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1 Introduction

Being from the social media generation, we probably agree —at
least on some level—that networks are important to study. Ho-
wever, by the end of this course, we’ll start seeing that networks
are everywhere and crucial to our understanding of the world
around us.

In this course, we are going to use many ideas from ma-
thematics and other sciences, but we’ll try to make it as self-
contained as possible. We'll start by (re)viewing some of the
rudiments of graph theory which sets the stage for network
science.

1.1 Terminology from Graph Theory

A graph G is an ordered pair (V, E) where V is the vertex or no-
de set and E is the edge set which consists of 2-element subsets
of V.

TO DO: Insert image of a basic graph.

To be more precise, the above definition is for an undirected,
simple graph. 1t is undirected in the sense that the edges do not
have a ‘from-to” direction (E consists of sets, not ordered pairs)
and it is simple meaning there is precisely zero or one edge bet-
ween distinct vertices and no edge linking a vertex to itself (E
is itself a set consisting of 2-element subsets). It’s usually un-
derstood that when one says graph they mean undirected and
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simple unless otherwise stated or made clear by context. These
simple objects are incredibly interesting to study in their own
right. Let’s point out some language real quick: distinct vertices
connected by an edge are called ‘adjacent” and distinct edges
that share a vertex are called “incident.”

Let’s consider the graph Ggy,, where the vertices are students
in this class and there is an edge between two students if they
have taken at least one class together before this class (if we
included this class then there would be an edge between all
vertices, which isn’t as interesting). We might ask, who is ‘po-
pular’ in this graph? One way to answer this question might use
degrees. The degree of a vertex v (denoted d(v)) is the number
of edges incident to v. So, one might say the vertex or vertices
with the greatest degree are the most popular as they have sha-
red the most courses with other students. Let’s put the question
of popularity to the side for now, and focus on what else we can
say about degrees.

What if we know the degrees of all the vertices in our graph?
How well do we know the graph? There are two equivalent
ways to store this information about degrees. We can arrange
all the degrees as a list in non-increasing order which we’ll call
the degree sequence. Or we can consider the degree distribution of
a graph, which is the function

cd(v) =k
gl = € V40 =)

Let’s examine the degree distribution of some real-world gra-
phs.

Insert: Examples of degree distributions.

We can learn a lot about a graph from its degrees, but not
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everything. It is important to recognize that one cannot reco-
ver complete information about a graph from just its degree
sequenceE] As an aside, a very interesting ‘inverse problem’ is
asking what sequences can be degree sequences for graphs. In
1960, Erdos and Gallai proved that the following conditions are
both sufficient and necessary for a list of non-negative integers
dy > dy > ... > dy to be a degree sequence: d; +dp + ...+ dy
is even and

n

k
Y di <k(k—1)+ Y min(d; k)
i=1 i=k+1

holds for every kin {1,2,...,n}. You should check the meaning
of the first condition for yourself as an exercise, hint: try to re-
late the sum of degrees to |E|.

Consider our Ggy,, graph again, another question we might
ask is if it is ‘connected’? Our intuitive real-world definition
coincides here, but let’s also give the precise definition. First,
define a walk to be a alternating sequence of vertices and edges
beginning and ending on vertices

vil,ejl,viz,ejz,. . .,e]-n,vinﬂ

such that each edge is incident to the vertex before and after it.
The number of edges involved in a walk is its length, so this
was a walk of length n. A path is a walk which does not repe-
at edges or vertices except for the possibility that v; = v;
in which case it is a cycleE] We call a graph connected if the-
re is a path between every pair of vertices. Not all graphs are

1To make this more precise, we'll need to define isomorphisms on graphs, but
in short, there are non-isomorphic graphs with the same degree sequence.
2Unfortunately, not everyone agrees on these definitions, so caveat lector.
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connected of course, and how to study such graphs can be a
challenging question.

It may be feasible to draw a pictorial representation of Ggy,,
and attempt to answer most questions we have by hand, howe-
ver, we'll soon want the aid of a computer. Defining a graph as
an ordered pair of sets is useful formally, but from a computa-
tional perspective, it is often helpful to store data about a graph
in an adjacency matrix, which is a square binary (0 or 1 entries)
matrix of size |V| where the entry A;; represents whether an
edge between vertices i and j exists or not. In simple graphs,
Aj; = 0 for all i. There are many uses for the adjacency matrix.

1.1.1 Exercises
e What term do we have for the quantity (A?);;?

e Check that (A* )ij counts the number of walks of length k
from vertex i to vertex j, where (A* )ij denotes the (i, j)th
entry of the kth power of the matrix A, i.e. A times itself
k times.

e Convince yourself that if a graph is connected, for each i
and j there should be a k that makes (Ak)ij positive, but
note that it may not stay positive as you increase k.

