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ABSTRACT

In this work we wish to recover an unknown image from a blurry version. We solve this inverse problem by
energy minimization and regularization. We seek a solution of the form u + v, where u is a function of bounded
variation (cartoon component), while v is an oscillatory component (texture), modeled by a Sobolev function
with negative degree of differentiability. Experimental results show that this cartoon 4 texture model better
recovers textured details in natural images, by comparison with the more standard models where the unknown

is restricted only to the space of functions of bounded variation.
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1. INTRODUCTION

We consider in this paper one of the classical problems in image analysis: the recovery of an unknown image
from its blurry version, in the presence of a known blurring operator. Suppose that we are given a blurry (and
possibly noisy) gray-scale image f :  — R, where 2 is either R” or an open and bounded subset of R™, and we
wish to recover a clean image f from f. Let K be the blurring operator. The standard linear degradation model
that relates f to f is

f=K f + noise.

By our proposed method, we do not only recover a sharp image f, but we also decompose f into the cartoon and
the texture parts, which will be denoted by u and v = Ag, respectively (here A is the Laplacian operator acting
on the function g). We assume that K is a linear and continuous smoothing operator, for instance a convolution
with the Gaussian kernel or with the average kernel.

The standard method for solving such inverse ill-posed problems is inspired from Tikhonov regularization®®

,27 28 which can be written as the general minimization problem
inf { [ 17 = KfPds 4 [ B(faz}, (1)
f Q Q

where p is chosen function of the noise type (for instance, p = 2 for Gaussian noise, p = 1 for salt-and-pepper
noise, etc), and R(f) = r(|V f]) is a regularizing potential, that usually depends on partial derivatives of f, and
with at most linear growth at infinity (to recover sharp edges).

We refer in this context to an extensive work of minimization models of the form (1), with theoretical results,
ical algorith d : 1 lts:12 24 lizati £23) 4 20 1 7 14 6 17 18 19 10 5

numerical algorithms, and experimental results:*= | (as a generalization o ) N

among others. Also, a recent work on image deblurring using regularized locally-adaptive kernel regression is?° .

More recently, model (1) has been generalized to cases of the form

e {117 = 517+ 3 | R(f)ae}. )
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where || - || denotes the norm in a Banach space of generalized functions (of negative degree of differentiability),
that better model oscillatory functions (such as noise or texture). This is inspired by proposals of Y. Meyer?°
and of D. Mumford - B. Gidas?! .

Using such norms in dual spaces of distributions, for image deblurring, the work?? computes f € BV (), and
f—Kfe H1(Q), and this is generalized in'® ,16 , to the case f € BV(Q) and f — Kf € H 5(52), defined in
terms of the Fourier transform. However, in these works, as in those mentioned above, the recovered image f is
still represented by a function of bounded variation, that penalizes too much oscillatory details, such as texture.
It has been shown in'® ,2 and® , that natural images with finer details are not well represented by functions of
bounded variation.

We propose in this paper a variational deblurring model that aims to recover the unknown image f as the sum
of two components, u + v, where u is a function of bounded variation, representing the cartoon component, and
v is a function in a Sobolev space of negative degree of differentiability (in W7, more general than the choice
H~* considered in'® ,16). The space W ~—*P has been satisfactorily proposed and used in J. Garnett, P. Jones,
T. Le and the second author!! to model oscillatory components in natural images, in the case K = identity.
We will make this choice to model the oscillatory component v of the recovered image, therefore the proposed
deblurring model is a continuation of the work!! . We thus recall here the main ingredient for our model, the
image decomposition model f ~ u + v, previously proposed in'!

{ (iunf) If = (u+ )72 (0 + 2ulul By o) + ||U||W75,p}.

A related prior work is by I. Daubechies and G. Teschke® , where the authors also recover an image from its
blurry version by the following “cartoon + texture” minimization model

{ it 1 = K+ ) o) + 2luly, ) + lollisc0

in the Besov-wavelets framework. Very satisfactory results are reported in® , where the recovered sharp image is
given by f =u +v.

