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Abstract

This paper is devoted to a new variational model for
color texture modeling and color image decomposition into
cartoon and texture. A given image �f in the RGB space is
decomposed into a cartoon part and a texture part. The car-
toon part is modeled by the space of vector-valued functions
of bounded variation, while the texture or noise part is mod-
eled by a space of oscillatory functions, dual in some sense
of the BV space. Examples for color image decomposition,
color image denoising, and color texture discrimination and
segmentation will be presented.

1. Introduction

In many problems of image analysis we have an ob-
served color image �f , representing a real scene. The im-
age �f may contain noise (some random pattern of zero
mean for instance) and/or texture (some repeated pattern
of small scale details). The image processing task is to
extract the most meaningful information from �f . This is
usually formulated as an inverse problem: given �f , find
another image �u, close to �f , such that �u is a cartoon or
simplification of �f . In general, �u is an image formed by
homogeneous regions and with sharp boundaries. Most
models assume the following relation between �f and �u:
�f = �u + �v, where �v is noise or small scale repeated
detail (texture), and extract only the �u component. Usu-
ally, the component �v is not kept, assuming that this mod-
els the noise. In this category, we mention Rudin-Osher-
Fatemi [28], [14], Mumford-Shah [23], Perona-Malik [26],
Alvarez-Guichard-Lions-Morel [1], Chambolle-Lions [8],

Aubert-Vese [2], among many others. These models have
the ability of computing optimal piecewise-smooth approx-
imations �u of �f , while noise �v or small repeated patterns are
removed.

Sometimes the �v component is important, especially if it
represents texture, that can be defined as a repeated pattern
of small scale details. The noise is also a pattern of small
scale details, but of random, uncorrelated values. Both
types of patterns (additive noise or texture) can be modeled
by oscillatory functions taking both positive and negative
values, and of zero mean, as explained by Meyer [24].

Following the ideas of Y. Meyer [24], in a total vari-
ation minimization framework of L. Rudin, S. Osher, E.
Fatemi (ROF) [28], we show in this paper how we can ex-
tract from a color image �f = (f1, f2, f3) both components
�u = (u1, u2, u3) and �v = (v1, v2, v3), such that �u is a func-
tion of bounded variation, a cartoon representation of �f , and
�v as texture or noise, is modeled by a space of oscillatory
functions, the dual in some sense of the space of functions
of bounded variation.

The obtained decomposition can then be useful for seg-
mentation of color textured images and color texture dis-
crimination, among other possible applications. The tex-
tured component �v is completely represented using only two
vector-valued functions. This is much simpler and much
more efficient than by other techniques for textures, which
use a large number of channels to represent a textured image
(such as Gabor transform based techniques).

We review next the main two ingredients of the proposed
model: the total variation minimization of Rudin-Osher-
Fatemi (ROF) [28] for image denoising and restoration (see
also Rudin-Osher [27]), and the space of oscillating func-
tions introduced by Y. Meyer [24] to model texture or noise.
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Let �f = (f1, f2, f3) : IR2 → IR3 be a given color image
in the RGB mode (we assume that the image initially de-
fined on a rectangle in IR2, has been extended to the entire
space). We assume that �f ∈ L2(IR2, IR3). In real applica-
tions, the observed color image �f is just a noisy version of
a true image �u = (u1, u2, u3), or (as we will see in this
paper), it is a textured image, and �u would be a sketchy ap-
proximation or a cartoon image of �f . In the presence of ad-
ditive noise, the relation between �u and �f can be expressed
by the linear degradation model, introducing another func-
tion �v, and such that �f(x, y) = �u(x, y) + �v(x, y).

In the Rudin-Osher-Fatemi restoration model [28] for
gray-scale images, �v represents noise or small scale re-
peated details, while �u is an image formed by homogeneous
regions, and with sharp edges. Given �f , both �u and �v are
unknown (if �v is noise, we may know some statistics of �v,
such that it is of zero mean and given variance). In [28], the
problem of reconstructing �u from �f is posed as a minimiza-
tion problem in the space of functions of bounded variation
BV , this space allowing for edges or discontinuities along
curves. The vector-valued version of their model, efficient
for denoising color images while keeping sharp edges, can
be expressed as

inf
�u∈BV

F (�u) =
∫

|∇�u| + λ

∫
|�f − �u|2dxdy, (1)

where λ > 0 is a tuning parameter. The first term in the
energy, the total variation of �u, is a regularizing term, to
remove noise while keeping sharp edges. The second term
in the energy is a fidelity term, and |·| denotes the Euclidean
norm of a vector in three dimensions. This problem has
a unique minimizer in the space BV (IR2, IR3) of functions
of bounded variation. For �u ∈ L1(IR2, IR3), we say that
�u ∈ BV (IR2, IR3) if, and only if,

