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Abstract. We wish to recover an image corrupted by blur and Gaus-
sian or impulse noise, in a variational framework. We use two data-fidelity
terms depending on the noise, and several local and nonlocal regularizers.
Inspired by Buades-Coll-Morel, Gilboa-Osher, and other nonlocal mod-
els, we propose nonlocal versions of the Ambrosio-Tortorelli and Shah
approximations to Mumford-Shah-like regularizing functionals, with ap-
plications to image deblurring in the presence of noise. In the case of
impulse noise model, we propose a necessary preprocessing step for the
computation of the weight function. Experimental results show that these
nonlocal MS regularizers yield better results than the corresponding lo-
cal ones (proposed for deblurring by Bar et al.) in both noise models;
moreover, these perform better than the nonlocal total variation in the
presence of impulse noise. Characterization of minimizers is also given.

1 Introduction

We consider the problem of restoring an image blurred and then contaminated
by Gaussian or impulse noise. Let f, u : Ω → IR be image intensity functions,
where Ω ⊂ IR2 is open and bounded. The standard linear degradation model
is f = k ∗ u + n; f is the observed blurry-noisy image, k is (known) space-
invariant blurring kernel, u is the ideal image we want to recover, and n is
additive random noise independent of u. We approach the restoration problem
within the variational framework: infu{Φ(f − k ∗u)+ Ψ(|∇u|)}, where Φ defines
a data-fidelity term, and Ψ defines the regularization that enforces a smoothness
constraint on u, depending on its gradient ∇u.

First, two different fidelity terms can be considered based on the noise; in the
case of Gaussian noise model, the L2-fidelity term led by the maximum likelihood
estimation is commonly used: Φ(f − k ∗ u) =

∫
Ω(f − k ∗ u)2dx. However, the

quadratic data fidelity term considers the impulse noise, which might be caused
by bit errors in transmissions or wrong pixels, as an outlier. So, for the impulse
noise model, the L1-fidelity term is more appropriate, due to its robustness of
removing outlier effects [2], [17]: Φ(f − k ∗ u) =

∫
Ω
|f − k ∗ u|dx.

Image deblurring-denoising is an inverse problem, which is known to be
ill-posed due to either the non-uniqueness of the solution or the numerical
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instability of the inversion of the blurring operator. The regularization term Ψ al-
leviates this problem by reflecting some a-priori properties. Several regularization
terms were suggested in the literature, including [23], [9], [19], [20], [16]. Here,
we consider the total variation regularization [19], [20] and two approximations
of Mumford-Shah regularizers [16], denoted MSH1 and MSTV , proposed by
Ambrosio-Tortorelli [3] and Shah [21], [1] respectively and recently used for im-
age deblurring in the presence of Gaussian and impulse noise by Bar et al [4], [5].
These traditional regularization terms are based on local image operators, which
denoise and preserve edges very well, but may induce loss of fine structures like
texture during the restoration process.

Recently, Buades et al [8] introduced the nonlocal means filter, which pro-
duces excellent denoising results. Kindermann et al [13] and Gilboa-Osher [10,11]
formulated the variational framework of NL-means by proposing nonlocal regu-
larizing functionals. Lou et al [14] used the nonlocal total variation (NL/TV )
of Gilboa-Osher in image deblurring in the presence of Gaussian noise with a
preprocessing step for the computation of the weight function.

We propose here nonlocal versions of the approximated Mumford-Shah and
Ambrosio-Tortorelli regularizing functionals, called NL/MSH1 and NL/MSTV ,
by applying the nonlocal operators proposed by Gilboa-Osher to MSH1 and
MSTV respectively, for image restoration in the presence of blur and Gaussian
or impulse noise. In addition, for the impulse noise model, we propose to use
a preprocessed image to compute the weights w (the weights w defined in the
NL-means filter are more appropriate for the additive Gaussian noise). We note
that the interesting parallel work [7] also proposed NL/MSH1 regularizer for
segmentation and denoising in the presence of Gaussian noise, but not for deblur-
ring, nor for the impulse noise case. More details about our proposed methods
are presented in [12].

