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Abstract

This paper presents a class of techniques for object detection and image
segmentation, using variational models formulated in a level set approach.
We consider in particular Mumford and Shah like energies, whose min-
imizers are in the space of special functions of bounded variation. For
such functions, all points are of two types: points where the functions
have an approximate gradient, and points of discontinuities along curves
or edges. The set of discontinuities is represented implicitly, using the level
set method. Minimizing these energies in a level set formulation, yields
coupled curve evolution and diffusion equations, which can be used for
object detection and image segmentation. Finally, the proposed methods
are validated by various numerical results in two dimensions.

1 Introduction

An important problem in image processing is the partition or segmentation of
a given image wug into regions and their boundaries. Another closely related
problem is the object detection by curve evolution and active contours (this is
also called shape extraction or shape segmentation).

The image segmentation problem in computer vision is often posed as a
variational problem. Given ug : Q — R, with Q C R?, the problem is to find
an optimal piecewise smooth approximation u of ug, and a set of boundaries
K, such that u varies smoothly within the connected components of Q \ K, and
rapidly or discontinuously across K.

To solve this problem, D. Mumford and J. Shah [MS88b] proposed the fol-
lowing minimization problem:

inf { F5(u, K) =/ |u—u0|2d$+u/ |Vu|2dw+1// a'l
u,K Q Q\K K

where p > 0, v > 0 are fixed parameters, to weight the different terms in the
energy. For (u, K) a minimizer of the above energy, u is an “optimal” piecewise
smooth approximation of the initial, possibly noisy, image ug, and K has the
role of approximating the edges of ug; u will be smooth only outside K, i.e. on
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Q\ K. Here, H! is the one-dimensional Hausdorff measure. Theoretical results
of existence and regularity of minimizers of (1) can be found for example in
[MS88b], [MS88a], [MS89], [MS94], [MS95].

A reduced case of the above model is obtained by restricting the segmented
image u to piecewise constant functions, i.e. u = constant ¢; inside each con-
nected component €; of '\ K. Then the problem is often called the “minimal
partition problem”, and in order to solve it, in [MS88b] it is proposed to mini-
mize the following functional:

Fé‘ls(u,K)=Z/Q |u0—c,-|2d1'+1//Kd’}-il. (2)

Again, v is a positive parameter, having a scaling role. It is easy to see that,
for a fixed closed set K (a finite union of curves), the energy (2) is minimized in

uo(z)dz
the variables ¢; by setting ¢; = mean(ug) in Q;, or ¢; = L’T Theoretical

results for existence and regularity of minimizers of (2) can be found for example
in [MS88b], [MT93], [Tam96], [TC96], [LT98].

It is not easy to minimize in practice the functionals (1) and (2), because
of the unknown set K of lower dimension, and because these problems are not
convex.

A weak formulation of (1) has been proposed in [DMMS92], where K is re-
placed by the set J, of jumps of u, in order to prove the existence of minimizers.
Also, it is known that a global minimizer of (1), or of the weak formulation, is
not unique in general. In [MS88a], [MS89], the authors proposed a constructive
existence result for the weak formulation of the Mumford and Shah problem,
and in [KLM94], a practical multi-scale algorithm based on regions growing and
merging is proposed in the piecewise-constant case. For a general exposition of
the segmentation problem by variational methods, both in theory and practice,
we refer the reader to [MS94], [MS95]. We also refer to [Amb89], [Bra9g] for
theoretical results on functionals defined on the appropriate space for image seg-
mentation: the SBV(Q) space of special functions of bounded variation, that
will be introduced later.

Two elliptic approximations by I'-convergence to the weak formulation of
the Mumford and Shah functional have been proposed in [AT90], [AT92]. The
authors approximated a minimizer (u,J,) of FM3(u,J,), by smooth functions
(up,v,), such that, as p = 0, we have u, - u and v, — 1 in the L?(Q)-
topology, and v, is different from 1 only in a small neighborhood of J,,, which
shrinks as p — 0. The elliptic approximations lead to a coupled system of
two equations in the unknowns u, and v,, to which standard PDE numerical
methods can be applied. Related approximations and numerical results can be
found in [Mar92], [Cha92], [Cha95], [Cha99], [BCO00], [Bou99], [VCI7]. Also, in
[CM99], the authors provide an approximation by I' — convergence based on
the finite element method, to the weak formulation of the Mumford and Shah
problem. Note that, most of these methods solving the weak formulation by
elliptic approximations do not explicitly compute the partition of the image
and the set of curves K. In general, only an approximation to K is obtained,
by a sequence of regions enclosing K, but converging in the limit to the empty
set.