1.2 Networks

Now we have a definition for a graph, but what is a network? A
network is an object which consists of vertices representing en-
tities which are connected by edges representing ties between
them. This is a less mathematically formal definition than the
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one we gave for graph but it highlights the essence. By this
definition, a graph is an example of a network. In fact, direc-
ted graphs (where edges are ordered pairs rather than sets) are
networks, pseudographs (or non-simple graphs in which loops
and multiple edges are permitted) are networks, hypergraphs
(where we allow hyperedges connecting two or more vertices)
are networks, and weighted graphs (where edges have an assi-
gned weight) are networks, etc.. We'll discuss these and more
in greater detail later on as we explore more real networks, but
for now you can probably begin to imagine how these additio-
nal structures will help us model the world around us.

Suppose we are given a network to study; we are well prepa-
red to start asking many interesting problems about networks.
What is, if there is any, the community structure of the network?
Does the network exhibit clustering? Does the network exhibit
the small-world property? Is this network similar to another
network? We might even try to make inferences or predictions
from the network.

Before concluding this introduction, it would be remiss not to
mention dynamics. So far, the networks mentioned have been
fairly static, but real-world networks evolve. A hugely import-
ant field in network science is the interplay between dynamics
and networks. Typically we say there are two kinds of dyna-
mics: dynamics on networks and dynamics of networks. We
can also couple these two kinds of dynamics and see how the
interact.



2 Background

2.1 Statistics

It’s quite likely that for your projects, you'll be working with
data. Luckily for you there is a lot of data that you have access
to. Sometimes the data will be organized in way that makes it
easily amenable to the tools of network science. Other times, it
may require a lot of cleaning and cleverness. Regardless, it will
be useful to have some of the basic tools from statistics to help
analyze the data.

Given N samples x1, ..., xy, we define the kth sample moment
to be

z

1
N

1

k
xl'-

Il
—_

The first sample moment is known as the mean, which will also
be denoted as (x). We define the standard deviation as

In addition to defining mean, moments, and standard devia-
tion for samples, we can define them for random variables. For
example the k' moment for a discrete random variable X with

support {x;}c; is
Exi'(Pi

icl
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where p; = P(X = x;). For a continuous random variable Y the
k" moment is

| vy

where f(y) is the probability density function.

Beyond these measures, there is the important question of
how do we fit sample data to a distribution, i.e. is the data
normally distributed? We won’t be able to cover the topic of
fitting here (both for reasons of time and it’s quite a challenging
topic in itself).

2.2 Scale-free Networks

Consider a network whose degree distribution fits to a pareto
distribution, also known as power-law distribution. That is, the
degree distribution is well approximated by power-law

Paeg () ~ k7.

These networks are sometimes called scale-free because they do
not exhibit a ‘characteristic scale’. There is contention around
this terminology, which I'll try to summarize and then give re-
ferences for further reading.

Let’s start with Barabasi. For Barabasi, “a network that has a
power-law degree distribution, regardless of any other struc-
ture, is called a scale-free network.In Chapter 4 of his Net-
work Science book, he explains the terminology using moments.
You've probably heard of the heuristic 68-95-99.7 rule that hel-
ps you remember what percent of normally distributed data lie
within a sigma interval around the mean; e.g. approximately
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95% of normally distributed data should be within two stan-
dard deviations of the mean. A similar result can be stated for
the Poisson or other unimodal distributions. The takeaway is
that if the degrees of a network are distributed this way, then
there is some sense of the scale as most degrees are comparable
to each other and so the mean is understood to be the scale.
However, for a power-law distribution, the distribution mean
exists only if v > 2, and the distribution standard deviation on-
ly if v > 3. That is to say, if v < 3, then the standard deviation
for the distribution is infinite (check the integral for the second
moment diverges). In Barabasi’s words, this “means that when
we randomly, choose a node, we do not know what to expect:
The selected node’s degree could be tiny or arbitrarily large.
Hence networks with v < 3 do not have a meaningful internal
scale, but are ‘scale-free’."

However, “power-law and scale-free are very different con-
ceptsdccording to Chung and Lu who discuss scale-free net-
works in Section 3.5 in their Complex Graphs and Networks book.
For them, the discussion of scales involves a discussion of both
space and time. There are scale-free in space networks which
exhibit self-similarity which they go on to define and there are
scale-free in time networks which they also go on to define, but
I'll try to summarize what they say: Suppose you have a process
for generating a network by adding nodes and edges one at a
time. Next, suppose you can divide up time into equal-length
intervals and combine all the nodes born in the same interval
into a single super-node. If the resulting graph still has a power-
law degree distribution with the same exponent regardless of
the size of the intervals, it is said to be scale-free in time (note:
it will have fewer nodes).