Local Regularizers. In this section, we recall several regularization terms. The
first one is the Mumford-Shah regularizing functional [16] which gives preference
to piecewise smooth images. The MS regularizer, depending on the image u and
on its edge set K ⊂ Ω, is given by ΨMS(u, K) = β

∫
Ω\K

|∇u|2dx + α
∫

K
dH1,

where H1 is the 1D Hausdorff measure. The first term enforces smoothness
of u everywhere except on the edge set K, and the second one minimizes the
total length of edges. But it is difficult to minimize in practice the non-convex
MS functional. Ambrosio and Tortorelli [3] approximated this functional by a
sequence of regular functionals Ψε using the Γ -convergence. The edge set K is
represented by a smooth auxiliary function v. Thus we have an approximation
to ΨMS as [3]

ΨMSH1

ε (u, v) = β

∫

Ω

v2|∇u|2dx + α

∫

Ω

(
ε|∇v|2 +

(v − 1)2

4ε

)
dx,

where 0 ≤ v(x) ≤ 1 represents the edges: v(x) ≈ 0 if x ∈ K and v(x) ≈ 1
otherwise, ε > 0 is a parameter, and α, β > 0. A minimizer u = uε of ΨMSH1

ε

approaches a minimizer u of ΨMS as ε → 0.
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An alternative approach is the total variation [19, 20] proposed by Rudin,
Osher, and Fatemi, called TV regularizer: ΨTV (u) =

∫
Ω
|Du| ≈ ∫

Ω
|∇u|dx.

Because of its benefits of preserving edges (which have high gradient levels) and
convexity, TV has been widely used in image restoration.

Shah [21] suggested a modified version of the AT approximation to the MS
functional by replacing the 2-norm of |∇u| by the 1-norm in the first term:

ΨMSTV
ε (u, v) = β

∫

Ω

v2|∇u|dx + α

∫

Ω

(
ε|∇v|2 +

(v − 1)2

4ε

)
dx.

This functional Γ−converges to the other functional ΨMSTV as ε → 0, [1]:

ΨMSTV (u) = β

∫

Ω\K

|∇u|dx + α

∫

K

|u+ − u−|
1 + |u+ − u−|dH

1 + |Dcu|(Ω)

where u+ and u− denote the image values on two sides of the jump set K = Ku

of u, and Dcu is the Cantor part of the measure-valued derivative Du. Note
that the non-convex term |u+−u−|

1+|u+−u−| is similar with the prior regularization
by Geman-Reynolds [9]. We observe that this regularizing functional is simi-
lar to the total variation of u ∈ BV (Ω) that can be written as

∫
Ω
|Du| =∫

Ω\Ku
|∇u|dx +

∫
Ku

|u+ − u−|dH1 + |Dcu|(Ω). By comparing the second terms,
we see that the MSTV regularizer does not penalize the jump part as much
as the TV regularizer. In this paper, we consider the TV regularizer ΨTV , the
MSH1 regularizer ΨMSH1

ε , and the MSTV regularizer ΨMSTV
ε .

Nonlocal Regularizers. Nonlocal methods in image processing have been ex-
plored in many papers because they are well adapted to texture denoising while
the standard denoising models working with local image information seem to
consider texture as noise, which results in losing details. Nonlocal methods are
generalized from neighborhood filters (e.g. Yaroslavsky filter, [24]) and patch
based methods. The idea of neighborhood filter is to restore a pixel by averaging
the values of neighboring pixels with a similar grey level value. Buades et al. [8]
generalized this idea by applying the patch-based method, and proposed the
famous nonlocal-means (or NL-means) filter for denoising, given by NLu(x) =

1
C(x)

∫
Ω e−

da(u(x),u(y))
h2 u(y)dy; da(u(x), u(y)) =

∫
Ga(t)|u(x + t) − u(y + t)|2dt is

the patch distance, Ga is the Gaussian kernel with standard deviation a deter-
mining the patch size, C(x) =

∫
Ω e−

da(u(x),u(y))
h2 dy is a normalization factor, and

h is the filtering parameter corresponding to the noise level (usually the stan-
dard deviation of the noise). The NL-means not only compares the grey level at a
single point but the geometrical configuration in a whole neighborhood (patch).