As it was mentioned earlier, a related problem to image segmentation is



the object detection problem by snakes and active contours. An initial curve
evolves in the image under some speed, and it stops on boundaries of objects, for
instance where the magnitude gradient of the image is large. Some of the most
well known active contour models with edge-function are: [KWT88], [CCCD93],
[MSV95], [CKS97], [KKO™96], [XP98]. The active contour models using the
gradient, of the image for the stopping criteria are also called boundary based
models.

Many active contour models use the level set method introduced by S. Osher
and J. Sethian [OS88], to represent the evolving curve. This method works on
a fixed rectangular grid, and allows for automatic topology changes, such as
merging and breaking. A closed curve K = 0w C Q (with w C © an open
subset), is represented by the zero level set of a Lipschitz-continuous function
¢ :Q — R, such that K = {z € Q: ¢(z) =0}, and ¢ > 0 on one side of K and
¢ < 0 on the other side of K. These properties can be expressed as follows:

o(x)=0if z € K,
o(x) >0if z € w,
dx) <0ifr e Q\w.

More recently, new active contour and level set methods have been proposed
for image segmentation, some of them involving region based techniques, in
addition to the previous boundary based techniques. Among these methods, we
would like to mention those closely related with the present work.

First, the present work is a summary and generalization of the active contour
model without edges and its generalizations to segmentation of images, from
[CV99], [CV01b], [CV02], [CV0la] and [VCO1]. These work propose a level set
method for active contours and segmentation via the Mumford and Shah model
[MS88b].

Other closely related variational level set methods are: “Inward and outward
curve evolution using level set method”, from [ADBA99]; “A variational level set
approach to multiphase motion” from [ZCMO96]; “A level set model for image
classification”, from [SBFAZ99], [SBFAZ00]; “A statistical approach to snakes
for bimodal and trimodal imagery”, from [YTW99b]; ”A Fully Global Ap-
proach to Image Segmentation via Coupled Curve Evolution Equations”, from
[YTWO02]; ”Binary Flows and Image Segmentation”, from [YTW99a]; “Geodesic
Active Regions: A New Framework to Deal with Frame Partition Problems in
Computer Vision”, from [PD02]; “Coupled geodesic active regions for image seg-
mentation: a level set approach”, from [PD00]. Finally, a closely related work
is “Curve evolution implementation of the Mumford-Shah functional for image
segmentation, denoising, interpolation, and magnification”, from [TYWO01].

Many other contributions have been proposed for image segmentation by
variational or PDE methods, and it is impossible to mention all of them. How-
ever, we would like to give a few more references: “Region competition: Unifying
snakes, region growing, and Bayes/MDL for multi-band image segmentation”,
from [ZYL95], [ZY96]; “Normalized cuts and image segmentation”, from [SMO00];
“A common framework for curve evolution, segmentation and anisotropic diffu-
sion”, from [Sha96]; “Riemannian Drums, Anisotropic Curve Evolution and Seg-
mentation”, from [Sha99]; “Filtering, Segmentation and Depth”, from [MNS93];
” Codimension-Two Geodesic Active Contours for the Segmentation of Tubular
Structures”, from [LFG*00].



As we have already mentioned, the proposed approach follows and gener-
alizes the ideas from [CV99], [CV01b], [CSV00], [CV02], [CV01a], [VCO1], for
image segmentation and object detection by a variational level set approach.
First, we extend the piecewise constant models from [CV99], [CV01b], [VCO1],
to piecewise linear versions. We also consider other general anisotropic Mum-
ford and Shah like functionals, where the energy term along K also depends on
the jump of w.

