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Abstract. In this paper, we present a new non-parametric combined
segmentation and registration method. The problem is cast as an opti-
mization one, combining a matching criterion based on the active con-
tour without edges [4] for segmentation, and a nonlinear-elasticity-based
smoother on the displacement vector field. This modeling is twofold:
first, registration is jointly performed with segmentation since guided by
the segmentation process; it means that the algorithm produces both a
smooth mapping between the two shapes and the segmentation of the
object contained in the reference image. Secondly, the use of a nonlinear-
elasticity-type regularizer allows large deformations to occur, which
makes the model comparable in this point with the viscous fluid reg-
istration method [7]. Several applications are proposed to demonstrate
the potential of this method to both segmentation of one single image
and to registration between two images.

1 Introduction

Image registration and image segmentation are challenging issues that are en-
countered in a wide range of fields such as medical imaging (shape tracking,
comparison of images taken at different instants, data fusion from images that
have not necessarily been acquired with the same modality, comparison of data
to a common reference frame), pattern recognition or geophysics, etc.

We propose in this paper a segmentation model based on the active contour
model without edges [4], that is no longer solved in terms of level set functions.
This is now solved using registration techniques. Therefore, a displacement field
models the deformation of the initial curve into the final segmented boundary
via registration. Thus, the binary segmentation functional [4],

F (c1, c2, φ) =
∫

Ω

{
ν1|R − c1|2H(φ) + ν2|R − c2|2(1 − H(φ)) + μ|∇H(φ)|} dx

(R is the given image, φ is a level set function describing the unknown con-
tour, H is the Heaviside function), can be reformulated as a warping problem
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between the binary image defining the initial contour, and the (unknown) bi-
nary segmented image. Or the proposed model can also be used for registration
between two images: having a segmentation of one of the images defined via a
displacement field, this is used as initial guess in the “registration-segmentation”
model, to segment/register the second image. The main ingredients of our pro-
posed minimization model are thus the active contour model without edges [4],
and registration via a non-linear elasticity smoother, solved in a particular sim-
plified way. The unknown level set function φ is substituted by the unknown
transformation, with an appropriate regularization as a substitute for the length
term. Topology-preserving segmentation results can be obtained.

An extensive overview of registration techniques can be found in [24]. These
can be partitioned into two classes: parametric and non-parametric. In the non-
parametric methods (our framework) the problem is phrased as a functional min-
imization whose unknown is the displacement vector field u. Denoting by T the
template, by R the reference, the introduced functional combines a distance mea-
sure component D[R, T, u] and a smoother on the displacement vector field S =
S[u] to remove the ill-posed character of the problem. Usually, the distance mea-
sure is intensity-driven and is chosen to be the L2−norm of the difference between
the deformed template and the reference (suitable when the images have been ac-

quired through similar sensors), i.e. D[R, T, u] = 1
2

∫
Ω

(T (x + u) − R(x))2 dx,

but one could also use correlation-based or mutual information-based techniques
[24].

Several methods to regularize the displacement vector field have been inves-
tigated. One is the elastic registration introduced by Broit [3], in which the
objects to be registered are considered to be the observations of a same elastic
body before and after being subjected to a deformation. The smoother S = S[u]
is chosen to be the linearized elastic potential of the displacement vector field
u and its expression integrates the Lamé coefficients λ, μ which reflect material
properties. A drawback of this smoother is that it is not suitable for problems
involving large deformations. To circumvent this problem, Christensen et al. [7]
proposed a viscous fluid registration model in which objects are viewed as fluids
evolving in accordance with the fluid-dynamic Navier-Stokes equations. However,
this is a computationally expensive procedure.

In the diffusion registration model introduced by Fischer and Modersitzki [11],
the smoother is based on the semi-norm of H1(Ω, IRn) of u = (u1, · · · , un)T ,
Ω being an open bounded subset of IRn. Regularizing properties motivate this
choice (it minimizes oscillations of all components of u) rather than physical
ones but here again only small deformations can be expected. In the ”curvature”-
based registration model introduced by Fischer and Modersitzki [12], [13], the
Ḣ2 (biharmonic) regularization is explored. Affine linear transformations belong
to the kernel of the regularizer S[u], which is not the case in elastic, viscous
fluid or diffusion registration. But here again, transformations are restricted to
small deformations. To circumvent this drawback, we propose in this paper a
nonlinear elasticity-based smoother that allows larger deformations.
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Many improvements or alternatives of these non-parametric methods have
been proposed. These include [14], [15], [37], [21], [20], [19]. By comparison with
some of these methods, the only input required in our method is a fixed level set
function representing the template image, that is, partitioning the image into two
regions. Also, we jointly treat segmentation and registration: the distance mea-
sure is devised using the segmentation criterion [4], while registration is jointly
performed, guided by the segmentation process. Our method applies to a par-
ticular class of images, since the binary criterion is being used. Before depicting
our approach, we would like to mention previous work for joint segmentation
and registration while stressing the main differences with our model.

