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Abstract. In this paper, we consider the electrical impedance tomography
problem in a computational approach. This inverse problem is the recovery of
the electrical conductivity σ in a domain from boundary measurements, given
in the form of the Neumann-to-Dirichlet map. We formulate the inverse prob-
lem as a variational one, with a fitting term and a regularization term. We
restrict the minimization with respect to the unknown σ to piecewise-constant
functions defined on rectangular domains in two dimensions. We borrow image
segmentation techniques to solve the minimization problem. Several experi-
mental results of conductivity reconstruction from synthetic data are shown,
with and without noise, that validate the proposed method.

1. The mathematical problem

Electrical Impedance Tomography (EIT) is a non-invasive inverse method which
attempts to determine the electrical conductivity σ of a medium in a domain Ω, by
making voltage and current measurements at the boundary, ∂Ω, of the medium. In
mathematical terms, the EIT problem is the recovery of the coefficient σ of an ellip-
tic partial differential equation, defined for x ∈ Ω, given knowledge of the Cauchy
data, i.e. the Neumann-to-Dirichlet map or the Dirichlet-to-Neumann map. The
EIT problem has important applications in fields such as medical imaging, non-
destructive testing of materials, environmental cleaning, geophysics, etc. In the
last two decades, it has been the topic of many theoretical and numerical studies.
However, there are still important questions, such as improving the stability of re-
construction algorithms, improving the resolution and reliability of reconstructions
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of σ, and increasing the speed of inversion algorithms so σ can be imaged in real
time [3].

1.1. The Forward Problem. For a known isotropic electrical conductivity func-
tion σ ∈ L∞(Ω) (scalar valued, strictly positive and bounded in Ω), we can define
the Neumann-to-Dirichlet map, Λσ, for a bounded and simply connected domain
Ω in the following way. Let u, called the potential, be the solution to the partial
differential equation,

∇ · σ∇u = 0 in Ω

σ
∂u

∂ν
= I on ∂Ω(1)

∫

∂Ω

u dS = 0,

where ν is the unit outward normal to ∂Ω and ∂u
∂ν = ∇u · ν. The function I is

restricted to be such that
∫

∂Ω
I dS = 0. This Neumann boundary value problem,

referred to as the forward problem, has a unique solution u ∈ H1(Ω) (at least in the
weak sense), given that I ∈ H−1/2(∂Ω) (the potential is unique up to an additive
constant, that we fix by imposing the condition

∫

∂Ω
udS = 0).

The Neumann-to-Dirichlet operator Λσ : {I ∈ H−1/2(∂Ω),
∫

∂Ω IdS = 0} →

H1/2(∂Ω), maps the Neumann boundary data I to the restriction (trace) of u to
the boundary of Ω:

ΛσI = u|∂Ω.

This map depends nonlinearly on the conductivity σ. The Dirichlet-to-Neumann
map can also be considered, Λ−1

σ : H1/2(∂Ω) → H−1/2(∂Ω) with Λ−1
σ V = σ ∂u

∂ν ,
where u = V on ∂Ω.

1.2. The Inverse Problem. The inverse conductivity problem, as formulated by
Calderón [8], is to find a bounded, strictly positive function σ(x), given the map
Λ−1

σ . Theoretically, this problem can be solved uniquely for a large class of functions
σ, as established in [2], [27], [20], [15], [16], [6], and [23] (we highlight in particular
the more recent work [2], in two dimensions, where only the above assumptions
on Ω and σ are imposed). We will assume knowledge of the Λσ rather than Λ−1

σ ,
since in practice it is less sensitive to noise. Thus, we want to recover a function
σ ∈ L∞(Ω), satisfying σ(x) ≥ σ0 > 0 in Ω, given I and V = u|∂Ω.

We introduce the adjoint potential, τ , as the unique solution to the following
problem (called the adjoint problem),

∇ · σ∇τ = 0 in Ω

σ
∂τ

∂ν
= u|∂Ω − V on ∂Ω(2)

∫

∂Ω

τ dS = 0.