2 Variational models for image segmentation and
image partition

We will consider here a class of functionals with solutions in the space SBV (1),
with Q C R? an open and bounded set. For a general exposition of such func-
tionals in a weak formulation, we refer the reader to [Bra98] and [Amb89).
By definition [Amb89], [Bra98], a function u € L'(Q) is a special function
of bounded variation, if its distributional derivative can be written as Du =
Vudz + (ut —u~)n,xxH' |k, where Vu is called the approximate gradient of u
at z € Q\ K, and K is a set of finite 1-dimensional Hausdorff measure. So, for
any point z € (Q, either u has an approximate gradient Vu at z, or z is a jump
point of u, with distinct approximate limits u™(z) and 4~ () of u on each side
of K. Here, n, denotes the exterior unit normal to K at every point z € K,
where |ut(z) —u~(x)| > 0, and H!|k is the restriction of the measure H! to
K. The space of special functions of bounded variation is denoted by SBV (Q).
A class of functionals defined on SBV () is given by [Bra98]:

F(u, K) :/Q|u—u0|”dm+u/Q\K f(Vu)d:t:+1//Kg(|uJr —u”|)dH', (3)

where p > 1, f: R? — [0, +00) is a convex function satisfying

m &—+oo,

|z] =00 |Z| -
and g : [0,00) = [0, 00) is a sub-additive and increasing function satisfying

lim @ =
t—0 ¢

The function g is sub-additive in the following sense: g(t1 + t2) < g(t1) + g(¢2),
for all t;,t5 > 0. The assumptions on the functions f and g are necessary for
existence results of minimizers on the SBV ({2) space.

F(u, K) reduces to the Mumford and Shah functional [MS88b] when p = 2,
f(Vu) = |Vu|? and g(Ju™ —u~|) = 1 is a constant function.

Other examples of functionals, in addition to the Mumford and Shah func-
tional, can be obtained with: f(Vu) = |Vu|?, with ¢ > 1, and g(Ju™ —u™|) =

Vit —u—|.

Given ug € L*(1), the minimization problem

11},1}{' F(u,K)



can be seen as a partitioning or segmentation problem of the given image ug. If
(u, K) is a minimizer, then the connected components of Q \ K will be smooth
regions or objects in the image, while the closed set K of lower dimension will
represent edges, contours or boundaries of objects and of regions.

In the case when the function g is not constant and depends on the magnitude
of the jump |u™ — u~|, then the quantity g(Ju™ — u~|) along the discontinuity
set K of contours plays an additional anisotropic scaling role.

In the next section we will show that, by representing the set K using the
level set method, and minimizing the above energy, we obtain interesting coupled
curve evolution and diffusion equations. The obtained level set models can be
used for object detection, denoising, image partition and segmentation.

3 Level set formulations of minimization prob-
lems on SBV(Q)

In this section, we present several extensions and generalizations of the results
from [CV99], [CVO01b], [CSV00], [CV02], [CVO01a], [VCO01]. We follow the nota-
tions and terminology from [ZCMO96], [CVO01b].
In what follows, to a level set function ¢ : 2 — R, we associate the Heaviside
function H(¢) defined by: H(¢(x)) = 1if ¢(x) > 0 and H(¢(z)) = 0if ¢(z) < 0.
Let us consider various subsets of functions u having discontinuities only
along K = {z € Q: ¢(z) = 0}, defined as follows:

{u@) = P*@)H(4()) + P~ (2)(1 - H($(=))) }, (4)

with P*, P~ polynomials of degree at most m (in this paper, we will consider
only constant and linear polynomials, i.e. m = 0 and m = 1). P7 is defined on
{x € Q: ¢(z) > 0} and P~ is defined on {z € Q2 : ¢(x) < 0}. Another subset
of functions is

{u@) = w* (@ H(G@) +u™ (@) (1 - Hé(=) }, (5)

with u*,u~ functions, such that ut € C'({z € @ : ¢(z) > 0}), and u~ €
C'({z € Q: ¢(z) <0}).

