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We report the experimental observation of modulational instability and discrete breathers in a one-dimensional 
diatomic granular crystal composed of elastic spheres that interact via the nonlinear Hertz potential. Our crystal 
consists of an alignment of 19.05-mm-diameter steel and aluminium spheres compressed by a static load in the 
axial direction. We first characterize the linear spectrum of the crystal by analyzing the low amplitudes 
transmitted vibrations; we observe the existence of acoustic and optical bands separated by a band gap. We then 
illustrate theoretically and numerically the modulational instability of the lower edge of the optical band. We 
finally show experimentally that modulational instability leads to the dynamical formation of long-lived and 
spatially localized breather structures [Phys. Rev. Lett. 104, 244302 (2010); Phys. Rev. E 82, 056604 (2010)].  

1 Introduction 
Discrete breathers (DB) and intrinsic localized modes 

(ILM) have been a central theme in nonlinear investigations 
during the past two decades [1,2]. Their original theoretical 
proposal in settings such as anharmonic lattices [3] and the 
rigorous proof of their existence under fairly general 
conditions [4] motivated studies of such modes in a diverse 
host of applications [5]. Granular crystals, in turn, consist 
of closely packed assemblies of elastically interacting 
particles. Recent interest has arisen from their tunable 
dynamic response encompassing linear, weakly nonlinear, 
and strongly nonlinear regimes [6,7]. Such flexibility, 
arising from the nonlinear contact interaction between 
particles, makes them ideal not only as toy models for 
probing the physics of granular materials but also for the 
implementation of engineering applications, including 
shock and energy absorbing layers [8], actuating devices 
[9], and sound scramblers [10]. Only recently have 
nonlinear localized modes begun to be explored in granular 
crystals. Previous studies have focused on metastable 
breathers in an acoustic vacuum [11], the observation of 
localized oscillations near a defect [12,13], and one-
dimensional diatomic crystals restricted to linear dynamics 
due to welded sphere contacts [14]. Understanding and 
controlling energy localization in granular crystals might 
lead to new energy-harvesting or filtering devices. 

 
We report recent achievements in this proceedings 

article, concerning the experimental observation of intrinsic 
energy localization and the existence of discrete breathers 
in a one-dimensional diatomic granular crystal [15]. We 
also report a systematic and rigorous study of the existence 
and stability of DB in such systems [16]. 

2 Experimental setup 
The experimental setup shown in Fig. (1) is a one-

dimensional diatomic granular crystal. It is assembled by 
alternating aluminum spheres (radius 9.525 mmaR = , 
mass 9.75 gam = , Young modulus 73.5 GPaaE =  and  
Poisson ratio 0.33aυ = ) and stainless steel spheres 
( b aR R= , 28.84 gbm = , 193 GPabE = , 0.30bυ = ). The 
spheres are held in place using four polycarbonate 
restraining cylinders. At one end of the crystal, a pre-
compressive force is applied using a lever-mass system. 
The granular crystal is dynamically driven with a 
piezoelectric actuator fixed on a steel plate at the other end. 
The evolution of the force versus time, as the vibrations 
propagate in the alignment, is visualized using periodically 
placed thin piezoelectric force sensors inserted inside 
selected particles (preserving the inertia and the bulk 

stiffness of the original bead [7,10]). The static load is 
measured using a calibrated strain gauge cell placed 
between the lever arm and the last bead of the crystal. 

 

 

Figure 1: A one-dimensional diatomic granular crystal 
between a piezoelectric actuator (left) and a lever-mass 

system (left). The crystal is a pre-compressed alignment of 
aluminum (blue) and steel (gray) spheres. Thin force 
sensors (red) are inserted inside few of the spheres. 

3 Theoretical model and simulations 
We model [15,16] a one-dimensional diatomic crystal of 

N  spheres as a chain of nonlinear oscillators [6]: 
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where [ ]Y +
 denotes the positive part of Y , 0δ is the overlap 

of spheres under static load 0F , nu  is the displacement of 
the nth sphere around the static equilibrium, the masses 
are odd am m=  and even bm m= , and the coefficient A  depend 
on the exponent p  and the geometry/material properties of 
adjacent beads [15,16]. The exponent 3 2p =  yields the 
Hertz potential law between adjacent spheres [17]. 
 

