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Abstract. We denoise HARDI (High Angular Resolution Diffusion
Imaging) data arising in medical imaging. Diffusion imaging is a rel-
atively new and powerful method to measure the 3D profile of water
diffusion at each point. This can be used to reconstruct fiber directions
and pathways in the living brain, providing detailed maps of fiber in-
tegrity and connectivity. HARDI is a powerful new extension of diffusion
imaging, which goes beyond the diffusion tensor imaging (DTI) model:
mathematically, intensity data is given at every voxel and at any direc-
tion on the sphere. However, HARDI data is usually highly contaminated
with noise, depending on the b-value which is a tuning parameter pre-
selected to collect the data. Larger b-values help to collect more accurate
information in terms of measuring diffusivity, but more noise is generated
by many factors as well. So large b-values are preferred, if we can satis-
factorily reduce the noise without losing the data structure. We propose
a variational method to denoise HARDI data by denoising the spherical
Apparent Diffusion Coefficient (sADC), a field of radial functions derived
from the data. We use vectorial total variation regularization, an L1 data
fidelity term and the logarithmic barrier function in the minimization.
We present experiments of denoising synthetic and real HARDI data.

1 Introduction to the HARDI Data

Currently, HARDI data is used to map cerebral connectivity through fiber trac-
tography in the brain. HARDI is a type of diffusion MRI, which was introduced
in the mid-1980s by Le Bihan et al. [20,21,22] and Merboldt et al. [28]. It is
based on the idea that the MR signal, which forms the basis of MRI, is atten-
uated when water diffuses out of a voxel, and the degree of attenuation can be
used to measure the rate of water diffusion in any arbitrary 3D direction via
the Stejskal-Tanner equation [33]. Water diffusion occurs preferentially in direc-
tions that are aligned with axonal fiber pathways, and is hindered in orthogonal
directions by the myelin sheaths that coat the axons. Because of this diffusion
anisotropy, initial approaches to assess fiber directions modeled the 3D diffusion
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profile at each point as a single tensor (Beaulieu et al. [4]), in which the princi-
pal eigenvector of the diffusion tensor can be used to recover the dominant fiber
pathway at that voxel. The diffusion tensor model (Basser et al. [3]) describes
the anisotropic nature of water diffusion in tissues (inside a typical 1-3mm sized
voxel) by estimating, from a set of K diffusion-sensitized images, the 3x3 co-
variance matrix of a Gaussian distribution (Beaulieu et al. [4]). Each voxel’s
signal intensity in the k-th image is decreased, by water diffusion, according
to the Stejskal-Tanner equation [33]: Sk = S0 exp [−bgT

k Dgk], where S0 is the
non-diffusion weighted signal intensity, D is the 3x3 diffusion tensor, gk is the
direction of the diffusion gradient and b is Le Bihan’s factor with information
on the pulse sequence, gradient strength, and physical constants.

Unfortunately, although it is widely used, the diffusion tensor model breaks
down for voxels in which fiber pathways cross or mix together, and these are
ubiquitous in the brain which is highly interconnected. More advanced image
acquisition techniques, such as HARDI (Tuch et al. [39,40]), diffusion spectrum
imaging [43], and q-ball imaging (Tuch et al. [41]), have been introduced in the
past 5 years - these types of data recover the local microstructure of water dif-
fusion more accurately than standard DTI data. HARDI, DTI and other similar
modalities permit non-invasive quantification of the water diffusion in living tis-
sues. The tissue structure will affect the Brownian motion of the water molecules
which will lead to an anisotropic diffusion. By imaging diffusion in an arbitrary
number of directions (often 100 or more), HARDI overcomes the limited accu-
racy of the tensor model in resolving the highly complex fiber structure of the
brain, particularly in regions with fiber crossings.