In the variational framework, Kindermann et al [13] formulated the neigh-
borhood filters and NL-means filters as nonlocal regularizing functionals which
generally are not convex. Then, Gilboa-Osher [10] formalized the convex non-
local functional inspired from graph theory, and moreover, based on the gra-
dient and divergence definitions on graphs in the context of machine learning,
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they [11] derived the corresponding nonlocal operators. Let u : Ω → IR be
a function, and w : Ω × Ω → IR be a nonnegative and symmetric weight
function. The nonlocal gradient vector ∇wu : Ω × Ω → IR is (∇wu)(x, y) :=
(u(y) − u(x))

√
w(x, y). Hence, the nonlocal divergence divw

−→v : Ω → IR of the
vector −→v : Ω × Ω → IR is defined as the adjoint of the nonlocal gradient,
(divw

−→v )(x) :=
∫

Ω (v(x, y) − v(y, x))
√

w(x, y)dy, and the norm of the nonlocal

gradient of u at x ∈ Ω is given by |∇wu|(x) =
√∫

Ω (u(y) − u(x))2w(x, y)dy.
Based on these nonlocal operators, they introduced nonlocal regularizing func-
tionals of the general form Ψ(u) =

∫
Ω

φ(|∇wu|2)dx, where s 	→ φ(s) is a positive
function, convex in

√
s, and φ(0) = 0. By taking φ(s) =

√
s, they proposed

the nonlocal TV regularizer (NL/TV ) which corresponds in the local case to
ΨTV (u) =

∫
Ω
|∇u|dx. Inspired by these ideas, we propose in the next section

nonlocal versions of Ambrosio-Tortorelli and Shah approximations to the MS reg-
ularizers for image denoising-deblurring. This is also continuation of the work by
Bar et al. [4], [5], first to propose the use of Mumford-Shah-like approximations
to image restoration.

In practice, we use the search window Ωw = {y ∈ Ω : |y−x| ≤ r} instead of Ω
(semi-local) and the weight function w at (x, y) ∈ Ω×Ω depending on a function
f : Ω → IR, w(x, y) = exp

(
− da(f(x),f(y))

h2

)
. The weight function w(x, y) gives

the similarity of image features between two pixels x and y, which is normally
computed using the blurry-noisy image f . Recently, for image deblurring in the
presence of Gaussian noise, Lou et al [14] used a preprocessed image obtained
by applying the Wiener filter to f , instead of f , to compute w. In our work,
only for the impulse noise model, we propose a different preprocessing step and
evaluate w by using the preprocessed image.

2 Description of the Proposed Models

We propose the following nonlocal Mumford-Shah regularizers (NL/MS) by
applying the nonlocal operators to the approximations of the MS regularizer

ΨNL/MS(u, v) = β

∫

Ω

v2φ(|∇wu|2)dx + α

∫

Ω

(
ε|∇v|2 +

(v − 1)2

4ε

)
dx,

where φ(s) = s and φ(s) =
√

s correspond to the nonlocal versions of MSH1

and MSTV regularizers, so called NL/MSH1 and NL/MSTV , respectively.
In addition, we use these nonlocal regularizers to deblur images in the presence
of Gaussian or impulse noise. Thus, by incorporating the proper fidelity term
depending on the noise model, we design two types of total energies as

Gaussian noise model: EG(u, v) =
∫

Ω

(f − k ∗ u)2dx + ΨNL/MS(u, v),

Impulse noise model: EIm(u, v) =
∫

Ω

|f − k ∗ u|dx + ΨNL/MS(u, v).
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Minimizing these functionals in u and v, we obtain the Euler-Lagrange equations

∂EG

∂v
=

∂EIm

∂v
= 2βvφ(|∇wu|2) − 2εα�v + α

(
v − 1

2ε

)

= 0,

Gaussian noise model:
∂EG

∂u
= k̃ ∗ (k ∗ u − f) + LNL/MSu = 0,

Impulse noise model:
∂EIm

∂u
= k̃ ∗ sign(k ∗ u − f) + LNL/MSu = 0,

where k̃(x) = k(−x) and

LNL/MSu = − 2
∫

Ω

{
(u(y) − u(x))w(x, y)

· [
(v2(y)φ′(|∇w(u)|2(y)) + v2(x)φ′(|∇w(u)|2(x))

] }
dy.

The energy functionals EG(u, v) and EIm(u, v) are convex in each variable and
bounded from below. Therefore, to solve two Euler-Lagrange equations simul-
taneously, the alternate minimization approach is applied. Note that since both
energy functionals are not convex in the joint variable (u, v), we may compute
only a local minimizer. However, this is not a drawback in practice, since the
initial guess for u in our algorithm is the data f .