As in [CV02], [CVO01a], [VCO1], in order to represent triple junctions and
more complex topologies, we can also consider the following subsets of functions,
where discontinuities are along a set defined using two level set functions ¢, and
¢a:

K={zeQ: ¢1(z) =0} U{z € Q: ¢a(z) =0}

Then similarly, the corresponding subsets of functions u will be:

I
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with P+, Pt— P~+, P~~ polynomials of degree at most m, defined respec-
tively on {z € @ : ¢1(z) > 0,¢2(z) > 0}, {z € Q: ¢1(2) > 0,2(z) < 0},
{z€Q: ¢1(z) <0,62(x) >0}, {z € Q: d1(z) <0,¢2(z) <0}, and
{U(w) ut (z)H(¢1 (z)) H (2 (2)) (7)
ut () H(p1(2))(1 — H(2(2)))
u(2)(1 — H(¢1(2)))H(d2())
" (2)(1 — H(i(2))(1 — H(¢ (ﬂf)))},

+_

+ + +

(x

with utt ut— u=+ u=— C' functions, defined respectively on the following
subsets: {z € 0 ¢1(r) > 0,a(z) > 0}, {w € Q¢ i(a) > 0,(x) < O},
{2 €Q: ¢1(z) <0,¢2(z) >0}, {2 € Q: ¢i(z) <0,¢2(x) <0}

In what follows, we will write and minimize the energy F'(u, K) from (3)
restricted to the subsets defined above, and we will solve some of these mini-
mizations in a few particular cases.

For instance, the minimization of (3) restricted to the subset from (5) can
be written as:

inf F(u,u™,¢)

ut,u=,¢

/ ™ — uo|P H(¢)ds + / lu= — uo|P(1 — H(¢))dz
Q Q

+ou /Q F(Vut)H($)da + /Q F(Vu)(1 - H(¢))de
v o /Q o(lu* —u )IVH(®)),

and similarly in the other cases. Then, writing the Euler-Lagrange equations
associated with the minimization problem, interesting coupled curve evolution
and diffusion equations will be obtained, with applications to object detection
and image segmentation.

For the purpose of illustration, we will only consider the following particular
cases: p= 2, f(Vu) = |Vul?, g(Jlut —u~|) =1 and g(Jut —u~|) = /|ut —u—|.
These particular cases yield two functionals. The first one is the isotropic clas-
sical Mumford and Shah energy [MS88b]

FM5(y, K) :/ |u—u0|2dx+u/ |Vu|2da:+1// dH*. (8)
Q Q\K K
The second one is an “anisotropic” Mumford and Shah like energy
EMS (u, K) = / lu — uo|2dz + u/ Vul?dz + ,,/ Vet = jdHt. ()
Q Q\K K

Let us now consider only these last two energies, restricted to some of the
sets mentioned above. We will explicitly write in each case the form of the
minimization problem and the associated Euler-Lagrange equations. We will
parametrize by an artificial time the descent direction in @, ¢1, or ¢2. We will



also regularize the Heaviside function H by H. € C'(R) as € — 0, as in [CV99],
[CVO01b], where H, is defined by:

H.(s) = %(1 + %a,rctan(g)).

We will also use the notation §. = H! for an approximation and regularization
of the one-dimensional Dirac function dg, concentrated at the origin.
Minimizing the restriction of (8) to the subset

{ut@) = H($(@) + (1 - H(o(@)) },
with ¢t, ¢~ unknown (polynomials of degree 0), yields:
Lint [ luoe) = ¢t PH@)d + [ fuo(a) ¢ P~ H@)io
S L O

i.e. the active contour model without edges from [CV99], [CV01b]. The mini-
mizers have to satisfy the following coupled equations, given ¢(0,z) = ¢o(x):

Jo wo(2)H(¢(x))dx
+ X Q
(ot Jouo(x)(1 — H(¢(x)))dx
WD = A A
¢ . (Vo _
yril 0:(0) [lev(w) — |uo — c|* + |uo — ¢ |-

A numerical result obtained with this model is shown in Figure 1. This model
performs active contours, and has the following advantages, when compared with
boundary-based models: it automatically detects interior contours; it detects
both contours with or without gradient; the position of the initial curve can be
anywhere in the image.

