
6c Lecture 15: May 22, 2014

12 Tarski-Seidenberg

Despite the key role that algorithms play in math, it wasn’t until the early
twentieth century that mathematicians began to ask abstract questions about
algorithms themselves. Can we give a mathematically precise definition of what
an algorithm is? What parts of mathematics can be solved by algorithms? At
the time, many people were optimistic about this latter question; they thought
eventually algorithms would be found to solve essentially all mathematical prob-
lems. Part of this optimism stemmed from their past successes. However, the
strongest argument for this view was a program suggested by David Hilbert.
Hilbert thought that we could find a complete set of axioms for mathematics; a
set of starting assumptions from which we could prove or disprove any mathe-
matical proposition. If such a set of axioms could be found, then we could use
the following algorithm for determining the truth of any mathematical state-
ment: look through the proofs from these axioms one by one until we find a
proof that the statement is true, or that it is false. At the time, Hilbert’s pro-
gram seemed within reach; work of Frenkel, Russell, Whitehead, Zermelo, and
others had essentially isolated all axioms used by mathematicians to date.

In the mid 1930s, a mathematically precise theory of algorithms was finally
created. Alan Turing defined a mathematical model of a type of computer, a
machine for performing algorithms, and gave a convincing (albeit informal) ar-
gument that this type of computer could execute any possible algorithm (defined
in the informal sense we’ve given above)1. Using this precise definition, Turing
was then able to prove that there are mathematical problems which can never
be solved by algorithms. A line had forever been drawn through the middle of
mathematics, splitting it into those problems which are computable, and those
which are not. And this was just the tip of a giant iceberg; the theory of com-
putation provided a new perspective and new tools which were to about to have
a revolutionary effect on mathematics.

12.1 The Tarski-Seidenberg theorem

Our goal for the remainder of the class is to discuss computability, undecidabil-
ity, and its relationship with logic. However, before we start our quest towards
incomputability outlined above, and by way of contrast to most of the remaining
results we will prove, we will prove the that there is an algorithm for deciding

1Earlier models of computation had been suggested by Church, Gödel, Herbrand, and
Kleene, (who had given definitions which turned out later to be equivalent to Turing’s)

1



which statements are true in what might be termed “elementary geometry”.
Precisely:

Theorem 12.1 (Tarski-Seidenberg). Let R be the model whose universe is R,
and whose language contains a constant for every rational number, the functions
+ and ·, and the relation <. Then there is an algorithm which decides (in finite
time, always outputting the correct answer) what sentences are true in R.

Note that such sentences include quite of lot of interesting mathematics.
For example, Morley’s trisector theorem which says that the lines trisecting the
angles of any triangle intersect at points forming an equilateral triangle. This
was proved by Morley in 1899, and generalized in a pretty way to arbitrary
fields by Connes in 2004.

Another example of interesting sentences in this structure is given by the
kissing spheres problems. One can arrange 12 unit spheres so that they each
touch a central unit sphere without intersecting each other, but one cannot do
the same for 13 spheres (see Figure 12.1). This problem was the source of a
famous disagreement between Isaac Newton and David Gregory, and remained
unsolved for a few hundred years. Several sketched solutions were given in the
nineteenth century. However, it wasn’t until 1953 that the first detailed correct
proof was given by Schütte and van der Waerden2.

Figure 1: Twelve unit spheres kissing a central (red) one. Based on Sage code of
Robert Bradshaw: http://en.wikipedia.org/wiki/File:Kissing-3d.png.

From now on, we’ll often use abbreviations for obviously definable functions
and relations such as x2 to represent x · x, and x ≥ y for x > y ∨ x = y.

The key to the Tarski-Seidenberg theorem is the following lemma:

2The four dimensional generalization of the kissing spheres problem was settled by Musin
in 2003: it turns out there can be 24 kissing spheres. The five dimensional version remains
open, though the answer is known to be between 40 and 44.

2



Lemma 12.2. Suppose φ is a quantifier-free formula having x as a free variable.
Then there is an algorithm which given φ finds a quantifier-free formula φ′ such
that ∃xφ is equivalent to φ′ in the model R.

Note that this means we can also do the same thing for universal quantifiers.

Corollary 12.3. Suppose φ is a quantifier-free formula in the language L having
x as a free variable. Then there is an algorithm which given φ finds a quantifier-
free formula φ′ such that ∀xφ is equivalent to φ′ in the model R.

Proof. Since ∀xφ is equivalent to ¬∃x¬φ, we can use the above lemma to find
θ equivalent to ∃x¬φ, and then ∀xφ is equivalent to φ′ = ¬θ.

