
SUMMATION PROBLEMS: FALL 2006 PUTNAM TRAINING

GEOFFREY MESS

(1) Find:
N∑

n=1

1
n(n + 1)

= ?

(2) Find:
N∑

n=1

1
n(n + 1)(n + 2)

= ?

(3) Find: ∑
n=1

∞ a

n(n + 1)(n + 2)(n + 3)
= ?

(4) Show:
N∑

k=1

k2 = N(N+!)(2N + 1)/3

(5) Show:
N∑

k=1

k3 = (
N(N + 1)

2
)2

(6) Suppose p(x) is a degree m polynomial. Then there is a degree m + 1
polynomial q(x) such that

n∑

k=1

p(k) = q(n) forall n ∈ N

(7)
n∑

k=1

k

k4 + k2 + 1
= ?

(8)
∞∏

n=2

n3 − 1
n3 + 1

= ?

(9) In 1593 Viete proved that:

sin x

x
=

∞∏
n=1

cos(
x

2n
)

Now prove it yourself. Actually, Archimedes knew something logically
equivalent to Viete’s formula, but he didn’t use anything like modern no-
tation. He might have objected to the way it’s written here on the grounds
that the statement is actually fairly complicated, and only looks simple
because the notation (for instance the infinite product sign) hides the true
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complexity of the statement. Like other Greek mathematicians he used a
lot of ordinary long winded prose, so when a statement about limits comes
up, he makes it explicit exactly what is meant by a limit. Nowadays we use
symbols, for instance lim and

∫
, that hide the fairly complicated definitions

of limit and integral. (And many a student takes AP calculus, and uses
the notations lim and

∫
for a whole year, without ever having a clear idea

what they mean.) Using his knowledge of a result equivalent to Viete’s,
Archimedes showed that 3 10

71 < π < 3 10
70 , but he could have found upper

and lower fractions approximating π to any desired degree of accuracy.
(10)

2
π

=
√

2
2

√
2 +

√
2

2

√
2 +

√
2 +

√
2

2
. . .

(A fun looking formula!)
(11)

3
π

=

√
2 +

√
3

2

√
2 +

√
2 +

√
3

2

√
2 +

√
2 +

√
2 +

√
3

2
. . .

(12)
∞∑

n=1

cot−1(n2 + n + 1) = ?

(13)

1/θ − cot θ =
∞∑

k=1

2−k tan
θ

2k

In particular, you could choose θ = π/2. You can get a formula for 2/π
involving nested radicals. It is not particularly attractive, important or
useful.

(14)
n∑

k=0

cos ka =
sin(n + 1)a/2

sin a/2
cosna/2

(15)

1/2 +
n∑

k=1

cos kt =
sin(n + 1/2)t

2 sin t/2

(unless t = 2pπ for some p ∈ Z. In that case the sum equals n + 1/2.)
Note: Many of these summation problems are not particularly important
in the general scheme of things. But this one is. It gives the formula for
the “Dirichlet kernel” Dn(t) which is crucial in the theory of Fourier series.

(16)
n∑

k=1

sin ka =
sin(n + 1)a/2

sin a/2
sin na/2

(17) Note: this is rather unlike most of the other problems in this group. It is
not meant to be proved by induction on n.

n−1∏

k=1

sin kπ/n = n21−n
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(18)
n∑

k=1

cos(2k − 1)a =
1
2

sin 2na

sin a

(19)
n∑

k=1

sin(2k − 1)a =
sin2 na

sin a

(20)
∞∑

n=0

x2n

1− x2n+1 = ?

(For what values of x does this sum converge? You should find the sum of
the series for any x for which the series converges.

(21) WLP 2001 B3.
(22) WLP 1985 B2.
(23) For any k we can define

Fm(t) =
1

m + 1

m∑
n=0

Dn(t)

where the “Dirichlet” kernel was defined above. Show that

Fm(t) =
1

2(m + 1)

[
sin(n + 1)t/2

sin t/2

]2

except for t = 2pπ, p ∈ Z. In that case Fm(t) = m+1
2 . Fm(t)is the mth

Fejer kernel and is also very important in Fourier series.


