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ABSTRACT

We propose a unified variational approach for registration of gene expression data to neuroanatomical mouse
atlas in two dimensions. The proposed energy (minimized in the unknown displacement u) is composed of three
terms: a standard data fidelity term based on L2 similarity measure, a regularizing term based on nonlinear
elasticity (allowing larger smooth deformations), and a geometric penalty constraint for landmark matching. We
overcome the difficulty of minimizing the nonlinear elasticity functional by introducing an auxiliary variable v
that approximates ∇u, the Jacobian of the unknown displacement u. We therefore minimize now the functional
with respect to the unknowns u (a vector-valued function of two dimensions) and v (a two-by-two matrix-valued
function). An additional quadratic term is added, to insure good agreement between v and ∇u. In this way,
the nonlinearity in the derivatives of the unknown u no longer exists in the obtained Euler-Lagrange equations,
producing simpler implementations. Several satisfactory experimental results show that gene expression data are
mapped to a mouse atlas with good landmark matching and smooth deformation. We also present comparisons
with the biharmonic regularization. An advantage of the proposed nonlinear elasticity model is that usually no
numerical correction such as regridding is necessary to keep the deformation smooth, while unifying the data
fidelity term, regularization term, and landmark constraints in a single minimization approach.

Keywords: mouse atlas, gene expression, registration, nonlinear elasticity, landmarks, functional minimization,
mutual information.

1. INTRODUCTION

An important task in medical imaging, for clinical studies of disease and for atlas-based identification and
segmentation of anatomical structures, is to compare a subject/time variant template image T with an unbiased,
reference image R. This is commonly done using image registration. Given a reference R and a template
T , defined on image domain Ω, we want to find a smooth, invertible transformation to map T into an image
similar to R. For images of the same modality, a well-registered template has geometric features and intensity
distribution matched with the reference; for images produced by different mechanism and possessing distinct
modalities, the goal of registration is to correlate the images while maintaining the modality of the template. In
the case of mapping gene expression data to atlas, we want to match anatomically or geometrically significant
points for the template with those corresponding ones for the reference.
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1.1 Prior Related Work

An extensive overview of registration models is presented in1 including parametric models such as landmark-
based spline registration, and nonparametric models employing linear diffusion, linear elasticity, biharmonic
(“curvature”) and fluid regularizations . Also, variational methods for regularization of the deformation, by
linear elasticity or by diffusion tensor, using mutual information and other information-theoretic approaches, are
presented in2 in a theoretical framework.

For models that deal with larger deformations, we refer to3 for a well-known large deformation fluid registra-
tion method (not in variational form), and to a variational registration for large deformations (LDDMM),4.5 The
log-unbiased fluid registration method,67 developed more recently also handles large deformations. Besides fluid
models, nonlinear elasticity regularization is implemented using the finite element method in8 and.9 Non-linear
elasticity principles have also been used with the regularized gradient flow in.10

As for landmark-based registration methods, we refer to11 where a consistent landmark and intensity-based
registration method is presented using thin-plate spline regularization (or biharmonic regularization). Another
related reference is12 where data fidelity, spline regularization and soft landmark constraints are combined, as in
the present work.

1.2 Our Approach

There are forward and backward registrations. The former is done in the Lagrangian framework where a forward
transformation Ψ is sought and grid points x with intensity values T (x) are moved and arrive at non-grid points
y with intensity values T (Ψ−1(y)) = T (x), ∀x ∈ Ω or ∀y ∈ Ψ(Ω). In this work, we adopt the Eulerian framework
to find a backward transformation Φ = Ψ−1 such that grid points y in the deformed image arrive from non-grid
points x = Φ(y) and are assigned with intensity values T (x) = T (Φ(y)). For more detailed description of the
two frameworks, readers may refer to.1

