
PIGEONHOLE PROBLEMS: FALL 2006 PUTNAM TRAINING

GEOFFREY MESS

(1) We’ll start with a theorem of Erdos and Szekeres. First we will need the
definition of a subsequence. A finite sequence of real numbers is a function
a : {1, . . . m} → R for some m ∈ N. We say m is the length of the sequence.
There are also infinite sequences a : N → R. When we are talking about
sequences we often write an instead of a(n). We often write {an}∞n=1 as
an alternative notation to a : N → R and similarly for finite sequences.
If 1 ≤ t ≤ m and we have a function n : {1, . . . t} → {1, . . . m} satisfying
n(i) < n(j) if i < j then the composite function a ◦ n : {1, . . . t} → N is a
subsequence. Instead of writing (a ◦ n)(k) or a(n(k)) we usually write ank

.
And similarly an infinite sequence can have subsequences, either finitely
long or infinitely long. Informally, we get a subsequence by restricting a
sequence a to a subset of its domain, and defining ank

to be the value of a on
the kth smallest number in the subset. (This may seem a bit long winded,
but people don’t always already know what is meant by a subsequence.) A
sequence cn is ascending if ci ≤ cj whenever i < j and descending if ci ≥ cj

whenever i < j. In particular this definition applies to subsequences, since
they are just sequences that we obtained from other sequences. Here’s the
theorem:

Theorem 0.1. Suppose {ai}n2+1
i=1 is a sequence of distinct real numbers.

Then either there is an ascending subsequence of length n + 1 or there is a
descending subsequence of length n + 1.

For example, if n = 4, we might have the sequence

(4, 3, 2, 1, 8, 7, 6, 5, 12, 11, 10, 9, 16, 15, 14, 13, 17).

This means the sequence a with a1 = 4, a2 = 3, . . .. It is easy to see that
there is no real loss of generality in assuming that the n2 + 1 distinct real
numbers ai are the numbers 1, . . . , n2 + 1.

It is not too hard to see that there are descending sequences of length 4
but no descending subsequences of length 5, but there are lots of ascending
subsequences of length 5. For example taking n1 = 4, n2 = 6, n3 = 10,
n4 = 14, n5 = 17 we get an ascending subsequence (1, 7, 11, 15, 17). You
could prove the case n = 4 of the theorem by listing all the 17! permutations
of the set {1, 2, . . . , 17} and checking each one. But that only proves one
case of the theorem and requires considerable computer time. For n = 10
there are 101! permutations of the set {1, 2, . . . , 101}and a brute force
approach can’t be done before the sun burns out.

Proof. For each i, let u(i) be the length of the longest ascending sub-
sequence beginning with ai, and let d(i) be the length of the longest de-
scending subsequence beginning with ai. (In our example, u(4) = 5 and
u(12) = 3; in the latter case (9, 13, 17) is one of four possibilities for a
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longest ascending subsequence.) If the claim of the theorem does not hold,
1 ≤ u(i) ≤ n for all i and 1 ≤ d(i) ≤ n for all i. So there are at most nṅ
possibilities for the pair (u(i), d(i). By the Pigeonhole Principle there exist
distinct numbers i, j with 1 ≤ i, j ≤ n2 + 1 and (u(i), d(i)) = (u(j), d(j)).
But either ai < aj or ai > aj . If ai < aj then given an ascending sub-
sequence {ank

}u(j)
k=1 starting at aj and of length u(j) we can construct an

ascending subsequence starting at ai of length u(j) + 1. Informally, we
concatenate ai and the ascending subsequence of length u(j). On the other
hand if ai > aj then given a descending subsequence starting at aj and of
length d(j) we can construct a descending subsequence starting at ai and
of length d(j)+1. It is my experience that students don’t always know the
word concatenate, although it’s a fairly common word and is often used in
computer science as well as combinatorics. In the example above, (1, 5, 9)
and (13, 17) are ascending subsequences. Concatenating them we get a sub-
sequence (1, 5, 9, 13, 17) which is really a function defined on {1, 2, 3, 4, 5}.

Let’s rewrite the proof, assuming the reader is familiar with standard
terminology:

Proof. For each i let u(i) be the length of the longest ascending subse-
quence starting at ai and let d(i) be the length of the longest descending
subsequence starting at ai. If there are no ascending subsequences of length
n + 1 and no descending subsequences of length n + 1 then (u, d) defines a
function from {1, 2, . . . n2 + 1} to {1, 2, . . . n}× {1, 2, . . . n}. By the pigeon-
hole principle there exist i < j with (u(i), d(i)) = (u(j), d(j). But if ai < aj

the longest ascending subsequence starting at ai is at least one longer than
the longest ascending subsequence starting at aj , and if ai > aj the longest
descending subsequence starting at ai is at least one longer than the longest
descending subsequence starting at aj .

I deliberately chose a very hard pigeonhole problem as an example, to
show that the pigeonhole principle can be used in a nontrivial way.

(2) Given a sequence of mn + 1 distinct real numbers, either there is an as-
cending subsequence of length m+1 or a descending subsequence of length
n + 1.