In [38], Yezzi et al. also suggest to jointly treat segmentation and registration.
The authors couple segmentation and registration as follows: denoting R : Ω ⊂
IR2 → IR and T = R̂ : Ω̂ ⊂ IR2 → IR the two images containing a common
object to be registered and segmented, find a closed curve C ⊂ Ω and a closed
curve Ĉ ⊂ Ω̂ related by Ĉ = g(C) where g : IR2 → IR2 is an element of a
finite dimensional group G (for instance, the group of rigid motions) such that
C and Ĉ correctly delineate the object contained respectively in R and the one
contained in R̂. Consequently, there are two unknowns, the closed curve C ⊂ Ω
and the mapping g. The authors exploit region-based active contour models [4]
and minimize the energy:

E(g, C) = E1(C) + E2(g(C))

=
∫

Cin

|R − c1|2dx +
∫

Cout

|R − c2|2dx +
∫

Ĉin

|R̂ − ĉ1|2dx +
∫

Ĉout

|R̂ − ĉ2|2dx

with Cin and Cout the regions inside and outside C, c1 and c2 the mean values
of R on Cin and Cout, and with Ĉin and Ĉout the regions inside and outside
Ĉ, ĉ1 and ĉ2 the mean values of R̂ on Ĉin and Ĉout. The main differences
with our model are: the contours C and Ĉ are jointly deformed here through a
combination of segmentation and registration methods while in our model, we
assume that the object in the template image has already been detected (we
could have considered a problem with two unknowns as well). It means that the
energy-minimization problem is only written in terms of the unknown contour Ĉ.
Segmentation is performed using a registration approach as in [38]. The model
is cast in the level set setting, which allows a straightforward modeling of the
evolving curve. Contrary to [38], the class of admissible deformations (rigid,
etc...) is not an input in our model. Their model, first exposed in the context of
rigid deformations, has then been extended to non-rigid motions [35], [34], [29].

We would also like to mention the interesting work by Lord et al. [22] which
uses a matching criterion based on metric structure comparison. The authors
propose a unified method that simultaneously treats segmentation and registra-
tion by introducing two unknowns in the process: the deformation map and the
segmenting curve. The segmentation process is guided by the registration map.
The matching criterion, unlike classical registration methods, rests on the mini-
mization of deviation from isometry. The matching criterion introduced is based
on the metric structure comparison of the surfaces, more precisely on their first
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fundamental form, and on a homogeneity constraint as in [4]. Thus contrary to
our model in which the expected curve (implicitly represented as the zero level
set of a Lipschitz function) delineates two regions with homogeneous intensity,
their criterion is still based on metric structure comparisons to disconnect normal
regions from abnormal ones.

We would also like to mention the related work by Vemuri et al. [31], [32].
The authors propose a coupled PDE model to perform both segmentation and
registration. In the first PDE, the level sets of the source image are evolved
along their normals with a speed defined as the difference between the target
and the evolving source image. The second PDE allows to explicitly retrieve
the displacement vector field. In particular, in the work of Vemuri-Chen [30] for
joint registration and segmentation, the piecewise-smooth level set segmentation
model from [33] is combined with prior shape information through global align-
ment. As will be seen below, our model is different from the one in [30]. We also
refer the reader to [5] in which a geodesic-active-contour-based model including
a shape prior is presented and [6] in which a shape prior is incorporated this
time in the Mumford-Shah model.

Related work is presented in [10], on an atlas-based segmentation of medi-
cal images locally constrained by level sets. We wish to refer to a segmentation
method, different from ours, that also uses nonlinear elasticity to define the
deformation of the evolving contour or surface in Rouchdy et al. [27]. The seg-
mentation criterion is based on the gradient vector flow [36], and a deformation
field is computed via non-linear elasticity using the finite element method. For
completeness, we also refer the reader to [2], [23] for a variational registration
method for large deformations, to [26], for a much related work which also uses
nonlinear elasticity regularization but which is implemented using the finite ele-
ment method, and to [9], a related work that uses nonlinear elasticity principles
but different from our proposed approach. More details of the proposed method
are presented in [18].