We say this lemma allows us to eliminate quantifiers. You already know
several instances of this idea. For example, you probably learned in a high school
algebra class that when φ is a2x+bx+c = 0, then the formula ∃x(a2x+bx+c = 0)
is equivalent to the quantifier-free formula a 6= 0 ∧ b2 − 4ac ≥ 0 ∨ (a = 0 ∧ b 6=
0) ∨ (a = 0 ∧ b = 0 ∧ c = 0).

Assuming this lemma, the Tarski-Seidenberg theorem is easy.

Proof of Theorem 12.1. Given a sentence ψ, we can find an equivalent sentence
in prenex normal form:

Qx1 . . . Qxn−1Qxnφ

But now we can eliminate all the quantifiers. Starting from the inside, we
can find a quantifier-free φ′ equivalent Qxnφ. Then we find a quantifier-free
formula φ′′ equivalent to Qxn−1φ

′, and so on until we are left with a quantifier-
free formula with no free variables which is equivalent to our original sentence.
(Formulas like 2+2 = 4 and 3 > 5∨7 < 10.) However, for such formulas (which
are essentially basic arithmetic problems) there is obviously an algorithm for
evaluating their truth.

For example, suppose we are given the statement ∀a∀b∀c∃x(ax2+bx+c = 0).
Then an equivalent sequence of statements where we remove the quantifiers one
by one is the following:

∀a∀b∀c∃x(ax2 + bx+ c = 0)

↔∀a∀b∀c((b2 − 4ac ≥ 0 ∧ a 6= 0) ∨ (a = 0 ∧ b 6= 0) ∨ (a = 0 ∧ b = 0 ∧ c = 0))

↔∀a∀b(a = 0 ∧ b 6= 0)

↔∀a(⊥)

↔⊥

The Tarski-Seidenberg algorithm builds on an earlier algorithm due to Sturm,
which can be used to decide whether a polynomial with rational coefficients has
a root. One of the main tools used in Strum’s algorithm is polynomial division,
and we use the notation remainder(p1(x), p0(x)) to indicate the remainder when
p1(x) is divided into p0(x), so that p0(x) = p1(x)q(x)+remainder(p1(x), p0(x)),
for some q(x).

3



Theorem 12.4 (Sturm). Given a polynomial p(x) and its derivative p′(x), con-
sider the sequence of polynomials given by repeatedly doing polynomial division,
and taking remainders, stopping just before we obtain 0.

p0(x) = p(x)

p1(x) = p′(x)

p2(x) = − remainder(p1(x), p0(x))

p3(x) = − remainder(p2(x), p1(x))

...

pn(x) = − remainder(pn−1(x), pn−2(x))

so pn(x) is nonzero, but pn(x) divides into pn−1(x) with a remainder of 0. Now
let s(−∞) be the sequence giving the sign of each pi(x) as x→ −∞, and s(∞)
be the sequence giving the sign of each pi as x→∞. Then p(x) has a root if and
only if there are more sign changes in the sequence s(−∞) than in the sequence
s(∞).

Before we prove this theorem, we give an example. If p(x) = x3−3x2+x−1,
then the sequence of polynomials from Sturm’s theorem is3:

p0(x) = x3 − 3x2 + x− 1

p1(x) = 3x2 − 6x+ 1

p2(x) = 4/3x+ 2/3

p3(x) = −19/4

Now taking the limit as x → −∞, we see p0(x) is negative, p1(x) is positive,
p2(x) is negative, and p3(x) is negative. So s(−∞) = + − −+ and the sign
changes twice in this sequence. As x→∞, we see that p0(x) is positive, p1(x)
is positive, p2(x) is positive, and p3(x) is negative, so s(∞) = + + +− and
the sequence changes sign once. Since there are more sign changes in the first
sequence, Sturm’s theorem says the polynomial has a real root. We’re ready
now to prove the theorem.

Proof. First, we do the case when pn(x) is a constant (which is not zero). This
implies that p(x) = p0(x) and p′(x) = p1(x) do not have any common polyno-
mial factor; a common factor of p0(x) and p1(x) must also be a common factor
of p2(x), since p0(x) = p1(x)q(x)− p2(x) for some q(x) and inductively, a com-
mon factor of p(x) and p′(x) must be a common factor of pi(x) for all i between
0 and n.

We will show that as x increases, whenever p0(x) has a root, the number of
sign changes in the sign sequence from the pi drops, and whenever any other
pi(x) has a root, the number of sign changes in the sequence stays the same.
This is enough to prove the theorem.