Here u is the solution to the forward problem (1) and V ∈ H1/2(∂Ω) is such that
∫

∂Ω
V dS = 0. The adjoint potential will be useful in later sections.

1.3. Piecewise-constant image segmentation model. Here, we briefly re-
view the piecewise-constant segmentation method, called “active contours without
edges”, introduced in [9], [10]. This method will be used to recover the conductivity
σ in the next section. Based on the piecewise-constant minimal partition problem
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of Mumford and Shah [19], the authors in [9], [10] have proposed implicit curve
evolution techniques propagating with non-local terms, to solve particular cases of
the minimal partition problem. In this problem [19], an image f : Ω → R is parti-
tioned into several regions Ωi, such that the gray-scale level in each Ωi is close to
an average constant ci. This can also be seen as an inverse problem, and can be
accomplished by minimizing the energy functional [19],

EMS(σ, C) = λ
∑

i

∫

Ωi

|f(x) − ci|
2dx + µ Length(C),(3)

where µ and λ are tuning parameters, C is a piecewise smooth curve that partitions
Ω into Ωi, and σ = ci is constant in each Ωi. A simple observation shows that for a
fixed C, the value of ci that minimizes this functional is given by the average of f
over Ωi. The function σ(x) =

∑

i ciχΩi
(x) will be an “optimal” piecewise-constant

approximation of f . In practice, however, it is difficult to minimize the functional
(3). For particular cases, when σ takes a finite number of values ci, the minimal
partition problem can be put in the variational level set framework from [31], [22],
[13], [14], in the following way [9], [10]. Suppose that we are working in the simplified
case of binary segmentation. The image f can be partitioned using a Lipschitz-
continuous function φ into two regions, one region where φ > 0 and another where
φ < 0. The zero level-line of φ will define the curve C = {x ∈ Ω : φ(x) = 0}.
Thus Ω = {φ(x) > 0} ∪ {φ(x) < 0} ∪ {φ(x) = 0}. The length of C will be given
by Length(C) =

∫

Ω
|∇H(φ)|dx =

∫

Ω
δ(φ)|∇φ|dx, where H is the Heaviside function

and δ is the Dirac delta function. In this case, the functional (3) can be rewritten
as [9], [10],

ECV (c1, c2, φ) = λ

∫

Ω

[

|f(x) − c1|
2H(φ(x)) + |f(x) − c2|

2(1 − H(φ(x)))
]

dx

+ µ

∫

Ω

δ(φ)|∇φ|dx.

Following the observation from the previous paragraph, the optimal constants c1

and c2 for a fixed φ are given by

(4) c1 =

∫

Ω f(x)H(φ(x))dx
∫

Ω
H(φ(x))dx

, c2 =

∫

Ω f(x)(1 − H(φ(x)))dx
∫

Ω
(1 − H(φ(x)))dx

.

Introducing an artificial time, t ≥ 0, one verifies that with φ(x, t) satisfying

∂φ

∂t
= δ(φ)

[

µdiv
( ∇φ

|∇φ|

)

− λ|f − c1|
2 + λ|f − c2|

2
]

in Ω(5)

∂φ

∂ν
= 0 on ∂Ω,(6)

ECV will be a non-increasing function of t. Extensions to piecewise-constant seg-
mentation with more than two regions and piecewise-smooth segmentation, in a
variational multiphase approach, have been introduced in [30]. Related work for
region-based segmentation and partitioning was done by [29], [28], [25], together
with other references mentioned in [30].

1.4. Related Prior Work. We mention that L. Rondi and F. Santosa have pre-
viously applied the Ambrosio-Tortorelli approximations [1] of the general Mumford-
Shah problem [19] to the inverse conductivity problem in an elegant work [24], where
σ is recovered from an energy minimization formulation with data fidelity term and
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regularizing term. The authors give theoretical results of existence of piecewise-
smooth minimizers σ in SBV (Ω), and show convergence of the elliptic approxi-
mations by Γ-convergence. Our proposed computational method is thus different
from the method proposed in [24], because we use the level set approach to mini-
mize the Mumford and Shah functional for the simpler (although more restrictive)
piecewise-constant binary segmentation case.