(3) Given a sequence of mn + 1 numbers no two of which are equal, show that
there is an subsequence of length m + 1 in which no number divides any
other, or else a subsequence {ank

}n+1
k=1 of length n + 1 in which each term

divides all succeeding terms.
(In his archive of Putnam problems, John Scholes makes the comment

that this is only a slight modification of the Erdos-Szekeres theorem and
is easy if you understand the proof of the theorem, but hard otherwise.
This actually was a Putnam problem (1966 B4) back in the days when
combinatorics was not taught so commonly.)

(4) Sixteen different integers are chosen between 1 and 30, inclusive. Show
some two differ by 3.

(5) 51 different integers are chosen between 1 and 100, inclusive. Some two of
them are coprime.

(6) Fifty-one different integers are chosen between 1 and 100, inclusive. Show
that one of them divides another.
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(7) Sixteen different integers are chosen between 1 and 30, inclusive. Some two
differ by 3.

(8) Let n be a positive integer. Is it possible for 6n distinct straight lines in the
Euclidean plane to be situated so as to have 6n2− 3n points where exactly
three of these lines intersect and at least 6n + 1 points where exactly two
of these lines intersect ?

(9) Let a1, a2, . . . a44 be 44 natural numbers such that

0 < a1 < a2 < . . . < a44 ≤ 125.

Prove that at least one of the 43 differences dj = aj+1 − aj occurs at least
10 times.

(10) Given a sequence a1, . . . am of length m, show that there is a consecutive
subsequence whose sum is divisible by m. (A consecutive subsequence
means a subsequence ai, ai+1, ai+2, . . . ai+j−1 of length j where j could be
as small as one.)

(11) During the year 1998 a convenience store which was open 7 days a week
sold at leat one book every day, and a total of 600 books over the entire
year. Must there have been a period of consecutive days when exactly 129
books were sold ?

(12) Let S be a set of k distinct integers chosen from 1, 2, 3, . . . 10n − 1, where
n is a positive integer. Prove that if

n < log((2k − 1)/k + ((k + 1)/2)/log10

it is possible to find 2 disjoint subsets of S whose members have the same
sum. (A variation of 1973 A6.)

(13) If fifteen distinct integers are chosen between 1 and 45, some two of them
differ by 1, 3, or 4. Frankly, I found this one of the duller problems, though
it still takes time unless you get the right idea fast.

(14) A checkerboard has 4 rows and 7 columns. Choosing two or more successive
rows and two or more successive columns and taking only the squares in
those rows and columns gives a subboard. Suppose that each of the 28
squares is colored either black or white. Show that there is a subboard all
of whose corners are black or all of whose corners are white. (This stumped
me on the 1976 USA Mathematical Olympiad. It would have helped if I
had known about pigeonhole problems. The real point of the problem is to
give a solution that generalizes nicely.)

(15) 1978A1, 1985B3, 1990A3, 1990B3, 1993A4, 1994A3, 1994A6, 1995B1, 1996A3,
2000B6, 2002A2 are all pigeonhole problems. I think 1985B3 is particularly
nice. Roughly speaking, there is a 50chance of a pigeonhole problem occur-
ing on any given Putnam exam.

(16) Suppose a is an irrational number. Consider the sequence xn = na− bnac.
As usual bxc means the integer part of x for any real number x. Show that
for any integer m > 1, and any integer k where 0 < k < m, there is some
n > 0 such that xn lies in (k/m, (k+1)/m). [ Unlike the previous problems,
this one is very important in mathematics, although it is not particularly
difficult.]

(17) Deduce that the real numbers xn are dense in [0, 1). (Kronecker’s theorem.)
(18) It is useful to identify [0, 1) with the unit circle using the function f(t) =

e2πit. Show that if a is an irrational number, and Ra is the rotation counter
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clockwise by 2πa radians, and F is a closed nonempty subset of the circle,
and RaF = F , then F is the entire circle.

(19) How long does it take before xn is in the interval (1/10, 1/5) if a = 1/5 +√
2/2 · 10−6 ?

(20) Show that given any positive integer m, there is some positive integer k ≤ m
such that either xk ∈ (0, 1/k) or xk ∈ ((k − 1)/k, 1). Deduce that for
any irrational number a, there are infinitely many numbers k such that
‖a − s/k‖ < 1/k2 for some integer s. [Information: There is an exten-
sive theory about good approximations to irrational numbers by rational
numbers. This is quite important in dynamical systems, and has applica-
tions e.g. to gaps in the asteroid belts and in the rings of Saturn. The
result of this problem can be improved: there are infinitely many num-
bers k such that ‖a − s/k‖ < 1/

√
5k2, and the constant 1/

√
5 can not

be improved.) For more information read chapter 17 of The Enjoyment
of Mathematics, by Rademacher and Toeplitz, and An Introduction to the
theory of numbers, by G. H. Hardy and E.M. Wright, chapters 10, 11, and
for more information, 23. Continued fractions are important in this theory.
”Continued Fractions” by C.D. Olds is elementary. Hardy and Wright also
discuss continued fractions.

(21) A lattice point is a point with integer coordinates. Suppose a disk of radius
1/10 is drawn centered at every nonzero lattice point in R2. Show that
every ray through the origin eventually meets one of the discs. [At first this
looks like a lattice point problem, but deep down it’s a Pigeonhole Principle
problem. Is it related to any of the other problems ?]