3since for example, x3 − 3x2 + x− 1 = (x/3 − 1/3)(3x2 − 6x + 1) + (−4/3x− 2/3)

4



Note that by the definition of division, for each i ≥ 0, pi = pi+1(x)q(x) −
pi+2(x), for some quotient polynomial q(x), since −pi+2 is the remainder when
we do the division. This implies that for each x, if pi(x) = 0, then pi+1(x) 6= 0.
Otherwise, pi+2(x) = 0 would be zero by the formula above, but then the same
argument shows pj(x) = 0 for all j ≥ i contradicting the fact that pn(x) is a
nonzero constant.

Thus, for all i ≥ 0, if pi+1(x) = 0, then pi(x) 6= 0 and pi+2(x) 6= 0, and
further, pi(x) and pi+2(x) have opposite signs. Hence, whenever pi+1(x) changes
sign, (so i+ 1 6= n), then the total number of sign changes in our sequence says
the same; these three signs either flip from + + − to + − − or vice versa, or
−+ + to −−+ or vice versa.

Finally, if p0(x) has a root, then then p′(x) must be the opposite sign; if
p0(x), then its derivative must be negative to get a root, and if p0(x) is negative,
then p′(x) must be positive to get a root. Thus, the start of the sign sequence
either changes from +− to −−, decreasing the number of sign changes, or −+
to ++, also decreasing the number of sign changes.

To do the general case now, if p(x) and p′(x) have a common factor f(x),
then the theorem follows by dividing the sequence p0(x), p1(x), . . . , pn(x) by
f(x), and then applying the above argument; if a root of p(x) has multiplicity
greater than 1, its multiplicity in p′(x) is one less.

The proof of the Tarski-Seidenberg finishes by then generalizing Sturm’s
algorithm so that it can determine whether some finite collection of polynomials
satisfies some combination of inequalities. Lets first reduce the types of formulas
we need to consider.

Suppose φ is quantifier free. We may as well assume that φ is in conjunctive
normal form:

φ = ψ1 ∨ θ2 ∨ . . . ∨ θn
Then since ∃xφ is equivalent to

∃xψ1 ∨ ∃xθ2 ∨ . . . ∨ ∃xθn

Now since each φi = θ1 ∧ . . . ∧ θni is a conjunction of atomic formulas or
their negations, it is enough to eliminate quantifiers from formulas of the form
∃x(θ1∧. . .∧θni

) where each θi is of the form p(x) = 0 or ¬(p(x) = 0) or p(x) > 0
or ¬(p(x) > 0).

Now,

• ¬(p(x) = 0) is equivalent to (p(x))2 > 0

• ¬(p(x) > 0) is equivalent to p(x) ≤ 0 which is equivalent to −p(x) >
0 ∨ p(x) = 0.

• p1(x) = 0∧p2(x) = 0∧. . .∧pn(x) = 0 is equivalent to (p1(x))2+(p2(x))2+
. . .+ (pn(x))2 = 0.

5



Thus, it is enough to eliminate quantifiers for a formula of the form:

∃x(p(x) = 0 ∧ q1(x) > 0 ∧ . . . ∧ qn(x) > 0

Now it will be a homework problem for you to adapt Strum’s algorithm to
eliminate quantifiers for formulas when there is a single q.

Exercise 12.5. Suppose p(x) and q(x) are polynomials in x of degree ≤ n.
Then for each k ≤ n there is a quantifier free formula φk which is true iff there
are k different values of x for which p(x) = 0 and q(x) > 0.

Given this homework problem, we can do the general case as follows. Sup-
pose first that we want to find the number of roots of p(x) = 0 where q1(x) > 0
and q2(x) > 0. Then

• Let A be the number of roots of p(x) = 0 where q1(x) > 0 and q2(x) 6= 0.

• Let B be the number of roots of p(x) = 0 where q1(x) 6= 0 and q2(x) > 0.

• Let C be the number of roots of p(x) = 0 where q1(x) 6= 0 and q2(x) 6= 0.

• Let D be the number of roots of p(x) = 0 where q1(x) > 0 and q2(x) > 0
or q1(x) < 0 and q2(x) < 0.

Then the number of roots of p(x) = 0 where q1(x) > 0 and q2(x) > 0 is
equal to (A+B − (C −D))/2.

But

• A is the number of roots of p(x) = 0 where q1(x)q22(x) > 0.