Segmentation techniques for recovering the conductivity σ and other elliptic equa-
tion coefficients have been proposed by T. Chan, E. Chung, and X.C. Tai [11], [12]
using approaches similar to the approach in this paper. The work [11] considers a
different, but related inverse problem; it applies a slightly modified version of the
piecewise-constant segmentation method from [9], [10], [30] to recover the coefficient
q(x) from an elliptic PDE, by using the total variation,

∫

Ω |∇q|dx, as a regulariza-
tion, instead of the length regularization. The work [12] (that much inspired this
work) addresses the problem of inverse conductivity; it uses a binary piecewise-
constant segmentation method, as in [9], [10], but the regularization is again the
total variation. In this work, we show that the length term of the discontinuity set
of σ is sufficient to recover σ with high accuracy and smaller jumps, and is simpler
in the piecewise-constant case; also, our computational results need about 200-250
iterations for convergence to steady-state instead of 200 - 50000 iterations in [12];
finally, we also show that interior contours (or holes) of the conductivity σ can also
be detected by the proposed approach.

The work of L. Borcea et al. [4] also uses a variational approach with regu-
larization to recover the conductivity σ, but in a different way from the present
approach.

Our work was much motivated by all the above-mentioned approaches [24], [11],
[12], [4].

Other related work, some very recent, can be found in [26], [18], [17], [21], [7],
[4], [3], and [5].

2. Formulation of the Minimization

In practice, we do not completely know the Neumann-to-Dirichlet or Dirichlet-to-
Neumann map. Instead, we are given a set of N evaluations of the map. Therefore,
we assume that Λσ∗ is known for N functions for the true conductivity σ∗. That
is, there are N pairs of functions (In, Vn) such that Λσ∗In = Vn. Experimentally,
this is accomplished by setting a current excitation pattern In and measuring the
resulting voltage Vn at discrete locations of the electrodes along the boundary ∂Ω.
In practice, the EIT problem is to find σ∗ from partial and usually noisy knowledge
of Λσ∗ . A significant difficulty is the severe ill-posedness of EIT. This problem is ill-
posed in the sense that small perturbations of the boundary data are exponentially
amplified in the image of σ inside Ω [3]. Therefore, in the reconstruction process,
we have to restrict σ to a subset of L∞(Ω), of smoother functions, as in [4], [24],
[11], [12], among others.

In order to obtain a numerical solution to the inverse conductivity problem, we
formulate it as a minimization: the functional to be optimized will consist of a data
fidelity term (fitting term), and of a regularization term. Using the ideas of the
minimal partition problem and piecewise-constant reconstruction [19], [9], [10] in
a level set framework, in the simplified case of piecewise constant σ, taking two
values, we let

σ(φ, c1, c2) = c1 + (c2 − c1)H(φ),
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where φ is the level set function, c1 and c2 are the constant values of the conductivity,
and H is the Heaviside function. Therefore, motivated by the classical Mumford
and Shah functional [19] and its binary level set forms [9], [10], we minimize the
energy functional,

E(φ, c1, c2) = F (σ(φ, c1, c2)) + α(F )L(φ),

where the fitting term and the regularizing length term are given respectively by,

F (σ) =

N
∑

n=1

‖ΛσIn − Vn‖
2
L2(∂Ω)

N‖Vn‖2
L2(∂Ω)

,

L(φ) =

∫

Ω

|∇H(φ)|dx =

∫

Ω

δ(φ)|∇φ|dx,

with α(s) a non-decreasing function such that α(0) = 0. This function allows us
to control the size of the regularization. Note that under these restrictions on α,
we automatically have that the true conductivity σ∗ = σ(φ∗, c∗1, c

∗
2) is an absolute

minimum of the functional, as E(φ∗, c∗1, c
∗
2) = 0 (at least in the noiseless case).

By this minimization, we have that σ ∈ SBV (Ω) (σ will be a piecewise-constant
function, with the discontinuity set of finite length).

We now introduce an artificial time parameter t and let φ(·) = φ(·, t), c1 = c1(t)
and c2 = c2(t). Differentiating the energy, we obtain:

dE

dt
=

∂E

∂c1

dc1

dt
+

∂E

∂c2

dc2

dt
+

∫

Ω

∂E

∂φ

dφ

dt
dx.

