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ABSTRACT

We propose a new model for image restoration and
decomposition, based on the total variation minimiza-
tion of Rudin-Osher-Fatemi [8], and on some new tech-
niques by Y. Meyer [5] for oscillatory functions. An
initial image f is decomposed into a cartoon part u
and a texture or noise part v. The u component is
modeled by a function of bounded variation, while the
v component by an oscillatory function, with bounded
H−1 norm. After some transformation, the resulting
PDE is of fourth order. The proposed model contin-
ues the ideas and techniques previously introduced by
the authors in [9]. Image decomposition and denoising
numerical results will be shown by the proposed new
fourth order nonlinear partial differential equation.

1. INTRODUCTION AND MOTIVATIONS

An important task in image processing is the restora-
tion or reconstruction of a true image u, from an ob-
servation f . Given an image function f ∈ L2(Ω), with
Ω ⊂ IR2 an open and bounded domain, the problem
is to extract u from f . The observation f is usually a
noisy and/or blurred version of the true image. In order
to solve this inverse problem in the denoising case, one
of the most well known techniques is by energy mini-
mization and regularization. To this end, L. Rudin, S.
Osher and E. Fatemi [8], [7] have proposed the follow-
ing minimization problem:

inf
u

F (u) =
∫

Ω

|∇u| + λ

∫

Ω

|f − u|2dxdy. (1)
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Here, λ > 0 is a weight parameter,
∫
Ω |f −u|2dxdy is a

fidelity term, and
∫
Ω
|∇u| is a regularizing term, to re-

move the noise. The term
∫
Ω |∇u| is the total variation

of u. If u ∈ L1(Ω) and
∫
Ω
|∇u| < ∞, then u ∈ BV (Ω),

the space of functions of bounded variation (the gra-
dient is taken in the sense of measures). This space
allows for discontinuities along curves, therefore edges
and contours generally appear in the image u, which is
the minimizer of this convex optimization problem.

Formally minimizing the functional (1), yields the
associated Euler-Lagrange equation:

u = f +
1
2λ

div
( ∇u

|∇u|

)
in Ω,

∂u

∂~n
= 0 on ∂Ω.

This model performs very well for denoising of images,
while preserving edges. However, smaller details, such
as texture, are destroyed if the parameter λ is too small.
To overcome this, Y. Meyer [5] proposed new minimiza-
tion problems, changing in (1) the L2 norm of (f − u)
by other weaker norms, more appropriate to represent
textured or oscillatory patterns. One of the texture
spaces proposed is defined as follows [5]:

Definition. Let G be the Banach space consisting of
all generalized functions f(x, y) which can be written
as

f(x, y) = ∂xg1(x, y) + ∂yg2(x, y), g1, g2 ∈ L∞(Ω), (2)

induced by the norm ‖f‖∗ defined as the lower bound
of all L∞(Ω) norms of the functions |~g|, where ~g =
(g1, g2), |~g(x, y)| =

√
g1(x, y)2 + g2(x, y)2, and the in-

fimum is computed over all decompositions (2) of f .
The space G coincides with the space W−1,∞(Ω),

the dual space to W 1,1(Ω) (we recall that W 1,1(Ω) is
the set of functions f ∈ L1(Ω), with ∇f ∈ L1(Ω)2).

Y. Meyer shows that, if the component v := f − u
represents texture or noise, then it is better modeled by
the space G instead of the space L2(Ω), and proposes
the following image restoration model [5]:

inf
u

{
E(u) =

∫

Ω

|∇u| + λ‖f − u‖∗
}
. (3)
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Note that this convex minimization model cannot
be directly solved in practice, due to the form of the
∗-norm of (f − u). We cannot express directly the as-
sociated Euler-Lagrange equation with respect to u.

In a recent work [9], the authors have proposed a
first method to overcome this difficulty. They have
proposed the following convex minimization problem,
as an approximation of (3):

inf
u,g1,g2

{
Gp(u, g1, g2) =

∫

Ω

|∇u| (4)

+λ

∫

Ω

|f − (u + div~g)|2dxdy (5)

+µ
[ ∫

Ω

(√
g2
1 + g2

2

)p

dxdy
] 1

p
}

, (6)

where λ, µ > 0 are tuning parameters, and p → ∞.
As λ → ∞ and p → ∞, the first term insures that
u ∈ BV (Ω), and the second and third terms insure
that div~g ≈ (f − u) ∈ G. In [9], image decomposition
results and applications to texture discrimination have
been proposed. For more details, we refer the reader
to [9]. Note that, by this model, we have (f − u) ≈
div~g ∈ W−1,p(Ω), the dual space to the Sobolev space
W 1,p′

(Ω), with 1
p + 1

p′ = 1. The case p = 2 corresponds
to the space H−1(Ω).

