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Tarski’s circle squaring problem

The theory of amenability can be used to show that Lebesgue
measure on R2 can be extended to a finitely additive
isometry-invariant measure on R2. Hence, there is no version of
the Banach-Tarski paradox in R2.

Question (Tarski, 1925)

Are a disc and a square in R2 (necessarily of the same area)
equidecomposable?

Laczkovich (1990) gave a positive answer to this question.

Dubins, Hirsch, and Karush (1963) had shown that Tarski’s circle
squaring cannot be solved using pieces whose boundaries consist of
a single Jordan curve.



A Borel solution to Tarski’s circle squaring problem

Theorem (M.-Unger, 2016)

Tarski’s circle squaring problem can be solved using Borel pieces.
Generally, suppose k ≥ 1 and A,B ⊆ Rk are bounded Borel sets
such that λ(A) = λ(B) > 0, ∆(∂A) < k , and ∆(∂B) < k . Then A
and B are equidecomposable by translations using Borel pieces.

Here λ is Lebesgue measure, ∂A is the boundary of A, and ∆ is
upper Minkowski dimension.

This is a Borel version of a general equidecomposition theorem due
to Laczkovich (1992). Grabowski, Máthé, and Pikhurko had
proved a measurable/Baire measurable version in 2015.

Our equidecomposition of the circle and square uses ≈ 10200 pieces
which are finite boolean combinations of Σ0

4 sets.

In the remainder of the talk, we sketch a proof of this theorem.



Laczkovich’s first idea: work in the torus

We may scale and translate A and B so that they lie in [0, 1)k .

View A and B as subsets of the k-torus Tk = (R/Z)k which we
identify with [0, 1)k . Then A and B are equidecomposable by
translations as subsets of the torus iff they are equidecomposable
by translations in Rk . (Though perhaps using more pieces).



Fix a sufficiently large d , and sufficiently random u1, . . . , ud ∈ Tk .
Obtain an action a of Zd on Tk by letting the ith generator of Zd

act via ui .

(n1, . . . , nd) · x = n1u1 + . . .+ ndud + x

This action will be free. We can visualize each orbit as a copy of
Zd .



For the rest of the proof, let G be the graph with vertex set Tk

where x , y ∈ Tk are adjacent if there is γ ∈ Zd such that γ · x = y
where |γ|∞ = 1.

To show A and B are equidecomposable by Borel pieces, it suffices
to find a Borel bijection g : A→ B so that for some fixed N,
for all x ∈ A, dG (x , g(x)) ≤ N.

Then if Aγ = {x : g(x) = γ · x}, the sets {Aγ}|γ|∞≤N partition A,
and the sets {γ · Aγ}|γ|∞≤N will partition B.



A picture of an equidecomposition.



Laczkovich’s second idea: discrepancy theory

For x ∈ Tk , let FN(x) = {(n1, . . . , nd) · x ∈ Zd : 0 ≤ ni < N}, the
“square” of side length N in G starting at x . Since FN(x) has Nd

elements, by the ergodic theorem, expect |FN(x) ∩ A| ≈ λ(A)Nd .

Lemma (Laczkovich 1992 building on Schmidt, Niederreiter-Wills)

For A,B and the action as above, ∃ε > 0 and M such that for
every x and N, ∣∣∣FN(x) ∩ A− λ(A)Nd

∣∣∣ ≤ MNd−1−ε

and ∣∣∣FN(x) ∩ B − λ(B)Nd
∣∣∣ ≤ MNd−1−ε

Roughly, every square of side length N contains very close to
λ(A)Nd many elements of A and B.



Suppose we take an equidecomposition g : A→ B and “zoom out”
by tiling the action with rectangles in G of side length ≈ N.



In each tile S , there is some difference in |A ∩ S | and |B ∩ S |.



The equidecomposition tells us how many points of A to move to
points of B in adjacent tiles so that the same number of points of
A and B remain in each tile afterwards.



Flows in graphs

Based on this idea, we introduce the following definition:
Suppose G is a graph (symmetric irreflexive relation) on a vertex
set X . If f : X → R is a function, then an f -flow of G is a
function φ : G → R such that

I For every edge (x , y) ∈ G , φ(x , y) = −φ(y , x), and

I For every vertex x ∈ X , Kirchoff’s law:

f (x) =
∑

(x ,y)∈G

φ(x , y)

In finite graph theory, flows are usually studied with a single source
and sink (e.g. in the max-flow min-cut theorem). For finite graphs,
the above type of flow problem is equivalent to one with a single
source and sink (by adding a “supersource” and “supersink” to the
graph). For infinite graphs, there is not such an equivalence. E.g.
there are “Ponzi schemes” on infinite graphs.