To extend the nonlocal methods to the impulse noise case, we need a prepro-
cessing step for the weight function w since we cannot directly use the data f
to compute w. In other words, in the presence of impulse noise, the noisy pixels
tend to have larger weights than the other neighboring points, so it is likely to
keep the noise value at such pixel. Thus, we propose a simple algorithm to ob-
tain a preprocessed image g, which removes the impulse noise (outliers) as well
as preserving texture as much as possible. Basically, we use the median filter,
well-known for removing impulse noise. However, if we apply one-step of the me-
dian filter, then the output may be too smoothed out. In order to preserve fine
structures as well as to remove noise properly, we take the idea of Bregman iter-
ation [6], [18], and we propose the following algorithm to obtain a preprocessed
image g that will be used only in the computation of the weight function w:

Initialize : r0 = 0, g0 = 0.
do (iterate n = 0, 1, 2, . . . , m)

gn+1 = median(f + rn, [a a])
rn+1 = rn + f − k ∗ gn+1

while ‖f − k ∗ gn‖1 > ‖f − k ∗ gn+1‖1

[Optional] gm = median(gm, [b b])

where f is the given noisy-blurry data, median(f, [a a]) is the median filter of
size a×a with input f ; the optional step is needed in the case when the final gm

still has some salt-and-pepper-like noise. This algorithm is simple, it requires a
few iterations only, and it takes less than 1 second for a 256 × 256 size image.
Moreover, the preprocessed image gm is a deblurred and denoised version of f ;
it will be used only in the computation of the weights w, while keeping f in the
data fidelity term, thus artifacts are not introduced by the median filter.
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Characterization of Minimizers. In this section we characterize the minimiz-
ers of the functionals formulated with the nonlocal regularizers, using [15, 22].
Assuming that a functional ‖ · ‖ on a subspace of L2(Ω) is a semi-norm, we
can define the dual norm (where 〈·, ·〉 denotes the L2(Ω) inner product) of
f ∈ L2(Ω) ⊂ L1(Ω) as ‖f‖∗ := sup‖ϕ‖�=0

〈f,ϕ〉
‖ϕ‖ ≤ +∞, so that the usual du-

ality 〈f, ϕ〉 ≤ ‖ϕ‖‖f‖∗ holds for ‖ϕ‖ �= 0. We define two functionals (here
Ku := k ∗ u),

F (u) = λ

∫

Ω

|f − Ku|2dx + |u|NL/TV ,

G(u, v) =
∫

Ω

√
|f − Ku|2 + η2dx + β|u|NL/MS + α

(∫

Ω

(ε|∇v|2 +
|v − 1|2

4ε
)dx

)

where λ > 0, and |u|NL/MS ∈ {|u|NL/MSTV,v, |u|NL/MSH1,v}. We use here the
notations |u|NLTV =

∫
Ω |∇wu|(x)dx, |u|NL/MSTV,v =

∫
Ω v2(x)|∇wu|(x)dx, and

|u|NL/MSH1,v =
√∫

Ω v2(x)|∇wu|2(x)dx, which are semi-norms. We modified the
regularizing functional |u|NL/MSH1,v; the square-root term replaces the original
term of our model,

∫
Ω

v2(x)|∇wu|2(x)dx. It is introduced here to enable the
characterization of minimizers below, but the numerical calculations utilize the
original formulation. For the proofs we refer to [12].

Proposition 1. Let K : L2(Ω) → L2(Ω) be a linear bounded blurring operator
with adjoint K∗ and let F be the associated functional. Then

(1) ‖K∗f‖∗ ≤ 1
2λ if and only if u ≡ 0 is a minimizer of F .

(2) Assume that 1
2λ < ‖K∗f‖∗ < ∞. Then u is a minimizer of F if and only if

‖K∗(f − Ku)‖∗ = 1
2λ and 〈u, K∗(f − Ku)〉 = 1

2λ |u|NL/TV ,

where ‖ · ‖∗ is the corresponding dual norm of | · |NL/TV .