∫
|∇�u| = sup

{ 3∑
i=1

∫
ui(x, y)div�gi(x, y)dxdy :

�gi ∈ C∞
0 (IR2, IR2), |(�g1, �g2, �g3)| ≤ 1

}
< ∞. (2)

If we denote by �v := �f − �u or �f = �u + �v, then the
minimization problem (1) can be written as a decomposition

inf
(�u,�v)

{
F (�u,�v) =

∫
|∇�u| + λ‖ |�v| ‖2

L2 , �f = �u + �v
}

. (3)

For �u = (u1, u2, u3), this can be approximated by

inf�u∈BV F (�u) =
∫ √|∇u1|2 + |∇u2|2 + |∇u3|2

+λ
∑3

i=1

∫ |fi − ui|2dxdy. (4)

Formally minimizing the above energy with respect to

u1, u2 and u3, we obtain the following system of PDE’s:



u1 = f1 + 1
2λdiv

(
∇u1
|∇�u|

)
,

u2 = f2 + 1
2λdiv

(
∇u2
|∇�u|

)
,

u3 = f3 + 1
2λdiv

(
∇u3
|∇�u|

)
.

(5)

Then, the function (residual) representing noise or tex-
ture in the vector ROF model is �v := �f − �u given by

�v = − 1
2λ

(
div

(∇u1

|∇�u|
)
, div

(∇u2

|∇�u|
)
, div

(∇u3

|∇�u|
))

,

but this is not computed explicitly in the ROF model. Only
the component �u is extracted from �f .

Note that the residual �v in the ROF model can
be formally written as: v = (div�g1, div�g2, div�g3),
where �gi = (gi,1, gi,2) = − 1

2λ
∇ui

|∇�u| . We have that√|�g1|2 + |�g2|2 + |�g3|2 = 1
2λ for all (x, y), therefore

‖√|�g1|2 + |�g2|2 + |�g3|2‖L∞ = 1
2λ .

In [24], Meyer shows that the ROF model does not al-
ways separate well texture from BV components. In order
to better extract both the �u component in BV and the �v com-
ponent as an oscillating function (texture or noise) from �f ,
Meyer [24] proposes the use for �v of a space of functions,
which is in some sense the dual of the BV space (this is also
motivated by the expression above of the residual �v, and by
the condition (2)). In [24] the author considers the scalar
case only. Here, we will adapt some of the definitions and
terminology introduced in [24] to the vector case.

Definition. Let G denote the Banach space consist-
ing of all generalized vector-valued functions �v(x, y) =
(v1(x, y), v2(x, y), v3(x, y)) which can be written as

�v(x, y) = (div�g1, div�g2, div�g3), (6)

gi,1, gi,2 ∈ L∞(IR2), i = 1, 2, 3,

induced by the norm ‖v‖∗ defined as the lower bound of all
L∞ norms of functions |�g|, where �g = (�g1, �g2, �g3), |�g| =√|�g1|2 + |�g2|2 + |�g3|2 =

√∑3
i=1(g

2
i,1 + g2

i,2), and where

the infimum is computed over all decompositions (6) of �v.
Meyer shows (in the scalar case) that, if the �v component

represents texture or noise, then �v ∈ G, and proposes the
following new image restoration model:

inf
�u∈BV

{
E(�u) =

∫
|∇�u| + λ‖�v‖∗, �f = �u + �v

}
. (7)

We shall see that the space G allows for oscillating func-
tions �v, and the oscillations are well measured by the norm
‖v‖∗. This norm also helps to discriminate between two
different textures of the same average.

However, it is not clear how to solve in practice the mini-
mization problem (7). The main contribution of this present
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paper, as described in the next section, is to propose a practi-
cal algorithm to solve (7), making use only of simple partial
differential equations. We consider here the vector case of
color images in the RGB mode. The proposed model for
color image decomposition and texture modeling is also an
extension from gray-scale to color images of the model in-
troduced in [35], [36].

Other work for restoration of textured images by total
variation minimization in a wavelet framework are by F.
Malgouyres [20], [21], [22], E.J. Candès and F. Guo [6].
Also, texture modeling by statistical methods was proposed
by S.C. Zhu, Y.N. Wu and D. Mumford, in [37], [38], and
by S. Casadei, S. Mitter and P. Perona in [7]. In the context
of texture segmentation, we cite only a few related work,
such as G. Koepfler, C. Lopez, J.-M. Morel [17], G. Sapiro
[30], T.S. Lee, D. Mumford, A. Yuille [19], T.S. Lee [18], C.
Ballester and M. Gonzalez [4], N. Paragios and R. Deriche
[25], R. Kimmel, R. Malladi and N. Sochen [15], among
many others. A recent work for segmentation of textured
images using segmentation based active contour models in
a Gabor transform framework, is proposed by B. Sandberg,
T. Chan and L. Vese [29]. Another recent work for im-
age decomposition of color images in the same framework,
most relevant to the present paper, is by Aujol-Kang [3].
Prior work on color image restoration, denoising and pro-
cessing of vector-valued data is by Blomgren and Chan [5],
Chan and Kang [9], Kimmel and Sochen [16], Sapiro and
Ringach [31], Tang, Sapiro, and Caselles [32], Trahanias et
al. [33], Vese and Osher [34], Chan and Shen [11], among
many others.