From Eq. (1), we compute the linear dispersion relation 
of our system from the linearization of Eq. (1). For 
diatomic crystals, this curve contains two branches 
(acoustic and optical). At the edge of the first Brillouin 
zone, the linear spectrum possesses a gap between the 
upper cutoff frequency of the acoustic branch and the lower 
cutoff frequency of the optical branch. 

 
Within weakly nonlinear perturbation, ( )1 0n nu u −− δ , 

and with 3 2p = , one can approximates Eq. (1) in a power 
series expansion of the forces, up to quartic displacement 
terms, to yield the following expression: 
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Eq. (2) constitutes a diatomic variant of the Fermi-
Pasta-Ulam (FPU) nonlinear oscillator chain [18]. Such an 
equation is known to have a solution in the form of an 



asymmetric localized mode, induced by nonlinearity, inside 
the gap of the linear spectrum (i.e., a gap soliton) [19]. This 
arises from the modulational instability (MI) [20] of the 
optical lower cutoff phonon mode. 

 
We present, in Fig. 2, an example of a simulated DB. 

The simulation is achieved by imposing a harmonic 
displacement to the first sphere of the alignment, at the 
lower optical cutoff frequency. One clearly sees the 
formation of a localized oscillation inside the crystal. The 
plot of the force versus time at a location where the DB 
develops reveals an exponential increase, characteristic of 
the MI. 

 

 

Figure 2: Numerical simulation (from [15]) of a DB near 
the lower optical cutoff frequency. (a) Spatiotemporal 

evolution of the force. (b) Force versus time for particle 40. 

In [16], we presented systematic computations of the 
intrinsically localized excitations that 1D diatomic granular 
crystals can support. In particular, we examined two 
families of discrete gap breather solutions, in the gap of the 
linear spectrum between the acoustic and optical bands. 
One of them consists of heavy-symmetric DB and the other 
one consists of light-asymmetric DB. We found that the 
heavy-symmetric DB branch is always unstable. In turn, the 
light-asymmetric DB have the potential to be stable as long 
as their frequency lies sufficiently close to the optical band. 

2 Experiments in the linear and 
weakly nonlinear regimes 

The linear spectrum of our diatomic crystal is 
experimentally characterized by applying a low-amplitude 
broadband frequency uniform electrical noise to the 
piezoelectric actuator. The dynamic force is measured from 
the signal of a thin piezoelectric force sensor inserted inside 
a particle of the alignment. The transfer function is obtained 
as the ratio of the power spectral density (PSD) of the force 
normalized to the driving voltage. The transfer function is 
shown in Fig. 3. This spectrum clearly shows forbidden 
bands (i.e., gaps) and two pass bands bounded by cutoff 
frequencies. These frequencies were shown to be in fairly 
satisfactory agreement with the model and the numerical 
simulation exposed in the previous section [15,16]. 

 

 

Figure 3: Experimental transfer function (from [15]) of the 
vibrations measured within the linear regime in a diatomic 
granular crystal made of 81 beads and a 20N static force. 

The 81-bead diatomic crystal is then driven with a high-
amplitude 30 ms long sine voltage at the lower optical 
cutoff frequency. Force sensors are placed in particles 2, 4, 
7, 12, and 14. Forces measurements shown in Fig. (4) 
reveal the presence of a DB, whose frequency differs from 
the driving frequency and lies inside the forbidden band. 
Additionally, as predicted by simulations [15,16], the DB 
appears to be long-lived, as shown for instance from the 
different decay rates in Figs. (4a) and (4b) after the actuator 
is switched off. In Fig. (4e), we estimate the PSD of the tail, 
illustrating that the DB maintains its prominence while the 
mode at the actuator frequency has experienced a decrease 
in PSD amplitude by two orders of magnitude. 

 

 

Figure 4: Experimental observation of a DB near the lower 
optical cutoff frequency. (a) Force at particle n=2, (b) force 
at particle n=14, (c) PSD at n = 2, (d) PSD at n = 14 while 

the actuator is on, and (e) PSD at n = 14 after the actuator is 
switched off. Vertical lines in (c,d,e) indicate the driving 

frequency. Arrows in (d,e) indicate a DB that lies inside the 
band gap, between the acoustic and the optical pass bands. 

3 Conclusion 
We characterized in [15] and [16] the dynamics of 

compressed 1D diatomic granular crystals using theory, 
numerical simulations, and experiments. We explored the 
mechanism leading to the formation of discrete breather via 
modulational instability, and provided clear experimental 
proof of their existence.  
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