For data fidelity, we minimize the L2 distance of the pixel by pixel intensity values between T ◦ Φ and R
(although our data, mouse gene expression and mouse atlas, come from different modalities, we show that the
L2 measure is satisfactory without employing more complicated information theoretic measures, such as the
mutual information; in our calculations, we show numerically that minimizing the L2 distance, increases the
mutual information with iterations). The mapping of landmark points is done simply by minimizing the sum
of the squared distances between the points without incorporating any spline model. We propose a nonlinear
elasticity model for regularization of the displacement vector field, since this allows smooth larger deformations
and thus will work without the need for regridding most of the time. In prior work based on nonlinear elasticity
principles, the finite element method has been used. To have a simpler numerical algorithm, we hereby introduce
an auxiliary variable for the Jacobian matrix of the displacement in order to remove the nonlinearity in the
derivatives of the displacement vector field. This idea has been inspired from a more theoretical work13 and by
the prior work14 for a joint segmentation and registration model. The present manuscript is a continuation of
very preliminary work reported in.15

1.3 Motivation for Mapping Mouse Gene Expression Data to Mouse Atlas

The C57BL/6J mouse digital brain atlas,1617 is a comprehensive framework for storing and accessing information,
and serves as a canonical representation of the mouse brain. We use the mouse brain atlas as a common and
unbiased framework and map gene expression data to the atlas in order to facilitate the integration of anatomic,
genetic, and physiologic observations from multiple subjects in a common space. Since genetic mutations and
knock-out strains of mice provide critical models for a variety of human diseases, such linkage between genetic
information and anatomical structure is important.

2. DESCRIPTION OF THE PROPOSED REGISTRATION MODELS

Let Ω be a bounded, open and connected subset of the plane. In the present work, we consider two-dimensional
images only, however the proposed framework can easily be extended to volumetric data. Denote by R the
reference image and by T the template image. We want to find a smooth transformation Φ(x) = x + u(x), x =
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(x1, x2) that minimizes an energy functional consisting of data fidelity, landmark constraints, and regularization.
The general form of such functional is as follows,

inf
u

{
J(u) = FidT,R(u) + γDLM (u) + αReg(u)

}
,

where γ and α are positive parameters chosen based on the images. By gradient descent, we solve the time-
dependent Euler-Lagrange equation in the displacement vector field u = (u1, u2), instead of directly in Φ:

∂ul

∂t
= −∂Fid(u)

∂ul
− γ

∂DLM (u)
∂ul

− α
∂Reg(u)

∂ul
, l = 1, 2.

2.1 L2 Data Fidelity in Eulerian Framework

We have chosen the standard L2 distance as dissimilarity measure between T ◦Φ and R, and this is complemented
by the use of additional landmarks as geometrical constraints. We minimize the L2 distance function

Fid(u) =
1
2

∫

Ω

|T (x + u(x)) − R(x)|2dx

by computing its Gâteaux derivative

∂Fid(u)
∂ul

= (T (x + u(x)) − R(x))Txl
(x + u(x)), l = 1, 2

where Txl
denotes the derivative of the intensity field of the template in the direction xl, l = 1, 2.

2.2 Landmark Constraints

Let xR,k be manually-selected landmark points for the reference R, and xT,k those for the template T . We want
to map xR,k to xT,k by a smooth deformation Φ such that Φ(xR,k) ∼ xT,k by minimizing the following landmark
distance function:

DLM (u) =
1
2

m∑
k=1

‖xT,k − Φ(xR,k)‖2

where Φ(xR,k) = xR,k + u(xR,k). Then the Gâteaux derivative in u1, u2 are

∂DLM (u)
∂u

(x) =

{
−

(
xT,k − x − u(x)

)
if x = xR,k

0 otherwise
,

k = 1, ...,m (m representing the number of landmarks).

2.3 Regularization

Viewing the shape change of the image after transformation as the deformation of an elastic material under
external forces was first adopted by18 in developing linear elastic registration method. Since the linear model
works well for small deformations only, we propose a nonlinear elastic model to allow large deformations. Among
the various nonlinear elastic models, we have chosen the St. Venant-Kirchhoff material for its simplicity.19

Compared with linear registration models, the proposed nonlinear elasticity smoother allows larger and smoother
deformations without numerical correction (such as regridding3) most of the time. Since the nonlinear term has
resulted in complicated nonlinear Euler-Lagrange equations, more difficult to discretize in practice, we propose
a particular implementation that removes the non-linearity in the derivatives,13.14
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2.3.1 Proposed Nonlinear Elasticity Regularization