2. Description of the model

We are motivated by the following approximation
to the L∞ norm of |�g| =

√|�g1|2 + |�g2|2 + |�g3|2 =√∑3
i=1(g

2
i,1 + g2

i,2), for gi,1, gi,2 ∈ L∞(IR2):

‖
√
|�g1|2 + |�g2|2 + |�g3|2‖L∞

= lim
p→∞ ‖

√
|�g1|2 + |�g2|2 + |�g3|2‖Lp .

Then, we propose the following minimization problem, in-
spired by (7) and [35], in the vector case:

inf
�u,�g

Gp(�u,�g) =
∫

|∇�u|

+ λ

3∑
i=1

∫
|fi − ui − div�gi|2dxdy (8)

+ µ
[ ∫ (√

|�g1|2 + |�g2|2 + |�g3|2
)p

dxdy
] 1

p

,

where λ, µ > 0 are tuning parameters, and p → ∞.
Recall that �u = (u1, u2, u3), and �g = (�g1, �g2, �g3) with
�gi = (gi,1, gi,2), for i = 1, 2, 3.

The first term in (8) insures that �u ∈ BV (IR2, IR3), the
second term insures that �f ≈ �u + (div�g1, div�g2, div�g3),
while the third term is a penalty on the norm ‖�v‖∗ of �v in
G. Clearly, if λ → ∞ and p → ∞, this model is formally
an approximation of (7).

Formally minimizing the above energy (8) with respect
to �u and �g, yields the following system of coupled Euler-
Lagrange equations, for i = 1, 2, 3:

ui = fi − div�gi +
1
2λ

div
( ∇ui

|∇�u|
)
, (9)

µ
(
‖ |�g| ‖p

)1−p

|�g|p−2gi,1 =

2λ
[ ∂

∂x
(ui − fi) + ∂2

xxgi,1 + ∂2
xygi,2

]
, (10)

µ
(
‖ |�g| ‖p

)1−p

|�g|p−2gi,2 =

2λ
[ ∂

∂y
(ui − fi) + ∂2

xygi,1 + ∂2
yygi,2

]
. (11)

In our numerical calculations, we have tested the model
for different values of p, with 1 ≤ p ≤ 10. The obtained re-
sults were very similar. The case p = 1 yields faster calcu-
lations per iteration, so we give here the form of the Euler-
Lagrange equations in this case p = 1. Also, the numerical
results presented in the next section have been obtained for
p = 1. For i = 1, 2, 3:

ui = fi − ∂xgi,1 − ∂ygi,2 +
1
2λ

div
( ∇ui

|∇�u|
)

(12)

µ
gi,1

|�g| = 2λ
[ ∂

∂x
(ui − fi) + ∂2

xxgi,1 + ∂2
xygi,2

]
(13)

µ
gi,2

|�g| = 2λ
[ ∂

∂y
(ui − fi) + ∂2

xygi,1 + ∂2
yygi,2

]
. (14)

As we shall see in the section devoted to numerical re-
sults, the proposed minimization model (8), in the simpler
case p = 1, allows to extract from a given real color textured
image �f the components �u ∈ BV (IR2, IR3) and �v ∈ G,
such that �u is a sketchy (cartoon) approximation of �f , and
�v = (div�g1, div�g2, div�g3) represents the texture or the noise.
In addition, the minimizer obtained for �g = (�g1, �g2, �g3) al-
lows us to discriminate between two different textures of
the same intensity average, by looking at one of the RGB
images given by (|g1,1|, |g2,1|, |g3,1|), (|g1,2|, |g2,2|, |g3,2|),
or at one of the gray-scale images |g1,1| + |g2,1| + |g3,1|
or |g1,2| + |g2,2| + |g3,2| (recall that the functions gi,1 and
gi,2, for i = 1, 2, 3 compose the norm ‖v‖∗). We will see
that no apriori knowledge or statistical information about
the texture is needed.

