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Abstract. In this paper, we propose a new model for active contours to
detect objects in a given image, based on techniques of curve evolution,
Mumford-Shah functional for segmentation and level sets. Our model
can detect objects whose boundaries are not necessarily defined by gra-
dient. The model is a combination between more classical active contour
models using mean curvature motion techniques, and the Mumford-Shah
model for segmentation. We minimize an energy which can be seen as a
particular case of the so-called minimal partition problem. In the level set
formulation, the problem becomes a “mean-curvature flow”-like evolving
the active contour, which will stop on the desired boundary. However,
the stopping term does not depend on the gradient of the image, as in
the classical active contour models, but is instead related to a particular
segmentation of the image. Finally, we will present various experimental
results and in particular some examples for which the classical snakes
methods based on the gradient are not applicable.

1 Introduction

The basic idea in active contour models or snakes is to evolve a curve, subject
to constraints from a given image u0, in order to detect objects in that image.
For instance, starting with a curve around the object to be detected, the curve
moves toward its interior normal under some constraints from the image, and
has to stop on the boundary of the object.

Let Ω be a bounded and open subset of IR2, with ∂Ω its boundary. Let u0 be
a given image, as a bounded function defined on Ω and with real values. Usually,
Ω is a rectangle in the plane and u0 takes values between 0 and 255. Denote by
C(s) : [0, 1] → IR2 a piecewise C1 parameterized curve.

In all the classical snakes and active contour models (see for instance [7], [3],
[9], [4]), an edge detector is used to stop the evolving curve on the boundaries of
the desired object. Usually, this is a positive and regular edge-function g(|∇u0|),
decreasing such that limt→∞ g(t) = 0. For instance,

g(|∇u0|) =
1

1 + |∇Gσ ∗ u0|2 ,

where Gσ ∗ u0 is the convolution of the image u0 with the Gaussian Gσ(x, y) =
σ−1/2 exp(−|x2 + y2|/4σ) (a smoother version of u0). The function g(|∇u0|) will
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be strictly positive in homogeneous regions, and near zero on the edges. The
evolving curve moves by a variant of the mean curvature motion [14] with the
edge-function g(|∇u0|) as an extra factor in the velocity.

All these classical snakes or active contour models rely on this edge-function
g, depending on the gradient |∇u0| of the image, to stop the curve evolution.
Therefore, these models can detect only objects with edges defined by gradient.
Also, in practice, the discrete gradients are bounded and then the stopping func-
tion g is never zero on the edges, and the curve may pass through the boundary.
On the other hand, if the image u0 is noisy, then the isotropic smoothing Gaus-
sian has to be strong, which will smooth the edges too. In this paper, we propose
a different active contour model, without a stopping edge-function, i.e. a model
which is not based on the gradient of the image u0 for the stopping process.
The stopping term is based on Mumford-Shah segmentation techniques [13]. In
this way, we obtain a model which can detect contours both with or without
gradient, for instance objects with very smooth boundaries or even with discon-
tinuous boundaries. For a discussion on different types of contours, we refer the
reader to [6].

The outline of the paper is as follows. In the next section we introduce our
model as an energy minimization and discuss the relationship with the Mumford-
Shah functional for segmentation. In Section 3, we formulate the model in terms
of level set functions, compute the associated Euler-Lagrange equations, and
discuss the algorithm. We end the paper validating our model by numerical
results. We show in particular how we can detect contours without gradient or
cognitive contours [6], for which the classical models are not applicable, and also
how we can automatically detect interior contours.

Before describing our proposed model, we would like to refer the reader to
the works [10] and [11] for shape recovery using level sets and edge-function, and
to more recent and related works by [19], [17], and [8].

Finally, we would also like to mention [21] and [12] on shape reconstruction
from unorganized points, and to the recent works [15] and [16], where a proba-
bility based geodesic active region model combined with classical gradient based
active contour techniques is proposed.

2 Description of the model

Let C be the evolving curve. We denote by c1 and c2 two constants, representing
the averages of u0 “inside” and “outside” the curve C.

