FX than on Reuters
or EBS (see Section 3), it seems reasonable to expect that CCLs have a larger impact on
trade prices on Hotspot FX than they do on these other platforms. For example, large banks
that trade on Hotspot FX may be unwilling to trade with small counterparties, and they may
therefore assign them a CCL of 0. By contrast, the CCLs between institutions on Reuters and
EBS are likely to be much higher to reflect the confidence in large trading counterparties in
the interbank market. By studying data from Hotspot FX, we are able to assess the impact of
CCLs among a large and heterogeneous population.

Bid—Ask Bounce

Bid—ask bounce describes the tendency for consecutive trades of a given asset to alternate
between being buyer-initiated and seller-initiated (see Roll [1984]). Because the bid—ask spread
is strictly positive by definition, the occurrence of bid—ask bounce can cause subsequent trades
to occur at different prices, even in the absence of any change to the market state.

Similar to the application of CCLs, bid—ask bounce is a microstructural effect that impacts
the trade-price series. Studying all buyer-initiated and seller-initiated trades together may
cause bid—ask bounce to obscure the impact of CCLs in the trades that we observe. Throughout
this paper, we thus study buyer-initiated and seller-initiated trades separately, in an attempt

12Because each partial matching of a single market order is subject to the same CCLs, we regard it as
inappropriate to study each such partial matching as a separate event, as doing so would produce long sequences
of correlated data points from single market orders.
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to disentangle our results about CCLs from the possible impact of bid—ask bounce.

Appendix B: Measuring Realized Volatility

In this appendix, we describe our methodology for measuring the realized variance of the quote-
price and trade-price series in our model. For a detailed discussion of this methodology and its
empirical performance, see Liu et al. [2015].

For concreteness, we describe our methodology for buyer-initiated trades; the corresponding
definitions for seller-initiated trades are similar. For a given simulation of our model, let X
denote the total number of buyer-initiated trades that occur, let Ay, As,..., Ax denote the
prices of these trades, and let aj,as,...,ax denote the ask-prices immediately before the
arrival of these trades. For a given number K of intervals and a given number L of subsamples,
let

T:=X/K
denote the sample width and let
7:=T/L
denote the subsample width. For a given lag j, we calculate the sell-side trade returns
7’;4(]) = log (AL(i+1)T+jTJ) - log (ALiT+jTJ) 5 1€ {1, ce ,K — 1} s (13)

where |z denotes the largest integer less than or equal to z. We then calculate

K-1 ,
va(d) ==Y ()" -

i=1

We repeat this process for each j = 0,1,...,L — 1, and calculate the sell-side trade-price
quadratic variation

|

1 L-1
va=+Y valj). (14)
j=0

We calculate the sell-side quote-price quadratic variation vp similarly from aq,ao,...,ax.

To identify a suitable value of K, we created volatility signature plots (see Andersen et al.
[2000]) and chose values of K within a plateau. Other values of K in the same plateau produce
qualitatively similar results.
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