3. Numerical results and comparisons

We present numerical results obtained with the proposed
color decomposition algorithm with p = 1 from (12)-(14)
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on real images. We show comparisons with the color TV
model (3)-(5), and with the method that produces a cartoon
component u (piecewise-constant) introduced in [10], based
on Mumford-Shah piecewise-smooth approximations [23].

Each time, from a given color image �f , we extract the
cartoon part �u and the texture+noise part �v. For display pur-
poses only, instead of �v, which is a function with very small
maximum norm and taking both positive and negative val-
ues, we show 150 + �v (the constant 150 has been added to
all three components of the vector-valued function �v). We
illustrate three applications of the proposed model: color
image decomposition into cartoon and texture, color image
denoising, and color texture discrimination and segmenta-
tion. The above Euler-Lagrange equations (5), (12)-(14)
have been discretized and solved using finite differences
and fixed-point approximation.

We begin with a color image, a painting of Van Gogh.
We show in Fig. 1 the input data �f , and the components �u
and �v of the decomposition. We note that, as expected, the
image �u is a cartoon representation of the given image �f ,
while �v contains the textured small details.

In the next example from Figure 2, the initial color im-
age �f is noisy. The obtained component �u is a denoised
cartoon approximation of �f , while the component �v con-
tains texture and noise, together with other small details.
We also show comparison with the color TV model (3)-(5).
The new model gives a slightly smaller root mean square
error, thus an improved result.

In Fig. 3, we perform the same experiment on a color im-
age of an object with fractal boundaries. This image is de-
composed into a cartoon image �u of the object, with smaller
perimeter than initially, and an image �v which contains the
oscillations on the boundary only. We also show compar-
isons with the color TV model (3)-(5) in Fig. 4 and with a
cartoon segmentation model from [10] in Fig. 5.

We end the paper with numerical results on a wood tex-
tured image shown in Fig. 6. We show the �u and �v := �f −�u
components obtained by the color TV model (3)-(5) in Fig.
7, and with the new model in Fig. 8. We choose here the
parameter λ in each case such that the �v components have
the same L2 norm. Note how the color TV model keeps
more texture in the �u component.

In this experiment, we also show that the obtained
vector-valued function (�g1, �g2, �g3), which is such that �v =
(div�g1, div�g2, div�g3) helps to discriminate between two dif-
ferent textures with the same intensity average. Indeed, we
show |g1,1| + |g2,1| + |g3,1| as a “texture discriminator’,
that is segmented by the active contour model without edges
[12], [13]. The detected boundary is shown in Fig. 9.

Other expressions function of �g could have been used for
texture discriminators, some involving the gradient mag-
nitude of �g. We do not guarantee that with such texture
discriminators we would be able to distinguish between

all types of different textures. We plan to investigate this
further in the future. But this representation for textured
images is more efficient than, for instance, the techniques
based on the Gabor transform [29]. In that case, the Ga-
bor transform is applied to the initial image �f , producing a
large number of channels corresponding to different param-
eters, which are then used in a vector-valued segmentation
process.

Figure 1. Color decomposition (12)-(14): top,
initial image �f ; middle, cartoon component �u;
bottom, texture component �v.

Proceedings of the Eighth International Symposium on
Symbolic and Numeric Algorithms for Scientific Computing (SYNASC'06)
0-7695-2740-X/06 $20.00  © 2006



Figure 2. Top to bottom: original, noisy; �u
and �f − �u by the new model (12)-(14) with
RMSE = 0.353576; �u and �f − �u by the color
TV model (3)-(5) with RMSE = 0.355378.

Figure 3. Color image decomposition of an
object with fractal boundaries. Top: origi-
nal �f . Middle: component �u, representing an
object with finite perimeter. Bottom: compo-
nent �v, showing boundary oscillations.
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Figure 4. Color TV (3)-(5) applied to the fractal
image: components �u, �v = �f − �u.

Figure 5. Color cartoon model [10] applied to
the fractal image: components �u, �v = �f − �u.

Figure 6. �f with two different wood textures.

Figure 7. Color TV model (3)-(5) applied to the
wood image: �u and �v components.
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Figure 8. �u, �v components of the color de-
composition (12)-(14) for to the wood image.

Figure 9. Texture segmentation: application
of the active contour model without edges
[12], [13] to the gray-level image given by
|g1,1| + |g2,1| + |g3,1|.

3.1. Conclusions

In this paper, we have proposed a new formulation to
model real color textured images, inspired by Y. Meyer, in a
vector total variation minimization framework of L. Rudin,
S. Osher and E. Fatemi. A given color image is decomposed
into a cartoon part and a texture+noise part. The cartoon
part is modeled by functions of bounded variation, while
the texture+noise part is modeled by oscillatory functions.
Examples of color image decomposition, color image de-
noising and color texture segmentation have been presented,
together with comparisons with two related models.
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