For more reading on this topic:

1. Mathematical results on scale-free random graphs by Bol-

10
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lobas

https://www.stat.berkeley.edu/ aldous/Networks/bclll.

pdf

2. Scale-free networks are rare by Broido and Clauset
https://arxiv.org/pdf/1801.03400.pdf

3. Towards a Theory of Scale-Free Graphs: Definition, Pro-
perties, and Implications

https://people.csail.mit.edu/jshun/6886-s18/papers/

LADWO6 . pdf

2.3 Graph Theory

Let’s add a few more concepts to our repertoire. Every graph
we’ll consider here is undirected, unweighted, and simple. The
complete graph on n vertices, denoted K, is a graph where every
distinct pair of vertices is connected by an edge. That is, all
vertices are adjacent and the graph has "("2_1) edges. A bipartite
graph is one which the vertex set V can be decomposed into
two disjoint sets V; and V, such that no pair of vertices from the
same set are adjacent. The complete bipartite graph of p, q vertices,
denoted K 4, is a bipartite graph where |Vi| = p and |V;| = ¢
and every vertex in Vj is adjacent to every vertex in V,. You
should check that K, ; has pg edges.

Very often, we visualize our graphs by drawing dots and li-
nesﬂ on a plane, dots representing the vertices and lines repre-
senting the edges. A natural question we might ask ourselves,
is it possible to draw every graph without the lines crossing?’,
to which the answer is no. A graph G is said to be planar if the

1Dots and Lines is also the title of a graph theory textbook by Richard J. Tru-
deau

11
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graph can be embedded in (or, in simple English, drawn on)
the plane such that edges do not cross. For example, K;, Ky, K3
and Ky are planar. K5 is not planar. The three utilities problem
is a classic math puzzle where you have three houses and three
utilities gas, electricity, and water, and your goal is draw a line
from every house to every utility without crossing. In graphic
theoretic terms, we are asked to give a planar embedding of
K33 without edges crossing, which is not possibleﬂ These two
graphs, K5 and K33, play a significant role in planarity testing
thanks to two theorems. Kuratowski’s theorem states that a fi-
nite graph is planar if and only if it does not contain a subgraph
that is a subdivision of the complete graph Ks or the comple-
te bipartite graph K33 (utility graph). Wagner’s theorem states
that a finite graph is planar if and only if it does not have K5 or
K33 as a minor. Next, we consider the notion of distance. The
geodesic distance, or simply the distance between two vertices in a
graph is the length of a shortest path between them. For exam-
ple, in Kj;, the distance between any pair of distinct vertices is
1. In a friendship network, friends of friends (who themselves
are not friends) are a distance 2 apart. The diameter of a graph is
maximum distance in a graph; that is, it is the longest shortest
path between any two vertices. The diameter gives us global
information about the graph about distance. Another global is
the mean geodesic distance, which is the mean over all distances
taken over all pairs of distinct vertices. The diameter is already
greater than or equal to the mean geodesic distance.

You may be familiar with the small world phenomenon of
strangers being linked by a short chain of friends. We can now
define a small-world network. A small-world network refers to an
ensemble of networks in which the mean geodesic distance bet-
ween nodes L grows at most proportionally to the logarithm of

2It is possible to do so on a mug though!

12
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the number of nodes, i.e. L = O(log(N)) where N is the num-
ber of nodes. Note, you'll often see the term used to describe
a single network in this family. Note that Newman defines the
small-world effect in the same way but replaces the mean geode-
sic distance with the graph diameter which is more restrictive.

There are many ways to store information about a graph in
a matrix. We've already seen the adjacency matrix and we now
introduce the Laplacian matrix, which has many beautiful spec-
tral properties. Unfortunately, there isn’t consensus on how to
define the Laplacian, but we’ll go with L = D — A, where D is
the matrix with the vertex degrees on the diagonal and zeroes
elsewhere and A is the adjacency matrix. That is,

deg(i) i=j
Lij={-1 i#j(i,j)€E
0 otherwise

[TODO Insert example]. You should check that the sum of
across any row or any column in L is zero. What this implies is
that the vector of all ones in RN (where |V| = N) is an eigenvec-
tor of L with eigenvalue 0. L is notably symmetric and therefore
can be diagonalized in an orthonormal basis and has real ei-
genvalues. There are physical interpretations to L that we may
revisit later on, but for now we’ll just discuss one connection
between the dimension of the nullspace of L and the number of
connected components of G (they’re equal!). A connected compo-
nent (or just component) of a graph is a subgraph in which any
two vertices are connected to each other by paths, and which is
connected to no additional vertices in the whole graph. [TODO
Insert picture]