HARDI data makes it possible to compute the orientation diffusion function
over a sphere of possible directions. Tuch [38,40] developed the first HARDI
acquisition and processing methods, and later Frank [15] used spherical harmonic
expansions for processing HARDI data sets. A very active area of research has
grown up in processing the HARDI signals, leading to methods for HARDI
denoising, segmentation, and registration using metrics on spherical functions
(Lenglet et al. [23]). Most of these signal processing methods still model the
diffusion signal as a tensor, rather than exploiting the full information in the
spherical harmonic expansion. For example, Khurd et al. [42] used isometric
mapping and manifold learning (eigendecomposition of the distance matrix) to
directly fit a manifold to the tensors, compute its dimensionality, and distinguish
groups using Hotelling’s T 2 statistics. Initial image processing on the full HARDI
signal has focused on fitting a discrete mixture of k distinct tensors to the signal,
and later on fitting a continuous mixture model for modeling the MR signal decay
and multi-fiber reconstruction (Jian et al. [17], [18]), or fitting a continuous
mixture of tensors using a unit-mass distribution on the symmetric positive
definite tensor manifold (Leow et al. [24]).

Initial work on the nonlinear (fluid) matching of HARDI images has taken
a more non-parametric approach, and has used the Kullback-Leibler divergence
to measure the discrepancy between ODF fields (Chiang et al. [8,9]), using a
3D fluid transform to minimize the discrepancy between two fields of ODFs. As
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information theory can be used to measure the overlap between diffusion proba-
bility density functions, there is much promising work using metrics derived from
information theory (e.g., the Fisher-Rao metric, von Mises-Fisher distribution,
etc.; McGraw et al. [27]; Srivastava et al. [32]; Chiang et al. [9]). Other work has
modeled the HARDI signal as high-order tensors (Barmpoutis et al. [2]) or as a
stratification (mixture of manifolds with different dimensions; Haro et al. [16]).

The HARDI data is the MRI signal attenuation information after time t > 0
modeled by St(x, θ, φ) = S0(x) exp(−b · dt(x, θ, φ)), where Ω is a bounded open
subset of IR3, x ∈ Ω, θ ∈ [0, 2π), φ ∈ [0, π). S0 is the MRI signal that is
obtained when no diffusion gradient vector is applied and this is considered to be
a reference image, relative to which the diffusion-attenuated signal is measured.
The function dt(x, θ, φ) is called the spherical Apparent Diffusion Coefficient
(sADC), which measures how much the water molecules diffuse in the given
direction (cos(θ) sin(φ), sin(θ) sin(φ), cos(φ)), and b is a parameter pre-selected
to collect the data.

In reality, in experimental data, a higher b-value (e.g., 3000 s/mm2) tends to
lead to more noise in the obtained images [10]. Hence, we are led to consider the
following simplified degradation model

St(x, θ, φ) = S0(x) exp(−b · dt(x, θ, φ)) + noise(x , θ, φ). (1)

We may say that the baseline signal collected without any diffusion gradient
applied, which is S0, may also be contaminated by noise, but here we assume that
this can be neglected, or we just consider the last noise term in (1) to encompass
all types of noise. This is a reasonable approximation, because in practice, it is
common to collect several non-diffusion weighted images S0,i whose average may
be used as a reference signal S0 (e.g. Zhan et al. [44]). If we let S̃t(x, θ, φ) be a
denoised dataset, then we expect that for all x, φ, θ,

0 ≤ S̃t(x, θ, φ) ≤ S0(x). (2)

As already mentioned, the data has to be first denoised before extracting the
fibers, or before registration. Although HARDI is a relatively recent type of data
acquisition, several HARDI processing methods have already been proposed: we
mention a few more. In [26] and [7], curve evolution techniques are applied for
the segmentation of HARDI data. Descoteaux, Deriche and collaborators, among
others, have also proposed a segmentation of HARDI data [12], a regularized, fast
and robust analytical solution for the Q-ball imaging reconstruction of the ODF
[13], and for mapping of neuronal fiber crossings [14]. [11] deals with denoising
and regularization of fields of ODFs (orientation distribution functions).