Furthermore,

∂E

∂φ
= (1 + α′(F )L)

∂F

∂φ
+ α(F )

∂L

∂φ

= (1 + α′(F )L)
∂F

∂σ

∂σ

∂φ
− α(F )δ(φ)∇ ·

∇φ

|∇φ|

= δ(φ)
(

(1 + α′(F )L)(c2 − c1)
∂F

∂σ
− α(F )∇ ·

∇φ

|∇φ|

)

,

and

∂E

∂c1
= (1 + α′(F )L)

∫

Ω

∂F

∂σ

∂σ

∂c1
dx

= (1 + α′(F )L)

∫

Ω

∂F

∂σ
(1 − H(φ))dx.

Similarly,

∂E

∂c2
= (1 + α′(F )L)

∫

Ω

∂F

∂σ
H(φ)dx.

Let un and τn the nth potential and adjoint potential, so that they respectively
solve (1) and (2) with I = In and V = Vn. It can be shown that the Fréchet
derivative of the fitting term is given by (see for example [4] or [12]),

∂F

∂σ
= −2

N
∑

n=1

∇un · ∇τn

N‖Vn‖2
2

.
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Thus if we set,

dφ

dt
= −δ(φ)

(

(1 + α′(F )L)(c2 − c1)
∂F

∂σ
− α(F )∇ ·

∇φ

|∇φ|

)

,

dc1

dt
= −(1 + α′(F )L)

∫

Ω

∂F

∂σ
(1 − H(φ)) dx,

dc2

dt
= −(1 + α′(F )L)

∫

Ω

∂F

∂σ
H(φ) dx,

we have that dE
dt ≤ 0. Hence, these equations give the minimization formulation of

the inverse conductivity problem.

3. Numerical details and reconstruction results

In the following numerical experiments, we take the domain to be the unit square,
Ω = [0, 1]2. To derive the linear system of equations that represents ∇ · σ∇ at the
grid points away from the boundary, we look at the integral of equation (1) (or (2))
over a square, P , centered at a grid point (see Figure 1):

i−1,j−1 i+1,j−1

i−1,j

i−1,j+1 i+1,j+1

i+1,ji,j
h

i,j−1

i,j+1

h

P

i+1,j−1

i+1,j+1

i+1,j
h

i,j−1

i,j+1

h
2

i,j

Q

Figure 1. Integration domains.

0 =

∫

P

∇ · σ∇udx =

∫

∂P

σ
∂u

∂n
dS.

Using finite differences to approximate the normal derivative of u in this formula,
we obtain:

0 = σi+ 1

2
,j

(ui+1,j − ui,j

h

)

h + σi,j− 1

2

(ui,j−1 − ui,j

h

)

h

+ σi− 1

2
,j

(ui−1,j − ui,j

h

)

h + σi,j+ 1

2

(ui,j+1 − ui,j

h

)

h,

0 =
−(σi+ 1

2
,j + σi,j− 1

2

+ σi− 1

2
,j + σi,j+ 1

2

)

h2
ui,j

+
σi+ 1

2
,j

h2
ui+1,j +

σi,j− 1

2

h2
ui,j−1 +

σi− 1

2
,j

h2
ui−1,j +

σi,j+ 1

2

h2
ui,j+1.

At the boundary nodes, but not the corner nodes, we use the boundary condition,

σ
∂u

∂n
= f,

Inverse Problems and Imaging Volume 1, No. 2 (2007), 423–435



A piecewise-constant binary model for electrical impedance tomography 429

where f is either I or u|∂Ω − V , and we integrate over a domain, Q, (see Figure 1):

0 =

∫

Q

∇ · σ∇udx =

∫

∂Q

σ
∂u

∂n
dS

= σi+ 1

2
,j

(ui+1,j − ui,j

h

)

h + σi,j− 1

2

(ui,j−1 − ui,j

h

)h

2

+fi,jh + σi,j+ 1

2

(ui,j+1 − ui,j

h

)h

2
,

−
fi,j

h
=

−(2σi+ 1

2
,j + σi,j− 1

2

+ σi,j+ 1

2

)

2h2
ui,j

+
2σi+ 1

2
,j

2h2
ui+1,j +

σi,j− 1

2

2h2
ui,j−1 +

σi,j+ 1

2

2h2
ui,j+1.