2 Description of the Proposed Model

As mentioned in Sect. 1, the scope of the proposed method is twofold:
– devise a model in which segmentation and registration are jointly performed.
– large and smooth deformations must be authorized, while keeping the defor-

mation map topology-preserving.

We see in the sequel how these criteria are fulfilled.

Distance Measure Criterion. Let Ω be a bounded open subset of IRn. For the
purpose of illustration, we consider the case n = 2. Let us denote by R : Ω̄ → IR
the “reference” image to be segmented (later we will discuss how the proposed
method can be used for registration between a template image T : Ω̄ → IR and
the reference image R; initially, our method is defined as a segmentation method
based on [4]). Let Φ0 be a given Lipschitz level set function. Denoting by C the
zero level set of Φ0 and w ⊂ Ω the open set it delineates, Φ0 is such that:
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C={x ∈ Ω |Φ0(x) = 0} , w={x ∈ Ω |Φ0(x) > 0} , Ω \ w̄ = {x ∈ Ω |Φ0(x) < 0} .

The deformation of the evolving curve is made in order to satisfy a segmentation
criterion. Indeed, the distance measure we introduce is related to the fitting
term of the active contours without edges model [4]. In this way, registration
and segmentation are correlated and we expect, at the end of the process, to
obtain the segmentation of the reference image as well as a smooth deformation
map. It results in a region-based intensity approach and no longer in a pointwise
process as usually done. The idea is to find a smooth displacement vector field
u = (u1, u2) : Ω → IR2, x �→ (u1(x), u2(x)) ∈ Ω, for each x ∈ Ω, such that
the zero level line of Φ defined by Φ(x) = Φ0(x + u(x)) fits the boundary of
the object to be warped in the given “reference” image. Denoting by H the one-
dimensional Heaviside function, by ν1, ν2 > 0 two fixed parameters and c1 and c2

being two unknown constants depending on Φ0, R and u, the distance measure
functional Fd (the segmentation criterion) is defined by:

Fd(c1, c2, u) = ν1

∫
Ω

|R(x) − c1|2H (Φ0(x + u(x))) dx

+ ν2

∫
Ω

|R(x) − c2|2 (1 − H (Φ0(x + u(x)))) dx. (1)

We need to add a regularization term of the form Freg(u) to (1), which is a
substitute for the length term of the evolving curve in [4], and therefore the
unknown Φ(x) from [4] is substituted by Φ0(x+u(x)), with Φ0 fixed now. Thus,
we obtain a binary segmentation method that can also be used for registration.

Introduction of a Nonlinear Elasticity-Based Regularizer. A regulariz-
ing term Freg is now introduced to ensure the smoothness of the displacement
vector field u. To allow large displacements, we introduce a nonlinear-elasticity-
based smoother. We propose to view the deformation of the initial contour into the
final segmented contour as the deformation undergone by St. Venant-Kirchhoff
materials. These materials are homogeneous, isotropic, hyperelastic and the ax-
iom of frame indifference is satisfied (see [8] for further details). Let us denote by ε
the Green-St. Venant strain tensor defined by: ε = 1

2 (C − I) with C = ∇ϕT∇ϕ,
ϕ being the deformation such that ϕ = Id+u,∇ϕ being the Jacobian matrix and
I denoting the identity matrix. We have equivalently ε = ε(u) = 1

2 (∇uT +∇u+
∇uT∇u). The strain tensor is a measure of the deviation between a given defor-
mation and a rigid deformation for which C = I. As stressed by Ciarlet ( [8]), St.
Venant-Kirchhoff materials are the simplest ones among nonlinear models (large
strains are also possible when the stress is small, however a linear relation implies
that the stress is small if and only if the strain is small). The stored energy of
St. Venant-Kirchhoff materials [8] is given by W (ε) = λ

2 (tr ε)2 + μtr ε2. Thus,
the nonlinear elasticity regularizer that will be coupled with the distance measure
functional Fd is defined by:

Freg(u) =
∫

Ω

W (ε(u)) dx =
∫

Ω

{
λ

2
(tr ε(u))2 + μtr ε2(u)