The prior work most relevant to ours is by Mc Graw et al. [25]: the noisy data
St(x, θ, φ) is regularized to remove noise in a functional minimization approach;
a standard L2 data fidelity term is used, combined with a weighted version of
vectorial total variation regularization in space, and H1 regularization of data
at every voxel with respect to direction. The data is mapped into 2-dimensional
space plane using spherical coordinates and discretized using finite elements.
Denoising results for synthetic and real HARDI data are presented in [25]. In
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our proposed work, we also use vectorial total variation for the regularization.
However, our proposed model differs from the one in [25], since we faithfully
follow the signal degradation model (1) and we denoise dt(x, θ, φ) instead of
St(x, θ, φ). Results on synthetic data used in [25] will be shown for comparison.

2 Proposed Variational Denoising Model

We propose a variational denoising method that recovers a clean d = dt. The
HARDI data is a collection of intensity values at uniformly pre-selected direc-
tions on the sphere, to which the electromagnetic field is applied: at each position
x ∈ Ω ⊂ IR3, we measure values at different directions. We note briefly that the
actual set of directions is typically computed using an electrostatic repulsion
PDE, to optimize the sampling of a spherical signal using a finite set of obser-
vations (see Tuch et al. [41] for a discussion of spherical sampling schemes).

In the continuous setting, we obtain a function defined on a manifold Ω×S2;
Ω is the spatial domain and the sphere S2 is the space of gradient directions. It
is not easy to work with the entire domain Ω × S2 for computational purposes.
Instead, we will use a discretized version of the sphere, given by n directions
uniformly chosen. We drop the subscript t from St and thus the function that
is given has the form S = (S1, . . . , Sn) where each Si : Ω → IR corresponds to a
given direction. The data S0 has only spatial information and it is also given.

To impose the right amount of smoothness and discontinuity on the denoised
data, we will use the vectorial total variation regularization, given by |∇d|(Ω) =∫

Ω

√∑n
i=1 |∇di(x)|2dx if d ∈ W 1,1(Ω; IRn) (∇d is a n × 3 matrix). For d ∈

W 1,1(Ω; IRn), ∇d = ( ∂di

∂xk
)i=1,...,n,k=1,2,3 in the distributional sense and |∇d|

denotes the Frobenius norm of ∇d. The total variation has been successfully
introduced and used in image denoising for gray-scale images by Rudin, Osher,
Fatemi [31], being a convex edge-preserving regularization. The vectorial total
variation for color images has been analyzed in Blomgren-Chan [6] and PhD
manuscripts of Blomgren [5], Tschumperlé [34] (see also [35], [36]).

As we have mentioned, we wish to denoise the sADC (spherical Apparent
Diffusion Coefficient) dt in (1). We drop the subscript t and denote the sADC
by d. We note that we can substitute b · d by d in (1), since b is a constant.
From the HARDI data model (1), we see that knowing the true S is equivalent
to knowing the true d. We directly impose the image formation model in our
data-fidelity term and the constraint di ≥ 0. Also, we use an L1 noise term [1],
instead of the more standard L2 noise term, to penalize less the unknown. We
minimize the energy G(d) = G(d1, ..., dn).

We use the logarithmic barrier method [29] to realize the constraint: the en-
ergy should contain −μ

∑n
i=1 log(di(x)) (with a sequence of parameters μ > 0

decreasing to zero), which realizes the constraint di > 0 for all i. Instead, we will
use −μ

∑n
i=1

[
H(Si(x), S0(x)) · log(di(x))

di(x)

]
, with the function H depending only

on the data S and S0. One choice of the function H is: H(a, b) = 0 if a ≤ b,
H(a, b) = 1 if a > b. Using this weight H , we penalize the unknown only at
those points x ∈ Ω with Si(x) − S0(x) > 0 which violate the second constraint
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in (2). Also, note that, if we would have used −μ log(z) instead of −μ log(z)/z,
with z = di(x), then the energy would have no global minimizer since for any
d such that G(d) < ∞, violating the constraint on a set of positive measure,
then limk→∞ G(k + d) = −∞. Another advantage of the function −μ log(z)/z
is that on one hand, unlike the logarithmic function −μ log(z), it rather spreads
uniform weights on {z > ε} for ε > 0 when μ > 0 is small. On the other hand,
−μ log(z)/z generates more repelling force from z = 0 than −μ log(z). In this
sense, −μ log(z)/z realizes the constraints in (2) better than −μ log(z).

