
INEQUALITIES

Books:
1. Hardy, Littlewood, Polya “Inequalities”.
2. M. Steele “The Cauchy-Schwarz Master Class”.

0.1. AM-GM (Arithmetic mean — geometric mean inequal-
ity).

Theorem 1. Let x1, . . . , xn > 0 be positive real numbers. Then their

geometric mean is no greater then their arithmetic mean, i.e.

(x1 . . . xn)1/n ≤ x1 + · · · + xn

n
.

Moreover, the equality holds iff all the numbers are equal to each other,

x1 = · · · = xn.

About the proof.

Method I: Induction (on powers of 2).
First, consider the case n = 2. The inequality becomes

√
x1x2 ≤

x1+x2

2
.

Algebraic proof: Rewrite the inequality in the form 4x1x2 ≤ (x1 +
x2)

2, which is equivalent to (x1 − x2)
2 ≥ 0.

Geometric proof: Construct a circle of diameter d = x1+x2. Let AB
be a diameter of this circle, and C be the point on this diameter so that
|AC| = x1 and |CB| = x2. Let D be the point on the circle so that
CD is a line segment perpendicular to AB. Then using elementary
geometry one can easily see that |CD| =

√
x1x2. On the other hand,

this length is clearly no greater then the radius, i.e.,
√

x1x2 ≤ x1+x2

2
.

The equality holds only in the case that x1 = x2 (and is equal to the
radius of the circle).

Now consider the case when n = 2k, where k ≥ 0 is an integer and
proceed by induction. The case k = 1 is already done. Assume that
the inequality holds for n = 2k−1 and to prove it for n = 2k. This is
done by rewriting the arithmetic mean as follows:

x1 + x2 + · · · + x2k

2k
=

x1+···+x
2k−1

2k−1 +
x
2k−1+1

+···+x
2k

2k−1

2

and applying the inequality first to each of the arithmetic means in
the numerator, and then to the arithmetic mean of the two resulting
geomteric means. (Carry out the details as an exercise).
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Finally, we need to deal with the case when n is not a power of 2.
In this case, there is a k such that n < 2k = N . Consider the set of
N numbers so that the first n of them are x1, . . . , xn and the rest are
all equal to the arithmetic mean of these numbers, xn+1 = · · · = xN =
x1+···+xn

n
. Then

A
.
=

x1 + · · ·+ xn

n
=

x1 + · · · + xN

N
≥

≥ N√
x1 · · · · · xn · xn+1 · · · · xN =

= N
√

x1 · · · · · xn · AN−n.

This implies that A ≥n √
x1 · · · · · xn, which establishes the AM-GM

inequality for n numbers.
Method 2: (Another inductive proof). First, note that if the AM-

GM inequality is true for x1, . . . , xn, then it is also true for αx1, . . . , αxn.
This observation allows us to rescale the given numbers so that we can
assume that x1 · · · · · xn = 1.

Now, assume that at least one of the numbers is strictly bigger then
1, and at least one is strictly smaller then 1. For example, let x1 > 1
and x2 < 1. By induction assumption,

x1x2 + x3 + · · · + xn ≥ n−1
√

(x1x2)x3 . . . xn = 1,

which implies that x1x2 + x3 + · · · + xn ≥ n − 1. Finish this proof as
an exercise.

Method 3: Take the natural logarithm of both sides of the in-
equaltiy. Then consider the concavity of the function ln(x). (See
Jensen’s inequality below).

Method 4: (Lagrange multipliers) Consider the function of n vari-
ables which is just the product of these variables:

P (x1, . . . , xn) = x1 · x2 · · · · · xn.

Look for the maximum of this function under the constraint that g(x1, · · · , xn) =
x1+···+xn

n
− S = 0, where S is a constant (the fixed arithmetic mean).

By applying the method of Lagange multipliers, you will see that P is
maximal iff x1 = · · · = xn = S/n. This implies the AM-GM inequality.

Some generalizations of this inequality include the Power Mean
inequality and the Jensen’s inequality (see below).

Here are several problems from the Putnam exam, which can be
solved using the AM-GM inequality. (Note that some of the problems
can be solved by different methods too).

Problem 1. Prove or disprove: if x and y are real numbers with y ≥ 0
and y(y + 1) ≤ (x + 1)2, then y(y − 1) ≤ x2.
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Problem 2. Let A, B, C denote three distinct points with integer co-
ordinates in R

2. Prove that if

(|AB| + |BC|)2 < 8 · [ABC] + 1,

(where |AB| denotes the length of AB, and [ABC] denoes the area of
the triangle ABC), then A, B, C are three vertices of a square.

Problem 3. Find the minimal value of the expression

(x + 1/x)6 − (x6 + 1/x6) − 2

(x + 1/x)3 + (x3 + 1/x3)

for x > 0.

Problem 4. (1968, A6) Determine all polynomials of the form
∑n

k=0
akx

n−k

with all ak = ±1 (0 ≤ k ≤ n, 1 ≤ n < ∞) such that each has only real
zeros.