Our model is the minimization of an energy based-segmentation. Let us first
explain the basic idea of the model in a simple case. Assume that the image
u0 is formed by two regions of approximatively piecewise-constant intensities,
of distinct values ui

0 and uo
0. Assume further that the object to be detected is

represented by the region with the value ui
0 and let denote his boundary by C.

Then we have u0 ≈ ui
0 inside the object (inside C) and u0 ≈ uo

0 outside the
object (outside C). Now let us consider the following “fitting energy”, formed by
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two terms:

F1(C) + F2(C) =
∫

inside(C)
|u0 − c1|2dxdy +

∫
outside(C)

|u0 − c2|2dxdy,

where C is any other variable curve. We say that the boundary of the object C
is the minimizer of the fitting energy:

inf
C

{
F1(C) + F2(C)

}
≈ 0 ≈ F1(C) + F2(C).

This can be seen easily. For instance, if the curve C is outside the object, then
F1(C) > 0 and F2(C) ≈ 0. If the curve C is inside the object, then F1(C) ≈ 0
but F2(C) > 0. Finally, the fitting energy will be minimized if the C = C, i.e. if
the curve C is on the boundary of the object. These remarks are illustrated in
Fig. 1.

F1(C) > 0 F1(C) > 0 F1(C) ≈ 0 F1(C) ≈ 0
F2(C) ≈ 0 F2(C) > 0 F2(C) > 0 F2(C) ≈ 0

Fig. 1. Consider all possible cases in the position of the curve. The “fitting energy” is
minimized only for the case when the curve is on the boundary of the object.

Therefore, in our active contour model we will minimize this fitting energy
and we can add some regularizing terms, like the length of C and/or the area
inside C. We introduce the energy F (C, c1, c2) by:

F (C, c1, c2) = µ · length(C) + ν · area(insideC)

+ λ1

∫
inside(C)

|u0 − c1|2dxdy + λ2

∫
outside(C)

|u0 − c2|2dxdy,

where c1 and c2 are constant unknowns, and µ > 0, ν ≥ 0, λ1, λ2 > 0 are fixed
parameters.

In almost all our computations, we take ν = 0 and λ1 = λ2. Of-course that
one of these parameters can be “eliminated”, by fixing it to be 1. In almost all
our computations, we take ν = 0 and λ1 = λ2. The area term in the energy can
be used for instance when we may need to force the curve to move only inside.

In order to balance the terms and their dimensions in the energy, if d is the
unit distance in theΩ−plane, then µ has to be measured in units of (size of u0)2·
d, and ν has to be measured in units of (size of u0)2.
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Finally, we consider the minimization problem:

inf
C,c1,c2

F (C, c1, c2). (1)

2.1 Relation with the Mumford-Shah functional for
segmentation

The Mumford-Shah functional for segmentation is [13]:

FMS(u,C) =
∫

Ω\C

(α|∇u|2 + β|u− u0|2)dxdy + length(C), (2)

where α, β are positive parameters. The solution image u obtained by minimiz-
ing this functional is formed by smooth regions Ri and with sharp boundaries,
denoted here by C.

A reduced form of this problem, as it was pointed out by D. Mumford and
J. Shah in [13], is simply the restriction of FMS to piecewise constant functions
u, i.e. u = ci with ci a constant, on each connected component Ri of Ω \ C.
Therefore, the constants ci are in fact the averages of u0 on each Ri. The reduced
case is called the minimal partition problem.

Our active contour model is a particular case of the minimal partition prob-
lem, in which we look for the best approximation u of u0, as a function taking
only two values, namely:

u =
{

average(u0) inside C
average(u0) outside C,

and with one edge C, represented by the snake or the active contour.
This particular case of the minimal partition problem can be formulated and

solved using the level set method [14]. This is presented in the next section.