Thus, our proposed minimization model for HARDI denoising is,

inf
d

G(d) = |∇d|(Ω) + λ

∫

Ω

n∑

i=1

|Si(x) − S0(x)e−di(x)|dx

− μ

∫

Ω

n∑

i=1

[
H(Si(x), S0(x)) · log(di(x))

di(x)

]
dx. (3)

In practice for computations, we use and discretize the Euler-Lagrange equa-
tions of model (3) in gradient descent form with respect to di(t, x). For i =
1, . . . , n, t > 0, these are

∂di

∂t
(t, x) = div

( ∇di(t, x)
√∑n

j=1 |∇dj(t, x)|2
)
− λ · S0(x)e−di(t,x) (4)

Fig. 1. ODFs. Left: noise-free synthetic data. Middle: noisy data, M(original, noisy) =
4.2206. Right: denoised data, M(original, denoised) = 1.8243. Ratio

M(original,noisy)
M(original,denoised)

= 4.2206
1.8243

= 2.3135, larger (better) than for the best result

reported in McGraw et al. [25], 1.0409
0.6576

= 1.5828; rmse(original, noisy) = 17.7079,
rmse(original, denoised) = 7.7774 (similar with rmse(original, denoised) = 7.6367
from [25]).
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· sign(Si(x) − S0(x)e−di(t,x)) + μ
H(Si(x), S0(x))(1 − log(di(t, x)))

di(t, x)2

with boundary conditions. We use finite differences to discretize the above PDE’s
using an explicit scheme. The final C++ algorithm is computationally efficient.

3 Numerical Results

We recall that in practice we work with a decreasing sequence of values μk > 0
and we find minimizers d∗k for G, with μ substituted by μk. The minimizer d∗k
obtained for μk is the initial guess for the next minimization with μk+1 < μk. We
wish to mention that the visualization of noisy data and denoised results is done
also through the ODFs (orientation distribution functions), which are obtained
by a postprocessing from the HARDI signal (but the ODFs are not used in our
denoising method). Note that calculating ODF of a noisy dataset means that we
perform a process of smoothing the data. The ODF is typically calculated from
the signal using the Fourier transform relationship between the signal and the
diffusion propagator [37], [30]. Since the original noisy data usually violates the
constraints we had in the model, if we want to visualize the ODF of the noisy
data, then there has to be a pre-processing step to adjust those violating values.

We first show a denoising result of a synthetic 16 × 16 HARDI data, kindly
provided by T. McGraw, for comparison with results from prior work of McGraw

Fig. 2. Denoising experiment of real MRI data. Top: left, S0; right, original clean
slices. 2nd row: noisy slices (artificial Rician noise). 3rd row: denoised slices.
M(original, noisy) = 2.8350, M(original, denoised) = 1.1564. rmse(original, noisy)
= 10.5448, rmse(original, denoised) = 4.7268.
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Fig. 3. ODFs of artificial denoising experiment of real MRI HARDI data from Fig. 2.
Left: original clean ODFs. Middle: noisy ODFs (artificial Rician noise). Right: denoised
ODFs.

et al. [25] (generated using the technique described in [30]). In Fig. 1 we show the
ODF visualizations of synthetic, noise-free HARDI data and its noisy version,
together with the denoised result.
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Fig. 4. 19th slice. Left: S0. Middle: noisy data S. Right: denoised data. Only 16 ran-
domly picked directions out of 94 are shown.

Fig. 5. ODFs: 19th slice of real clinical HARDI brain data

To assess the results’accuracy in the synthetic experiments (since we obtain
the ODFs by postprocessing), we compute the mean M over all points of square
root of symmetric Kullback-Leibler divergence between two probability densities
p(x), q(x) defined by sKL(p, q) = 1

2

∫
Ω

{
p(x) log

(
p(x)
q(x)

)
+q(x) log

(
q(x)
p(x)

)}
dx. We
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Fig. 6. ODFs of clinical noisy data (left), denoised result (right)
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let q be the ODF of the noise free data and in each case, let p be the ODF of either
the noisy data or the denoised data. The obtained mean distances are given in
Figures 1-2. As another error measure, we also use the root mean square error in
Fig. 2, which is obtained directly from our computed quantities, without ODFs.