Finally, we also recall the L. Rudin - S. Osher model?* for image deblurring using the total variation (as
an extension of the TV denoising model proposed by L. Rudin - S. Osher -E. Fatemi?®): given a degradation
model of the form f = Ku + noise, the authors?* have proposed to recover a sharp image u, in the presence of
a blurring operator K and noise, by the minimization

. 2
{ ue}sr%/f(n) AlS = Kl + lulsvie }

where in practice, the total variation |u|gy (o) is approximated by |u|gy () = [, |Duldz.

We will show numerical comparisons between our proposed model and the above Rudin-Osher model, that
we solve using the Euler-Lagrange equation and gradient descent:

Y —0on (0,00) x Of.

=2\K*(f — Ku)+d1v(|g |>in(0,oo)><Q, %

u(0.) = fr)m e, O

The outline of the paper is as follows: Section 2 is devoted to the necessary definitions and the description of
the proposed deblurring model. Section 3 states theoretical results and remarks regarding the existence and the
characterization of minimizers (the proofs of these results will be given in a forthcoming work). Finally, Section 4
gives the Euler-Lagrange equations associated with the optimization problem based on alternating minimization,
while Section 5 presents numerical results and comparisons.
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2. DESCRIPTION OF THE PROPOSED DEBLURRING MODEL

Before we introduce our proposed minimization model for deblurring, we need the necessary definitions of the
function spaces that will be used.

DEFINITION 2.1. We say that a function u: Q — R is a function of bounded variation, u € BV (Q), if and only
if u € LY(Q) and
/ |Du| := sup{/ udivpdr : ¢ € CLQLRY), ||¢]loe < 1} < 00.
Q Q

The space W1(Q) is a subspace of BV (Q), and for u € W'(Q), we have [, |Du| = [, |Vu|dz. The Banach
space BV () is equipped with the following norm, which extends the classical norm in W11(Q):

lullvea = lullz @ + /Q |Dul.

We will also use the notation |u|gy (o) for the semi-norm [, [Du|. The space BV () will be used to model the
cartoon component u of the recovered deblurred image f .

To model the texture component v, we use the Sobolev spaces W52, s > 0, p > 1, that do not penalize
oscillations in images. Because these spaces for s € R are defined in terms of the Fourier transform, we have to
assume here that the data is defined in R™ (obtained by extension by zero outside of the fundamental domain
Q, or by periodicity when  is a rectangle). Keeping this in mind, we will still write WP ().

DEFINITION 2.2. The homogeneous Sobolev space W“’(Q) fors e R, 1 <p< oo on a fundamental domain 2
is defined by

Wer(@) = {v: |V]*v e £},
where |V |*v(x) := ((27]€])50(€))Y (), with the norm on the quotient (homogeneous) space

[Vl () = (27 I€) D))" [l o

Notice that |V|*v is defined by using the Fourier and the inverse Fourier transforms, and there is a corresponding
kernel to the operator |V|*, which we will denote by ks, i.e.,

[V|°v = ks *v.

As mentioned in the introduction, in the work by J. Garnett, P. Jones, T. Le, and the second author of the
present paper'! , the authors proposed an image decomposition model

f=u+w,

where u is the cartoon part and v = Ag for some g € W=22? is the texture or noise part. The homogeneous
Sobolev spaces of functions with negative degree of differentiability turned out to be a good space to model
texture. Notice that A(W*a“’p) = W, Inspired by this model, we will consider the following model for
image deblurring:

f=Ku+v)+r=kx(u+v)+r,

where v = Ag for some g € W27 and r is a small residual. u+ v = u+ Ag will be our recovered deblurred
image, and this can be done by minimizing the following functional

Flu.g) = lulpve + /Q 1 = k5 (ut A9z + Mgl - (3)

where k is a standard convolution kernel such as the Gaussian kernel or the average kernel, that models the
blurring operator.
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3. MINIMIZERS OF THE FUNCTIONAL F
In this section we only mention some theoretical results for the proposed model, but without giving all the details
of the proofs (these will be included in a forthcoming paper).
3.1 Existence of a minimizer for 1 < p < oo

The problem is to minimize the following functional and we want to see if there is a minimizer of this problem
when 1 < p < o0,

Fu,g) = \UIBV(Q)+/~L/QIf—k*u—k*Agl2dfv+>\IlA9Hwa,p(m
— lulavioy 4 [ 17~ ks u— ks AgPdz+ Alglhinoge

Here and in what follows, —2 < a < 0, s = a + 2 and Q = [0, M] x [0, N] C R? will be the fundamental domain
of the periodic domain such as 7% (extension to higher dimensions can be treated in the same way).