}
dx . (2)
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Although this functional does not satisfy known theoretical assumptions (the
stored energy function is not polyconvex; it is also not rank-1 convex and conse-
quently not quasiconvex, which raises a drawback of theoretical nature since the
introduced functional is not lower semi-continuous on W 1,4) to insure existence
of minimizers, we can expect to get, in practice, better results than those ob-
tained with linearized models, as will be demonstrated next. The computation
of the Euler-Lagrange equation satisfied by u is cumbersome. Following the idea
of the more theoretical work [25], we propose to circumvent this issue by intro-
ducing a second unknown, a matrix auxiliary variable V , which approximates
the Jacobian matrix of u. The nonlinear elasticity regularizer is thus applied to
V and no longer to ∇u, that is, the nonlinearity is no longer in the derivatives
of the unknown u. Also, as the matrix variable V is introduced to mimic the
Jacobian matrix of u, an additional term based on the Frobenius norm denoted
by || · ||F of ∇u − V is incorporated in the modeling. More precisely, letting
V̂ = V T +V +V T V

2 and α > 0 a tuning parameter, we redefine the smoothing
functional Freg = Freg(u, V ) by:

Freg(u, V ) =
∫

Ω

W (V̂ ) dx +
α

2

∫
Ω

||∇u − V ||2F dx . (3)

In the limit, as α → +∞, we obtain ∇u � V in the L2-topology.

Total Energy Functional. The total energy Etotal considered in the remainder
of this work is given by:

Etotal(c1, c2, u, V ) = Fd(c1, c2, u) + Freg(u, V ). (4)

Evolution Problem. We give the form of the associated Euler-Lagrange equa-
tions in the two-dimensional case. In the calculations, the Heaviside function is
replaced by a smooth version denoted by Hε and H ′

ε = δε, regularization of the
Dirac measure. Fixing u and V and minimizing Etotal(c1, c2, u, V ) with respect
to c1 and c2 yields, as in [4]:

c1 =

∫
Ω

R(x)H (Φ0 (x + u(x))) dx
∫

Ω

H (Φ0 (x + u(x))) dx

, c2 =

∫
Ω

R(x) (1 − H (Φ0 (x + u(x)))) dx
∫

Ω

(1 − H (Φ0 (x + u(x)))) dx

.

Computing the first variation of functional Fd(c1, c2, u) in (1) with respect to u
gives the following gradient:

∂uFd(c1, c2, u)=
(
ν1(R − c1)2−ν2(R − c2)2

)
δε (Φ0 (x + u(x)))∇Φ0 (x+u(x)) .

Also, computing the first variation of functional Freg(u, V ) in (3) with respect
to u gives only linear differential equations in each ui:

∂uk
Freg(u, V ) = −α

(
	uk −

(
∂vk1

∂x1
+

∂vk2

∂x2

))
, k = 1, 2. (5)
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To finish, setting V = (vij)1≤i,j≤2 and letting

c01 = v11 + v22 +
1
2

(
v2
11 + v2

12 + v2
21 + v2

22

)
, c02 = 2v11 + v2

11 + v2
21

c03 = 2v22 + v2
12 + v2

22, c04 = v12 + v21 + v11v12 + v21v22,

we obtain:

∂v11Freg(u, V ) = α
(
v11 − ∂u1

∂x1

)
+ (λc01 + μc02)(1 + v11) + μc04v12.

∂v12Freg(u, V ) = α
(
v12 − ∂u1

∂x2

)
+ (λc01 + μc03)v12 + μc04(1 + v11).

∂v21Freg(u, V ) = α
(
v21 − ∂u2

∂x1

)
+ (λc01 + μc02)v21 + μc04(1 + v22).

∂v22Freg(u, V ) = α
(
v22 − ∂u2

∂x2

)
+ (λc01 + μc03)(1 + v22) + μc04v21. (6)

We solve the Euler-Lagrange equations in u and V using gradient descent, pa-
rameterizing the descent direction by an artificial time t ≥ 0. Systems of 4 and
2 equations are obtained (solved by semi-implicit finite difference schemes),

∂V

∂t
= −∂V Freg(u, V ),

∂u

∂t
= −∂uFd(c1, c2, u) − ∂uFreg(u, V ), (7)

equipped with the boundary conditions u = 0IR2 on ∂Ω and with the initial
conditions u(x, 0) = 0IR2 and V = 0M2(IR).