It is physically motivated to view the displacement of vector fields as the deformation of some material under
external forces. The strain energy corresponding to Saint Venant-Kirchhoff hyperelastic materials20 is given by
Reg(u) =

∫
Ω

W (ε)dx, with tensor ε(u) = 1
2 (∇ut + ∇u + ∇ut∇u) and the stored energy W (ε) = λ

2 (trace(ε))2 +
μtrace(ε2), where λ and μ are the Lamé coefficients of the material. Note that, by removing the nonlinear term
∇ut∇u, we obtain the linear elasticity regularization which allows small deformations only. To allow larger
deformations, we keep the nonlinear term and the regularization is as follows:

Reg(u) =
λ

8

(
2(divu) +

2∑
k=1

|∇uk|2
)2

+
μ

4

( 2∑
i=1

[
2
∂ui

∂xi
+

2∑
k=1

(
∂uk

∂xi
)2

]2

+
2∑

i,j=1,i �=j

[∂uj

∂xi
+

∂ui

∂xj
+

2∑
k=1

∂uk

∂xi

∂uk

∂xj

]2)
.

It is cumbersome to directly compute and discretize its Gâteaux derivative in u. To avoid this difficulty, we

introduce in two dimensions the variable v =
(

v11 v12

v21 v22

)
, which approximates ∇u. For β large enough,

Reg(u) can be well approximated by

Regβ(u,v) =
∫

Ω

[
W

(1
2
(vt + v + vtv)

)
+ β‖v −∇u‖2

F

]
dx =

∫

Ω

(λ

8
[2(v11 + v22) + (v2

11 + v2
12 + v2

21 + v2
22)]

2

+
μ

4
[(2v11 + v2

11 + v2
21)

2 + (2v22 + v2
12 + v2

22)
2 + 2(v12 + v21 + v11v12 + v21v22)2]

)
dx

+ β

∫

Ω

[∣∣∣v11 − ∂u1

∂x1

∣∣∣
2

+
∣∣∣v12 − ∂u1

∂x2

∣∣∣
2

+
∣∣∣v21 − ∂u2

∂x1

∣∣∣
2

+
∣∣∣v22 − ∂u2

∂x2

∣∣∣
2]

dx,

where ‖ · ‖F denotes the Frobenius norm.

Now, we solve by gradient descent the linearized Euler-Lagrange equations in ul, l = 1, 2:

∂ul

∂t
= −(T (x + u(x)) − R(x))Txl

(x + u(x)) − γ
∂DLM (u)

∂t
(x) + 2αβ(�ul − ∂vl1

∂x1
− ∂vl2

∂x2
), l = 1, 2,

and we update the approximation matrix v by solving the four Euler-Lagrange equations in v:

∂v11

∂t
= 2αβ(

∂u1

∂x1
− v11) − αλI(1 + v11) − αμ(2v11 + v2

11 + v2
21)(1 + v11) − αμJv12,

∂v12

∂t
= 2αβ(

∂u1

∂x2
− v12) − αλIv12 − αμ(2v22 + v2

12 + v2
22)v12 − αμJ(1 + v11),

∂v21

∂t
= 2αβ(

∂u2

∂x1
− v21) − αλIv21 − αμ(2v11 + v2

11 + v2
21)v21 − αμJ(1 + v22),

∂v22

∂t
= 2αβ(

∂u2

∂x2
− v22) − αλI(1 + v22) − αμ(2v22 + v2

12 + v2
22)(1 + v22) − αμJv21,

where I = v11 + v22 + 1
2v2

11 + 1
2v2

21 + 1
2v2

12 + 1
2v2

22, and J = v12 + v21 + v11v12 + v21v22. The following are the
semi-implicit finite difference schemes for the time-dependent Euler-Lagrange equations for the regularization
term in u and in v:

ul
n+1
i,j − ul

n
i,j

�t
= −(T (xi,j + un(xi,j)) − R(xi,j))Txl

(xi,j + un(xi,j)) − γ
∂DLM (un)