We show next two experimental results on two real MRI HARDI data sets.
We want to take only the brain region into account, thus we use a template that
defined the brain region in the image. This led us to use Dirichlet boundary
conditions. Since functional (3) is obviously nonconvex, there might be many
local minima, which might cause visibly unsatisfying results or some numerical
instability. So we need to choose an appropriate initial guess when t = 0. Since
our minimizer d of (3) should satisfy di ≥ 0, we choose the initial guess d0 as

(d0)i(x) = 0.005 on {x ∈ Ω : H(Si(x), S0(x)) > 0},
(d0)i(x) = − log(Si(x)/S0(x)) + 0.1 on {x ∈ Ω : H(Si(x), S0(x)) = 0}.
We first show another artificial denoising experiment on a real MRI HARDI

data set of n = 30 diffusion-sensitized gradient directions. Clean and noisy data
are available (with artificial Rician noise), kindly provided by E. Iglesias. Slices
of S0, clean, noisy and restored data are shown in Fig. 2, with plots of clean,
noisy and denoised ODFs in Fig. 3. We notice visually very good reconstruction
while preserving very well the anatomic structure.

Next, we tested our model on a clinical real noisy HARDI dataset with n = 94
diffusion-sensitized gradient directions. Briefly, 3D structural brain MRI scans
and DT-MRI scans were acquired from healthy young adults on a 4 Tesla Bruker
Medspec MRI scanner using an optimized diffusion tensor sequence. Imaging
parameters were: TE/TR 92.3/8250 ms, 55 x 2mm contiguous slices, FOV = 23
cm. 105 directional gradients were applied: 11 baseline images with no diffusion
sensitization (i.e., T2-weighted images) and 94 diffusion-weighted images (b-
value 1159 s/mm2) in which gradient directions were evenly distributed on the
hemisphere [19]. The reconstruction matrix was 128x128, yielding a 1.8x1.8 mm2

in-plane resolution. The total scan time was 14.5 minutes. We set S0 to be the
average of the 11 baseline images. Fig. 4 shows slices of the clinical dataset (non-
diffusion weighted image S0 and 16 directions Si), together with the denoised
results. Next we visualize ODFs of the data and we can visually compare the
ODFs of the noisy data with the ODFs of the denoised data. To better see the
difference between the ODFs of the noisy data and the denoised data, we take
some parts of the whole brain image and magnify them especially in regions
where fibers are crossing. The data and results are shown in Figures 5-6.
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nucléaire. CRAS 301, 1109–1112 (1985)

21. Le Bihan, D., Breton, E., Lallemand, D., Grenier, P., Cabanis, E., Laval-Jeantet,
M.: MR imaging of intravoxel incoherent motions: Application to diffusion and
perfusion in neurologic disorders. Radiology 161, 401–407 (1986)



526 Y. Kim et al.

22. Le Bihan, D., Poupon, C., Amadon, A., Lethimonnier, F.: Artifacts and Pitfalls in
Diffusion MRI. JMRI 24, 478–488 (2006)

23. Lenglet, C., Campbell, J.S.W., Descoteaux, M., Haro, G., Savadjiev, P., Wasser-
mann, D., Anwander, A., Deriche, R., Pike, G.B., Sapiro, G., Siddiqi, K., Thomp-
son, P.M.: Mathematical Methods for Diffusion MRI Processing. NeuroImage. In:
Thompson, P.M., Miller, M.I., Poldrack, R., Nichols, T. (eds.) Special Issue on
Mathematics in Brain Imaging, November 13 (2008)

24. Leow, A.D., Zhu, S., Zhan, L., McMahon, K., de Zubicaray, G.I., Meredith, M.,
Wright, M.J., Toga, A.W., Thompson, P.M.: The Tensor Distribution Function.
MRM 61(1), 205–214 (2008)
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