In most cases, no regridding is necessary. Nevertheless, in the algorithm, we
have used a regridding technique quite similar to the one proposed by Chris-
tensen et al. [7]. The Jacobian det(∇(Id + u)) is monitored and if it drops
below a defined threshold in some parts of the image, the process is reinitialized.
The only change is that instead of doing the reinitialization step with the last
deformed template as done in [7], we use the last deformed level set function
Φ0 (· + u(·)). The overall displacement u is reconstructed similarly to [7].

3 Numerical Experiments

We conclude the paper by presenting several results on both synthetic and real
images in 2 dimensions. In most experiments, ν1 = ν2 = 1 but when dealing with
complex topologies involving long and thin concavities, these parameters have
been increased up to 2.5. The C∞ regularization of the Heaviside function [4] is
Hε(z) = 1

2

(
1 + 2

π arctan z
ε

)
.

Our first experimental test in Fig. 1 is an academic one and is similar to those
performed by Modersitzki in [24] (we refer to pages 114–115, 129–130, 150–153,
168–170 for comparisons using linear elasticity, diffusion, curvature, or the vis-
cous fluid method), with the goal to illustrate that the model easily handles large
displacements while segmenting the reference object. The problem is to warp a
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Fig. 1. Top: left, the reference image; right the template. Bottom: left, the boundary
of the disk (zero level set of Φ0) superimposed on the reference image; middle, the seg-
mentation of the letter C; right, deformed grid using nonlinear elasticity regularization.

Fig. 2. Left, boundary of the ellipse (zero level set of Φ0) superimposed on the reference
image; middle, the topology-preserving segmentation of the two disks; right, deformed
grid using nonlinear elasticity regularization

black disk to the letter C both defined on the same image domain. The given
data are the template and reference images as well as the curve delineating the
disk boundary. We wish to demonstrate that our method qualitatively performs
in a way similar to the fluid model without requiring the expensive Navier-Stokes
solver employed for its numerical discretization, and provides two results: the seg-
mentation of the reference image as well as a smooth displacement vector field
u. The implementation is simple, based on finite difference schemes, and allows
to remove the nonlinearity in the derivatives of the unknown u. The method
allows large deformations unlike the linear elasticity model, diffusion model,
curvature-based model for which the registration cannot be accomplished, the
images differing too much (see pages 114–115, 150–153, 168–171 from [24]). In
this example, three regridding steps were necessary: the transformation was con-
sidered as admissible if the Jacobian exceeded 0.01. Note that regridding steps
were also necessary with the fluid registration model.
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Fig. 3. Topology-preserving segmentation of three complex slices of the brain. Left,
the boundary of the disk (zero level set of Φ0) superimposed on the reference image;
middle, the segmentation of the slice of the brain; right, deformed grid using nonlinear
elasticity regularization.

The second example in Fig. 2 illustrates how the method can be used in the
case of topology-preserving segmentation ([16], [1], [28], [17] on this topic). This
synthetic reference image represents two disks (similar to tests performed in prior
related works [16], [28], [17]). The template image, defined on the same image
domain is made of a black ellipse such that, when superimposed on the reference
image, its boundary encloses the two disks. We aim at segmenting these two
disks while maintaining the same topology throughout the process (one path-
connected component) and at obtaining a smooth displacement vector field u.
In this example, two regridding steps were necessary: the transformation was
considered as admissible if the Jacobian exceeded 0.01.

The method has been tested on complex slices of brain data. The goal is
to register a disk to the outer boundary of the brain with topology preser-
vation. In Fig. 3, the template image, defined on the same image domain, is
made of a disk (shown superimposed on the reference). Two regridding steps
were necessary for the first row, and 3-4 regridding steps for the 2nd and 3rd
rows: the transformation was considered as admissible if the Jacobian exceeded
0.01.



A Combined Segmentation and Registration Framework 609

Fig. 4. Top: left, reference R; right, template T (mouse atlas and gene data). Bot-
tom, left to right: contour obtained by the proposed algorithm segmenting template
T (starting with Φ0 defining a disk), superimposed over the reference R; segmented
reference, using as Φ0 the output contour detected at the previous step; final deformed
grid using nonlinear elasticity smoother.

Fig. 5. Experiment exactly as in Fig. 4

Another medical application, as shown in Fig. 4 and Fig. 5, is proposed for
mapping mouse gene data to an atlas. First, the proposed method is applied to
the gene data, using Φ0 defining a disk, to segment it and extract a contour;
then the method is applied again using as Φ0 the new contour, to segment the
atlas data. In the process, we obtain a smooth deformation between the gene
and the atlas data. No regridding step was necessary for Fig. 4.
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