∂t
(xi,j)

+ 2αβ
(ul

n
i+1,j − 2ul

n+1
i,j + ul

n
i−1,j

h2
+

ul
n
i,j+1 − 2ul

n+1
i,j + ul

n
i,j−1

h2
− vl1

n
i+1,j − vl1

n
i−1,j + vl2

n
i,j+1 − vl2

n
i,j−1

2h

)
,

and

vn+1
11 − vn

11

�t
= 2β(

∂un
1

∂x1
− vn+1

11 ) − (λE1E5 + μ(E2E5 + E3v12)),
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vn+1
12 − vn

12

�t
= 2β(

∂un
1

∂x2
− vn+1

12 ) − (λE1v12 + μ(E4v12 + E3E5)),

vn+1
21 − vn

21

�t
= 2β(

∂un
2

∂x1
− vn+1

21 ) − (λE1v21 + μ(E2v21 + E3E6)),

vn+1
22 − vn

22

�t
= 2β(

∂un
2

∂x2
− vn+1

22 ) − (λE1E6 + μ(E4E6 + E3v21)),

where

E1 = v11 + 1
2v2

11 + 1
2v2

21 + v22 + 1
2v2

12 + 1
2v2

22, E2 = 2v11 + v2
11 + v2

21, E3 = 2v22 + v2
12 + v2

22,

E4 = v12 + v21 + v11v12 + v21v22, E5 = 1 + v11, E6 = 1 + v22.

2.3.2 Biharmonic Regularization

For comparison purposes, we also consider the biharmonic regularization (so-called curvature regularization),1

defined as

Reg(u) =
1
2

2∑
l=1

∫

Ω

(�ul)2dx.

The Laplacian term �ul approximates the curvature of level lines of ul, thus we could say that this regularizer
minimizes the curvature of the displacement vectors.1 According to,1 among the nonlinear methods, the bihar-
monic registration is less dependent on the initial position of the image and thus is more suitable when an affine
linear pre-registration is not available. The time-dependent Euler-Lagrange equations are the following:

∂u
∂t

= −(T (x + u(x)) − R(x))Txl
(x + u(x)) − γ

∂DLM (u)
∂t

(x) − α�2u, l = 1, 2.

The semi-implicit finite difference scheme that we adopted is as follows (different from the implementation
presented in1):

ul
n+1
i,j − ul

n
i,j

�t
= −(T (xi,j + un(xi,j)) − R(xi,j))Txl

(xi,j + un(xi,j)) − γ
∂DLM (un)

∂t
(xi,j) − α

1
h4

(16ul
n+1
i,j

+ ul
n
i+2,j − 6ul

n
i+1,j − 6ul

n
i−1,j + ul

n
i−2,j + ul

n
i,j+2 − 6ul

n
i,j+1 − 6ul

n
i,j−1 + ul

n
i,j−2

+ ul
n
i+1,j+1 + ul

n
i+1,j−1 + ul

n
i−1,j+1 + ul

n
i−1,j−1), l = 1, 2.

3. EXPERIMENTAL RESULTS

Numerical Correction: Regridding An admissible deformation field Φ : Ω → Ω, Φ(x) = x + u(x), should
satisfy det(∇Φ) > 0 in Ω, Φ(x) = x on ∂Ω, and Φ is one-to-one and onto on Ω. To enforce such a constraint, some
numerical corrections such as regridding are introduced, as in.3 In present work, if det(∇(Φ)n+1) < tol (here
tol = 0.025), we set the displacement field un+1 = 0, the new intermediate template T (x) = T (x + un), and the
new reference landmarks xR,k = xT,k − un(xR,k). After the iterations, we calculate the composite displacement
field by interpolating each intermediate displacement field, which is saved during the regridding process, based
on its succeeding one. The algorithm is given as follows:

(1) formulate identity matrices S1 and S2 so that S1(x, y) = x, S2(x, y) = y;
initialize un = (un

1 , un
2 );