Examples of flows.



Flows and equidecompositions

Proposition

A and B are a-equidecomposable with Borel pieces iff there is a
bounded Borel integer-valued χA − χB -flow of G .

→: Suppose g : A→ B is a Borel bijection which moves points a
bounded distance in G .

To construct a flow from g , for each x ∈ A add 1 unit of flow to
each edge along the lex-least path from x to g(x).



Constructing an equidecomposition from a flow, I

←: Suppose now φ is a Borel χA − χB flow of G bounded by c .

Find a Borel tiling T ⊆ [Tk ]<∞ of each orbit by rectangles of side
length ≈ N. So T is a partition of T k , and each S ∈ T is a
rectangle of side length ≈ N in G . Let G/T be the graph minor of
G formed via T . That is, the vertices of G/T are the tiles in T
and two tiles are adjacent if they contain neighbors in G .

Let F : T → R be F (R) =
∑

x∈R χA(x)− χB(x) and let

Φ(R,S) =
∑

(x ,y)∈G : x∈R∧y∈S

φ(x , y)

Then Φ is an F -flow of G/T .



Constructing an equidecomposition from a flow, II

Each tile R ∈ T has roughly λ(A)Nd points of A and B, and the
flow over the boundary of the tile is ≤ O(cNd−1). Using
discrepancy, if N is sufficiently large, there are more points of A
and B in every tile than maximum flow out of the boundary of the
tile.

Now construct a Borel bijection from A to B witnessing
equidecomposability. Suppose R,S are adjacent tiles.

I If Φ(R, S) > 0, then map Φ(R,S) many points of A ∈ R to
points of B ∈ S .

I If Φ(R, S) < 0, then map −Φ(R, S) many points of B ∈ R to
A ∈ S .

Since Φ is an F -flow, after doing this the same number of points
of A and B remain in each tile. Biject them to finish the
construction.



An aside: how to construct Borel tilings

An independent set in a graph G is a set of vertices where no
two are adjacent.

Theorem (Kechris, Solecki, Todorcevic, 1999)

If G is a locally finite Borel graph, then there is a Borel maximal
independent set for G .

Let G≤n be the graph on Tk where x , y are adjacent if
dG (x , y) ≤ n. Let C be a Borel maximal independent set for G≤n.
Use the element of C as center points for “tiles” of G .

If we use these center points to make “Voroni cells”, the resulting
tiling suffices for our proofs. Gao-Jackson (2015) give a more
complicated construction to make rectangular tilings.



Proof overview

1. We construct a real-valued bounded Borel χA − χB -flow of G
by giving an explicit algorithm for finding such a flow.

I Relies on Laczkovich’s discrepancy estimates.
I Uses the fact that the average of flows is a flow.

2. We show that given any real-valued Borel χA − χB -flow of G ,
we can find an integer valued Borel χA − χB -flow which is
“close” to the real-valued one. Uses:

I the Ford-Fulkerson algorithm in finite combinatorics.
I a theorem of A. Timár on boundaries of finite sets in Zd .
I recent work of Gao, Jackson, Krohne and Seward on

hyperfiniteness of free Borel actions of Zd .

3. We finish by using the proposition we just proved: there’s a
Borel equidecomposition iff there is a bounded Borel
χA − χB -flow.



Step 1: Constructing a real-valued flow

Let f = χA − χB . Say that a function φ : G → R is an f -flow with
error ε if

I For every edge (x , y) ∈ G , φ(x , y) = −φ(y , x), and

I For every vertex x ∈ X ,∣∣∣∣∣∣f (x)−
∑

(x ,y)∈G

φ(x , y)

∣∣∣∣∣∣ < ε

We’ll construct our flow as a limit of approximate flows whose
error approaches 0.



We’ll describe an algorithm for constructing a real-valued f -flow
where in the connected component of some x ∈ Tk . We draw
pictures with d = 2.



Our flow will be constructed in ω many steps. At step n we work
in 2n × 2n squares. At step 1 we consider 2× 2 squares.



Step 1: The idea is to spread out the error in the flow evenly over
each 2× 2 square. Each point contributes 1/4 of its f -value to the
other 3 points.



Step 1: The idea is to spread out the error in the flow evenly over
each 2× 2 square. Each point contributes 1/4 of its f -value to the
other 3 points.