Suppose first that 1 < p < oo and the kernel & is in V.szs’q(Q), where p and ¢ are conjugate exponents. Then
we claim that k x Ag is continuous. To see this, notice that

kx Ag=|V]*"kx|V|°g.

Since |V|>~*k € L7 and |V|*g € LP, then k * Ag is continuous. So k * Ag € L2. We can even impose a weaker
condition on k£ and prove the following theorem.

THEOREM 3.1. Let A >0, 2<a<0,s=2+a,1<p<oo, ke LY(Q) with Jok(x)dz =1, and f € L?(Q).
The minimization problem

inf | Flug) = [ulpvea + / 1 = ke u— ks Agdz + Mlglhivengo)
ueBV (Q),geWs:P(Q) Q

has a solution.

REMARK 1. The property [, k(z)dz =1 (which is a standard normalization of the blurring kernel) is necessary
to show that for a minimizing sequence (U, gy), the means fQ undx are bounded, which enabled us to find a
BV — % limit ug using the Poincaré-Wirtinger inequality. So if fQ k(z)dx = 8 > 0, then we can change k to %k,
f to %f and p to Bu, and we can apply the above theorem.

REMARK 2. When p = oo, the theorem also remains true since the weak-x convergence in L () guarantees
that we can still find the weak-+ limit and in the end we can pass to the limit to obtain a minimizer.

3.2 Characterization of minimizers
By the previous Remark 1, here and in what follows we will assume that |Q| =1, and [, k(z)dz = 1.

DEFINITION 3.2. We define the set of minimizers M by

M= {(u,g) € BV(Q) x WSP(Q) : Flu,g) = inf ]-'(v,h)},
(v,h)EBV (Q) x W27 (Q)

and also a subset M’ by
M = {(u, 9) € M :|ulgy) #0 or ||9||Ws,p(§z) # 0}-

We will see later that the assertion “either M = M’ or M = M"U{((f)q.0)}", where (f)q = [, f(z)dz, is
true. Since the functional F is convex, for (uy,g1), (uz,g2) € M’ and 0 <t < 1,

f(tul + (1 - t)’LLz,tgl + (l - t)gg) S tf(ul,gl) + (l - t)f(U292>
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As a matter of fact, we have for 0 <t < 1,

F(tur + (1 —t)ug, tgr + (1 — t)g2) = tF(u1, g1) + (1 — t) F(u2, g2). (4)

THEOREM 3.3. Let 1 < p < oo. For (u1,91), (ua,g2) € M’, there exists m > 0 such that

kx(ug + Agr) =k * (uz + Agz), (5)
Agr = mAgs. (6)

Proof. By (4), we know that for 0 < t < 1,
|f = (th o (ur + Agy) + (1= 1)k * (u2 + Aga))|* = tf — k* (ur + Aga)|* + (1= )] — b * (uz + Aga)|*.
Since the mapping z +— 22 is strictly convex, this implies that
f=Fkx*(ur+Ag1)=f—kx(uz+Ag2) ae,

and therefore we obtain (5). Also by the fact that the Minkowski inequality becomes equality if and only if the
functions are linearly dependent, we know that there exists m > 0 such that

Vg1 = m|V|°g2 a.e.,

which implies (6). O
The following definition helps us further investigate the minimizers.

DEFINITION 3.4. Gliven a function w € L?(2) and A > 0, we define

(w, k#*(u+ Ag))

Jw]lex = sup : (7)
WEBV(Q), [ul ey 20, geW (), llglwe.ne#0 [UBV(@) T Al9lhiren o)
where (-,-) is the inner product in L?(f2).
REMARK 3. Notice that if [, w # 0, then |Jw]|, x = oco.
THEOREM 3.5. Let f € L*(Q2) and 1 < p < oco. Also let (f)q = [, f. Then each (uo, go) € M’ satisfies
luo|Bv ) = 2p(f — K * (uo + Ago), k * uo), (8)
190 ey = 20 = b % (0 + Ago). k + Ago). )

FPurthermore,

LAIf = (Nallia < 5 if and only if ((f),0) € M.