In a similar fashion, we obtain the equations at the four corner nodes. Note that in
this discretization of the operator, we need the values of the conductivity at points
which lie in between the grid points. We take its value to be the minimum of the
two nearest values to preserve the discontinuous nature of σ. This approximation
ignores isolated points, where σ is bigger than at its surrounding neighbors. This
is taken into consideration in evaluating dc/dt and in re-normalizing φ.

We will assume that the conductivity constant c∗1 = 1 is fixed and that it is the
value of σ∗ on the boundary of the domain. In this case, the evolution equations
for φ and the unknown conductivity constant c2 = c are given by:

dφ

dt
= −δ(φ)

(

(1 + α′(F ))(c − 1)
∂F

∂σ
− α(F )∇ ·

∇φ

|∇φ|

)

,(7)

dc

dt
= −(1 + α′(F )L)

∫

Ω

∂F

∂σ
H(φ) dx.(8)

Following [10], we use a semi-implicit finite-difference scheme to discretize the

∇ · ∇φ
|∇φ| term. Since we are assuming that one of the values of the conductivity is

known, we impose Dirichlet boundary conditions on φ. We use the approximations
of the Heaviside and Dirac delta functions given in [9], [10],

Hǫ(x) =
1

2

[

1 +
2

π
arctan

(x

ǫ

)]

, δǫ(x) =
1

π

ǫ

ǫ2 + x2
.

To compute the Fréchet derivative of the fitting term, we need the potential and
the adjoint potential in Ω for each one of the configurations. To find these potentials,
we use the conjugate gradient method to solve the system of linear equations that
results from the finite volume discretization of (1) and (2). In discretizing the ∇·σ∇
operator, we also use the above approximations, Hǫ and δǫ. However, since the finite
volume discretization requires the values of σ at the half grid points, we take its
value to be the minimum of the two nearest values to preserve the discontinuous
nature of σ, as explained before.

Since there is no analytic solution to the equation that governs the evolution
of c, the differential equation (8) has to be solved numerically. However, instead
of integrating this equation, we evaluate dc

dt nearby the previous value of c and

approximate dc
dt by a quadratic polynomial. The next value of c is taken to be the

value that minimizes the absolute value of this polynomial (if there are two such
points, we take the one closest to the previous value). We alternate minimizing the
functional with respect to φ and c.
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To generate artificial data, we compute the Neumann-to-Dirichlet map, Λσ∗ , by
applying the conjugate gradient method to the finite volume discretization of the
forward problem. The Neumann boundary data are chosen to be sines and cosines
of higher and higher frequency on the boundary.

For the cases with regularizations, we use

α(F ) =
10−7

π
arctan(107F ),

and for no regularization, we use α(F ) = 0.

3.1. Test 1 – Two Inclusions. The true conductivity for this experiment has
two inclusions (see Figure 2). Both inclusions have conductivity c∗2 = 2 and the
background conductivity c∗1 = 1. The reconstructions in Figure 4 were carried out
using 6 configurations both with regularization and without regularization. Figure 5
shows the same reconstructions using 12 configurations. We also show the value of
the fidelity term F (t) versus iteration number. The overall behavior of the total
energy E(t) is qualitatively very similar to the behavior of the fidelity term. The
final values from the minimization are listed in Table 1.

True Conductivity σ*
1

 

 

1

1.5

2

2.5
Initial guess for φ

Figure 2. The true conductivity σ∗
1 and the initial guess for φ.