An extension of the previous model is introduced here, which is obtained
by considering linear approximations: minimizing the restriction of (8) to the
subset

{u@ = ((@*64) -2+ H@E) + ((@7,57) -2+ 7)1 - H(@) ],

with a*, bt ¢t ,a™, b7, ¢™ unknown (as coefficients of polynomials of degree 1),
yields:

ey [ o) = (@) k) [

+ [ fo@) = (@ 7)o+ 1 = H@)aa

b [ (@ + 002 E@dr + [ (@) +07)2) (0 = H@)da
+1//Q|VH(¢)|. (11)



The minimizers have to satisfy the following coupled equations, given ¢(0,x) =
¢o(z) (note the linear algebraic systems for (a*,bt,ct) and (a=,b7,c7)):

ot /Q (@2 + p)H ($(2))do + b+ /Q 213 H(6(2))dz + ¢+ / 21 H(6(2))dz

Q

- /Q 21u0(@) H(9(2))d,
ot / 2122 H ($(z))dz + b+ / (@2 + ) H(¢(x))dz + / 22 H (6(2))dz
Q Q

Q
/ a0 () H(9())do
a+/ z1H(p(z))dz + b+/ 22 H($(x))dz + ¢ / H(¢
Q
- [ w(@H @),
Q
(similarly for (a=,b™,c¢ ™), substituting H(¢) by (1 — H(¢)), and
o¢ Vo + +\|?
5 =0 (¢)[Vd1 (|V¢|) ‘uo(x)— ((a 0Tz + e )‘
2
+‘un(a:) — ((a*,b*) -z + c*)‘
—n((@)? + @)?) + (@) + 7))
Numerical results obtained with this model are presented in Figures 4 and 5.
This linear case has also been discussed by the author with P. Hamilton, during

a collaboration on medical image segmentation.
Minimizing the restriction of (8) to the subset

{u(z) = u* () H(9(z)) +u=(@)(1 ~ H(6(x)) .
yields (see [CVO01a], [VCO1]):

inf / lut — o> H()dz + /Q i~ — uol2(1— H(¢))dz  (12)

ut,u=,¢ Jo
+u / VutPH($)dr + p / Vu (1~ H(g))dz + v / VH($)].

The minimizers have to satisfy the following coupled equations, given the initial
condition ¢(0,x) = ¢o(x):

+
, a* =0on {¢=0}U0N,

7?
Vo _ _
= 5.(¢) [vdiv (lv¢|)—|u+—uo|2+|u — ol — | Vut 2 + pVu|?

ut = wug + pAut 0n{¢>0}

u” =wug+ pAu~ on {¢ < 0} =0on {¢=0}U0Q,

0% _
ot

We would like to mention that this last case was also proposed and solved
independently by [TYWO01]. Figure 2 shows a numerical result using this case.



Let us now consider the restriction of (8) to the subset

{u(m)

I
IS

+

+
8
=
<
[
®

H(¢2(x)) (13)

+ + +

In this case, the minimization problem can be written as:

- 2
u++,u+—,u1—nf,u——7¢17¢2/g [lu uo|“H(¢1)H(¢2) (14)

Hut — woPH($1)(1 = H(g2)) + Jut = uo 2 (1~ H(@1)) H(62)
Hum = uoP(1 = H(g1)(1 - H(g))| do

s [ [IVUHHEH(G0)H () + 19 (1)1~ H(6)
+[Vu (L= H($)H(go) + [Vu (1= H($1)(1 — H(¢)) | do

+v (V@) +v [ V@)1~ Ho) + 0 - HG)).

Note that the term ((1 —H(—¢))+ (1 - H(¢1))) is used to avoid counting

more than once the segments of curves belonging to both {¢; = 0} and {¢2 =
0}. The minimizers (utt,ut~,u™F, 4™, ¢1, ¢o) satisfy coupled curve evolution
and diffusion equations, similar with those from the previous case. We think that
in this case, based on the Four Color Theorem, defining the set of minimizers
by this set with four functions u™, «™, =, 4=~ and with only two level set
functions, should formally suffice to represent any case. The connection with the
Four Color Theorem in image segmentation has been also made in [WKCn00].
A numerical result obtained in this case is presented in Figure 9, from [VCO01].

Finally, for the purpose of illustration, let us consider one example of mini-
mization problem involving the anisotropic energy (9). The minimization of the
energy (9) restricted for instance to the subset

{u@) = " H(g(@) +¢ (1 - H())},

with ¢*, ¢~ unknown (polynomials of degree 0), yields:
ot [ fuola) = e PHO@)E + [ fuolo) - P @ - H(@(@)ds
o/l =] [ WHGE) (5)

The minimizers have to satisfy the following coupled equations, given the initial
condition ¢(0,z) = ¢o(z):

o = Jow@H@@)ds sgn(ct —c7) JoIVH(9)|
Jo H(¢(z))dz 4/|ct —c | Jo H(p(x))dz’




- Jouo(@)(1 - H((@)))dz  sgn(c™ —ct) [ |IVH(4)]
Jo(l = H(¢(x)))dz 4/t — e Jo(1 = H(¢(2))dz’

% 0 () [u\/ let — c|div(%) — |ug — et|? + |uo — c*|2].