Problem 5. (1975, B6) Show that if sn = 1 + 1

2
+ 1

3
+ · · ·+ 1

n
, then

(a) n(n + 1)1/n < n + sn for n > 1;
(b) (n − 1)n−1/n−1 < n − sn for n > 2.

0.2. Power Mean Inequality. Let x1, . . . , xn be positive real num-

bers. For r 6= 0, let Pr =
(

ar

1
+···+ar

n

n

)1/r

be the rth power mean for and

let P0 = limr→0 Pr = (a1 . . . an)1/n. Let also P−∞ = min{x1, . . . , xn}
and P∞ = max{x1, . . . , xn}. Then the following Power Mean In-
equality holds:

Pr ≤ Ps, for r < s.

The following are the special cases of this inequality:

• P1 ≥ P0 is the AM-GM inequality;
• P0 ≥ P−1 is the GM-HM inequality, where P−1 = n

1

a1
+···+

1

an

is

the so-called harmonic mean of the numbers a1, . . . , an.
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0.3. Inequalities for convex functions. Recall that a function f(x)
is called convex if for any real numbers a < b, the segment joining the
points (a, f(a)) and (b, f(b)) lies entirely above the graph {(x, f(x)) :
x ∈ [a, b]} of the function.

This condition can be written as follows:

f((1 − t) · a + t · b) ≤ (1 − t) · f(a) + t · f(b)

for all t ∈ [0, 1] and all a < b. If this inequality holds strictly, the
function is called strictly convex.

A function whose negative is convex is called concave. (I.e., f(x) is
concave if −f(x) is convex).

Jensen’s inequality: If f(x) is a convex function on an interval I,
then

f

(

a1 + · · ·+ an

n

)

≤ f(a1) + · · ·+ f(an)

n
,

where a1, . . . , an are points on the interval I.
Of course, if f(x) is a concave funtion, the inequality is reversed.
One possible proof is by induction (try to carry it out!)
Exercise: what do you get when you apply the Jensen’s inequality

to functions − ln(x), ex, x2, − cos(x) (for n = 2)?
A generalization of Jensen’s inequality:
if f(x) is convex, and µ1, . . . , µn are positive weights (so that

∑n
i=1

µi =
1), then

f

(

n
∑

i=1

µixi

)

≤
n
∑

i=1

µif(xi).

A simple but useful property of convex functions:
A function which is convex on an interval reaches its maximum on

the interval is reached at one (or both) of the ends.

0.4. Cauchy-Schwarz Inequality. For ai > 0, bi > 0 for i = 1, . . . , n,
the Cauchy-Schwarz Inequality states

(

n
∑

i=1

aibi

)2

≤
(

n
∑

i=1

a2

i

)

·
(

n
∑

i=1

b2

i

)

.

To prove this inequality, consider the following polynomial in variable
x:

P (x) =

n
∑

i=1

(aix − bi)
2.
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Since P (x) ≥ 0 (with the equality taking place only if ai/bi has the
same value for all i), it follows that the discriminant of P (x) = 0 can
not be positive. This is equivalent to the Cauchy-Schwarz inequality.

As an exercise, consider the case n = 2 and find a relation between
the Cauchy-Schwarz and the AM-GM inequality.

0.5. Various Putnam Exam problems involving inequalities:

Problem 6. (1986, A1) Find the maximum value of f(x) = x3 − 3x
on the set of all real numbers satisfying x4 + 36 ≤ 13x2.

Problem 7. (1991, B6) Let a and b be positive numbers. Find the
largest number c, in terms of a and b, such that

axb1−x ≤ a
sinh ux

sinh u
+ b

sinh u(1 − x)

sinh u
for all u with 0 ≤ |u| ≤ c and for all x, 0 < x < 1. (Note that
sinh u = (eu − e−u)/2).

Problem 8. (1993, B1) Find the smallest positive integer n such that
for every integer m with 0 < m < 1993, there is an integer k such that

m

1993
<

k

n
<

m + 1

1994
.

(One way to solve this problem is to use the following so-called
Mediant property:
For positive numbers a, b, c, d such that a/b < c/d we have a/b <

(a + c)/(b + c) < c/d. )

Problem 9. (1996, B2) Show that for every positive integer n, we have
(

2n − 1

e

)
2n−1

2

< 1 · 3 · 5 · · · · · (2n − 1) <

(

2n + 1

e

)
2n+1

2

.

Problem 10. (1999, B4) Let f be a real function with a contunuous
third derivative such that f(x), f ′(x), f ′′(x) and f ′′′(x) are positive for
all x. Suppose that f ′′′(x) ≤ f(x) for all x. Show that f ′(x) < 2f(x).

Problem 11. (1991, A5) Find the maximum value of
∫ y

0

√

x4 + (y − y2)2dx
for y ∈ [0, 1].
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Problem 12. (1966, B3) Show that if the series
∑

∞

n=1

1

pn
, where pn

are positive real numbers, is convergent, then the series
∞
∑

n=1

n2

(p1 + · · ·+ pn)2
pn

is also convergent. (Hint: Cauchy-Schwarz inequality).