2. If If — (Nallsx > ﬁ, then (ug,go) € M’ if and only if it satisfies the following additional condition

together with (8), (9) :

-1 (10)

5=kt r 2] = o

REMARK 4. This theorem says that if || f —(f)a
1/(2p), then M = M.

lex < 1/(2p), then M = M'U{((f)a,0)} and if || f = (f)allx >
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4. THE NUMERICAL MINIMIZATION ALGORITHM

For the sake of computation, we think of a given image f as part of a periodic function defined in R? whose
periodic domain is 29, where @ = [0,1] x [0,1]. For the practical implementation, we assume that we work
with functions v € W'(Q), thus |u|gy ) = [, |Vuldz. Moreover, this restriction is not too strong, since any
BV () function can be approximated by a sequence of functions in W1(£), in the strong topology L!(©2). We
will formally compute the Fuler-Lagrange equations associated with the optimization problem, using alternating
minimization.

If (ug, go) is a minimizer of the functional F(u,g), then it satisfies that for any v € WH1(Q) ¢ BV () and
for any w € WP (Q):

fQ—v-div(lD ‘)dm+2,ufﬂ (k*v)-(kx(ug+ Ago) — f)dz
+  2p fo(kx Aw) - (k* (uo + Ago) — fldz + X [, [[ks gOH}l,_I’(UcS * go[P~2ks * go) - ks * wdz = 0.

We solve this by using a gradient descent method and a finite difference scheme, i.e., we solve the following
time-dependent system of PDE’s:

ou "
N dw(|D |)+2,uk (f — k= (u+ Ag)) (11)
09— 2tk (f — ko (u-+ Dg)) = Al =7y » (ko x g2k ), (12)

where k* is the transpose of k. Since the full periodic domain is 22, when we compute the Sobolev norm we
should use the full domain 2{2. Notice that

||g||Ws p(Q ||g||Ws,p(QQ)

where § is the periodic function whose periodic domain is 202 and g‘ = ¢g. So when we compute the second

term in (12), we use ¢ instead of g and obtain the values on €. Also, the Sobolev norm will be computed using
the Fast Fourier Transform (FFT) since the space itself is defined in terms of the Fourier and the inverse Fourier
transformations.

5. NUMERICAL RESULTS AND COMPARISONS

Figure 1 shows the blurry data images fi, fo and f3 to be tested, and the original versions (the clean images
have been artificially blurred by convolution with a blurring kernel k).

To obtain blurry image fi, a 7 x 7 averaging kernel k£ was used, and for the blurry images f> and f3, a5 x5
averaging kernel k& was used.

To recover a clean image from the blurry images fi, fo and f3, the Sobolev space WOo1:13 is used, which
means that the texture part v = Ag belongs to W 1913, The tuning parameters p and A for the three images
are set to be = 0.05, A = 10. Using the original clean images, we compute the SNR (Signal-to-Noise-Ratio),
and we compare with the Rudin-Osher model?* . The parameters for the Rudin-Osher model are: At = 0.01,
A = 100, and the number of iterations is 2000, 3000 and 1500 for f1, fo and f3 respectively (the SNR increases
also for the Rudin-Osher model, with the number of iterations). The following table summarizes the results and
comparisons, by showing that the proposed model recovers better textured images from their blurry versions.
The experimental results are shown in Figures 2 and 3.

We show in Figure 4 plots of the numerical energy decrease versus iterations for the three experiments with
the proposed model, to illustrate that our numerical implementation is stable in practice.
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Figure 1. Original images (top), and their blurry versions (bottom; left, data f = fi; middle, data f = fa; right, data

f=f3)

Image | SNR Blurry | SNR (TV/Sobolev) | SNR (R-O)
fi 8.9183 22.6316 15.5319
fo 7.8599 22.7535 14.7255
f3 10.2671 28.1160 21.0735

Table 1. The SNR (signal-to-noise ratio) before and after reconstruction for the three image data, by the proposed model
and the standard Rudin-Osher model** .
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