A numerical result obtained using this model is presented in Figure 3. If the
coefficient v is the same as in the isotropic case (10), this new anisotropic model
has a stronger constraint on the length term. In addition, in the general case,
the presence of the additional factor y/|ut —u~| in the energy term along K
should remove the limitations on the type of edges obtained by the isotropic
Mumford and Shah model. Some of these limitations are [MS88b]: junctions
can be only triple junctions with angles of 120°, and if one edge intersects the
boundary 012, it has to be at right angle.

Similarly, the anisotropic Mumford and Shah like energy (9) can also be
written for the other cases.

The general functional in (3) has the advantage of having minimizers on the
space SBV (Q2), the appropriate space for image segmentation: for u € SBV (Q),
each point ¢ € 2 will be either a point in a homogeneous region, or an edge
point. Unfortunately, the minimization of (3) is not convex, and it is not always
guaranteed that the numerical algorithm will converge to a global minimizer.
In addition, the global minimizer is not unique in general. To overcome this
difficulties, an idea could be to consider convex minimization problems on the
larger space BV () of functions of bounded variation, and to apply the same
level set techniques. An example of such convex functional is given by the
total variation minimization [ROF92]. In [VO02], a similar level set method is
proposed to the minimization of this energy, again with applications to active
contours and image segmentation.

4 Experimental results

We present in this section some numerical results obtained with the models from
the previous section. For the details of the numerical schemes and for other
numerical results, we refer the reader to [CV99], [CV01b], [CSV00], [CVO01a],
[CV02], [VCO1].

As we will see in this section, these models have the abilities of automatic
detection of interior contours, of detection of contours with or without gradient,
and of detection and representation of complex topologies. The multiphase level
set approach employed here has been introduced in [CV0la], [CV02], [VCO1],
and has the advantages of always keeping the multiple phases disjoint and with
their union the entire domain, by definition. Triple junctions can be represented,
with an optimal number of level set functions.

In Figure 1 we show a result obtained using the model (10). In Figure
2, we show a result obtained using the model (12). In Figures 3 and 6, the
anisotropic model from (15) is used. In Figures 4 and 5, we have used the linear
approximation model from (11). In Figure 7, the linear approximation model
in a four phase fashion is used, with two level set functions (the obtained final
four segments are shown in Figure 8). Finally, in Figure 9, a numerical result is
presented using the general four-phase Mumford and Shah level set algorithm
from (14), previously introduced in [CV01a], [VCO1].
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Figure 1: Numerical result using the piecewise-constant Mumford and Shah
level set algorithm from (10), with v = 0.09 * 2552.

11



Figure 2: Numerical result using the piecewise-smooth Mumford and Shah level
set algorithm from (12), with v = 0.0305 * 2552 and u = 10.
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Figure 3: Numerical result using the piecewise-constant anisotropic Mumford
and Shah like level set algorithm from (15), with v = 0.0015 * 2552.
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Figure 4: Numerical result using the piecewise-linear Mumford and Shah level
set algorithm from (11), with g =1, v = 0.1 * 2552.
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Figure 5: Numerical result using the piecewise-linear Mumford and Shah level
set algorithm from (11), with g = 0.001 and v = 0.001 * 2552.
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Figure 6: Numerical result using the piecewise-constant anisotropic Mumford
and Shah like level set algorithm from (15), with v = 0.01 x 2552.
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Figure 7: Numerical result using the piecewise-linear four phase Mumford and
Shah level set algorithm, with g = 1, v = 0.014 - 2552.

17



X, [
. ¥ RRRLE

Figure 8: Final four segments obtained for the result from Figure 7.

5 Conclusion

We have presented in this paper a level set technique for the minimization of a
class of functionals defined on the space of special functions of bounded varia-
tion, arising in image segmentation. The obtained variational level set models
yield coupled geometric and diffusion partial differential equations. Applications
to object detection and image segmentation have been illustrated.
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