Proposition 2. Let K : L2(Ω) → L2(Ω) be a linear bounded blurring operator
with adjoint K∗ and let G be the associated functional. If (u, v) is a minimizer
of G with v ∈ [0, 1], then
∥
∥
∥
∥
∥
K∗ f − Ku

√
(f − Ku)2 + η2

∥
∥
∥
∥
∥
∗

= β and

〈

K∗ f − Ku
√

(f − Ku)2 + η2
, u

〉

= β|u|NL/MS ,

where ‖ · ‖∗ is the corresponding dual norm of | · |NL/MS.

3 Experimental Results and Comparisons

The nonlocal MS regularizers proposed here, NL/MSTV and NL/MSH1, are
tested on several images with different blur kernels and noise types. We compare
them with their traditional (local) versions, such as MSTV and MSH1, and
with the local and nonlocal total variations (TV [20], NL/TV [11]). In addi-
tion, we experiment the nonlocal regularizers in the impulse noise model with a
preprocessing step for the weight function.
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Fig. 1. Image recovery with cross sections: Gaussian blur kernel with σb = 1 and
Gaussian noise with σn = 5. Top: original image and its cross section, noisy blurry
image and its cross section. Middle, Bottom rows: recovered images (middle) and re-
covered cross sections (bottom) using TV, MSTV, NL/TV, NL/MSTV . SNR for the
results: TV = 32.9485, MSTV = 33.5629, NL/TV = 45.1943, NL/MSTV = 50.6618.
β = 0.0045 (MSTV ), 0.001 (NL/MSTV ), α = 0.00000015, ε = 0.000001.

Fig. 2. Top: (1st, 3rd) original images, (2nd, 4th) noisy blurry images with Gaussian
kernel with σb = 1 (2nd) and using the pill-box kernel of radius 2 (4th), and then
contaminated by Gaussian noise with σn = 5. Bottom: recovered images with SNR
values: TV (14.4240), MSTV (14.4693), NL/TV (17.4165), NL/MSTV (16.5776).
β = 0.007, α = 0.00000015 (MSTV ), β = 0.0025, α = 0.00000025 (NL/MSTV ),
ε = 0.0000005.
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Fig. 3. Recovery of noisy blurry image from Fig. 3. Top: recovered image u using TV
(SNR=25.0230), MSTV (SNR=25.1968), MSH1 (SNR=23.1324). Third row: recov-
ered image u using NL/TV (SNR=26.4554), NL/MSTV (SNR=26.4696), NL/MSH1

(SNR=24.7164). Second, bottom rows: corresponding residuals f − k ∗ u. β = 0.0045
(MSTV ), 0.001 (NL/MSTV ), 0.06 (MSH1), 0.006 (NL/MSH1), α = 0.00000001,
ε = 0.00002.

First, we test the Gaussian noise model in Figs. 1-3. As expected, NL/MSTV
and NL/MSH1 perform better than MSTV and MSH1 respectively in the
sense that not only they recover the fine scales such as texture better, but also
in the case of NL/MSTV , the model does not produce any staircase effect
(appeared in MSTV ). Furthermore, comparing the nonlocal MS regularizers
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Fig. 4. Recovery of noisy blurry image with Gaussian kernel with σ = 1 and salt-
and-pepper noise with d = 0.3. Top: original image, blurry image, noisy-blurry im-
age. Middle: recovered images using TV (SNR=26.9251), MSTV (SNR=27.8336),
MSH1 (SNR=23.2052). Bottom: recovered images using NL/TV (SNR=29.2403),
NL/MSTV (SNR=29.3503), NL/MSH1 (SNR=27.1477). Second column: β = 0.25
(MSTV ), 0.1 (NL/MSTV ), α = 0.01, ε = 0.002. Third column: β = 2 (MSH1), 0.55
(NL/MSH1), α = 0.001, ε = 0.0001.