The conductivity has two inclusions, a square and a circle. The
initial guess for the unknown conductivity constant c is 1.

zero level set of the initial guess for φ zero level set of φ at step 120 zero level set of φ at step 170

zero level set of φ at step 195 zero level set of φ at step 220 zero level set of φ at step 245

Figure 3. Evolution of the zero level line of φ over time for the
N = 6 case with regularization.
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N c F
without regularization 6 2.0219 2.6691 ∗ 10−8

with regularization 6 2.0256 2.8221 ∗ 10−8

without regularization 12 2.1400 3.8258 ∗ 10−8

with regularization 12 2.0270 5.1410 ∗ 10−8

Table 1. Final values for the various test 1 reconstructions.

without regularizaion

 

 

1

1.5

2

2.5

0 200 400 600 800 1000
0

1

2

3

4
x 10

−5 F(t) − without regularization

interation

with regularizaion

 

 

1

1.5

2

2.5

0 200 400 600 800 1000
0

1

2

3

4
x 10

−5 F(t) − with regularization

interation

Figure 4. Reconstructions of σ∗
1 for N = 6, without regularization

(left) and with regularization (right). The white line outlines the
true location of the inclusions. The final values are listed in Table 1.

without regularizaion

 

 

1

1.5

2

2.5

0 200 400 600 800 1000
0

1

2

3

4
x 10

−5 F(t) − without regularization

interation

with regularizaion

 

 

1

1.5

2

2.5

0 200 400 600 800 1000
0

1

2

3

4
x 10

−5 F(t) − with regularization

interation

Figure 5. Reconstructions of σ∗
1 for N = 12, without regulariza-

tion (left) and with regularization (right). The white line outlines
the true location of the inclusions. The final values are listed in
Table 1.
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3.2. Test 2 – Inclusion with an Empty Interior. The true conductivity for
this experiment has an inclusion that contains a hole (see Figure 6). The inclusion
has a conductivity c∗2 = 2 and the background conductivity c∗1 = 1. The reconstruc-
tions in Figure 7 were carried out using 6 configurations both with regularization
and without regularization. Figure 8 shows the same reconstructions using 12 con-
figurations. The final values from the minimization are listed in Table 2.

True Conductivity σ*
2

 

 

1

1.5

2

2.5
Initial guess for φ

Figure 6. The true conductivity σ∗
2 and the initial guess for φ.

The conductivity has an inclusion with an empty interior. The
initial guess for the unknown conductivity constant c is 1.

N c F
without regularization 6 2.1517 6.7434 ∗ 10−8

with regularization 6 1.8598 3.7849 ∗ 10−8

without regularization 12 2.3290 5.1093 ∗ 10−8

with regularization 12 2.0335 4.0141 ∗ 10−8

Table 2. Final values for the various test 2 reconstructions.

without regularizaion
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0 200 400 600 800 1000
0
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3

4
x 10

−5 F(t) − without regularization

interation

with regularizaion

 

 

1

1.5

2

2.5

0 200 400 600 800 1000
0

1

2

3

4
x 10

−5 F(t) − with regularization

interation

Figure 7. Reconstructions of σ∗
2 for N = 6, without regularization

(left) and with regularization (right). The white line outlines the
true location of the inclusion. The final values are listed in Table 2.
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without regularizaion
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Figure 8. Reconstructions of σ∗
2 for N = 12, without regulariza-

tion (left) and with regularization (right). The white line outlines
the true location of the inclusion. The final values are listed in
Table 2.

3.3. Test 3 – Noise. For this experiment, we use the true conductivity σ∗
1 of test

1. However, the measurements Vn are corrupted with additive uniformly distributed
noise, that is,

V c
n = (1 + ǫsn)Vn,

where sn is a function on the boundary of Ω that takes on random values between
[−1, 1] and ǫ controls the size of noise. Figure 9 shows regularized reconstructions
of σ∗

1 with N = 12 and noisy data with ǫ = .01 and ǫ = .05, while the final values
are given in Table 3.
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Figure 9. Reconstructions of σ∗
1 for N = 12 with regularization

for noisy data with ǫ = .01 (left) and ǫ = .05 (right).
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N c F
ǫ = 0.01 12 2.0363 7.2851 ∗ 10−7

ǫ = 0.05 12 2.3865 1.6377 ∗ 10−5

Table 3. Final values for the various test 3 reconstructions.
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