2.2 The level set formulation of the model

In the level set method [14], an evolving curve C is represented by the zero level
set of a Lipschitz continuous function φ : Ω → IR. So, C = {(x, y) ∈ Ω : φ(x, y) =
0}, and we choose φ to be positive inside C and negative outside C. For the level
set formulation of our variational active contour model we essentially follow [20].
Therefore, we replace the unknown variable C by the unknown variable φ and
the new energy, still denoted by F (φ, c1, c2), becomes:

F (φ, c1, c2) = µ · length{φ = 0} + ν · area{φ ≥ 0}
+ λ1

∫
φ≥0

|u0 − c1|2dxdy + λ2

∫
φ<0

|u0 − c2|2dxdy.

Using the Heaviside function H defined by

H(x) =
{

1, if x ≥ 0
0, if x < 0



An Active Contour Model without Edges 145

and the one-dimensional Dirac measure δ concentrated at 0 and defined by

δ(x) =
d

dx
H(x) (in the sense of distributions),

we express the terms in the energy F in the following way:{
length{φ = 0} =

∫
Ω

|∇H(φ)| =
∫

Ω
δ(φ)|∇φ|,

area{φ ≥ 0} =
∫

Ω
H(φ)dxdy,

and {∫
φ≥0 |u0 − c1|2dxdy =

∫
Ω

|u0 − c1|2H(φ)dxdy∫
φ<0 |u0 − c2|2dxdy =

∫
Ω

|u0 − c2|2(1 −H(φ))dxdy.

Then the energy F (φ, c1, c2) can be written as:

F (φ, c1, c2) = µ

∫
Ω

δ(φ)|∇φ| + ν

∫
Ω

H(φ)dxdy

+ λ1

∫
Ω

|u0 − c1|2H(φ)dxdy + λ2

∫
Ω

|u0 − c2|2(1 −H(φ))dxdy.

Keeping φ fixed and minimizing the energy F (φ, c1, c2) with respect to the
constants c1 and c2, it is easy to express these constants function of φ by:

c1(φ) =

∫
Ω
u0H(φ)dxdy∫

Ω
H(φ(x, y))dxdy

(the average of u0 in {φ ≥ 0}), (3)

c2(φ) =

∫
Ω
u0(1 −H(φ))dxdy∫

Ω
(1 −H(φ(x, y)))dxdy

(the average of u0 in {φ < 0}). (4)

Keeping c1 and c2 fixed, and formally minimizing the energy with respect
to φ, we obtain the Euler-Lagrange equation for φ (parameterizing the descent
direction by an artificial time):


∂φ
∂t = δ(φ)

[
µdiv

( ∇φ
|∇φ|

)
− ν − λ1(u0 − c1)2 + λ2(u0 − c2)2

]
in Ω,

δ(φ)
|∇φ|

∂φ
∂n

= 0 on ∂Ω.

In practice, we have to consider slightly regularized versions of the functions
H and δ, denoted here by Hε and δε, such that δε(x) = H ′

ε(x).
A first possible regularization by C2 and respectively C1 functions, as pro-

posed for instance in [20], is:

H1,ε(x) =




1 if x > ε
0 if x < −ε
1
2

[
1 + x

ε
+ 1

π
sin

(
πx
ε

)]
if |x| ≤ ε
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and

δ1,ε(x) = H ′
1,ε(x) =

{
0 if |x| > ε
1
2ε

[
1 + cos

(
πx
ε

)]
, if |x| ≤ ε.

In our calculations, we use instead the following C∞ regularized versions of
H and δ, defined by:

H2,ε(x) =
1
2
(1 +

2
π

arctan(
x

ε
)), δ2,ε(x) = H ′

2,ε(x) =
1
π

· ε

ε2 + x2 .