• B is the number of roots of p(x) = 0 where q1(x)2q2(x) > 0. and q2(x) > 0.

• C is the number of roots of p(x) = 0 where q1(x)2q22(x) > 0.

• D is the number of roots of p(x) = 0 where q1(x)q2(x) > 0.

So by the homework problem, and an inductive argument if p(x) and q1(x), . . . , qn(x)
are polynomials in x all of degree ≤ n, then for each k ≤ n there is a quanti-
fier free formula φk which is true iff there are k different values of x for which
p(x) = 0 and q1(x) > 0 ∧ . . . ∧ qn(x) > 0.

12.2 Beyond Tarski-Seidenberg

How good is the Tarski-Seidenberg algorithm from a practical perspective?
When we have a computer execute it, can it quickly solve interesting problems,
such as the kissing spheres problem? The answer is that the algorithm is almost
completely useless. Each time a quantifier is eliminated we add exponentially
many new equations and so the formulas involved become massive.

Fortunately, significant progress has been made on finding faster algorithms,
using techniques such as cylindrical algebraic decomposition. There is an algo-
rithm which decides sentences with n symbols in O(22

n

) time, and an algorithm

6



for deciding existential formulas (ones beginning with a single block of existen-
tial quantifiers, and containing no other quantifiers) in O(2n) time. This first
result is known essentially be optimal.

Alas, even these improved algorithms are still rather slow when run on prac-
tical problems. For example, modern implementations of quantifier elimination
are able to solve the kissing spheres in 2 dimensions (with a little ingenuity to
make the problem slightly easier, such as fixing the position of the first sphere).
However, the kissing spheres problem in higher dimensions is completely out
of reach for now (the four dimensional version requires a hundred quantifiers).
Still, these algorithms are an important part of almost all computer algebra
systems and receive a great deal of use for people working on practical mathe-
matics; there are lots of interesting formulas which are rather short.

Another interesting avenue of investigation is how much the Tarski-Seidenberg
theorem can be generalized. Does the theorem remain true when we add more
functions to our language so that we can discuss more complicated phenomena?
For example, Tarski asked in 1940 whether one can prove the same theorem
when exponentiation is added to our language:

Open Problem 12.6. Is there an algorithm for deciding what sentences are
true of the reals, in the first order language built from {+,×, exp,=, 0, 1}.

Not only is the question an open problem, but we don’t even know if there
is an algorithm for deciding the truth of sentences such as e−e

2 − 60e−15 =
e−3e

1+2e−1

involving no variables or quantifiers! Are there any surprising iden-
tities involving exponentiation and the integers beyond obvious ones that follow
from the fact that exey = ex+y? This is a difficult problem in transcendental
number theory. However, there is a widely believed conjecture due to Schanuel
which implies that indeed, the only such true identities are the obvious ones,
and that there is an algorithm for deciding quantifier-free sentences. In fact, if
Schanuel’s conjecture is true, then Macintyre and Wilkie have shown that there
is an algorithm for deciding all sentences in the language with exponentiation,
settling the entire problem.

What about if we change what number system we use to something other
than the real numbers? For example, if we work over the complex numbers
instead, then Tarski showed in 1948 that the analogous theorem is true: there is
algorithm to decide the truth of sentences in the first order language built from
{+,×,=, <, 0, 1} about the complex numbers4. How about the natural num-
bers? In this setting, we can state many difficult open problems like Goldbach’s
conjecture:

∀n((n ≥ 2 ∧ ∃k(n = 2k))→ ∃p∃q(n = p+ q∧
∀r∀s((p = rs→ (r = 1 ∨ s = 1)) ∧ (q = rs→ (r = 1 ∨ s = 1)))))

Is there a similar algorithm to decide which of these statements are true or false?
In his famous speech outlining 23 important problems for twentieth century

4A year later, Abraham Robinson gave a very pretty model-theoretic proof of this fact

7



mathematics, Hilbert made it a goal to find a process to solve a simple class
of such problems: find an algorithm for determining whether a a multivariable
polynomial has any integer roots, (perhaps similar to the one we have given
above to determine whether there are any real roots to such a polynomial). This
is known as Hilbert’s 10th problem, and it turns out that it is incomputable.
While we won’t show this in these lecture notes, we will prove a slightly weaker
theorem that the theory of the natural numbers under + and × is undecidable.

We finish this section by stating one more famously open problem:

Open Problem 12.7 (Hilbert’s tenth problem over Q). Is there an algorithm
for deciding whether a multivariable polynomial with integer coefficients has any
rational roots?

8