Here, we propose a different and simplified practi-
cal algorithm for (3). Moreover, this new algorithm is a
decomposition of the form f = u+v, while the original
method [9] (which started this line of research) led to
an f = u+v+w model, with w a residual made as small
as possible by increasing λ. The new algorithm is sim-
plified; the minimization is performed only with respect
to one unknown, u. Also, as we will see, the new model
corresponds to the case v := f−u ∈ H−1(Ω), but in the
sense v := f − u = 4P , for a unique P ∈ H1(Ω), with∫
Ω

P (x, y)dxdy = 0, and ∂P
∂n = 0 on ∂Ω. We will use

this definition for P = 4−1v in the following section.
Other related work is [2], [3], [4], [10], [11], [1]. We

refer to Mumford-Gidas [6] for a stochastic model, in a
related approach, for natural images.

2. DESCRIPTION OF THE PROPOSED MODEL

Assume that f − u = div~g, with ~g ∈ L∞(Ω)2. We can
then assume the existence of a unique Hodge decompo-
sition of ~g as: ~g = ∇P + ~Q, where P is a single-valued
function and ~Q is a divergence-free vector field. From
here, we obtain that f − u = div~g = 4P . Now, we
express P = 4−1(f − u), and we propose the follow-
ing new convex minimization problem, a simplified and
modified version of (3):

inf
u

E(u) =
∫

Ω

|∇u|+ λ

∫

Ω

|∇(4−1)(f −u)|2dxdy. (7)

This new problem is obtained from (3) by neglecting
~Q from the expression for ~g, and by considering the
(L2 − norm)2 instead of the L∞ − norm for |~g|. The
problem can therefore be written using the norm in
H−1(Ω), as defined by |v|2H−1 =

∫
Ω
|∇(4−1v)|2dxdy:

inf
u

E(u) =
∫

Ω

|∇u| + λ|f − u|2H−1 . (8)

Formally minimizing (7), we obtain the Euler-Lagrange
equation:

2λ4−1(f − u) = div
( ∇u

|∇u|

)
. (9)

Instead of directly solving (9) with a non-local term,
we apply the Laplacian to (9), to obtain:

2λ(u − f) = −4
[
div

( ∇u

|∇u|

)]
, (10)

which we shall solve by driving to steady state

ut = − 1
2λ

4
[
div

( ∇u

|∇u|

)]
−(u−f), u(0, x, y) = f(x, y).

The associated boundary conditions on ∂Ω are ∂u
∂n =

∂K
∂n = 0, where K is the curvature of level lines of u,

K(x, y) = div
(

∇u
|∇u|

)
.

Remark. We can justify in a simple general frame-
work, that we still decrease the initial energy. Assume
that we solve:

inf
u

∫

Ω

F (u)dxdy.

Embedding the minimization in a dynamic scheme based
on gradient descent, we obtain: ut = −Fu. We then re-
place this last equation by: ut = 4Fu. We show that
the initial energy is still decreasing under the new flow.
Indeed, we have:

d

dt

∫

Ω

F (u)dxdy =
∫

Ω

Fuutdxdy =
∫

Ω

Fu4Fudxdy

=
∫

Ω

div(Fu∇Fu)dxdy −
∫

Ω

|∇Fu|2dxdy

=
∫

∂Ω

Fu
∂

∂~n
(Fu)dS −

∫

Ω

|∇Fu|2dxdy.

This is a descent direction ( d
dt

∫
Ω F (u)dxdy < 0) if: (a)

Fu = 0 or ∂
∂~n (Fu) = 0 on ∂Ω. and (b) ∇Fu is not

identically zero if Fu is not. These conditions are true
in our framework.

We believe that it is remarkable that a TV mini-
mization model leads to a fourth order Euler-Lagrange
partial differential equation. Moreover, edges are kept
in the u component, as we shall see in the numerical
examples for image decomposition and denoising, pre-
sented in the next section.



3. NUMERICAL RESULTS FOR IMAGE
DECOMPOSITION, IMAGE RESTORATION, AND

TEXTURE MODELING

Figure 1 top corresponds to a real image where there is
a high presence of textures combined with non textured
parts. The u and v components are displayed in Fig-
ure 1 middle and bottom. The new model separates
very well the textured details shown in v, from non-
textured regions, kept in u. Also, details like the eyes,
are very well represented in the u component of the new
model. In other words, the model performs very well
in keeping the main contours in the u component, in-
stead of the v component (it performs extremely well in
separating the main larger features from the textured
features). Figure 2 shows the performance of the new
model for the denoising problem. We show a zoom of
the woman image, before and after corrupting it with
white Gaussian noise of standard deviation 10, and the
denoised result, which is remarkable. Finally, we end
the paper with a decomposition result on an image with
an object with fractal boundary (corresponding to the
“Sierpinsky pentagon”), using the model. The result of
the decomposition is remarkable, as shown in Figure 3:
the cartoon part is well represented in the component
u, while the oscillatory fractal-like boundaries are kept
in the v component.
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