(2) iteration starts: compute un+1;
update matrices S11 and S22 so that Sn+1

11 = S1 + un+1
1 , Sn+1

22 = S2 + un+1
2 ;

if det(Jacobian(Φ)) < tol,
then regrid.count = regrid.count + 1;

T (·) = T (· + un(·));
un+1 = un;
save un as data files uk(regrid.count), k = 1, 2;
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Figure 1. Pair 1: mouse atlas (reference R), gene expression (template T ), and gene expression after histogram equaliza-
tion with specified landmarks (top, left to right); deformed template, deformation field and landmarks transformation,
1/det(∇Φ) and deformed grid using BH regularization (middle, left to right), and those using NE regularization (bottom,
left to right.)

end;
(3) iteration ends:

if regrid.count > 0
then composite.Skk = Sfinal.iteration

kk ;
composite.uk = ufinal.iteration

k , k = 1, 2;
for i = regrid.count : −1 : 1

read and load data files uk(regrid.count);
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Figure 2. Pair 2: mouse atlas (reference R), gene expression (template T ), and gene expression after histogram equaliza-
tion with specified landmarks (top, left to right); deformed template, deformation field and landmarks transformation,
1/det(∇Φ) and deformed grid using BH regularization (middle, left to right), and those using NE regularization (bottom,
left to right.)

U0k=uk(regrid.count), k = 1, 2;
composite.uk(regrid.count)=composite.uk(regrid.count)

+interpolation(U0k,composite.S22,composite.S11);
composite.Skk(regrid.count)=Sk+composite.uk(regrid.count);

end
uk=composite.uk(1);
Skk=composite.Skk.
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Figure 3. Pair 3: mouse atlas (reference R), gene expression (template T ), and gene expression after histogram equalization
with specified landmarks (top, left to right); deformed template, deformation and landmarks transformation, 1/det(∇Φ)
and deformed grid using BH regularization (middle, left to right), and those using NE regularization (bottom, left to
right.)

Note that models requiring fewer regridding steps are considered better since a well-defined transformation
is desired. The following results are obtained mostly without regridding.

Registration Results of Mouse Gene Expression to Mouse Atlas We show now experimental results
obtained by the two methods presented in the previous section for mapping a 2D slice of mouse brain gene
expression data (template T ) to its corresponding 2D slice of the mouse brain atlas (reference R), in the presence
of landmarks, and for 8 such data pairs (T,R). The data is provided by the Center for Computational Biology,
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Figure 4. Pair 4: mouse atlas (reference R), gene expression (template T ), and gene expression after histogram equaliza-
tion with specified landmarks (top, left to right); deformed template, deformation field and landmarks transformation,
1/det(∇Φ) and deformed grid using BH regularization (middle, left to right), and those using NE regularization (bottom,
left to right.)

UCLA. The mouse atlas acquired from the LONI database was pre-segmented. The gene expression data was
segmented manually to facilitate data processing in other applications. Some studies have developed algorithms
for automatically segmenting the brain area of gene expression data. Moreover, since the reference and template
come from different modalities, and that the intensity variation of the gene expression data in the non-background
region is so small (the gene expression images almost resemble to piecewise-constant images), we also match the
histogram of the gene expression data to that of the atlas before registration, in order to facilitate better
registration for area away from the edges. The two models have been independently tested on 8 pairs, all of size
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Figure 5. Pair 5: mouse atlas (reference R), gene expression (template T ), and gene expression after histogram equaliza-
tion with specified landmarks (top, left to right); deformed template, deformation field and landmarks transformation,
1/det(∇Φ) and deformed grid using BH regularization (middle, left to right), and those using NE regularization (bottom,
left to right.)

200x200 pixels. The non-brain regions have been removed and set to zero, to produce better matching. The
landmarks are marked by an experienced neuroanatomist based on the anatomical structures present in images.
This is based on prior knowledge in neuroanatomy. The number of iterations for both methods depends on how
small we wish the landmark distance and the similarity measure to be.