The error in the flow after step 1 is the average of f over the 2× 2
square.



We do this for every 2× 2 square in the orbit.



So the error in the flow after step 1 is the average of f on its 2× 2
square.



Now we use roughly the same idea in each 4× 4 square, but
dealing with 4 points at a time in the way given above.



Now we use roughly the same idea in each 4× 4 square, but
dealing with 4 points at a time in the way given above.



Now we use roughly the same idea in each 4× 4 square, but
dealing with 4 points at a time in the way given above.



Now we use roughly the same idea in each 4× 4 square, but
dealing with 4 points at a time in the way given above.



We add to the flow already constructed at the previous step.
Once again, each point contributes 1/4 of its error to the other 3
points.



After this second step, the error at each point will be the average
of f over its 4× 4 square.



After this second step, the error at each point will be the average
of f over its 4× 4 square.



After this second step, the error at each point will be the average
of f over its 4× 4 square.



Step 1: Constructing a real-valued flow

After step n, the error in our flow at each point will be the average
value of f over the 2n × 2n square containing the point. Since
f = χA − χB , and each 2n × 2n square contains nearly the same
number of points of A and B, this error is very small.

An easy calculation using Laczkovich’s discrepancy estimates
shows that this construction converges to a bounded f -flow (with
error 0 everywhere).

However, we cannot pick a single x in each orbit to be a “starting
point” for this construction (since this would be a nonmeasurable
Vitali set).

To fix this problem, we use an averaging trick (the average of flows
is a flow!).



Step 1: Constructing a real-valued Borel flow
For every i > 0, let πi : Zd/(2iZ)d → Zd/(2i−1Z)d be the
canonical homomorphism. This yields the inverse limit

Ẑd = lim←−
i≥0

Zd/(2iZ)d

where elements of Ẑd are sequences (h0, h1, . . .) such that
πi (hi ) = hi−1 for all i > 0. Essentially, this describes how to choose
a 2× 2 grid, 4× 4 grid, 8× 8 grid, etc. that fit inside each other.

For each x ∈ Tk and h ∈ Ẑd , our above construction yields a flow
φ(x ,h) of the connected component of x , using the grids given by h.

The construction is such that if γ ∈ Zd , then φ(x ,h) = φ(γ·x ,−γ+h).
Hence, the average value of this construction is invariant of our
starting point (h 7→ −g + h is measure preserving):∫

h
φ(x ,h) dµ(h) =

∫
h
φ(γ·x ,−γ+h) dµ(h) =

∫
h
φ(γ·x ,h) dµ(h)

This average value is our real-valued Borel χA − χB flow! (µ is

Haar measure on Ẑd .)



Step 2: modifying to make an integer Borel flow

Now we want to modify the flow so that it takes integer values.

Suppose φ is an f -flow in G . Given a cycle in G if we add the same
real value to every edge in the cycle, this preserves the property of
being an f -flow. Hence, we can choose a value in [0, 1) to add to
this cycle so that a single edge in the cycle becomes integer.



Suppose that F is a finite connected set in G .



The edge boundary of F is ∂F = {(x , y) ∈ G : x ∈ F ∧ y /∈ F}.
I claim we can modify the flow so that it takes integer values on
∂F .



To begin, find a 3-cycle (a triangle) having an edge in ∂F .



Modify the flow on the cycle to make this edge (the darker one)
integer.



Repeat this process.



Repeat this process.



By using work of A. Timár on boundaries of finite sets in Zd , one
can show using Euler’s theorem (on the existence of Euler cycles)
that for every finite set F , one can find a sequence of triangles that
can be used to change the flow to be integer on ∂F .



Step 2: modifying to make an integer Borel flow

Let [Tk ]<∞ be the space of finite subsets of Tk .

Theorem (Gao, Jackson, Krohne, and Seward, 2015)

There is a Borel set C ⊆ [Tk ]<∞ such that

I
⋃
C = Tk

I Every S ∈ C is connected in G .

I (Boundaries are far apart) all distinct R,S ∈ C are such that
∂R and ∂S contain no two edges of distance less than 4.

Use the process described on the previous slides to make the flow
integer on ∂S for every S ∈ C . After removing these edges, G has
finite connected components. Use the integral flow theorem from
finite graph theory (a corollary of the Ford-Fulkerson algorithm) to
modify the flow on these components to be integer.

This finishes the proof of Borel circle squaring.