with NL/TV , NL/MSTV and NL/TV seem to lead to similar results visually
and according to SNR, while NL/MSH1 gives a smoother image and lower SNR.
Specifically, in Fig. 1, we use a simple image and its 1D cross section. In this
example, we use 11×11 size search window for NL/MSTV which is sufficient to
obtain the best result, while NL/TV needs a 31×31 size. Moreover, NL/MSTV
recovers the signals much better than NL/TV , which might be caused by the
fact that originally, MSTV regularizer does not suppress the jump part as much
as TV . On the other hand, in Fig. 2, NL/TV produces clearer edges leading to
higher SNR, while NL/MSTV has some artifacts near the edges of especially
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Fig. 5. Comparison between MSH1 and NL/MSH1 with the image blurred and con-
taminated by high density (d = 0.4) of impulse noise. Top: noisy blurry images (left)
using motion blur kernel of length=10, oriented at angle θ = 25◦ w.r.t. the horizon
and salt-and-pepper noise with d = 0.4, (middle) using Gaussian kernel with σb = 1
and salt-and-pepper noise with d = 0.4, (right) using Gaussian kernel with σb = 1 and
random-valued impulse noise with d = 0.4. Middle: recovered images using MSH1,
(left) SNR=17.1106, (middle) SNR=15.2017, (right) SNR=16.6960. Bottom: recov-
ered images using NL/MSH1, (left) SNR=21.2464, (middle) SNR=23.1998, (right)
SNR=24.2500. First column: β = 2 (MSH1), 0.4 (NL/MSH1), second column: β = 2
(MSH1), 1 (NL/MSH1), α = 0.001, ε = 0.0002. Third column: β = 2.5 (MSH1),
0.65 (NL/MSH1), α = 0.000001, ε = 0.002.

small black boxes. However, in the other real boat image, there is no significant
difference between them visually and according to SNR (see Fig. 3). Fig. 3 also
justifies the result that the nonlocal regularizers preserve edges and details better
than the traditional local ones because we see less textures in the residuals
f − k ∗ u.
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Next, we recover a blurred image contaminated by impulse noise (salt-and-
pepper noise or random-valued impulse noise). First, we test all the nonlocal
regularizers and the corresponding local ones on the Lenna image Fig. 4 with
Gaussian blur kernel and salt-and-pepper noise with the noise density d = 0.3,
and then we test MSH1 and NL/MSH1 on the Einstein image Fig. 5 with
different blur kernels and both impulse noise models, salt-and-pepper noise and
random-valued impulse noise, with the same noise density d = 0.4. By using
a preprocessed image for the weight function, all the nonlocal regularizers out-
perform the traditional local ones by reducing the staircase effect and recover-
ing the details better. Comparing the nonlocal regularizers, both NL/TV and
NL/MSTV seem to give better results than NL/MSH1 in the sense of SNR,
but visually NL/MSH1 looks more natural by preserving texture or details bet-
ter especially with high noise density (see Fig. 4). Moreover, in the presence of
high density of noise, MSH1 suffers from restoring images especially blurred
with Gaussian kernel, while it works satisfactorily with the other blur kernels
such as motion blur. But, NL/MSH1 performs very well with Gaussian blur as
well as it produces better results with the other blur kernels. This can be seen
in Figures 4 and 5. In Fig. 4 with Gaussian blur and high noise density d = 0.3,
MSH1 suffers from some artifacts induced by noise, while MSTV and TV give
cleaner results. On the other hand, NL/MSH1 provides visually better result
than the other nonlocal ones by preserving the fine structures. Even though
NL/MSTV gives the highest SNR, the result still looks more like cartoon by
suppressing the texture parts especially in the hat part. So in this case, we visu-
ally prefer NL/MSH1. Based on the above results, in Fig. 5, we only compare
MSH1 and NL/MSH1 with the different blur kernels and both impulse noise
models with higher noise density d = 0.4. As expected, NL/MSH1 produces
better results than MSH1 in both blur cases; especially in the Gaussian blur
case, the results do not have any artifacts, unlike MSH1.

Finally we note that in the MS regularizers, the parameters α, β and ε were
selected manually to provide the best SNR results. The smoothness parameter β
increases with noise level while the other parameters α, ε are approximately fixed.
For the computational time, it takes about 5 minutes for constructing the weight
function of a 256 × 256 image with the 11 × 11 search window and 5 × 5 patch
in MATLAB on a dual core laptop with 2GHz processor and 2GB memory. The
minimization for the (local or nonlocal) MS regularizers takes around 60 seconds
for the computations of both u using an explicit scheme based on the gradient
descent method and v using a semi-implicit scheme with the total iterations
5× (100+5), while the (local or nonlocal) TV regularizer using gradient descent
with an explicit scheme takes less than 55 seconds with 500 iterations.
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