As ε → 0, both approximations converge to H and δ. The first approxima-
tions H1,ε and δ1,ε are C2 and respectively C1 functions, with δ1,ε with small
compact support, arround the zero-level set. The second approximations H2,ε

and δ2,ε are both C∞ functions, with δ2,ε different of zero everywhere.
We want to formally explain here why we need to introduce the second ap-

proximations, instead of the first approximations, which have been used in pre-
vious papers (for instance in [20]). Because our energy is non-convex (allowing
therefore many local minima), and because δ1,ε has a very small compact sup-
port, the interval [−ε, ε], the iterative algorithm may depend on the initial curve,
and will not necessarily compute a global minimizer. In some of our tests using
the first approximation, we obtained only a local minimizer of the energy. Using
the second approximations, the algorithm has the tendency to compute a global
minimizer. One of the reasons is that, the Euler-Lagrange equation acts only
locally, on a few level curves arround φ = 0 using the first approximation, while
by the second approximation, the equation acts on all level curves, of course
stronger on the zero level curve, but not only locally. In this way, in practice, we
can obtain a global minimizer, independently of the position of the initial curve.
Moreover, interior contours are automatically detected. We could also extend
the motion to all level sets of φ replacing δ(φ) in the equation by |∇φ| (this
method is for instance used in [20]).

To discretize the equation in φ, we use a finite differences implicit scheme
(we refer the reader to [1], for details).

We also need at each step to reinitialize φ to be the signed distance function to
its zero-level curve. This procedure is standard (see [18] and [20]), and prevences
the level set function to become too flat, or it can be seen as a L∞ stability for
φ and a rescaling.

This reinitialization procedure is made by the following evolution equation
[18]: {

ψτ = sign(φ(t))(1 − |∇ψ|)
ψ(0, ·) = φ(t, ·), (5)

where φ(t, ·) is our solution φ at time t. Then the new φ(t, ·) will be ψ, such that
ψ is obtained at the steady state of (5).

3 Experimental results

We present here numerical results using our model. For the examples in Fig-
ures 2-5, we show the image and the evolving contour (top), together with the
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piecewise-constant approximations given by the averages c1 and c2 (bottom).
In all cases, we start with a single initial closed curve. We choose the level set
function φ to be positive “inside” the initial curve, and negative “outside” the
initial curve, but in our model this choice is not important. We could consider
the opposite signs, and the curve would still be attracted by the object. Also,
the position of the initial curve is not important.

In Fig. 2 we show how our model can detect contours without gradient or
cognitive contours (see [6]) and an interior contour automatically, starting with
only one initial curve. This is obtained using our second approximations for H
and δ. In Fig. 3 we consider a very noisy image. Again the interior contour of
the torus is automatically detected.

In Fig. 4 we validate our model on a very different problem: to detect features
in spatial point processes in the presence of substantial cluster. One example is
the detection of minefields using reconnaissance aircraft images that identify
many objects that are not mines. These problems are for instance solved using
statistical methods (see for instance [5] and [2]). By this application, we show
again that our model can be used to detect objects or features with contours
without gradient. This is not possible using classical snakes or active contours
based on the gradient.

We end the paper with results on two real images (Fig. 5 and 6.), illustrating
all the properties of our model: detecting smooth boundaries, scaling role of the
length term in the size of the detected objects, and automatic change of topology.

Fig. 2. Detection of different objects in a synthetic image, with various convexities and
with an interior contour, which is automatically detected. Here we illustrate the fact
that our model can detect edges without gradient. Top: u0 and the contour. Bottom:
the piece-wise constant approximation of u0.
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Fig. 3. Results for a very noisy image, with the initial curve not surrounding the
objects. Top: u0 and the contour. Bottom: the piece-wise constant approximation of
u0.

Fig. 4. Detection of a simulated minefield, with contour without gradient.
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Fig. 5. Detection of a galaxy with very smooth boundaries.

Fig. 6. Detection of the contours of a galaxy.

4 Concluding remarks

In this paper we proposed an active contour model based on Mumford-Shah segmen-
tation techniques and level set methods. Our model is not based on an edge-function,
like in the classical active contour models, to stop the evolving curve on the desired
boundary. We do not need to smooth the initial image, even if it is very noisy and in
this way, the locations of boundaries are very well detected. Also, we can detect objects
whose boundaries are not necessarily defined by gradient or with very smooth bound-
aries. The model automatically detects interior contours, starting with only one initial
curve. The initial curve does not necessarily start around the objects to be detected.
Finally, we validated our model by various numerical results.
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