Figures 1-8 are registration results of the eight pairs of images after the same number of iterations for both
models. Each figure contains (1) a reference-template (before and after histogram equalization) data pair with
landmark points marked, (2) the deformed template, distortion map with landmark points marked, and (3)
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Figure 6. Pair 6: mouse atlas (reference R), gene expression (template T ), and gene expression after histogram equaliza-
tion with specified landmarks (top, left to right); deformed template, deformation field and landmarks transformation,
1/det(∇Φ) and deformed grid using BH regularization (middle, left to right), and those using NE regularization (bottom,
left to right.)

inverse of the determinant of Jacobian of Φ with deformed grid. The distortion maps draw the vectors from
the grid points of the reference image to the non-grid points after registration; the original reference/template
landmarks are marked in red/green, the reference landmarks after registration are marked in blue. We can see
that the landmarks converge (moving from the red spots to the blue spots, to approach the green spots) in
accordance with the distortion field. As for the deformed grids, where the grid area expands/shrinks, we observe
lighter/darker gray level corresponding to larger/smaller value of the inverse of determinant of Jacobian.

Proc. of SPIE Vol. 7259  72592Q-11



'S

Figure 7. Pair 7: mouse atlas (reference R), gene expression (template T ), and gene expression after histogram equaliza-
tion with specified landmarks (top, left to right); deformed template, deformation field and landmarks transformation,
1/det(∇Φ) and deformed grid using BH regularization (middle, left to right), and those using NE regularization (bottom,
left to right.)

Quantitative Comparisons of Results Besides the visualization of the registration results shown above,
computed quantitative measurements are given in Tables 1-6. Tables 1 and 2 give the landmark distances and
the L2 dissimilarity measures after registration by the two models for the eight pairs of images. The nonlinear
elasticity model reaches smaller dissimilarities in overall intensity values and in landmark distance.

We also observe that the nonlinear elasticity model has a slightly larger range of values for the determinant
of Jacobian in average but also has a higher average percentage of points where the determinant of Jacobian
equals to one. Table 3 gives the range of values for the determinant of Jacobian for the eight pairs of images
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Figure 8. Pair 8: mouse atlas (reference R), gene expression (template T ), and gene expression after histogram equaliza-
tion with specified landmarks (top, left to right); deformed template, deformation field and landmarks transformation,
1/det(∇Φ) and deformed grid using BH regularization (middle, left to right), and those using NE regularization (bottom,
left to right.)

after registration.

Table 4 gives the percentage of points where the determinant of Jacobian equals to one after registration by
the two models for the eight pairs of images. Now we see that the percentages for both models are very close.
However, the nonlinear elasticity model renders larger percentages for five out of eight image pairs.

Table 5 gives the iteration numbers for the two models for the eight pairs of images. The number of iterations
required by both models are similar given proper choice of parameters; iteration time for the nonlinear elasticity
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Table 1. Landmark Distance after Registration

Pair 1 Pair 2 Pair 3 Pair 4 Pair 5 Pair 6 Pair 7 Pair 8
LMDist(BH) 0.49519 0.42388 0.26758 0.90027 0.70846 0.11232 0.46912 0.71972
LMDist(NE) 0.49282 0.41299 0.26593 0.74304 0.60741 0.10712 0.34660 0.55106

Table 2. Dissimilarity Measure after Registration

Pair 1 Pair 2 Pair 3 Pair 4 Pair 5 Pair 6 Pair 7 Pair 8
‖T1 − R‖(BH) 1,942 1,806 1,168 4,130 3,723 1,255 1,266 3,073
‖T1 − R‖(NE) 1,938 1,790 1,151 4,101 3,693 1,177 1,173 3,058

Table 3. Range of Values for the Determinant of Jacobian

Pair 1 Pair 2 Pair 3 Pair 4 Pair 5 Pair 6 Pair 7 Pair 8
BH (.34,3.38) (.15,2.11) (.28,1.99) (.25,2.05) (.04,1.87) (.23,2.30) (.31,2.30) (.37,2.12)
NE (.32,3.55) (.01,3.16) (.10,2.15) (.08,2.57) (.10,2.82) (.15,2.40) (.18,3.23) (.03,2.35)