If a graph has ¢ connected components, then with appropria-
te reordering its adjacency matrix consists is block diagonal and

13



2 Background

consequently so is the Laplacian. Each block in the Laplacian is
in fact the Laplacian matrix for subgraph. We can now make
c linearly independent vectors that live in the nullspace of L:
for each component, there is a Laplacian block L; in L, and for
each block we consider the vector of all ones in the entries cor-
responding to the block and zeros elsewhere. Check that these
vectors are indeed in the nullspace and linearly independent.
Thus we have that ¢ is at most the nullity of L. In the other di-
rection, let’s consider the vectors in RN as real-valued weights
assigned to each vertex. The quantity x” Lx will be of interest.

xTLx = xT(D— A)x

=xTDx — xT Ax

Zdegle — Z 2x;x;

v, eV (i,j)eE

= Z xi +x]' - Z ZXiX]'
(i,j)€E (i,j)€E

= Y (xi—x)?
(i,j)€E

As an aside, this tells that L is positive semi-definite, so all of
its eigenvalues are non-negative. Suppose L has nullity k, that
is, L has a nullspace N C RN of dimension k. For all x € N,
xTLx = 0, but this means Z(i,j)eE(xi — x]-)2 = 0 and so x; =
x;j if (i,j) € E and moreover x; = xi if v; and vy are in the
same component, and so x is constant on components. Thus the
dimension of N could be at most the number of components.
This completes the proof.

14



3 Random Graphs
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4 Clustering Coefficient
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5 Homework Questions

In this chapter, I'll provide partial solutions to past homework
assignments based on requests.

5.1 Problem 8.2 from Newman’s
Networks

We are given that the degree distribution is py = Ce** where C
and A are constants. For (a), we want to find C as a function of
A. What this question is asking: what does C need to be in order
for py to be a probability function. It's not explicitly stated, but
we’ll take the support to be from k = 0 to infinity. You could
consider other supports though. The condition that will give us
C is that Y2°, p; = 1. Solving this gives us that C = 1 — e~
For (b), we want the fraction P of vertices that have degree k
or greater. We know that py tells us the fraction of vertices that
have exactly degree k, so

P = i pi = iCe*M =C i(e*)‘)i.
i=k i=k i=k

This geometric sum comes out to be e~ **.

For (c), we want the fraction W of ends of edges that are atta-
ched to vertices of degree k or greater. The reference given in
the textbook is to a paper which discuss the same kind of cal-
culation in the context of wealth inequality. You'll sometimes

17
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hear the richest 20% of individuals have 80% of the moneyE]
The analogy here is that the ‘richest’ (in terms of high degree)
x% of the vertices ‘own’ (i.e. are incident to) y% of the edges
where y > x. So let’s actually compute out the numbers. What
we want in the numerator of our fraction are the total number
of edge ends attached to vertices of degree k or greater, and the
denominator will be total number of edges ends. The denomi-
nator is thus twice the number of edges, but we don’t have that
so we'll just have to take whatever expression we get for the nu-
merator and set k = 0. Let n denote the number of nodes, then
npx nodes have degree k and so knpy is the total number of edge
ends attached to nodes of degree k. Now we try to compute

Zi”Pi =n Zipi =n Zi(l —eMeM=n1-e?) —Ai
i=k i=k i=k

ie

&

i=k

A

To compute Y%°, ie !, we can notice it is equal to the negative

of the derivative of a geometric sum, i.e. } ;> je M = — % Yok e M,

We then use the result from (b) and have that

d e Mk eiAk(—k)(l _ e*/\) — e Mkp—A

% —Ai - _“ —
dA ;Ce dA1l—e 2 (1—eN)?2

So substituting and simplifying, we get that

S k(1 —e M) Feh
Y inpy = ne W=D LT
i=k ¢

t’s apparently way worse than that: http:/ /fortune.com/2017/11/14/ credit-
suisse-millionaires-millennials-inequality /

18
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Let’s plug 0 in for k to get the total number of edge ends,
n% = . Now W is just the ratio, so this gives
—e et —1

ne—k k(1—e M) 4e?
W= e — e Mkt — 1) + 1)

et -1

For (d), you're asked to show the Lorenz curve is given by

W =P+ %Pln P. This follows from substitution and alge-
bra. Note, the Lorenz curve just means writing W in terms of
P, the form depends on the distribution, and will look different
for different distributions.

19
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