Table 4. Percentage of Points where the Determinant of Jacobian Equals to One

Pair 1 Pair 2 Pair 3 Pair 4 Pair 5 Pair 6 Pair 7 Pair 8
BH %52.74 %52.66 %52.73 %51.08 %57.96 %53.35 %59.75 %52.39
NE %52.73 %52.44 %54.15 %56.39 %52.05 %53.67 %66.52 %54.29

Table 5. Iteration Numbers

Pair 1 Pair 2 Pair 3 Pair 4 Pair 5 Pair 6 Pair 7 Pair 8
10,000 10,000 10,000 200,000 140,000 4,000 80,000 40,000

Table 6. Parameters

Pair 1 Pair 2 Pair 3 Pair 4 Pair 5 Pair 6 Pair 7 Pair 8
α 50,000 75,000 50,000 100,000 100,000 75,000 150,000 75,000

γ(BH) 100,000 700,000 300,000 100,000 100,000 700,000 300,000 150,000
β 100,000 120,000 75,000 100,000 75,000 75,000 150,000 100,000

γ(NE) 160,000 190,000 300,000 100,000 700,000 700,000 300,000 150,000

model is about twice as long as that for the biharmonic model (13 to 16 minutes v.s. 5 to 7 minutes per 4,000
iterations using Intel(R) Core(TM)2 Duo CPU T7500 @ 2.20GHz processor with code in Matlab); no regridding
is needed for both models for gene data to atlas registration given proper choice of parameters.

Finally, Table 6 gives the parameters chosen for the two models for the eight pairs of images: the time step
�t = 1 and the space discretization h = 1 for both models. For the biharmonic model we vary the regularization
weighting parameter α and the landmark constraint coefficient γ; for the nonlinear elasticity model, we vary the
coefficient β of the approximation matrix v and γ while fixing α = 1, λ = 1, and μ = 1e−2. The choice of α and
β does not vary too much among the tested pairs of images; α ≥ 5e + 4 and β ≥ 75e + 3 will give satisfactory
results. The choice of γ more or less depends on the total landmark distance before registration; the larger the
landmark distance is, the smaller γ should be. Note that an almost constant (or slightly increasing) ratio, γ/α
or γ/β, for each image pair can be found; increasing γ in accordance with α or β by the ratio may result in
smoother transformation, faster landmark convergence, but slower L2 similarity convergence.

Mutual Information Comparison of Results Furthermore, we want to evaluate the registration results
by comparing how much the deformed template correlates with the reference after being registered by the two
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Figure 9. Mutual information increasing with time for all pairs, 4-8, 11, 12, 15 (left to right, top to bottom) using BH
regularization (red line), and proposed NE regularization (black line).

models. We use the mutual information, defined for two random variables X and Y in the continuous case by

MI(X,Y) =
∫

Y

∫

X
p(x, y)log

p(x, y)
p1(x)p2(y)

dx dy,

where p(x, y) is the joint probability density function of X and Y, and p1(x), p2(y) are the marginal probability
density functions of X and Y respectively. The mutual information quantifies the similarity between X and
Y, which in our case are the intensity maps of R and T . Considering that larger mutual information indicates
better registration, we see in Fig. 9 (where we visualize the discrete mutual information between intensities of
T (x+u(x)) and R(x) versus iterations) that the nonlinear elasticity model (MI in black line), is more desirable in
this respect. Also, we notice that, although we did not use the mutual information as similarity measure (we have
used the simpler L2 similarity measure, even if T and R are of different modalities), by the proposed algorithms
the mutual information between intensities of T (x + u(x)) and R(x) increases over iterations. Moreover, as
mentioned above, the increase is faster for the nonlinear elasticity smoother, most of the time.

4. CONCLUSION AND FUTURE WORK

We presented variational registration models for obtaining smooth deformations between two dimensional slices
of mouse atlas and gene expression data, in the presence of landmarks. We proposed a nonlinear elastic reg-
ularization with an implementation that removes the nonlinearity in the derivatives and compared it with the
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biharmonic (curvature) model. Extensive experimental results and assessment showed that the biharmonic model
and the nonlinear elasticity model both render relatively large deformations with no regridding; however, the
nonlinear elasticity model renders higher mutual information over time and better landmark points matching.
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